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Abstract: From June to October, 2022, we recorded the weight, the internal temperature, and the
hive entrance video traffic of ten managed honey bee (Apis mellifera) colonies at a research apiary
of the Carl Hayden Bee Research Center in Tucson, AZ, USA. The weight and temperature were
recorded every five minutes around the clock. The 30 s videos were recorded every five minutes daily
from 7:00 to 20:55. We curated the collected data into a dataset of 758,703 records (280,760–weight;
322,570–temperature; 155,373–video). A principal objective of Part I of our investigation was to use
the curated dataset to investigate the discrete univariate time series forecasting of hive weight, in-hive
temperature, and hive entrance traffic with shallow artificial, convolutional, and long short-term
memory networks and to compare their predictive performance with traditional autoregressive
integrated moving average models. We trained and tested all models with a 70/30 train/test split.
We varied the intake and the predicted horizon of each model from 6 to 24 hourly means. Each
artificial, convolutional, and long short-term memory network was trained for 500 epochs. We
evaluated 24,840 trained models on the test data with the mean squared error. The autoregressive
integrated moving average models performed on par with their machine learning counterparts, and
all model types were able to predict falling, rising, and unchanging trends over all predicted horizons.
We made the curated dataset public for replication.

Keywords: discrete time series forecasting; predictive hive monitoring; hive monitoring sensors;
precision apiculture; FAIR datasets; artificial neural networks; convolutional neural networks; long
short-term memory; autoregressive integrated moving average; ARIMA

1. Introduction

Many studies have documented significant declines of domesticated and wild polli-
nators worldwide (cf., e.g., Potts et al., 2010 [1]; Van Klink et al., 2020 [2]; Woodard et al.,
2021 [3]). Since in the U.S. the honey bee (Apis mellifera) remains an important pollinator,
the U.S. government developed a strategy to promote the health of the honey bee in the
public document titled The National Strategy to Promote the Health of Honey Bees and Other
Pollinators [4]. Tracking the health and status of managed colonies requires continuous
monitoring. Human monitoring is difficult because beekeepers have limited time, patience,
and resources. Sensor-based monitoring can alleviate the bottleneck (cf., e.g., Buchmann
and Thoenes, 1990 [5]; Thoenes and Buchmann, 1992 [6]; Marceau et al., 1991 [7]; Odemer,
2021 [8]; Tashakkori et al., 2021 [9]). However, for such monitoring to become useful, two
key challenges must be addressed: (1) lack of Findable, Accessible, Interoperable, and
Reusable (FAIR) (Wilkinson, Dumontier, Aalbersberg et al., 2016 [10]) multisensor datasets
for precision apiculture and (2) insufficient predictive modeling.
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In precision apiculture, FAIR multisensor, longitudinal datasets across multiple ge-
ographical locations, field experiments, and bee races do not exist (cf., e.g., Zaman and
Dorin (2023) [11]), which constitutes a major barrier to progress because such datasets
could catalyze research and inform practice (cf., e.g., Kulyukin, 2021 [12]). Predictive
modeling relies on machine learning (ML), a branch of computer science that focuses on
solving problems for which the development of algorithms by human programmers may
not be cost-effective (Mitchell, 1997 [13]) or on statistical models such as autoregressive inte-
grated moving average (ARIMA) and variants thereof (cf., e.g., Bowerman and O’Connell,
1993 [14]). Predictive modeling for precision apiculture is in its infancy (cf., e.g., Zaman
and Dorin (2023) [11]) in that computational models that reliably forecast the status of
managed colonies from sensors deployed in and around the hive are few and far between,
especially models that align sensor measurements with hive inspections executed according
to rigorous hive management protocols (Braga et al., 2020 [15]). The principal causes of this
state of affairs are varied and include, but may not be limited to, hardware sensor failures,
natural calamities that destroy sensors and colonies, and social and economic difficulties as-
sociated with finding apiaries with sufficient numbers of managed colonies whose owners
are willing to install sensors for long periods of time. These causes preclude apiary science
researchers from creating sufficiently large FAIR datasets on which predictive models for
precision apiculture can be compared with each other.

Our contributions to state-of-the-art precision apiculture and sensor-based monitor-
ing of managed hives reported in this article are as follows. First, we curated a dataset
of 758,703 records (280,760 weight; 322,570 temperature; 155,373 entrance traffic video).
Second, we organized the dataset according to the FAIR principles and made it publicly
available as a precision apiculture benchmark in our supplementary materials. We did
not find FAIR datasets of comparable size and coverage in the precision apiculture and
continuous hive monitoring literature we had reviewed for our investigation. Third, we
constructed and evaluated 24,840 shallow artificial neural network (ANN), convolutional
neural network (CNN), long short-term memory (LSTM), and traditional autoregressive
integrated moving average (ARIMA) models and included our source code in the FAIR
dataset for replication. Our principal objective was to use the curated dataset to investigate
discrete univariate time series (DUTS) forecasting of hive weight, in-hive temperature, and
hive entrance traffic with the three machine learning (ML) models (i.e., ANN, CNN, and
LSTM) and to compare their predictive performance with ARIMA. Our selection of these
ML models was motivated by the fact that they remain the state-of-the-art architectures for
time series analysis in many areas of data science, such as text and audio classification (cf.,
e.g., Fawaz et al., 2019 [16]) and prediction of physiological signals in clinical trials (cf., e.g.,
Pham, 2021 [17]. To our knowledge, this is the first attempt to construct DUTS forecasters
of hive weight, in-hive temperature, and hive entrance traffic for precision apiculture with
these ML models and to compare them with ARIMA. Fourth, we experimentally discovered
that the mean hourly hive weight, in-hive temperature, and hive entrance traffic of all
10 colonies for which we collected the data could be predicted with a reasonable degree of
accuracy on the time spans of 12, 24, and 48 h and that the ARIMA forecasters performed
on par with their ANN, CNN, and LSTM counterparts, which has theoretical and practical
implications for multisensor hive monitoring.

