
Citation: Kulyukin, V.A. On

Signifiable Computability: Part I:

Signification of Real Numbers,

Sequences, and Types. Mathematics

2024, 12, 2881. https://doi.org/

10.3390/math12182881

Academic Editor: Antonin Dvorak

Received: 23 August 2024

Revised: 6 September 2024

Accepted: 10 September 2024

Published: 15 September 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Signifiable Computability: Part I: Signification of Real
Numbers, Sequences, and Types
Vladimir A. Kulyukin

Department of Computer Science, Utah State University, Logan, UT 84322, USA; vladimir.kulyukin@usu.edu

Abstract: Signifiable computability aims to separate what is theoretically computable from what
is computable through performable processes on computers with finite amounts of memory. Real
numbers and sequences thereof, data types, and instances are treated as finite texts, and memory
limitations are made explicit through a requirement that the texts be stored in the available memory
on the devices that manipulate them. In Part I of our investigation, we define the concepts of
signification and reference of real numbers. We extend signification to number tuples, data types,
and data instances and show that data structures representable as tuples of discretely finite numbers
are signifiable. From the signification of real tuples, we proceed to the constructive signification of
multidimensional matrices and show that any data structure representable as a multidimensional
matrix of discretely finite numbers is signifiable.

Keywords: computability theory; theory of recursive functions; number theory; real numbers; real
number sequences

MSC: 03D75; 03D80

1. Introduction

In classical computability, computation is described with formalisms such as λ-calculus
(cf., e.g., Rogers, 1988, Ch. 1, [1]) and the Turing Machine (cf., e.g., Davis et al., 1994 [2],
Ch. 6) that do not place memory limitations on physical or abstract computers on which
the formalized computation is performed and confine computation to natural numbers.
Yet, memory limitations are fundamental in distinguishing what is theoretically possible
from what is computationally feasible, because scientific computation on real numbers is
routinely performed on devices with finite amounts of memory. A theory of signifiable com-
putability proposed in our investigation aims to distinguish what is computable without
any memory limitations from what is computable on a finite amount of memory available
for computation and to characterize the computability of functions on real numbers with
and without memory limitations. To that end, data types and instances, programs, and
program states are treated as finite texts constructed with formalisms (e.g., the standard
decimal notation on Unicode). The texts are formed to signify or, equivalently, designate
intuitive objects such as numbers, data types and structures, programs, and program states
in a given universe of discourse. When the formed texts are stored within the available
memory units, they signify or designate the corresponding objects on finite memory, or,
equivalently, the texts finite memory-signify (FM-signify) or finite memory-designate (FM-
designate) those objects. No finite memory device (FMD) can mechanically manipulate or,
equivalently, transform texts unless the latter are stored in its memory cells.

We introduce the concepts of discretely finite and discretely infinite numbers. A dis-
cretely finite number is signified completely by a text constructed with a formalism
on an alphabet in that the signs (i.e., elements of the alphabet) of the designating text
completely coincide with the elements of the number they signify. A discretely infi-
nite number is a number for which no such signification is possible. E.g., texts such

Mathematics 2024, 12, 2881. https://doi.org/10.3390/math12182881 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12182881
https://doi.org/10.3390/math12182881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8778-5175
https://doi.org/10.3390/math12182881
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12182881?type=check_update&version=1

Mathematics 2024, 12, 2881 2 of 17

as "2.7182818284" and "3.1415926535" in the standard decimal notation on Unicode
signify the numbers 2.7182818284 and 3.1415926535. However, when constructed to ap-
proximate the transcendental numbers e and π, respectively, these texts only reference these
discretely infinite numbers.

In Part I, we show that signification and FM-signification extend to number tuples
(i.e., finite sequences of numbers), data types, and instances and show that data structures
representable as tuples of discretely finite numbers are signifiable. Consequently, all
standard data structures of computer science (e.g., lists, arrays, tuples, queues, stacks,
hash tables, priority queues, and heaps) whose elements are discretely finite numbers are
signifiable. We also show that any data structure representable as a multidimensional
matrix of discretely finite numbers (e.g., trees and graphs) is signifiable. We conclude
Part I by defining a Gödel numbering of texts to map texts to unique positive integers. A
principal objective of Part I of our investigation is to lay a foundation for a subsequent
axiomatization of signifiable computability.

2. Prolegomena

This section briefly introduces the basic conceptual and formal apparatus used in this
article. The reader may skip this section on first reading and return to it as necessary. The
statements S1 ⊂ S2 and S1 ⊆ S2 mean that S1 is a proper subset and a subset of the set
S2, respectively. The symbol ∅ denotes the empty set. S1 and S2 are equivalent if there is
a one-to-one (1–1) correspondence between them, or, in symbols, S1 ∼ S2, whereby each
element of S1 is uniquely paired with an element of S2, and vice versa. |S| denotes the
cardinality of S. If S is finite, |S| ∈ N = {0, 1, 2, . . .}. Z, Z−, Z+, Q, R denote the sets
of whole numbers (0 ∈ Z), negative whole numbers (0 ̸∈ Z−), positive whole numbers
(0 ̸∈ Z+), rational numbers, and real numbers, respectively. S is enumerably finite if S ∼ S′ ∧
|S′| ∈ N, where ∧ designates the logical and. S is enumerably infinite if S ∼ N. S is enumerable
if it is enumerably finite or enumerably infinite. Per Cantor’s diagonalization (cf., e.g.,
Kleene, 1952, [3], Ch. I, § 2), R is not enumerable. If Ti1 , Ti2 , . . . , Tik , k ∈ Z+ are sets, then

Ti1 × Ti2 × · · · × Tik = {(ti1 , ti2 , . . . , tik)|ti1 ∈ Ti1 , ti2 ∈ Ti2 , . . . , tik ∈ Tik},

where (ti1 , ti2 , . . . , tik) is called a k-tuple, i.e., a finite sequence of k elements.
A finite memory device (FMD) D is a computer with an enumerably finite set of memory

units or, equivalently, memory cells. Let D denote the set of all FMDs, then the function
CCAP : D 7→ Z+ maps each FMD to the number of its memory cells. D is a FMD if and
only if CCAP(D) = k ∈ Z+. An elementary sign is that which can be written in exactly one
memory cell. We enclose elementary signs in double quotation marks, e.g., "0", "1", "+",
etc. The elementary sign "" is the empty sign.

An alphabet is an enumerably finite, non-empty set of non-empty elementary signs. A
text is a finite sequences of elementary signs of A . An alphabet A is decimal sufficient if and
only if A contains the signs of the standard decimal notation or the unique equivalents
thereof, e.g., Unicode. A formalism L on an alphabet A is a finite set of formal rules to
form or, equivalently, to construct texts on A . L is decimal notation sufficient if and only if
it allows for the mechanical formation of texts on a decimal sufficient alphabet A in the
characteristic-mantissa form of the standard decimal notation or an equivalent thereof. E.g.,
L on A can be the floating-point notation of Lisp on Unicode (cf., e.g., Steele, 1990 [4],
Ch. 2, Section 2.1.3) or the numerical notation of Perl on Unicode (cf., e.g., Lee, 2010 [5], Ch.
2, Section 1). We will hereafter assume that any L on A is decimal notation sufficient. We
call an alphabet A decimal notation sufficient if and only if there exists a decimal notation
sufficient formalism L on A .

