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Abstract: The ecological and environmental benefits of grassed spillways present a green solution to 
the construction of low head conveyance structures. On a grassed spillway, the aggregate of the grass 
canopy and root structure may alter flow resistance, velocity distribution and other flow properties. While 
subcritical flows in vegetated open channels have been extensively researched, only little is known 
about flow properties in supercritical high-velocity flows, which are typically characterized by self-
aeration. The current study explores the application of a velocity superposition to supercritical aerated 
flows on a spillway with artificial grass. Velocity measurements were conducted with a Pitot tube and a 
phase-detection conductivity probe, allowing for the extraction of shear velocities at the canopy top 
which revealed an additional free-stream velocity layer. A comparison of the mixing layer length scale 
with the shear length scale (of the mixing layer) demonstrated a good correlation. Overall, this study 
provided new insights into the flow resistance of supercritical flows on grassed spillways. 

Keywords: artificial grass, eco-friendly structures, flow resistance, high-velocity air-water flows, water 
sensitive urban design.  

1. INTRODUCTION

Grass linings on spillways and waterways with mild to moderate slopes provide ecological and 
environmental benefits such as ground water replenishment, vegetation growth (Mossa et al., 2017) and 
water quality improvement (Van Hemert et al., 2013). These advantages have promoted the use of 
grassed spillways for embankment protection (Wilcock et al., 1999), as agricultural floodway or small-
scale drainage floodway (Van Hemert et al., 2013). The grass canopies act as roughness elements and 
enhance flow resistance, while the grass root structure provides additional support to the soil ground 
(Chen et al, 2012). In the past, flow resistance of grassed spillways was often investigated from a soil 
mechanics perspective, where the aggregate of soil and grass patches undergoes constant erosion and 
scouring damage (Ralston and Brevard, 1988). From a hydraulics point of view, subcritical flow 
conditions have been extensively researched with experimental and analytical modelling in both 
submerged and emergent conditions (Nepf, 2012) for various density (Guillén-Ludeña et al., 2020), 
expanding research of canopy flows into broader aspects of river floodplains (Crosato and Saleh, 2011) 
and tidal and coastal environments (Tinoco et al., 2020). Flow properties of grassed spillways under 
high-velocity supercritical flow conditions have received less attention. 

In supercritical flows, the Froude number exceeds unity and turbulent energy obtained by the flows 
generates strong eddy motions, deforming the coherent free-surface that is maintained by surface 
tension and gravity (Brocchini and Peregrine, 2001). As turbulent forces dominate over surface tension 
and gravity, entrained air pockets break up into smaller air bubbles, a process termed self-aeration. Self-
aeration on smooth spillways and the role of entrapped and entrained air was systematically described 
in Wilhelms and Gulliver (2005). Valero and Bung (2018) described the importance of free-surface 
instabilities on self-aeration in smooth and stepped spillways. However, self-aeration in flows down 
grassed spillways was only considered recently (Scheres et al. 2020). On grass-lined waterways, the 
supercritical flows can lead to erosion of the soil structure and engineering design guidelines must 
account for this as well as flow aeration. To provide a more controlled environment, the current study 
deployed a dense cover of artificial grass, allowing a detailed investigation into mean velocity profiles 
and flow resistance of grassed spillways. 

Nikora et al. (2013) developed a model to characterize velocity profiles of flat grassed waterways in 
subcritical flows, which uses a linear superposition of several conventional concepts. In the present 
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study, the application of the velocity superposition of Nikora et al. (2013) was applied to supercritical 
flows on a spillway with artificial grass. The results revealed an additional free-surface layer, which led 
to an expansion of Nikora’s et al. (2013) subcritical flow model. In addition, shear velocities at the canopy 
top were extracted through log-law fitting, demonstrating a good agreement with shear velocities 
evaluated from the friction slope, providing new information on the local flow resistance.  

2. METHODOLOGY 

2.1.  Velocity superposition 

The current study investigated the superposition of streamwise velocity profiles in supercritical free-
surface flows down grassed spillways. The velocities in the water phase were superposed using 
conventional concepts after Nikora et al. (2013), including (i) a uniform velocity distribution inside the 
canopy layer, (ii) the mixing layer region, (iii) the logarithmic layer and (iv) the wake function; the current 
study proposes an additional (v) free-surface layer to reflect the interfacial velocity of free-surface waves.  
 