The remainder of our article is organized as follows. In Section 2, we review related
research. In Section 3, we describe our metadata, data, and methods to construct and
evaluate the forecasters. In Section 4, we present the results of our evaluation. In Section 5,
we discuss our results in the broader context of multisensor precision apiculture systems
and predictive hive monitoring and outline some theoretical and practical implications of
our findings. In Section 6, we offer our conclusions and outline the planned scope of Part II
of this investigation.
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2. Related Work

Many apiary scientists have used scales to characterize colony events through weight
data. Buchmann and Thoenes (1990) [5] and Thoenes and Buchmann (1992) [6] showed that
the colony weight is related to its foraging, swarming, and hive abandonment. Marceau
et al. (1991) [7] demonstrated a polynomial regression fit between hive weight and colony
growth, consumption, and productivity. Meikle et al. (2006) [18] and Zacepins et al.
(2016) [19] partially corroborated Buchmann and Thoenes’ findings on weight and swarming.
Meikle et al. (2008) [20] showed that within-day variation of hive weight could be used
as a measure of colony activity. Meikle et al. (2016) [21] demonstrated that hive weight
and in-hive temperature could be used to monitor colony phenology and investigated a
relationship between colony weight and exposure to pesticides. Stalidzans et al. (2017) [22]
found a relationship between colony weight and overwintering.

In-hive temperature sensors also provide data relevant to the status of a managed
colony. These small sensors are placed inside a hive, e.g., on the wall of a hive super or
in the middle of an individual frame. Szabo et al. (1989) [23] demonstrated that when
in-hive temperature sensors were placed inside or close to the mass of bees at the core
of the colony, which the researchers called the cluster, the sensors were affected more
by the cluster and less by exterior conditions than the sensors placed further from the
cluster. Southwick and Moritz (1987) [24] experimentally showed the possibility that daily
cycles of in-hive temperature and metabolic activity are driven by ambient conditions.
Separated by almost a century, the field investigations by Gates [25] (1914) and Meikle
et al. (2016) [26] reported some evidence of the thermoregulation of colonies. Meikle et al.
(2016) [26] showed that in-hive temperature is affected by colony size and the location of the
in-hive temperature sensor. Worswick (1987) [27] argued that the intensity of the colony’s
thermoregulation was a function of subspecies. Jones et al. (2004) [28] provided evidence
that thermoregulation may be related to the within-colony genetic diversity. The hypothesis
advocated by Stalidzans and Berzonis (2013) [29] is that thermoregulation depends on
the colony’s phenological status. Meikle et al. (2018) [30] observed the codependencies
between thermoregulation and pesticide exposure.

Bee traffic at the hive’s entrance, which we will hereafter call bee entrance traffic or
simply entrance traffic, has been investigated with cameras for almost a century. Patterson
(1935) [31] designed an image-based bee counter in 1935 by means of a wide-angle lens and
35 mm film. Single bee passes were manually counted as crossings of a line in the image.
For the next 60 years, image and video sensors were not part of the insect motion literature
until the appearance of digital cameras in the late 1990’s, when Dickinson et al. (1999) [32]
used digital images to investigate the aerodynamics of insect flight. Chen et al. (2012) [33]
recorded videos of bees illuminated with infrared light at the hive entrance. Bees were
individually marked with special characters identifiable with Hough transform to quantify
some aspects of entrance traffic. Dussaubat et al. (2013) [34] designed similar techniques to
investigate the effects of Nosema ceranae infection on the flight behavior of bees.

A recent trend in image- and video-based entrance traffic quantification is the enhance-
ment of methods of standard ML with deep learning (DL) and computer vision. DL is a
branch of artificial intelligence (AI) that focuses on the design and application of convolu-
tional neural networks (CNNs) to problems varying from classification to regression (cf.,
e.g., Thompson et al. (2021) [35]). Chiron et al. (2013) [36] proposed a 3D stereo vision
algorithm to detect and track honey bees at the hive’s entrance. Babic et al. (2016) [37]
and Yang et al. (2017) [38] used ML and DL methods to differentiate between incoming
pollen- and nonpollen-bearing foragers. Tashakkori et al. (2021) [9] used computer vision
techniques to estimate the number of drones in a managed hive. Kulyukin et al. (2022) [39]
experimentally demonstrated the possibility of a relationship between the hive weight
and the video-based measurements of entrance traffic. Kulyukin and Kulyukin (2023) [40]
combined motion detection with DL-based bee object inference to quantify omnidirectional
entrance traffic in videos. Hamza et al. (2023) [41] proposed to use a camera above the
hive’s entrance to record entrance traffic in a BeeLive platform for their Beemon hive
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monitoring system. What unifies these investigations is the ultimate objective of designing
algorithms to quantify various characteristics of entrance traffic from videos.

Another incipient and growing trend is the predictive modeling of various charac-
teristics of managed colonies. Braga et al. (2020) [15] designed several computer models
of hive distress detection and prediction based on a comprehensive colony checklist. In a
3-year-long investigation of multiple colonies at multiple locations, the researchers used the
internal hive temperature, hive weight, ambient temperature, dew point, wind direction,
wind speed, rainfall, and daylight in combination with weekly apiary inspection results.
K-nearest neighbors (KNNs) models, random forests, and ANNs were trained to predict
hive health from the internal temperature, weight, and ambient weather. On the collected
dataset, a random forest turned out to be the best predictor with an accuracy of 98%. Zaman
and Dorin (2023) [11] proposed a theoretical framework for predictive hive monitoring
that takes into account the interests and objectives of different stakeholders who stand to
benefit from it.

In conducting the background research on predictive modeling, we found evidence
of predictive modeling on the websites of four commercial multisensor platforms: Arnia
(model: Arnia Perfetta™; url: www.arniaperfetta.it (accessed on 20 September 2024))—8 sen-
sors: audio, temperature, humidity, weight, light sensor, accelerometer, bee counter, video;
ApisProtect (model: ApisProtect 2023; url: linkedin.com/company/apisprotect (accessed
on 20 September 2024))—4 sensors: temperature, humidity, audio, accelerometer; IoBee
(model: IoBee SOA; url: io-bee.eu (accessed on 20 September 2024))—4 sensors: temperature,
humidity, weight, bee counter; Pollenity (model: Pollenity Merchant; url: www.pollenity.com
(accessed on 20 September 2024))—4 sensors: temperature, humidity, weight, acoustic. We
could not analyze the predictive power of these platforms because the software tools appear
to be proprietary. Nor did we find evidence of FAIR datasets on these commercial sites.