A basic text formation operation in L on A is concatenation, denoted as
⊕

A ,L . In
the base case,

⊕
A ,L maps two elementary signs si and sj from A to the sign sisj. The

concatenation of the empty sign to any other sign s results in s. In the recursive case, the
concatenation of the elementary signs si1 ∈ A , si2 ∈ A , . . . , sin ∈ A , 2 < n ∈ Z+, is formed

Mathematics 2024, 12, 2881 3 of 17

by concatenating si1 and si2 to obtain si1 si2 , and then concatenating si3 to the right of si1 si2
to obtain si1 si2 si3 , and so on until all n signs are concatenated to form si1 si2 . . . sin . A complex
sign in L on A is a concatenation of at least two elementary signs from A in L . The
order of the sign concatenation in the formation of a text is arbitrarily assumed to be left to
right, i.e.,

si1 si2 . . . sin =
(

. . .
(

. . .
((

si1
⊕

A ,L si2

)⊕
A ,L si3

)
. . .

⊕
A ,L sin−1

)⊕
A ,L sin

)
.

Two enumerably infinite sets are defined with respect to L on A : A +
L and A ∗L . A +

L
includes the elements of A and all texts on A constructed according to the rules of L ,
while A ∗L = {""} ∪A +

L . We say that t is a text in L on A when t ∈ A +
L . A numeral is a

text t ∈ A +
L that designates a real number. E.g., if L is the standard decimal notation on

the subset of Unicode

A = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "+", "-", "."}, (1)

then, omitting the subscripts A and L for brevity, we can form the numerals "+12.7" and
"-31.05" as((((

"+"
⊕

"1"
)⊕

"2"
)⊕

"."
)⊕

"7"
)

= "+12.7";(((((
"-"

⊕
"3"

)⊕
"1"

)⊕
"."

)⊕
"0"

)⊕
"5"

)
= "-31.05".

(2)

Since the concatenation is left to right, the parenthesization can be omitted and (2)
rewritten as

"+"
⊕

"1"
⊕

"2"
⊕

"."
⊕

"7" = "+12.7";
"-"

⊕
"3"

⊕
"1"

⊕
"."

⊕
"0"

⊕
"5" = "-31.05".

(3)

For ti ∈ A +
L , 1 ≤ i ≤ l, l > 2, we let

⊕
A ,L

(
t1, t2, . . . , tl

)
=

⊕
A ,L

∣∣∣l
i=1

ti =

⊕
A ,L t1

⊕
A ,L t2

⊕
A ,L . . .

⊕
A ,L tl .

(4)

If t ∈ A +
L , |t| is the number of the elementary signs from A in t. If s ∈ A , |s| = 1 and

|""| = 0. If |t| = n ∈ Z+, then s1, s2, . . . , sn designate the elementary signs of t from left to
right. E.g., if t = "+12.7", |t| = 5, and s1 = "+", s2 = "1", s3 = "2", s4 = ".", s5 = "7".

If f is a function, dom(f) and ran(f) denote the domain and the range of f , respectively.
A statement f : S 7→ R abbreviates dom(f) = S ∧ ran(f) = R. If f : Ti1 × Ti2 × · · · ×
Tik 7→ Tj and (ti1 , ti2 , . . . , tik) ∈ dom(f), then f is defined on (ti1 , ti2 , . . . , tik) or, in symbols,
f (ti1 , ti2 , . . . , tik) ↓ if and only if there exists tj ∈ Tj such that f (ti1 , ti2 , . . . , tik) = tj or, in
symbols, (∃ tj ∈ Tj) { f (ti1 , ti2 , . . . , tik) = tj}, where ∃ designates the logical existential
quantifier. If ¬(∃ tj ∈ Tj) { f (ti1 , ti2 , . . . , tik) = tj}, where ¬ designates the logical not, then f
is undefined on (ti1 , ti2 , . . . , tik) or, in symbols, f (ti1 , ti2 , . . . , tik) ↑. If f : Ti1 × Ti2 × · · · × Tik 7→
Tj and

(∀ (ti1 , ti2 , . . . , tik) ∈ Ti1 × Ti2 × · · · × Tik) (∃ tj ∈ Tj) { f (ti1 , ti2 , . . . , tik) = tj},

where ∀ designates the logical universal quantifier, f is total on Ti1 × Ti2 × . . .× Tik . If

(∃ (ti1 , ti2 , . . . , tik) ∈ Ti1 × Ti2 × · · · × Tik) { f (ti1 , ti2 , . . . , tik) ↑},

then f is partial on Ti1 × Ti2 × . . . , Tik .

Mathematics 2024, 12, 2881 4 of 17

3. Data Types and Instances

A data type is a set of objects constructable with a finite set of rules. A data instance
or structure is a member of a data type. Informally, data types are sets of intuitively
conceivable objects that are generated with performable processes (cf. Kleene, 1952 [3], Ch.
III, § 15). E.g., N is the natural number data type generatable (or, equivalently, formable or
constructable) with three rules: (1) 0 is a natural number; (2) any number generated by a
finite number of compositions of the successor function s(x) = x + 1 with itself beginning
at 0, i.e., s(0), s(s(0)), . . ., is a natural number; (3) no other object is a natural number. Z− is
the negative whole number data type whose objects are formable with three rules: (1) −1
is a negative whole number; (2) any number obtained by a finite number of compositions
of the predecessor function ps(x) = x− 1 with itself beginning at −1 is a negative whole
number; (3) no other object is a negative whole number. Z+ is the positive whole number
data type whose objects are constructable with three rules: (1) 1 is a positive whole number;
(2) any number number generated by a finite number of compositions of s(x) = x + 1 with
itself beginning at 1 is a positive whole number; (3) no other object is a positive whole
number. Z is the whole number data type formable by combining the rules for N, Z+, and
Z− and the rule that no other object is a whole number. Other examples include the rational
number, the binary tree, the hash table, the undirected unweighted graph, and the directed
unweighted graph.

A data type is discrete if each instance of the type consists of an enumerable set of
intuitively conceivable objects. E.g., a natural number consists of finitely many applications
of s(x) and a whole number consists of finitely many applications of s(x) or ps(x). We
can analogously generate the numerator of a rational number and its non-zero denomi-
nator. The binary tree type is discrete insomuch as a binary tree structure consists of an
enumerable set of nodes constructed by first generating the root node and subsequently, if
the desired number of levels is greater than 0, producing finitely many nodes at each level
and connecting each node to the unique parent node at the previous level as its left or right
descendant so that the number of nodes at each level l is at most 2l .