The velocity distribution within the canopy is governed by the vegetational drag (with drag coefficient 
𝐶𝑑 = 1.0), further depending on the frontal area of grass per unit volume (𝑎 = 281 1/m) and the channel 

slope (𝑆0 = 0.19). Herein, the single-phase model of Nikora et al. (2013) was applied up to the 

characteristic flow depth 𝑌1  where the void fraction is first measured (𝐶(𝑌1)  ≈ 0.01): 
 

�̅�𝑈𝐷 =  { (
𝑔𝑆0

0.5 𝐶𝑑 𝑎
)

0.5

 if   0 < 𝑦 <  𝑌1 

else  0

 (1) 

 
where �̅�𝑈𝐷 is a quasi-constant velocity (Nikora et al.,2004; Nepf, 2012; Nikora et al., 2013) and 𝑦 is the 
bed-normal coordinate. The mixing layer includes the appearance of an inflection point and the velocity 
distribution �̅�𝑀𝐿 is governed by a Kelvin-Helmholtz instability, generating mixing layer eddies (Raupach 

et al., 1996; Nepf, 2012; Nikora et al., 2013):  
 

�̅�𝑀𝐿 =  {
  (�̅�𝑖 − �̅�𝑈𝐷) (1 + tanh

𝑦−𝑦𝑖

𝐿𝑒
)  if   0 < 𝑦 <  𝑌1 

else  0
        

                                            

(2) 

where �̅�𝑖 stands for the velocity at the inflection point, 𝑦𝑖 is the location of the inflection point and 𝐿𝑒 is a 
characteristic length scale of the mixing layer. The logarithmic layer follows a classical logarithmic 
velocity profile �̅�𝐿𝐿, expressed as (Nikora et al. (2013): 
 

�̅�𝐿𝐿 =  {
 𝑢∗𝑐 

1

𝜅
ln

𝑦−𝑦𝑖−𝑑𝑖

𝑦0
 if   𝑦𝑖 + 𝑦0 + 𝑑𝑖 < 𝑦 <  𝑌1 

else  0
            

                                                                                  

(3) 

where 𝑢∗𝑐  represents the shear velocity at the top of the canopy as a momentum transport scale, 𝜅 is 

the von Karman constant (𝜅 = 0.41), 𝑑𝑖 is the distance between the log layer and the inflection point and 
𝑦0 is the hydraulic roughness height, respectively. The wake function �̅�𝑊𝐹 can be approximated as 
(Monin and Yaglom, 1971): 
 

�̅�𝑊𝐹 =  {
 𝑢∗𝑐

2𝛱

𝜅
sin2 𝜋𝑦

2𝑌1
 if   𝑦𝑖 + 𝑦0 +  𝑑𝑖 < 𝑦 <  𝑌1 

else  0
                  

                             

(4) 

where �̅�𝑊𝐹 is the velocity of the wake and Π is the Coles wake parameter (Coles, 1956). The combination 
of these components provides a semi-analytical description of the velocity profile on grassed channels, 
as defined by for subcritical flow conditions: 
 

�̅� = �̅�𝑈𝐷 + �̅�𝑀𝐿 + �̅�𝐿𝐿 + �̅�𝑊𝐹 (5) 

 



 

Supercritical flows on chutes are characterized by high velocities and shallow flow depths. In these 
flows, turbulence is generated at the bed boundary and leads to free-surface roughness, deformation 
and breakup once turbulence overcomes the two stabilizing factors, i.e., gravity and surface tension 
(Brocchini and Peregrine, 2001). In the present experiments, an additional layer of constant velocity 
(�̅�𝐹𝑆) was observed, which was superposed to Nikora’s et al. (2013) velocity superposition model, 
describing the near-surface region of the water column where free-surface instabilities and waves were 
observed:  
 

�̅�𝐹𝑆 =  {
 �̅�𝑈𝐷 +  (�̅�𝑖 − �̅�𝑈𝐷) (1 + tanh

𝑌1 − 𝑦𝑖

𝐿𝑒

) +
𝑢∗𝑐,𝐿𝐿

𝜅
(ln

𝑌1 − 𝑦𝑖 − 𝑑𝑖

𝑦0

+ 2𝛱)  if   𝑌1 < 𝑦 <  𝑌90 

else  0

 

 

(6) 

where 𝑌90 is the characteristic bed-normal depth where 𝐶 = 0.90. A conceptual drawing of the velocity 
superposition from the bed to the free-surface is shown in Figure 1, and the complete velocity profile is 
defined as: 
 