Another four multisensor commercial platforms that we came across during our back-
ground research are: BuzzBox (model: BuzzBox Hive Health Monitor; url: www.beebuilt.com (ac-
cessed on 20 September 2024))—3 sensors: temperature, humidity, audio; BroodMinder (model:
BroodMinder Apiary Starter Pack; url: broodminder.com (accessed on 20 September 2024))—3
sensors: temperature, humidity, weight; Hive Mind (model: HiveMind Hive Strength Monitor;
url: hivemind.nz (accessed on 20 September 2024))—5 sensors: temperature, humidity,
weight, bee counter, rain gauge; Hyper Hyve (model: HyperHive™; url: hyperhyve.com
(accessed on 20 September 2024))—3 sensors: temperature, humidity, weight). However,
these platforms appear to focus on remote visualization of sensor data and leave the inter-
pretation to the human user. It should be noted that the sites of commercial platforms are
volatile insomuch as the information on the available product models is constantly added,
updated, and deleted.

3. Materials and Methods
3.1. Metadata

We acquired the data for this investigation from 10 colonies in Langstroth hives
at a research apiary of the Carl Hayden Bee Research Center of the U.S. Department of
Agriculture Agricultural Research Service (USDA-ARS) in Tucson, Arizona (AZ), USA (GPS
coordinates: 32◦13′18.274′′ N, 110◦55′35.324′′ W) from June to October, 2022. The archived
weather conditions for this time period are available from the Arizona Meterological
Network of the University of Arizona College of Agriculture and Life Sciences [42]. Each
hive was mounted on an electronic scale and consisted of a bottom board with a landing
pad, two deep Langstroth boxes with 10 frames in each with an in-hive temperature sensor
installed in the middle frame of the second (higher) box, an inner hive cover, a box with
an on-hive video traffic sensor, and a hive cover with a cardboard box reinforced with
all-weather duct tape to protect the camera against the elements (cf. Figures 1 and A1).

www.arniaperfetta.it
https://www.linkedin.com/company/apisprotect
https://io-bee.eu
www.pollenity.com
www.beebuilt.com
www.broodminder.com
www.hivemind.nz
www.hyperhyve.com
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Figure 1. Data pipeline. Right to left: a hive mounted on an electronic scale (weight sensor) with an
in-hive temperature sensor (cf. Figure A3) and an external on-hive video sensor. The weight sensor
generates a time series of kg weight measurements (real numbers); the temperature sensor—a time
series of ◦C temperature measurements (real numbers); the video traffic sensor—a time series of bee
motion counts (natural numbers). The three series are time-aligned.

From 9 June to 14 June 2022, each hive was placed on a stainless steel electronic scale
(Tekfa model B-2418, precision: ±20 g; operating temperature: −30 ◦C to 70 ◦C) linked to
a 16-bit datalogger (Hobo UX120-006M External Channel data logger, Onset Computer
Corporation, Bourne, MA, USA). On 21 June 2022, an in-hive temperature sensor (Hobo
MX2201 sensor, Onset Computer Corporation, Bourne, MA; accuracy ± 0.5◦C) was placed
at the top bar of the middle frame in the second box of each hive (cf. Figure A3). Ten
BeePi on-hive video loggers (vloggers) (cf., e.g., Kulyukin et al., 2022 [39]) were installed
on 23 June 2022. Each vlogger was equipped with a Raspberry Pi 3 model B v1.2 computer
coupled to a Raspberry Pi v2 camera (8 megapixel, 1080 × 1920 pix resolution, 25 frames
per second (fps)) that looked down on the landing pad of the hive from the top of the
second box. The installation software and hardware quality evaluation were conducted
for each vlogger on 24 June 2022. The evaluation involved a visual verification of the
correctness of the hardware setup, a wireless login into the Raspberry Pi computer of each
vlogger via an ad hoc Wi-Fi network, a secure retrieval of several captured videos from a
USB hardware disk connected to each vlogger, and a viewing of each retrieved MP4 RGB
video in a video player. The scales and the vloggers were powered from the grid. Each
in-hive temperature sensor had its own battery the size of a small coin that could power it
for ≈12 months.

Five hives had Russian queens and five hives had Wooten queens (cf. Table 1). Hive
evaluations were conducted on 21 June, 11 August, and 23 September. Each evaluation
included a visual queen status check (presence/absence) and removal of queen superse-
dure cells. The weight of the hive woodenware was not affected by rainfall because the
June–October weather in Tucson, AZ, is hot (≥35 ◦C) and dry with almost no rainfall [42].
Rapid hive inspections to check queen status and hive strength were conducted on 22 July
and 16 September. A new Russian queen was installed in hive 2141 on 20 June 2022, and a
new Wooten queen in hive 2140 on 23 June 2022. On 22 July 2022, a supersedure queen cell
was removed from 2059. On 26 July 2022, a new Russian queen was again installed in hive
2141, and a new Russian queen was installed in hive 2059. On 15 August 2022, a laying
worker was detected in hive 2141. On 19 September 2022, the queens were removed from
hives 2158 and 2120 for other scheduled experiments unrelated to this investigation. The
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final hive evaluations were conducted on 23 September 2022. On 28 September 2022, the
vloggers were removed from 2137 and 2146 because the hives were scheduled to move to a
different laboratory. All BeePi units were disassembled on 11 October 2022.

Table 1. Total numbers of logged weight and temperature readings and videos. The weight data
were logged every 5 min around the clock from 00:00 on 18 June 2022 to 00:00 on 23 September 2022 for
each hive. The temperature data were logged every 5 min around the clock from 00:00 on 21 June 2022
to 11 October 2022 for each hive. A 30 s MP4 video was recorded by each vlogger every 5 min from
7:00 to 20:55 daily during the video capture periods in the VCP column. Table legend: HID—Hive
ID; GQL—Genetic Queen Line; WRC—number of hive weight readings captured; TRC—number
of in-hive temperature readings captured; VDC—number of on-hive videos captured; TOT—total
number of records captured; VCP—video capture period.