A discrete data type is finite if each instance of the type consists of an enumerably finite
set of objects. E.g., the natural number, the whole number, the rational number, the binary
tree, the hash table, and the undirected or directed unweighted graph are discrete and
finite. We refer to such data types and their instances as discretely finite. E.g., 3 is a discretely
finite natural number (i.e., 3 ∈ N) because 3 = s(s(s(0))); −3 is a discretely finite negative
whole number (i.e., −3 ∈ Z+) because −3 = ps(ps(−1))); −3/2 is discretely finite rational
number (i.e., −3/2 ∈ Q) because −3/2 = ps(ps(−1)))/s(s(0)). A data type is discretely
infinite if each instance of the data type consists of an enumerably infinite set of objects.

4. Signification and Reference of Real Numbers

One can define R as an infinite set of sets, each of which represents a real number so
that the sets representing individual whole or rational numbers are singletons, whereas
the sets representing individual irrational numbers are infinite sets of rational numbers
(cf., e.g., Kleene, 1952 [3], Ch. II, § 9). A real number can, therefore, be an infinite set of
numbers conceived as the completed infinite. Under this interpretation, such statements as
x = y, x + 1, x− 1 require one to allow for the left- or right-hand side of the equality to be
the completed infinite or to add or subtract 1 to and from the completed infinite, which,
albeit theoretically possible and insightful, may not be constructable with performable
processes, especially when the latter are restricted to finite amounts of memory available
for computation.

To the extent that each individual member of the set representing one specific real
number is discretely representable, e.g., in the characteristic–mantissa form in the standard
decimal notation, to that extent only do we construe that set to be a discrete subtype of R.
For, once so represented, the individual elements of each representation’s characteristic, the
period that separates the characteristic from the mantissa, and the individual elements of the
mantissa can be enumerated. Under this interpretation, some instances of R are discretely

Mathematics 2024, 12, 2881 5 of 17

finite, while others are not. E.g., the singletons representing individual whole or rational
numbers whose sole elements have finite characteristics and mantissas are discretely finite,
but the transcendental numbers π and e are not. It is with the aim to distinguish discretely
finite and discretely infinite numbers that we introduce the following definitions.

Definition 1. Let r ∈ R. Then, r is discretely finite in L on A if and only if there exists the set

Sr =
{

t|t ∈ A +
L

}
̸= ∅, where each t signifies or, equivalently, designates r and no other number,

or, in symbols,

r ← {=}A ,L → Sr. (5)

If t ∈ Sr, then t signifies or, equivalently, designates r in L on A , or, in symbols,

t← (=)A ,L → r. (6)

If there is no text that designates r in L on A , then r is not signifiable or, equivalently, not
designatable in L on A and, hence, not discretely finite in L on A , or, in symbols,

r ← {=}A ,L → ∅;
r ← (=)A ,L → "".

(7)

← {=}A ,L → and← (=)A ,L → are symmetric.

The signification of real numbers, as implied by Definition (1), is always defined
with respect to a given L on A . E.g., if A is given in (1) and L on A is the standard
decimal notation where, as we assume henceforth, the leading or trailing zero signs in the
characteristic–mantissa form do not change numbers designated by numerals, then

13 ← (=)A ,L → "0000013";
13 ← (=)A ,L → "13.0000";
13 ← (=)A ,L → "013.000";
13 ← (=)A ,L → "0013.00";
13 ← (=)A ,L → "00013.0";
13.13 ← (=)A ,L → "13.1300";
13.13 ← (=)A ,L → "013.130";

(8)

and

13 ← {=}A ,L S13 = {"0000013", "13.0000", "013.000",
"0013.00", "00013.0", . . .};

13.13 ← {=}A ,L S13.13 = {"13.1300", "013.130", . . .}.
(9)

Definition 2. Let r ∈ R such that r ← {=}A ,L → Sr ̸= ∅. Then, r is FM-signifiable
or, equivalently, FM-designatable in L on A on a FMD D if and only if there exist S′r ⊆ Sr,

S′r =
{

t
∣∣∣ |t| ≤ CCAP(D)

}
̸= ∅, in which case,

r ← {=}A ,L ,D → S′r (10)

holds. If t ∈ S′r, then t FM-signifies or, equivalently, FM-designates r in L on A on D , or,
in symbols,

t← (=)A ,L ,D → r. (11)

If there is no text that FM-signifies or FM-designates r in L on A on D , then r is not
FM-signifiable or, equivalently, not FM-designatable in L on A on D , or, in symbols,

Mathematics 2024, 12, 2881 6 of 17

r ← {=}A ,L ,D → ∅;
r ← (=)A ,L ,D → "".

(12)

← {=}A ,L ,D → and← (=)A ,L ,D → are symmetric.

A direct consequence of Definitions (1) and (2) is

Lemma 1. If r ← {=}A ,L ,D → Sr ̸= ∅, then r ← {=}A ,L → Sr.

Definition 3. Let r ← (=)A ,L → t ∈ A +
L . Then, t is a signifying or designating numeral of r

in L on A . If r ← (=)A ,L ,D → t, then t is an FM-signifying or FM-designating numeral of r
in L on A on D .

We prove

Lemma 2. Let r ← {=}A ,L ,D → Sr, r ∈ R, |A | = m ∈ Z+. Then |Sr| ∈ N.

Proof. If r ← {=}A ,L ,D → Sr = ∅, |Sr| = 0. Let t ∈ Sr. Then, 1 ≤ |t| ≤ CCAP(D) = k ∈
Z+ so that 1 ≤ |Sr| ≤ ∑k

l=1 ml , 1 ≤ l ≤ k.

Signification, in the sense explicated in the above definitions and lemmas, is possible
only with discretely finite numbers. E.g., 13 is signifiable as "13" in a decimal notation
sufficient L on A in (1). Concatenating "0" any number of times to the left of "13" does
not change the signification of 13, because the resultant texts still designate 13 and no other
number in L on A , which one can verify by eliminating the leading zero signs to obtain
"13" and then obtaining the number 13 through the 13 applications of s(n) starting at 0.

No text in L on A signifies a discretely infinite number so that its signs completely
coincide with the individual elements of the number. E.g., let us consider the list of the
first 13 approximations of the transcendental numbers e and π in (13) from the published
sequences OEIS:A001113 and OEIS:A000796 in the standard decimal notation.

e π

(1) 2.7 3.1
(2) 2.71 3.14
(3) 2.718 3.141
(4) 2.7182 3.1415
(5) 2.71828 3.14159
(6) 2.718281 3.141592
(7) 2.7182818 3.1415926
(8) 2.71828182 3.14159265
(9) 2.718281828 3.141592653
(10) 2.7182818284 3.1415926535
(11) 2.71828182845 3.14159265358
(12) 2.718281828459 3.141592653589
(13) 2.7182818284590 3.1415926535897

(13)

Since the mantissas of e and π are infinite and non-repeating, there is no finite concate-
nation of the elementary signs from A in (1) that allows one to construct texts to signify e or
π in a decimal notation sufficient L on A . One can only state that texts in the infinite sets

Se = {"2.7", "2.71", "2.718", . . .}

Sπ = {"3.1", "3.14", "3.141", . . . , }
(14)

reference e and π, respectfully, without ever signifying them. While one can construct
individual real numbers signified by the numerals in Se and Sπ with performable processes

Mathematics 2024, 12, 2881 7 of 17

such as Euler’s method of continued fractions for e (cf., e.g., Abelson and Sussman, 1996 [6],
Ch. 1, Section 1.3.3) and the Chudnovsky algorithm for π (cf., e.g., Chudnovsky and
Chudnovsky, 1988 [7] or Lorenz, 2018 [8]), the signifying numerals never completely
coincide with e or π.