�̅� = �̅�𝑈𝐷 + �̅�𝑀𝐿 + �̅�𝐿𝐿 + �̅�𝑊𝐹 + �̅�𝐹𝑆 (7) 
 

  
Figure 1 – Conceptual drawing of the velocity profile; additional parameters are the equivalent 

clear water depth (𝑑𝑒𝑞), the deflected grass height (ℎ𝑐), the shear length scale of the mixing 

layer (𝐿𝑠), and the mixing layer length scale (𝐿𝑒)  

 

2.2. Experimental facility and instrumentation 

Experiments were performed in a laboratory chute at the UNSW Water Research Laboratory (WRL), 
which was 8 m long, 0.8 m wide and had a slope of 10.8 degrees. As shown in Figure 2a, the surface 
of the chute was equipped with a dense layer of artificial grass whose stems were uniformly attached to 
an underlying mesh. Herein, a specific flow rate of 𝑞 = 0.188 m2/s was used, leading to a deflected 

grass height ℎ𝑐 = 20 mm. The flow rate was monitored with an ABB electromagnetic flow meter with 
uncertainty of ± 0.4%. The flow conditions corresponded to a Reynolds number 𝑅𝑒 = 𝑞/𝜈 = 1.88 × 105,a 

Froude number 𝐹𝑟 =  〈�̅�〉/(𝑔 𝑑𝑒𝑞)1/2 2.63 which was measured in the uniform flow region, i.e. at 𝑥 = 7.5 

m, with 𝑑𝑒𝑞 = 0.153 m being the equivalent clear water flow depth (Eq. 8). Note that parts of this dataset 

have been presented by Cui et al. (2020). 
 
The flows just downstream of the weir crest were non-aerated and the free-surface was smooth, which 
was because surface tension was able to maintain the cohesion of the water phase (see Brocchini and 
Peregrine 2001). As the turbulence builds up, free-surface perturbations were observed at 𝑥 = 2.1 m, 

leading to surface aeration at 𝑥 = 3.8 m. In the non-aerated part of the spillway, the flow depth was 



 

measured with a pointer gauge, while a dual-tip conductivity probe was used to estimate air 
concentration distributions (𝐶) in regions with surface aeration, enabling the computation of 𝑑𝑒𝑞: 

 

𝑑eq = ∫ (1 − 𝐶) d𝑦
𝑦=𝑌90

𝑦=0

 (8) 

  

  
(a) (b) 

Figure 2 – (a) Experimental chute with dense coverage of grass; (b) WRL dual-tip conductivity probe 

 
The region above 𝑌90 is commonly classified as the spray region, consisting of ejected water droplets 

that do not contribute significantly to the flow, and are therefore disregarded in the calculation of 𝑑𝑒𝑞 

(Wood, 1983; Felder and Chanson, 2013). Water velocities were measured with a Pitot tube at 8 cross-
sections, starting 0.5 m downstream of the weir crest with an interval of 1 m. In the air-water surface 
region, the Pitot tube data were complemented with interfacial velocities measured with a phase-
detection conductivity probe. Herein, the same dual-tip conductivity probe as in Felder and Chanson 
(2018) was deployed, having a streamwise distance between the leading and trailing tip of 𝛥𝑥 = 8.104 
mm (Figure 2b), while the transverse distance was 1 mm. The probe was made in-house at the WRL 
and the inner and outer electrodes had diameters of 0.125 mm and 0.5 mm, respectively. Based upon 
a sensitivity analysis of sampling parameters, the phase-detection signals were recorded at a sampling 
frequency of 40 kHz for a duration of 180 s at each elevation. The signal processing for extracting 
velocities followed Kramer et al. (2019, 2020). 

3. RESULTS 

3.1.  Velocity profiles 

Figure 3 shows the development of streamwise velocity distributions along the grassed spillway for  𝑞 = 
0.188 m2/s, comprising water velocities (�̅�) measured with the Pitot tube (hollow symbols) and interfacial 

velocities (�̅�𝑎𝑤) measured with the dual-tip conductivity probe (solid symbols). The Pitot tube provided 
detailed velocity profiles in monophase flow regions, while the conductivity probe was able to measure 
the travel speed of surface deformations, waves and water droplets close to the free-surface, which had 
almost constant interfacial velocities (Figure 3). The velocity distributions evolved along the chute and 
approached uniform profiles towards the downstream end of the spillway. The equivalent clear water 
flow depth was calculated based upon the air-water flow data and the results are added in Figure 3, 
showing a small decline in 𝑑𝑒𝑞 towards the downstream end approaching uniform flow conditions. In the 

flow region where both instruments were able to measure velocities, the interfacial velocities agreed 
with the water velocities. Considering this close agreement, it can be assumed that �̅�𝑎𝑤 ≈ �̅�. 
 