HID GQL WRC TRC VDC TOT VCP

2059 Russian 28,076 32,257 18,263 78,596 11:05,06/24–20:55,10/10
2120 Russian 28,076 32,257 18,281 78,614 12:00,06/24–09:20,10/11
2123 Wooten 28,076 32,257 16,575 76,908 10:35,06/24–20:55,09/30
2129 Wooten 28,076 32,257 17,056 77,389 13:40,06/24–20:55,10/03
2130 Wooten 28,076 32,257 16,551 76,884 13:45,06/24–20:55,09/30
2137 Wooten 28,076 32,257 18,293 78,626 11:40,06/24–10:00,10/11
2141 Russian 28,076 32,257 4623 64,956 13:45,06/24–20:55,07/21
2142 Russian 28,076 32,257 18,270 78,603 13:40,06/24–10:05,10/11
2146 Wooten 28,076 32,257 18,231 78,564 13:45,06/24–20:55,10/10
2158 Russian 28,076 32,257 9230 69,563 13:40,06/24–12:45,08/18

TOT 280,760 322,570 155,373 758,703

3.2. Data

The total numbers of logged records for each sensor are detailed in Table 1. We time-
aligned the weight, temperature, and video data by their time stamps and smoothed the
weight and temperature data by computing hourly means for each hive. We computed the
omnidirectional bee traffic counts for each video. The traffic counts are natural numbers, i.e.,
non-negative integers, of flying bees detected in each frame of a video. The omnidirectional
bee traffic counts were computed with our OmniBeeM (Omnidirectional Bee Motion)
algorithm (cf., e.g., Kulyukin and Mukherjee, 2019 [43]). For each video, OmniBeeM returns
three sets of objects: (1) motion regions (motion rectangles); (2) inferred bee objects aligned
with motion regions (motion-aligned bee rectangles); and (3) motion-unaligned inferred
bee objects (unaligned bee rectangles). The cardinality of the set of the motion-aligned
bee rectangles (a non-negative integer) is returned as the omnidirectional traffic estimate
for the video. The algorithm is agnostic to motion detection methods and bee object
inference methods insomuch as it can work with DL and non-DL object inference models
(cf. Kulyukin et al., 2021 [44]). In this investigation, we computed the omnidirectional
traffic counts for each video with OmniBeeM working with our YOLOv3, YOLOv4-Tiny,
and YOLOv7-Tiny models we trained in our previous research to recognize flying bee
objects in videos (cf., e.g., Kulyukin and Kulyukin, 2023 [40] for details). We then computed
the hourly traffic means for each hive. Finally, we aligned all hourly means with natural
numbers to obtain the same time axis for the time series analysis and saved these records in
the CSV files provided in the supplementary materials. We used these time-aligned hourly
means as the ground truth measurements for the three DUTS: (1) weight series denoted
as {Wt}; (2) temperature series denoted as {Ct}, because the temperature was recorded in
degrees Celsius; and (3) bee entrance traffic series denoted as {Bt}. Table 2 gives a sample
record of hourly means. Table 3 gives total numbers of hourly means for each hive used in
the DUTS analysis.
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Table 2. Weight, temperature, and traffic means for hour 10 on 7 July 2022. The means for hour 10
are computed from the 12 weight, temperature, and traffic measurements from 9:00 up to 9:55. The
mantissas of real numbers are rounded to 2 digits. Table legend: HID—Hive ID; HR—hour (a non-
negative integer used instead of a time stamp); µW—mean hive weight (kg) for hour 10; µC—mean
in-hive temperature (degrees Celsius) for hour 10; µY3—mean omnidirectional bee motion count
obtained with OmniBeeM with YOLOv3 for hour 10; µY4T—mean omnidirectional bee motion count
obtained with OmniBeeM with YOLOv4-Tiny for hour 10; µY7T—mean omnidirectional bee motion
count obtained with OmniBeeM with YOLOv7-Tiny for hour 10.

HID HR µW µC µY3 µY4T µY7T

2059 10 15.70 35.38 226.42 1300.33 610.42
2120 10 15.76 35.93 4132.50 941.42 802.42
2129 10 14.79 35.89 1666.33 349.83 493.83
2123 10 14.84 35.16 930.42 338.42 507.92
2130 10 14.04 35.36 926.17 403.17 435.42
2137 10 16.41 35.38 1975.58 1017.92 556.58
2141 10 13.55 35.12 1051.67 95.17 218.00
2142 10 13.74 35.22 1705.67 856.00 460.67
2146 10 16.01 35.48 3319.33 1340.58 1184.00
2158 10 16.50 35.58 420.08 455.08 381.83

Table 3. Total numbers of weight, temperature, and traffic means used in time series forecasting.
Table legend: HID—Hive ID; NWM—number of hourly hive weight means; NCM—number of
hourly in-hive temperature means; NBM—number of hourly bee entrance traffic means.

HID 2059 2120 2123 2129 2130 2137 2141 2142 2146 2158

NWM 2160 2160 2160 2160 2160 2160 2160 2160 2160 2160
NCM 2160 2160 2160 2160 2160 2160 2160 2160 2160 2160
NBM 1170 1170 1170 1170 1170 1170 352 1170 1170 708

TOT 5490 5490 5490 5490 5490 5490 4672 5490 5490 5028

3.3. Discrete Univariate Time Series Forecasting

A DUTS is a set of observations {ot|t ∈ TXt}, where each ot is recorded at time t and
TXt is a set of discrete time values of a random variable Xt. The term univariate means
that ot is a value of exactly one random variable. In our investigation, the three random
variables were the hive weight Wt, the in-hive temperature Ct, and the bee entrance traffic
Bt such that