Definition 4. Let r ∈ R be discretely infinite and let Sr = {t|t ∈ A +
L } be an infinite set of

numerals such that each numeral references r and no other number. Then,

r ← {≈}A ,L → Sr (15)

holds and states that r is referenceable in L on A . If t ∈ Sr, then t references r in L on A , or,
in symbols,

r ← (≈)A ,L → t. (16)

If there is no numeral that references r in L on A , then r is not referenceable in L on A , or,
in symbols,

z ← {≈}A ,L → ∅;
z ← (≈)A ,L → "".

(17)

← {≈}A ,L → and← (≈)A ,L → are symmetric.

E.g., let s = "2.718" be a numeral in a decimal notation sufficient L on A in (1). If
s ∈ Se in (14), then e← (≈)A ,L → s. However, if s ∈ S2.718, where

S2.718 = {"2.718", "02.718", "2.7180", "002.718", "2.71800", . . .},

then 2.718← (=)A ,L → "2.718". We generalize these observations by proving

Lemma 3. There exists t ∈ A +
L such that, for r1, r2 ∈ R,

r1 ← {=}A ,L → Sr1 ∧ r2 ← {≈}A ,L → Sr2 ∧ t ∈ Sr1 ∩ Sr2 .

Proof. Let t = "3.141" ∈ A +
L . Let Sπ be defined in (14) and let

S3.141 = {"3.141", "03.141", "3.1410", "003.141", "3.14100", . . .}.

Then,

3.141← {=}A ,L → S3.141 ∧ π ← {≈}A ,L → Sπ ∧ "3.141" ∈ S3.141 ∩ Sπ .

Definition 5. Let r ∈ R such that r ← {≈}A ,L → Sr ̸= ∅. Then, r can be FM-referenced in

L on A on a FMD D if and only if there exists S′r ⊆ Sr, S′r =
{

t
∣∣∣ |t| ≤ CCAP(D)

}
̸= ∅, in

which case,

r ← {≈}A ,L ,D → S′r (18)

holds. If t ∈ S′r, then t FM-references r in L on A on D , or, in symbols,

t← (≈)A ,L ,D → r. (19)

If there is no text that FM-references r in L on A on D , then r cannot be FM-referenced in
L on A on D , or, in symbols,

Mathematics 2024, 12, 2881 8 of 17

r ← {≈}A ,L ,D → ∅;
r ← (≈)A ,L ,D → "".

(20)

← {≈}A ,L ,D → and← (≈)A ,L ,D → are symmetric.

We elaborate on Lemma (3) by showing

Lemma 4. There exists t ∈ A +
L such that, for some r1, r2 ∈ R and a FMD D ,

t← (=)A ,L ,D → r1 ∧ t← (≈)A ,L → r2.

Proof. Let CCAP(D) ≥ 13 and t = "3.14159265358" ∈ A +
L . Then, since |t| = 13, we have

t← (=)A ,L ,D → 3.14159265358 and t← (≈)A ,L → π.

E.g., let D be an Ubuntu 18.04 LTS computer with a CPU @ 2.40GHz x 4 and 8 GB of
RAM and 127 GB of hard disk space. Let A be Unicode and L be Lisp as implemented
in GNU CLISP 2.49.60+. Then, on this computer, t = "3.1415926535897932385" signifies
3.1415926535897932385 and references π in Lisp on Unicode because |t| ≤ CCAP(D).

The next theorem shows a consequence of CCAP(D) ∈ Z+, for a FMD D .

Theorem 1. The set of real numbers FM-signifiable in L on A on a FMD D is enumerably finite.

Proof. Let CCAP(D) = k ∈ Z+ and let T1, . . . , Tk be an enumeration such that

Tj =
{

t ∈ A +
L

∣∣∣ t← (=)A ,L ,D → r ∈ R ∧ |t| = j
}

, 1 ≤ j ≤ k.

Let TA ,L ,D = ∪k
j=1Tj. By Lemma (2),

∣∣∣TA ,L ,D

∣∣∣ ∈ N. Let

RA ,L ,D =
{

r ∈ R
∣∣∣ r ← (=)A ,L ,D → t ∈ TA ,L ,D

}
.

Then,
∣∣∣RA ,L ,D

∣∣∣ ∈ N, since
∣∣∣RA ,L ,D

∣∣∣ ≤ ∣∣∣TA ,L ,D

∣∣∣.
TA ,L ,D can be reduced to T′A ,L ,D such that if t′ ∈ T′A ,L ,D , then t′ FM-signifies a

unique r ∈ R on D in L on A . To effect this reduction, we prove

Lemma 5. There exists T′A ,L ,D ⊆ TA ,L ,D such that T′A ,L ,D ∼ RA ,L ,D .

Proof. Omitting for brevity the subscripts A , L , D , we observe that if T = ∅, then R = ∅.
Let |T| = n ∈ Z+ and let ti1 , . . . , tin be a a non-descending sorting of T by length so that
|tij | ≤ |tij+1 |, 1 ≤ j < n. Let ti1 ← (=) → ri1 and Sri1

= {ti1}. Let ti2 ← (=) → ri2 . If
ri2 = ri1 , let Sri1

= {ti1 , ti2}. If ri2 ̸= ri1 , let Sri2
= {ti2}. When we reach tij , 1 < j ≤ n, we

have the sets Sr1 , . . ., Srk , 1 ≤ k < j, constructed thus far. Let tij ← (=) → rij . If rij = riz ,
1 ≤ z < j, Sriz

= Sriz
∪ {tij}. If rij ̸= riz , then Srij

= {tij}. We reduce every non-singleton
set in Sri1

, . . ., Srin
, if there are any, to a singleton by retaining a numeral shortest in length.

Thus, T′ = ∪k
j=1Srj and |T′| = |R|.

5. Signification of Data Types and Instances

Definition 6. A data type T is signifiable or, equivalently, designatable in L on A if and only
if there is t ∈ A +

L that signifies or, equivalently, designates in L on A only T and no other data
type, or, in symbols,

T⇐≬A ,L⇒ t. (21)

Mathematics 2024, 12, 2881 9 of 17

If there is no such t, then T is not signifiable or, equivalently, not designatable in L on A , or,
in symbols,

T ⇐≬A ,L⇒ "". (22)

⇐≬A ,L⇒ is symmetric.