The velocity profiles of three exemplary cross-sections at the end of the chute were compared against 
the model of Nikora et al. (2013) (Eq. 5) and the expanded model with the additional free-surface layer 
(Eq. 7) (Figure 4a). All velocities were normalized with the shear velocity at the channel bed 𝑢∗ to 
highlight the universal agreement of the model with the velocity data. While the model of Nikora et al. 
(2013) fitted the experimental data well from the channel bed up to the wake region, the velocities 

𝜟𝒙 = 𝟖. 𝟏𝟎𝟒 𝒎𝒎 

 



 

deviated in the free-surface region (Figure 4a). In contrast, the expanded model (Eq. 7) fitted the 
experimental data well across the full flow column.  
 

 

Figure 3 – Velocity profiles along the grassed spillway for 𝑞 = 0.188 m2/s. Hollow symbols = Pitot tube 
data; solid symbols = dual-tip conductivity probe data 

 
Figure 4b illustrates the corresponding dimensionless void fraction (𝐶) and bubble count rate (𝐹/𝐹max) 

distributions, where 𝐹max is the maximum bubble count rate in a cross section; both 𝐶 and 𝐹 were 
measured with the leading tip of the conductivity probe. Comparing the velocity data with the air-water 
flow properties shows that the presence of air-water interfaces in the form of entrapped air, free-surface 
roughness and waves in the upper part of the flows is represented by the constant interfacial velocity 
component (Eq. 6). The expanded model (Eq. 7) accounts for the air-water flow interactions and it is 
believed that this model is also applicable to grass-lined spillway flows with stronger aeration.  

 

     
(a) (b) 

Figure 4 – (a) Comparison of supercritical velocity data at the downstream end with the model of 
Nikora et al. (2013) (Eq. 5) and the expanded model (Eq. 7) for 𝑞 = 0.188 m2/st; (b) Corresponding 

void fraction (𝐶) and bubble count rate (𝐹) distributions. 
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3.2. Shear velocity 

The shear velocity is commonly used to represent the bed shear stress of a flow, indicating the flow 
resistance. It has the same units as a velocity and is therefore often used for the normalization of velocity 
distributions (Figure 4a). The shear stress can be obtained by fitting the log law to the velocity profile 
which was conducted for the velocity distributions in the present study. The velocity profiles in the mixing 
and log layers agreed well with the model of Nikora et al. (2013) (Figure 4a). Using the dimensionless 
expression of 𝑢+ and 𝑦+, the measured velocities above (𝑦𝑖 + 𝑑𝑖 + 𝑦0) and below the upper limit 
((𝑑 − 𝑦𝑖 − 𝑑𝑖) ∗ 0.3 + 𝑦𝑖 + 𝑑𝑖) were fitted to the log-law (Eq. 3), providing the shear velocities at the 

canopy top 𝑢∗,𝐿𝐿 (the subscript 𝐿𝐿 stands for log-law). The shear velocities at the canopy top ranged 

between 0.30 m/s < 𝑢∗𝑐,𝐿𝐿 <  0.35 m/s, which was comparable to a micro-rough spillway with assorted 

grains (Severi, 2018).  
 
Towards the downstream end of the spillway, the shear velocity from log law fitting (𝑢∗𝑐,𝐿𝐿) was compared 

with the shear velocity 𝑢∗𝑐, derived from the channel slope assuming uniform flow conditions: 
 

𝑢∗𝑐 =  √𝜏/𝜌 =  √𝑔𝑆0(𝑑eq − ℎ𝑐) (10) 

 
where 𝜏 is the shear stress at the canopy top and 𝜌 is the density of water. Figure 5b shows this 
comparison, indicating good agreement between the two shear velocity estimates. Therefore, it appears 
that the log law fitting can be applied to grass-lined spillways. Future research must test if this is also 
valid for a wider range of flow conditions and for more strongly aerated flows on vegetated spillways. 

 

  

 

  
(a) (b) 

Figure 5 – (a) Comparison of the velocity data with the log law; (b) Comparison of shear velocities 
extracted from the log layer fitting 𝑢∗,𝐿𝐿 with shear velocities 𝑢∗𝑐 calculated with Eq. (10).  