Wt ∈ {wt1 , . . . wtk}, 0 < k ∈ N, wtj ∈ R, tj ∈ TW ⊂ N, 1 ≤ j ≤ k;
Ct ∈ {ct1 , . . . ctm}, 0 < m ∈ N, ctj ∈ R, tj ∈ TC ⊂ N, 1 ≤ j ≤ m;
Bt ∈ {bt1 , . . . btn}, 0 < n ∈ N, btj ∈ R, tj ∈ TB ⊂ N, 1 ≤ j ≤ n,

(1)

where ⊂ denotes the proper subset relation between two sets, R denotes the set of real
numbers, N denotes the set of natural numbers, and t ∈ N denotes a unique natural number
corresponding to a time stamp. For each sensor, we defined a 1–1 map whose domain
was a finite set of the sensor’s digital clock time stamps (year, month, day, hour, minutes,
seconds) and whose range was a finite subset of N. TW , TC, and TB were constructed as the
ascending ranges of the appropriate maps. {Wt} and {Ct} were completely time-aligned
for each hive, i.e., m = k and TW = TC. {Bt} was partially time-aligned with {Wt} and
{Ct} for each hive insomuch as no videos were captured during the night hours, i.e., n < m,
n < k, TB ⊂ TW , TB ⊂ TC.

We constructed three types of DUTS forecasters: weight forecasters F̂M,Wt ,n,k, tempera-
ture forecasters F̂M,Ct ,IN,OUT , and traffic forecasters F̂M,Bt ,n,k. The first subscript M denotes
a model through which the forecaster was realized, i.e., A for ANN, C for CNN, L for LSTM,
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R for ARIMA. The second subscript, i.e., Wt, Ct, Bt, refers to the random variable in (1)
predicted by the forecaster. The third and forth subscripts (i.e., IN and OUT or, equivalently,
n and k in the notation of (2)) refer to the input and output of the forecater. Specifically, a
forecaster with 0 < IN = n ∈ N and 0 < OUT = k ∈ N in (2) maps an n-tuple of observed
real values (e.g., n hourly bee traffic means bi1 , . . . , bin ) to a k-tuple of predicted values (e.g.,
k predicted hourly bee traffic means b̂in+1 , . . . , b̂in+k ). We will hereafter call the value of IN
(or, equivalently, of n) the intake and the value of OUT (or, equivalently, of k) the predicted
horizon or simply horizon. In short, the subscripts n and k, respectively, denote the IN and
OUT values for each forecaster or the forecaster’s intake and the horizon. Table 4 gives
the investigated intake and horizon values. We use the term model to refer to a specific
implementation of a forecaster. We use the term time span or simply span to refer to the sum
of the forecaster’s IN and OUT values.

F̂M,Wt ,n,k : Rn 7→ Rk; F̂Wt(wi1 , . . . , win) = ŵin+1 , . . . , ŵin+k ;
F̂M,Ct ,n,k : Rn 7→ Rk; F̂Ct(ci1 , . . . , cin) = ĉin+1 , . . . , ĉin+k ;
F̂M,Bt ,n,k : Rn 7→ Rk; F̂Bt(bi1 , . . . , bin) = b̂in+1 , . . . , b̂in+k .

(2)

Table 4. Forecaster model intake and horizon values. Table legend: IN—the forecaster’s intake, i.e.,
the number of input (actually observed) values; OUT—the forecaster’s horizon, i.e., the number of
predicted values; the integers in the IN and OUT columns denote numbers of hours; NF—the number
of the forecasters with the corresponding values of IN and OUT, i.e., NF = IN × |OUT| × 4, where
|OUT| is the cardinality of the set OUT in each row and 4 is the number of the model types, i.e.,
ANN, CNN, LSTM, and ARIMA. TOT is the total number of forecasters of each model type evaluated
in this investigation.

IN OUT NF TOT

6 { 1, 2, 3, 4, 5, 6 } 6 × 6 × 4 144

12 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } 12 × 12 × 4 576

24 { 6, 12, 18, 24 } 24 × 4 × 4 384

1104

For instance, let M ∈ {MA, MC, ML, MR}, where MA, MC, ML, and MR respectively
denote ANN, CNN, LSTM, and ARIMA. Then, with the notation of (1) and (2), we can
define three forecasting models: F̂MA ,Wt ,6,2, F̂ML ,Ct ,12,9, and F̂MR ,Bt ,24,18. F̂MA ,Wt ,6,2 uses MA
to predict k = 2 mean hourly weight observations from the previously observed n = 6
mean hourly weight measurements. In the notation of Table 4, the intake of this model is
IN = 6 h, the horizon is OUT= 2 h, and the span is IN + OUT = 6 + 2 = 8 h. Analogously,
F̂ML ,Ct ,12,9 uses ML to predict k = 9 mean hourly temperature values from the previously
observed n = 12 mean hourly temperature values. The intake of this forecaster is IN = 12 h,
the horizon is OUT = 9 h, and the span is IN + OUT = 12 + 9 = 21 h. Finally, F̂MR ,Bt ,24,18
uses MR to predict k = 18 mean hourly traffic counts from the previously observed n = 24
mean hourly bee traffic counts. The intake of this forecaster is IN = 24 h, the horizon is
OUT = 18 h, and the span is IN + OUT = 24 + 18 = 42 h. For brevity, we will sometimes
refer to forecasters and models by their IN and OUT values. For example, IN = 6, OUT = 2,
or simply 6, 2 ARIMA weight forecaster, or IN = 24, OUT = 12, or 24, 12 LSTM traffic model.
We will also use phrases such as IN = 6 forecasters to refer to forecasters with an intake of
6 h. We will evaluate the performance of F̂M,V,IN,OUT on a sequence of test observations
Stest = ot1 , . . . , otl , l > 1, with a mean squared error (MSE) function

MSE
(

F̂M,V,OUT,IN , Stest

)
= 1

l−sp+1 ∑l
e∈E(ote − ôte)

2, (3)

where sp is the forecaster’s span , E = {s + sp − 1|1 ≤ s ≤ l − sp + 1}, and ôte is the
forecaster’s prediction at time te.
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3.4. Construction and Evaluation of Forecasting Models

We implemented each ML forecaster in Python 3.10 with the Keras library on Ubuntu
22.04 LTS (cf. the source code in Figures A6–A8). In traffic forecasters, we used only the
bee motion counts obtained with OmniBeeM using YOLOv3 as a bee object inference
model because we plan to perform a comparative analysis of the traffic forecasters of
the OmniBeeM counts with the YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny bee inference
models in Part II of our investigation (cf. Section 6).