Definition 7. A data type T is FM-signifiable or, equivalently, FM-designatable in L on A if
and only if there exists a FMD D such that there is a t ∈ A +

L , |t| ≤ CCAP(D), that signifies or,
equivalently, designates in L on A on D only T and no other data type, or, in symbols,

T⇐≬A ,L ,D⇒ t. (23)

If there is no such t, then T is not signifiable or, equivalently, not designatable in L on A on D , or,
in symbols,

T ⇐≬A ,L ,D⇒ "". (24)

The relation⇐≬A⇒ is symmetric.

Let us extend the alphabet A in (1) to the alphabet B so that

B = A ∪ {"♢", "|a", "a|", ";", "▽", "□", " ◀ ", "⊛ "}. (25)

Let the array data type A be a set of objects, each of which is a finite sequence of
discretely finite numbers, and let

A ⇐≬B,L⇒ "♢1117";
N ⇐≬B,L⇒ "♢1123";
Z ⇐≬B,L⇒ "♢1129";
Z− ⇐≬B,L⇒ "♢1151";
Z+ ⇐≬B,L⇒ "♢1153";
R ⇐≬B,L⇒ "♢1163".

(26)

If CCAP(D) ≥ 5, then

A ⇐≬B,L ,D⇒ "♢1117";
N ⇐≬B,L ,D⇒ "♢1123";
Z ⇐≬B,L ,D⇒ "♢1129";
Z− ⇐≬B,L ,D⇒ "♢1151";
Z+ ⇐≬B,L ,D⇒ "♢1153";
R ⇐≬B,L ,D⇒ "♢1163".

(27)

Formal symbolic systems utilize finite sets of syntactic rules to separate legal and
illegal texts (cf., e.g., Kleene, 1952 [3], Ch. IV; Genesereth and Nilsson, 1987 [9], Ch. 2,
Section 2.2). To that end, we can introduce the following rules to distinguish legal type
significations from illegal ones in L on B:

1. "♢1117", "♢1123", "♢1129", "♢1151", "♢1153", "♢1163" in (26) designate A, N, Z,
Z−, Z+, and R, respectively;

2. "|a" and "a|" designate the beginning and end, respectively, of a finite sequence of
discretely finite numbers, i.e., a tuple;

3. ";" designates a separator of numerals in signified tuples;
4. The signs formed by concatenating a finite number of the signs from { "1", "2", "3",

"4", "5", "6", "7", "8", "9" } to the right of "▽" designate variables, e.g., "▽1", "▽2",
"▽13", "▽171";

Mathematics 2024, 12, 2881 10 of 17

5. "□" designates a white space symbol; the addition of any number of "□" to the left
or right of t ∈ B+

L does not change the object designated or referenced by t;
6. "⊛" designates the end of a statement;
7. If t ∈ B+

L consists of a variable name followed by " ◀ " followed by another sign
followed by "⊛" with arbitrarily many "□" inserted left or right of each sign in t,
then t is interpreted to mean that the variable designated by the sign to the left of "◀"
is assigned the value designated or referenced by the sign to the right of "◀".

E.g., "♢1117▽17 ⊛▽17 ◀ |a1; 2; 3a|⊛ " consists of two statements: "♢1117▽17 ⊛ "
and "▽17 ◀ |a1; 2; 3a|⊛ ". The first statement is interpreted to mean that the variable
designated by "▽17" is of the type designated by "♢1117", i.e., A. The second statement is
interpreted to mean that the variable designated by "▽17" is assigned the value designated
by"|a1; 2; 3a|", i.e., the 3-tuple (1, 2, 3).

We assume from now on that any decimal sufficient alphabet A includes the unique
signs ⊴, ⊵, ∓ designating the beginning of a tuple, the end of a tuple, and a number
separator inside a tuple, respectively. E.g., in B in (25), ⊴ = "|a", ⊵ = "a|", and ∓ = ";". We
call a formalism L on A that contains these signs tuple sufficient and, hereafter, assume
that L on A is tuple sufficient. We call an alphabet A tuple sufficient if and only if there
exists a tuple sufficient L on A .

Definition 8. Let ti ∈ A +
B , 1 ≤ i ≤ l, l > 1. ti ̸= ⊴, ti ̸= ⊵, ti ̸= ∓. Then,⊕

A ,L

(
t1,∓, t2,∓, . . . ,∓, tl

)
is the unmarked concatenation of t1, . . . , tl in L on A and⊕

A ,L

(
⊴,

⊕
A ,L

(
t1,∓, t2,∓, . . . ,∓, tl

)
,⊵

)
is the marked concatenation of t1, . . . , tl in L on A .

E.g., in L on B, "1;2;3" is the unmarked concatenation of "1", "2", and "3", whereas
"|a1;2;3a|" is the marked concatenation of "1", "2", and "3".

Definition 9. A k-tuple r = (r1, . . . , rk) ∈ Rk, 1 < k ∈ Z+, is signifiable or, equivalently,
designatable in L on A if and only if (a) r is of type T and T ⇐≬A ,L⇒ tT ∈ A +

L ; and (b)
ri ← (=)A ,L → ti, ti ∈ A +

L , 1 ≤ i ≤ k. If (a) and (b) hold, then r is signifiable or, equivalently,
designatable in L on A by

tr =
⊕

A ,L

(
⊴,

⊕
A ,L

(
t1,∓, t2,∓, . . . ,∓, tk

)
,⊵

)
or, in symbols, r← ≑A ,L → tr. If r is not signifiable or, equivalently, not designatable in L on
A , then r← ≑A ,L → "". The relation← ≑A ,L → is symmetric.

Definition 10. A k-tuple r = (r1, . . . , rk) ∈ R+, 1 < k ∈ Z+, is FM-signifiable or, equivalently,
FM-designatable in L on A on a FMD D if and only if (a) r ← ≑A ,L → tr ∈ A +

L and (b)
|tr| ≤ CCAP(D). If (a) and (b) hold, then r ← ≑A ,L ,D → tr. If r is not FM-signifiable or,
equivalently, not FM-designatable in L on A on D , then r ← ≑A ,L ,D → "". The relation
← ≑A ,L ,D → is symmetric.

We prove

Theorem 2. Let A⇐≬⇒A ,L ,D t♢ ∈ A +
L and let D be a FMD with CCAP(D) = k ∈ Z+. Let

SA ,L ,D = {(r1, r2, . . . , rl)|ri ∈ RA ,L ,D}, 1 ≤ i ≤ l, l > 1.

Let r = (r1, r2, . . . , rl) ∈ SA ,L ,D and ri ← (=)A ,L ,D → si ∈ A +
L , 1 ≤ i ≤ l. Then,

Mathematics 2024, 12, 2881 11 of 17

r←≑A ,L ,D→
⊕

A ,L

(
t♢,⊴, s1,∓, s2,∓, . . . ,∓, sl ,⊵

)
if and only if ∣∣∣⊕

A ,L

(
t♢,⊴, s1,∓, s2,∓, . . . ,∓, sl ,∓,⊵

)∣∣∣ ≤ k.