4. DISCUSSION: MIXING LAYER LENGTH SCALE  

The mixing layer represents the coflowing zone of inside- and outside-canopy flows which generate 
vortex motions as Kelvin-Helmholtz waves (Raupach et al., 1996). It depicts an inflectional velocity 
profile featuring the transition between the uniform velocity profile (inside-canopy) to the log law velocity 
profile (outside-canopy). The mixing layer of a grassed channel was modeled with a hyperbolic function 
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(Eq. 2) by Nikora et al. (2013), where the mixing layer velocity becomes constant at 𝑦 > 𝑦𝑖 + 𝐿𝑠 (Figure 
1). 𝐿𝑠 is defined as the shear length scale of the mixing layer (Raupach et al., 1996; Nikora et al., 2013), 
indicating the region where the inflectional mixing layer applies (Figure 1). According to Raupach et al. 
(1996) and Nikora et al. (2013), the shear length scale of the mixing layer can be determined via: 
  

𝐿𝑠 =  �̅�𝑖/ (
𝛥�̅�

𝛥𝑦
)

𝑦𝑖

 (11) 

 
Computed by a forward differences method, the shear length scale of the mixing layer 𝐿𝑠 reflects the 

above-canopy section of the canopy-scale vortices (Figure 1). Whereas the mixing layer length scale Le 
in Eq. (2) resembles the penetration of canopy-scale vortices into the grass canopy (Ghisalberti and 
Nepf, 2002). Under the assumptions that (i) the inflection point is in the middle of the mixing layer, and 
(ii) that the uniform velocity �̅�𝑈𝐷 is much smaller than �̅�𝑖, both length scales should be identical, implying 

that the thickness of the mixing layer is 𝛿𝑚 = 𝐿𝑒 + 𝐿𝑠 =  2 ∗ 𝐿𝑒 = 2 ∗ 𝐿𝑠  (Raupach et al., 1996; Nikora et 
al. (2013)).   
 
Herein, the velocities measured with the Pitot tube were used to calculate 𝐿𝑒 and 𝐿𝑠 applying Eqns. (2) 

and (11) respectively, and the calculated values are compared in Figure 6. Previous data of 𝐿𝑒 and 𝐿𝑠 of 
Nikora et al. (2013) for subcritical flows were added as well as the suggested relationship between 
𝐿𝑒  and 𝐿𝑠 (Nikora et al., 2013) (Figure 6). The present length scales compared similarly to the 

observations of Nikora et al. (2013) (Figure 6). The close agreement between 𝐿𝑒 and 𝐿𝑠  confirms the 
statement from Raupach et al. (1996) and Nikora et al. (2013) that the shear length scale of mixing layer 
is also representative of the mixing layer thickness and the equivalency of 𝐿𝑒 and 𝐿𝑠 in the current 
configuration. The present supercritical flows were much shallower compared to subcritical flow 
conditions. Irrespective of this, the close agreement between sub- and supercritical flow observations 
of 𝐿𝑒 and 𝐿𝑠 extended the mixing layer concept to high-velocity flows on grassed spillways.  
 

  

Figure 6 – Comparison of mixing layer length scales Le (Eq. 2) and shear length scale of mixing layer 

𝐿𝑠 (Eq. 11) of the present study together with previous results from Nikora et al. (2013). 

5. CONCLUSION 

Detailed experiments of flows down a grass-lined spillway were conducted, providing new insights into 
the velocity distributions and shear velocities. The velocity profiles were obtained through 
measurements with a Pitot tube and a dual-tip conductivity probe, comprising a data set of both non-
aerated flows close to the channel bed and aerated flows close to the free-surface. Both velocity 
measurement methods complemented each other and provided reliable velocity profiles across the full 
flow column. The present data were compared with the predicted velocity profile by Nikora et al. (2013). 
While the present data were well fitted from the bed to the wake layer, the model was expanded to the 
free-surface region characterized by free-surface roughness, entrained air and free-surface waves. 
Fitting the velocity profile to the log law provided the shear velocity estimate for grass-lined spillways, 
which was similar to spillway flows with a micro-rough bed. The mixing layer length scale was compared 

Ls (cm)

L
e
 (

c
m

)

0 0.5 1 1.5
0

0.5

1

1.5Present data
1 : 1
Nikora et al. (2013)
y = 0.93 x



 

with the shear length scale indicating close agreement of the two in supercritical flows. Overall, the 
present study provided novel insights into the flow resistance of grassed spillways through a detailed 
assessment of velocity distributions, which will be expanded to a wider range of flow conditions including 
real vegetation in future research. 
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