For each {Xt} = {xt|t = 1, . . . , K}, where X ∈ {W, T, B}, x ∈ {w, c, b}, and
K ∈ N (cf. Equation (1)), we constructed an ARIMA model in SAS 9.4 (SAS Institute
Inc., Cary, NC, USA) using IN = K with the following two steps recommended by Bower-
man and O’Connell (1993) [14]. We achieved the first order stationarity and approximated
stationarity by computing the first differenced series

zt = xt − xt−1, 2 ≤ t ≤ K, (4)

and then constructed an autoregressive model of order k − 1, denoted AR(k − 1), to the
first differenced series {zt} as

zt − ϕ1zt−1 − ϕ2zt−2 · · · − ϕk−1zt−(k−1) = δ + at, (5)

where {ϕ1, ϕ2, . . . , ϕk−1} are the k − 1 autoregressive parameters, δ is a fixed constant,
usually close to 0, and {at} are assumed to be independent random shocks with a mean
of 0.

For each hive, we did a 70/30 train/test split on the number of the observed mean
values of Wt, Ct, and Bt (cf. Table 3) and trained each ML model (i.e., MA, MC, ML
in Figures A6–A8) for each possible IN, OUT pair in Table 4 and each possible value of
V ∈ {Wt, Ct, Bt} 5 times for 500 epochs. Thus, we trained each of the possible 24,840 models
5 times for 500 epochs, where the number 24,840 is computed as follows: 828 is computed
from Table 4 as 3 × (62 + 122 + 24 × 4) and then multiplied by 3, i.e., the number of the
possible values of V, and then by 10, i.e., the number of the hives. The training was
performed on a GEFORCE RTX 2080 Ti GPU, Intel(R) Core(TM) i7-9700K CPU @ 3.6 GHz,
31 GB RAM, with Ubuntu 22.04.4 LTS. The value of 500 was found experimentally by
starting with 50 epochs, incrementing the number of epochs by 50, and observing the
performance of trained models on the test data. The performance of the models plateaued
at 500, i.e., training for 600, 650, 700, 750, 800, 850, 900, 950, and 1000 epochs did not result
in any improvement on the test data. Thus, the value of 500 provided a balance between
predictive quality and the computational burden of training the ML models.

To fit the ARIMA models, we replaced each zt in (5) by its form in (4), which makes
the forecasting model

x̂t = δ̂ + (1 + ϕ̂1)xt−1 + (ϕ̂2 − ϕ̂1)xt−2 + · · ·+ (ϕ̂k−1 − ϕ̂k−2)xt−k+1 − ϕ̂k−1xt−k, (6)

where we obtained the parameter estimates {ϕ̂1, ϕ̂2, . . . , ϕ̂k−1} and δ̂ with the SAS ARIMA
time series fitting procedure. Equation (6) shows how ARIMA uses the k previous obser-
vations to forecast the next k observations and thus matches the model complexity of the
three ML models.

We evaluated each fitted ML model on the appropriate test observation sequence
with the MSE formula in (3) and plotted its performance against the ground truth values,
i.e., the actually observed hourly means. The ARIMA models were also evaluated on
the exact same test data for each possible combination of IN and OUT values in Table 4.
Specifically, in evaluating ARIMA models, we let OUT= r ∈ {1, . . . , k} and indexed the
test set observations by t = n + 1, . . . , n + s, where s is the number of observations in the
test set. Then, for each m ∈ {n + 1, . . . n + s}, we computed the ARIMA forecasts r hours
ahead (cf. Equation (6)) for a given fitted ARIMA model as
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x̂m+r = δ̂ + (1 + ϕ̂1)x̂m+r−1 + (ϕ̂2 − ϕ̂1)x̂m+r−2 + · · ·+ (ϕ̂m − ϕ̂m−1)xm + . . .
+(ϕ̂k−1 − ϕ̂k−2)xm+r−(k−1) − ϕ̂k−1xm+r−k, (7)

where the previous predicted values are used for the first r− 1 values of x and the remaining
values of x are the actually observed values when the starting time span is fixed at m. For
each m and each r, the predicted value from (7) was subtracted from the actual value, and
this difference was squared to obtain (xm+r − x̂m+r)2. These squared errors were then
averaged over the s − k observations in the test set to produce the MSE value for r with the
MSE formula in (3).

Since the initialization of the ML models in Keras involves the assignment of random
weights, we visually inspected each ML plot for topological fitness, i.e., how closely the
shape of the curve of the predicted mean values followed the shape of the ground truth
curve of the actually observed mean values. For each hive and each ML model, we chose
the topologically fit, lowest MSE model and compared it with the ARIMA model for the
same hive, the same random variable, and the same span. Topologically unfit models
were discarded.