Proof. Let r = (r1, r2, . . . , rl) ∈ SA ,L ,D and s =
⊕

A ,L

(
t♢,⊴, s1,∓, s2,∓, . . . ,∓, sl ,⊵

)
,

where ri ← (=)A ,L ,D → si ∈ A +
L , 1 ≤ i ≤ l. If r←≑A ,L ,D→ s, then |s| ≤ CCAP(D) = k.

Conversely, if |s| ≤ k, then r←≑A ,L ,D→ s, because ri ← (=)A ,L ,D → si.

6. Signification of Standard Data Structures

The next theorem is a technical step toward extending signification to data structures
representable as multidimensional matrices of discretely finite numbers.

Theorem 3. Let Mnm be an n×m matrix of discretely finite rij ∈ R, 1 ≤ i ≤ n ∈ Z+, n > 1,
1 ≤ j ≤ m ∈ Z+, m > 1, such that rij ← {=}A ,L ,D → Srij ̸= ∅, and let D be a FMD with
CCAP(D) = k ∈ Z+. Then, Mnm is signifiable on D in L on A if and only if

A⇐≬⇒A ,L ,D t♢ ∈ A +
L ∧

ri = (ri1, . . . , rim)← ≑A ,L ,D → ti ∈ A +
L ∧

(r1, . . . , . . . , rn)← ≑A ,L ,D → tM ∈ A +
L .

Proof. We let

Mnm =

r11 r12 . . . r1m
r21 r22 . . . r2m
.
rn1 rn2 . . . rnm

and omit the subscripts A , L , D for brevity. If the three components of the predicate in the
statement of the theorem hold, then

ri = (ri1, . . . , rim)← (≑)→ ti =
⊕(

t♢,⊴, si1,∓, . . . ,∓, sim,∓,⊵
)

,

where rij ← (=)→ sij, and we have

Mnm ← (≑)→
⊕(

t♢, t1,∓, . . . ,∓, tn
)
= tM ∈ A +

L .

Conversely, if Mnm ← (≑) →A ,L ,D→ tM, then, by Definition (10) and Theorem (2),
tM signifies the n-tuple of m-tuples of all numbers in Mnm. Consequently, tM must be
the concatenation of t♢ with the concatenations, properly separated by ∓, of the texts
signifying each individual m-tuple.

An induction on m furnishes us two corollaries.

Corollary 1 of Theorem 3. Let Md1d2 ...dm be a d1 × d2 × . . .× dm matrix of discretely finite real
numbers, dj ∈ Z+, 1 ≤ j ≤ m, m ≥ 2. Then, Md1d2 ...dm ← ≑A ,L → tM ∈ A +

L .

Corollary 2 of Theorem 3. Let Md1d2 ...dm be a d1 × d2 × . . .× dm matrix of discretely finite real
numbers, dj ∈ Z+, 1 ≤ j ≤ m, m ≥ 2. Then, Md1d2 ...dm ← ≑A ,L ,D → tM ∈ A +

L if and only if
0 < |tM| ≤ k = CCAP(D).

E.g., consider the graph G1 and G2 and their respective matrix representations M1 and
M2 in Figures 1 and 2, where, by Theorem (3) and its corollaries, M1 ← (≑)A ,L → tM1 ∈
A +

L and M2 ← (≑)A ,L → tM1 ∈ A +
L . Furthermore, M1 ← (≑)D ,A ,L → tM1 ∈ A +

L for a
FMD D such that |tM1 | ≤ CCAP(D), and M2 ← (≑)A ,L ,D → tM2 ∈ A +

L , for a FMD D such
that |tM2 | ≤ CCAP(D).

Mathematics 2024, 12, 2881 12 of 17

1 2 3 4 5
1 0 1 0 1 1
2 1 0 1 1 0
3 0 1 0 1 0
4 1 1 1 0 1
5 1 0 0 1 0

Figure 1. (Top): An undirected unweighted graph G1. (Bottom): matrix M1 representing G1 so
that M1[i, j] = 1, 1 ≤ i, j ≤ 5, if and only if G1 has an edge between the nodes i and j; otherwise,
M1[i, j] = 0.

1 2 3 4 5
1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 1 1 0 0 1
5 1 0 0 0 0

Figure 2. (Top): Directed unweighted graph G2. (Bottom): a matrix M2 representing G2 so that
M2[i, j] = 1, 1 ≤ i, j ≤ 5 if and only if G2 has a edge from the node i to the node j; otherwise,
M2[i, j] = 0.

7. A Gödel Numbering of Texts

Let γA : A 7→ Z+ be a 1–1 function that maps each sign of A to a unique odd prime
number, i.e.,

γA (si) = π(i + 1), 1 ≤ i ≤ l, l > 0 (28)

where π(·) is defined in Appendix A Definition (A1). E.g., for the alphabet B in (25),
we have

γB("0") = 3; γB("1") = 5; γB("2") = 7; γB("3") = 11;
γB("4") = 13; γB("5") = 17; γB("6") = 19; γB("7") = 23;
γB("8") = 29; γB("9") = 31; γB("+") = 37; γB("-") = 41;
γB(".") = 43; γB("♢") = 47; γB("|a") = 53; γB("a|") = 59;
γB(";") = 61; γB("▽") = 67; γB("□") = 71; γB(" ◀ ") = 73;
γB("⊛ ") = 79.

The 1–1 function gA ,L : {""} ∪A +
L 7→ N

gA ,L (s) =

{
[γA (s1), . . . , γA (s|s|)]∆=1 if s ∈ A +

L ,
0 if |s| = 0

(29)

Mathematics 2024, 12, 2881 13 of 17

maps a text s in L on A to a unique positive natural number through the shifted Gödel
numbering (cf. Appendix A Definition (A3)) and maps the empty sign to 0. E.g., if L is
tuple sufficient on B in (25), then

gB,L ("+12.7") = [37, 5, 7, 43, 23]∆=1;
gB,L ("03.134") = [3, 11, 43, 5, 11, 13]∆=1;
gB,L ("-93.134") = [41, 31, 11, 43, 5, 11, 13]∆=1;
gB,L ("|a3; 5a|") = [53, 11, 61, 17, 59]∆=1;
gB,L ("♢|a3; 5; 7a|") = [47, 53, 11, 61, 17, 61, 23, 59]∆=1.

Let A be an alphabet and

BA =
{

0
}
∪
{

z ∈ Z+
∣∣∣γA (s) = (z)∆=1,i, s ∈ A , 1 ≤ i ≤ Lt∆=1(z)

}
,

where (x)∆=j,i and Lt∆=j(x) are defined in Appendix A Definitions (A5) and (A7), respec-
tively. Then, the 1–1 function g−1

A ,L : BA 7→ {""} ∪A +
L is defined as

g−1
A ,L (0) = "";

g−1
A ,L (z) =

⊕
A ,L

(
γ−1

A

(
(z)∆=1,1

)
, . . . , γ−1

A

(
(z)∆=1,Lt∆(z)

))
.

E.g.,

g−1
B,L ([37, 5, 7, 43, 23]∆=1) = "+12.7";

g−1
B,L ([3, 11, 43, 5, 11, 13]∆=1) = "03.134";

g−1
B,L ([41, 31, 11, 43, 5, 11, 13]∆=1) = "-93.134";

g−1
B,L ([53, 11, 61, 17, 59]∆=1) = "|a3; 5a|";

g−1
B,L ([47, 53, 11, 61, 17, 61, 23, 59]∆=1) = "♢|a3; 5; 7a|".

We prove

Theorem 4. Let R be a set of discretely finite real numbers and let

TA ,L =
{
t ∈ A +

L

∣∣∣t← (=)A ,L → r ∈ R
}

;

SA ,L =
{
s ∈ A +

L

∣∣∣s← (≑)A ,L → (r1, r2, . . . , rk), ri ∈ R, 1 ≤ i ≤ k, k > 1
}

;

MA ,L =
{
m ∈ A +

L

∣∣∣m← (≑)A ,L → Md1 ...dm , m > 1
}

;

DA ,L = TA ,L ∪ SA ,L ∪MA ,L .

Then, there exists a 1–1 function gA ,L : {""} ∪DA ,L 7→ N that maps each text in DA ,L
to a unique positive integer and maps the empty sign to 0.

Proof. If t ∈ A +
L , then t =

⊕
A ,L (s1, . . . , sn), si ∈ A , 1 ≤ i ≤ n, and |t| = n > 0.

Otherwise, t = "" and |t| = 0. Let

gA ,L (t) =

{
[γA (s1), . . . , γA (sn)]∆=1 if |t| > 0,
0 if |t| = 0.

(30)

8. Discussion

If a real number can be written as a text on a sufficiently expressive alphabet, the
individual elements of the number can be enumerated. E.g., the number’s characteristic,
the period that separates the characteristic from the mantissa in the standard decimal
notation, and the individual elements of the mantissa can be enumerated by defining a 1–1
correspondence between these elements of the number and a finite subset of natural num-
bers. In this sense, some real numbers are discretely finite, while others are not. Discretely

Mathematics 2024, 12, 2881 14 of 17

finite numbers can be signified completely by texts on sufficiently expressive alphabets in
such a way that the signs of the designating texts completely coincide with the elements of
the numbers they signify, whereas no such coincidence is possible with discretely infinite
numbers, e.g., π, e,

√
2, on a sufficiently expressive alphabet. E.g., the texts "2.7182818284"

and "3.1415926535" in the standard decimal notation either signify two concrete discretely
finite numbers (i.e., the number 2.7182818284 and the number 3.1415926535) or, if they are
elements of Se or Sπ (cf. Equation (14)), only reference the discretely infinite numbers e
and π, respectively. The concepts of signifiability and referenceability were introduced to
distinguish designating and referencing texts. A consequence of the set of real numbers
signifiable on a FMD on a sufficiently expressive alphabet being enumerably finite is that
the quantity of real numbers so signifiable is a natural number. The set of real numbers
referenceable on a FMD on a sufficiently expressive alphabet is also enumerably finite.

We extended the concepts of signifiability to real number tuples, data types, and
instances and showed (cf. Theorem 2) that a discretely finite data structure representable
as a tuple of discretely finite numbers is signifiable on a FMD on a sufficiently expressive
alphabet so long the finite amount of memory of the FMD suffices to hold a designating text.
Consequently, standard data structures such as lists, arrays, tuples, queues, stacks, hash
tables, priority queues, and heaps (cf., e.g., Cormen et al. 1990 [10], Chapters 11–15, 19–22,
23) whose elements are discretely finite numbers are signifiable on a sufficiently expressive
alphabet. Furthermore, only a finite quantity of these data structures are signifiable on a
FMD on that alphabet. Theorem 3 shows that a discretely finite data structure representable
as a multidimensional matrix of discretely finite numbers is signifiable on a sufficiently
expressive alphabet and signifiable on a FMD on the same alphabet so long as the desig-
nating text fits into the FMD’s memory units. Since any text can be uniquely mapped to a
positive whole number, an instance of a data type representable as a text on some alphabet
corresponds to a unique positive integer. E.g., since a tree data structure of discretely finite
numbers is a graph (cf., e.g., a binary tree T in Figure 3), it is also representable as a matrix.
Hence, it is signifiable in a sufficiently expressive formalism and FM-signifiable on a FMD
capable of holding the designating text in its finite memory. The same argument would
hold if, instead of 0’s and 1’s, the matrices in Figure 3 had discretely finite real numbers in
their cells indicating the weights of the corresponding edges or if the labels of the nodes
were changed to discretely finite real numbers.

2 4 5 7 10 11 17
2 0 1 −1 0 0 0 0
4 −2 0 0 0 0 0 0
5 1 0 0 1 −1 0 0
7 0 0 −2 0 0 0 0

10 0 0 1 0 0 1 0
11 0 0 0 0 −2 0 1
17 0 0 0 0 0 −2 0

Figure 3. (Top): A binary tree T. (Bottom): A matrix representation MT of T. MT [i, j] = 1 if and
only if i is the parent j; MT [i, j] = −1 if i is the left child of j; MT [i, j] = −2 if i is the right child of j;
MT [i, j] = 0 otherwise.

Mathematics 2024, 12, 2881 15 of 17

Our approach to types as data structures may be seen as partially based on the ap-
proach proposed by Church (1940) [11]. However, our aim is not a complete or partial
integration of λ-calculus (or any other formalism) into the hierarchical theory of logical
types offered by Russell (1908) [12], Whitehead and Russell (1910, 1912, 1913) [13–15] (cf.
more recent summaries in, e.g., Kammareddine et al. (2002) [16] or Urquhart (2003) [17]).
Rather, our aim in formulating a theory of signifiable computability is to characterize, in
a formal way, what is computable in principle and what is computable with performable
processes on computational devices with finite amounts of memory available for com-
putation. In our previous investigation (Kulyukin, 2023 [18]), we formulated this aim as
the separation of computability into two intersecting categories—general and actual. The
former puts no limitations on memory, whereas the latter does.

In using logically quantified variables in our definitions, lemmas, and theorems, we
make no ontological commitment that assertions containing variables carry with them the
ontological commitment that the ranges of the variables exist (Church, 1958 [19]) or that
designating texts, whenever they are quantified, can serve as senses of names (Church,
1993 [20]). The statements in this article or implications thereof should not be construed
as arguments for or against replacing the Zermelo–Fraenkel set theory with the axiom of
choice with the modern type theory as the foundation of mathematics (cf., e.g., Altenkirch,
2023 [21]). Alternative foundations of mathematics are beyond the scope of our article.