4. Results

Due to a very large volume of the experimental results, we have confined most of our
tables and figures in this section to hives 2059 (a representative of the Russian queenline)
and 2146 (a representative of the Wooten queenline) and to the IN = 24 forecasters for these
hives, i.e., the forecasters with the intake of 24 h. Training one ANN model for 500 epochs
took ≈7 min. Training one CNN/LSTM model for 500 epochs took ≈10 min. Fitting one
ARIMA model took ≈30 s. The plots and tables of the IN = 6 and IN = 12 forecasters for
these two hives are given in the document ST.pdf (ST abbreviates supplementary tables) ) in
the zip archive with the supplementary materials. When we reference a table in ST.pdf,
we reference it as ST X , e.g., Table ST 1. The plots and tables for the other eight hives are
given in the supplementary materials or can be easily reconstructed from the CSV files
and the trained models therein (cf. README in the supplementary zip). There is no loss
of generality in our presentation decision because all univariate forecasters of the same
random variables showed the trends and patterns very similar to the trends and patterns
of the forecasters for hives 2059 and 2146 discussed in this section and the supplementary
document ST.pdf. Tables ST 1 and ST 2 in ST.pdf give the results of the most frequent IN
= 6 and IN = 12 weight forecaster model types with the minimum MSE for all 10 hives.
The top subtable of Table 5 gives the statistics for the IN = 24 weight forecaster model
types. Table ST 1 shows that on IN = 6 (intake of 6 h), the ARIMA forecasters were the
most frequent forecasters with the minimum MSE on each predicted horizon with an
overall minimum MSE count of 55 out of the 60 possible trained models. On IN = 12,
shown in Table ST 2, the ARIMA forecasters were also the most frequent minimum MSE
forecasters on each predicted horizon, with an overall count of 80 out of the 120 possible
trained models. On IN = 24, given in the top subtable of Table 5, ARIMA had 21 minimum
MSE forecasters out of the 40 possible trained models. In summary, in forecasting weight,
ARIMA outperformed its ML counterparts on all intakes and horizons.
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Table 5. IN = 24 minimum MSE forecaster model counts. Counts of times when a IN = 24 forecaster
model trained on the train data (70%) of a hive had minimum MSE on the test data (30%) of the same
hive. The counts are reported for all 10 hives. Highest total counts are bolded. For the intake of
n = 24, the maximum possible total count is 40, i.e., 4 possible IN, OUT pairs for each of the 10 hives
(cf. Table 4). For instance, for the weight forecasters, the total ARIMA count of 21 is interpreted as
follows: out of 40 models trained and tested on each hive, 21 ARIMA models had the lowest MSE on
the test data. The total counts for the temperature and traffic models are interpolated analogously.

Weight Forecasters

IN OUT ANN CNN LSTM ARIMA

24 6 2 1 0 7

24 12 2 3 1 4

24 18 3 0 2 5

24 24 1 0 4 5

TOT 8 4 7 21

Temp Forecasters

IN OUT ANN CNN LSTM ARIMA

24 6 1 0 1 8

24 12 1 0 1 8

24 18 0 0 0 10

24 24 1 0 0 9

TOT 3 0 2 35

Traffic Forecasters

IN OUT ANN CNN LSTM ARIMA

24 6 9 0 0 1

24 12 8 0 0 2

24 18 8 0 0 2

24 24 7 0 0 3

TOT 32 0 0 8

Tables ST 3 and ST 4 in ST.pdf give the results of the most frequent IN = 16 and
IN = 12 in-hive temperature forecaster model types with the minimum MSE for all 10 hives.
The middle subtable in Table 5 gives these statistics for IN = 24 in-hive temperature
forecasters. Table ST 3 shows that on IN = 6, LSTM was the most frequent model with the
minimum MSE: 46 LSTM forecasters had the minimum MSE out of the 60 possible trained
models. ARIMA came in second with the minimum MSE count of 12. On IN = 12, shown
in Table ST 4, LSTM was again the most frequent minimum MSE model: 71 minimum MSE
forecasters out of the 120 possible trained models. On IN = 24, shown in the middle subtable
in Table 5, ARIMA was the most frequent minimum MSE model type, with 35 minimum
MSE forecasters out of the 40 possible trained models. In summary, on IN = 6 and IN = 12,
in forecasting in-hive temperature, LSTM was the top forecaster model type with ARIMA
coming second; on IN = 24, ARIMA outperformed its ML counterparts.

Tables ST 5 and ST 6 in ST.pdf give the results of the most frequent IN = 16 and
IN = 12 traffic forecaster model types with the minimum MSE for all 10 hives. The bottom
subtable in Table 5 gives these statistics for IN = 24 traffic forecasters for all 10 hives. In all
three tables, the traffic counts were computed with OmniBeeM with a YOLOv3 bee object
inference model. On IN = 6, shown in Table S5, LSTM was the most frequent minimum
MSE model type, with 44 minimum MSE forecasters out of the 60 possible trained models.
ANN and CNN shared the second place with 7 minimum MSE forecasters. ARIMA had
2 minimum MSE forecasters. On IN = 12, given in Table ST 6, ANN had the largest
count of minimum MSE forecasters with 101 forecasters, out of the 120 possible trained
forecasters. CNN came second with 10 forecasters; LSTM—third with 7 forecasters, and
ARIMA—fourth with 2 forecasters. On IN = 24 in the bottom subtable in Table 5, ANN
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was the most frequent minimum MSE model: 32 minimum MSE forecasters out of the
40 possible trained models; ARIMA was second with 8 forecasters. Neither CNN nor LSTM
had any minimum MSE forecasters. In summary, on IN = 6, LSTM was first, ANN and
CNN second, and ARIMA third; on IN = 12, ANN was first, CNN—second, LSTM—third,
and ARIMA—fourth; on IN = 24, ANN was first, ARIMA—second, and CNN and LSTM
did not have any minimum MSE forecasters.

Table ST 7 in ST.pdf gives the minimum MSE plots for the best IN = 6 and IN = 12
weight forecasters for hives 2056 and 2146. For hive 2056 on IN = 6, the minimum MSE
ranged from 0.0002 to 0.0016, with an increase in MSE on longer horizons. For hive 2059,
on IN = 12, the minimum MSE ranged from 0.0001 to 0.003, with an increase in MSE on
longer horizons. For hive 2146, on IN = 12, the minimum MSE ranged from 0.00001 to
0.0061. Row 1 in Table 6 gives the plots of the minimum MSE values of the best IN = 24
weight forecasters for hives 2059 and 2146. For hive 2059, on IN = 24, the minimum MSE
ranged from 0.001 to 0.008, with an overall increase in MSE on longer horizons. For hive
2146, on IN = 24, the minimum MSE ranged from 0.0015 to 0.004. ANN, CNN, and ARIMA
had an overall increase in MSE on longer horizons. LSTM showed a parabolic shape with
the MSEs on the horizons of 6 and 24 slightly higher than on the horizons of 12 and 18.
In summary, the small MSE ranges on all intakes and horizons indicate that the weight
forecasters differed only slightly in terms of the predictive power on all time spans. On all
spans, in forecasting hive weight, ARIMA performed on par with its ML counterparts.