9. Conclusions

In Part I of our investigation, we defined the concepts of signification and reference
of real numbers and showed that a discretely finite data structure representable as a tuple
of discretely finite numbers is signifiable on a FMD on a sufficiently expressive alphabet.
Such standard data structures of computer science as lists, arrays, tuples, queues, stacks,
hash tables, priority queues, and heaps whose elements are discretely finite numbers are
signifiable on any sufficiently expressive alphabet. However, only a finite quantity of these
data structures are signifiable on the same alphabet on a FMD. In Part II of our investigation,
which we intend to cover in our next article, we plan to use the results of this article to
axiomatize some aspects of signifiable computability.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

FM finite memory
FMD finite memory device
CCAP cell capacity

Appendix A

Let pn be the n-th prime so that p0 = 0, p1 = 2, p2 = 3, p3 = 5, etc. We define this
function as

π(i) = pi. (A1)

Let (n1, ..., nk) be an k-tuple such that ni ∈ N, 1 ≤ i ≤ k. The Gödel number (G-number)
of this tuple is defined as

[n1, ..., nk] =
k

∏
i=1

π(i)ni . (A2)

Mathematics 2024, 12, 2881 16 of 17

Let (z1, ..., zk) be a k-tuple such that zi ∈ Z+, 1 ≤ i ≤ k. The j-shifted Gödel number
G∆=j, j ∈ N, of this tuple is defined as

[z1, ..., zk]∆=j =
k

∏
i=1

π(i + j)zi . (A3)

The G- and G∆=j-numbers of the empty number sequence () are defined to be 1.
E.g., if the sequence is (5, 103, 1009, 47, 49), then [5, 103, 1009, 47, 49] = 253103510097471149;
[5, 103, 1009, 47, 49]∆=0 = 253103510097471149; [5, 103, 1009, 47, 49]∆=1 = 3551037100911471349;
[5, 103, 1009, 47, 49]∆=2 = 55710311100913471749.

The accessor function (x)i = ni in (A4) returns the i-th element of a G-number, i.e.,

(x)i =

min
t≤x
{¬{π(i)t+1|x}} if x > 0∧ i > 0,

0 otherwise.

(A4)

E.g., if x = [3, 5, 19] = 2335519, then (x)1 = 3; (x)2 = 5; (x)3 = 19; (x)i = 0, if
i = 0∨ i > 3.

If x is a G∆=j, j ∈ N, then the accessor function is defined as

(x)∆=j,i =

min
t≤x
{¬{π(i + j)t+1|x}} if x > 0∧ i > 0,

0 otherwise.

(A5)

E.g., if x = [3, 5, 19]∆=1 = 3355719, then (x)∆=1,1 = 3; (x)∆=1,2 = 5; (x)∆=1,3 = 19;
(x)∆=1,i = 0, if i = 0∨ i > 3.

All these functions are primitive recursive, because π() is primitive recursive.
If x = [n1, n2, ..., nk], its length is the position of the last non-zero prime power in x

and is computed by the primitive recursive function Lt(·) in (A6).

Lt(x) = min
i≤x

{
(x)i ̸= 0∧ (∀l)≤x

{
l ≤ i ∨ (x)l = 0

}}
(A6)

Thus,

Lt(540) = Lt([2, 3, 1]) = 3.

If x = [z1, z2, ..., zk]∆=j, j ∈ N, then the length of x is the position of the last non-zero
power of an odd prime in x and is computed by the primitive recursive function Lt∆=j(·)
in (A7).

Lt∆=j(x) = min
i≤x

{
(x)∆=j,i ̸= 0∧ (∀l)≤x

{
l ≤ i ∨ (x)∆=j,l = 0

}}
(A7)

All these functions are primitive recursive, because π() and [n1, . . . , nk], ni ∈ N,
1 ≤ i ≤ k, are primitive recursive and the bounded minimalization of a predicate (cf., e.g.,
Definition (A4) above) belongs to the same primitive recursively closed class and the class
of primitive recursive functions is primitive recursively closed (cf., e.g., Davis et al., 1994 [2],
Chapter 3).

References
1. Rogers, H., Jr. Theory of Recursive Functions and Effective Computability; The MIT Press: Cambridge, MA, USA, 1988.
2. Davis, M.; Sigal, R.; Weyuker, E. Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science, 2nd ed.;

Harcourt, Brace & Company: Boston, MA, USA, 1994.
3. Kleene, S.C. Introduction to Metamathematics; D. Van Nostrand: New York, NY, USA, 1952.
4. Steele, G. L. Common Lisp: The Language, 2nd ed.; Digital Press: Bedform, MA, USA, 1990.
5. Lee, J. Beginning Perl, 3rd ed.; Apress: New York, NY, USA, 2010.
6. Abelson, H.; Sussman, G. Structure and Interpretation of Computer Programs; MIT Press: Cambridge, MA, USA, 1996.

Mathematics 2024, 12, 2881 17 of 17

7. Chudnovsky, D.V.; Chudnovsky, G.V. Approximations and complex multiplication according to Ramanujan. In Pi: A Source Book;
Springer: New York, NY, USA, 1988

8. Lorenz, M. A detailed proof of the Chudnovsky formula with means of basic complex analysis. arXiv 2021. [CrossRef]
9. Genesereth, M.R.; Nilsson, N.J. Logical Foundations of Artificial Intelligence; Morgan Kaufmann: Los Altos, CA, USA, 1987.
10. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L. Introduction to Algorithms; The MIT Press: Cambridge, MA, USA, 1990.
11. Church, A. A formulation of the simple theory of types. J. Symb. Log. 1940, 5, 56–68. [CrossRef]
12. Russell, B. Mathematical logic as based on the theory of types. Am. J. Math. 1908, 30, 222–262. [CrossRef]
13. Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1910; Volume 1.
14. Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1912; Volume 2.
15. Whitehead, A.N.; Russell, B. Principia Mathematica; Cambridge University Press: Cambridge, UK, 1913; Volume 3.
16. Kamareddine, F.; Laan, T.; Nederpelt R. Types in logic and mathematics before 1940. Bull. Symb. Log. 2002, 8, 185–245. [CrossRef]
17. Urquhart, A. The Theory of Types. In The Cambridge Companion to Bertrand Russell; Griffin, N., Ed.; Cambridge University Press:

Cambridge, UK, 2003; Chapter 8.
18. Kulyukin, V. On Correspondences between feedforward artificial neural networks on finite memory automata and classes of

primitive recursive functions. Mathematics 2023, 11, 2620. [CrossRef]
19. Church, A. Ontological commitment. J. Philos. 1958, 55, 1008–1014. [CrossRef]
20. Church, A. A revised formulation of the logic of sense and denotation. Alternative (1). Nous 1993, 27, 141–157. [CrossRef]
21. Altenkirch, T. Should type theory replace set theory as the foundation of mathematics? Glob. Philos. 2023, 33, 21 . [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://arxiv.org/abs/1809.00533
http://doi.org/10.2307/2266170
http://dx.doi.org/10.2307/2369948
http://dx.doi.org/10.2178/bsl/1182353871
http://dx.doi.org/10.3390/math11122620
http://dx.doi.org/10.2307/2021909
http://dx.doi.org/10.2307/2215752
http://dx.doi.org/10.1007/s10516-023-09676-0

	Introduction
	Prolegomena
	Data Types and Instances
	Signification and Reference of Real Numbers
	Signification of Data Types and Instances
	Signification of Standard Data Structures
	A Gödel Numbering of Texts
	Discussion
	Conclusions
	Appendix A
	References