Table 6. Minimum MSE plots for IN = 24 forecasters. Minimum MSE plots of the best ANN, CNN,
LSTM, and ARIMA IN = 24 forecasters on the test data for hives 2059 and 2146. The PDF may have to
be enlarged to see the plots. The x-axis in each plot, labeled OUT, is interpreted as follows: 1.0 denotes
OUT = 6, i.e., the prediction horizon of 6 hourly means; 2.0 denotes OUT = 12, i.e., the prediction
horizon of 12 hourly means; 3.0 denotes OUT=18, i.e., the prediction horizon of 18 hourly means;
4.0 denotes OUT = 24, i.e., the prediction horizon of 24 hourly means.

Weight Forecasters

Temp. Forecasters

Traffic Forecasters
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Table ST 8 in ST.pdf gives the minimum MSE plots for the best IN = 6 and IN = 12
temperature forecasters for hives 2056 and 2146. For hive 2056, on IN = 6, the minimum
MSE ranged from 0.001 to 0.175 with an increase in MSE on longer horizons, with the
exception of LSTM on the horizon of 3 h (OUT = 3) where its MSE was higher than the
MSEs of the other three models. For hive 2146, on IN = 6, the minimum MSE ranged from
0.01 to 0.07 with an increase in MSE on longer horizons, with the exception of LSTM on the
horizon of 3 h (OUT = 3) where its MSE was higher than the MSE of the other three models.
For hive 2059, on IN = 12, the minimum MSE ranged from 0.01 to 0.10, with all models
showing an overall MSE on longer horizons. LSTM had a higher MSE on the horizon of 6
than the other three forecasters. For hive 2145, on IN = 12, the minimum MSE ranged from
0.01 to 0.062, with all models MSE curves showing the inverse parabolic shape, i.e., the
middle horizons having slightly higher MSEs than the end horizons of 1 and 12. Row 2 in
Table 6 gives the MSE plots for the best IN = 24 temperature forecasters for hives 2059 and
2146. On this intake, the MSE ranged from 0.03 to 0.05 for hive 2059, with the MSE rising
on the longer horizons for CNN and LSTM and being inversly parabolic for ANN and
ARIMA. For hive 2146, the MSE ranged from 0.03 to 0.0475, with a falling MSE curve for
LSTM, a rising curve for CNN, an inversely parabolic curve for ANN, and a flat curve for
ARIMA. In summary, on hives, some temperature forecasters exhibited inversely parabolic
MSE. In forecasting temperature, ARIMA performed on par with its ML counterparts and
outperformed them on the longer horizons for hive 2059 and on all horizons for hive 2146.
The small MSE ranges on all intakes and horizons of the temperature forecasters indicate
that the in-hive temperature forecasters differed very slightly in terms of the predictive
power on all time spans.

Table ST 9 in ST.pdf gives the minimum MSE plots for the best IN = 6 and IN = 12 traffic
forecasters for hives 2056 and 2146. In predicting the traffic computed with OmniBeeM
with our trained YOLOv3 flying bee object inference model. For hive 2059, on IN = 6,
the minimum root MSE (RMSE) varied from 192 bees to 252 bees for hive 2059 and from
600 bee objects to 1410 bees for hive 2146. The MSE plots for hive 2059 showed an overall
increase in MSE for longer horizons. For hive 2146, all plots except ARIMA’s had inversely
parabolic shapes. For hive 2059 on IN = 12, the RMSE from 196 bees to 235 bees. For hive
2146, on IN = 12, the RMSE varied from 610 bees to 1205 bees. The RMSE of LSTM and
CNN jumped up and down for hive 2059. The RMSE of LSTM was varied on different
horizons. For both hives, on IN = 6 and IN = 12, ANN turned out to be the most stable
forecaster with the smallest RMSE. Row 3 in Table 6 gives the RMSE plots for the best
IN = 24 traffic forecasters for hives 2059 and 2146. For hive 2059 on this intake, RMSE
ranged from 180 bees to 215 bees; for hive 2146 on the same intake, RMSE ranged from
600 bees to 1180 bees. For hive 2059, ANN, CNN, and ARIMA forecasters had inversely
parabolic shapes, and LSTM’s RMSE fluctuated up and down. ANN showed the smallest
RMSE on all horizons. On the longer horizons of 12, 18, and 24 h, ARIMA had the second-
smallest RMSE. In particular, the difference between ANN and ARIMA at 18 and 24 h and
the RMSE differences between ANN and ARIMA were less than 15 bees. For hive 2146,
ANN had the smallest RMSE on all horizons. ARIMA had the second-smallest RMSE on
all horizons. CNN had the third-smallest RMSE on all horizons. LSTM’s RMSE jumped up
and down from horizon to horizon. On the intakes of 6 and 12 h, the RMSE of ANN and
ARIMA were basically identical and did not exceed 650 bees. On the longer intakes of 18
and 24 h, the RMSE of ANN and ARIMA slightly increased but differed by approximately
50 bees.

While the RMSE of the traffic forecasters may appear to be significantly different, in
reality, it is not the case when we take into consideration the fact that on many days the
hourly counts of flying bees at the hive’s entrance of a healthy colony with two boxes are
in thousands. Thus, e.g., the difference of fewer than 15 bees between the best IN = 24,
OUT = 24 ANN forecaster and the second best IN = 24, OUT = 24 ARIMA forecaster for
hive 2059 (cf. left plot in Row 3, Table 6) is not significant.



Sensors 2024, 24, 6433 14 of 23

Tables ST 10–ST 21 in ST.pdf show the plots of the predictions of all 6–1 (IN = 6,
OUT = 1), 6–6 (IN = 6, OUT = 6), 12–1 (IN = 12, OUT = 1), and 12–12 (IN = 12, OUT = 12) fore-
casters weight, temperature, and traffic forecasters for hives 2059 and 2146. Tables 7 and 8
in this section show the plots of the predictions of all IN = 24, OUT = 6, and IN = 24,
OUT = 24 forecasters for hives 2059 and 2146, respectively. These plots illustrate that all
forecasters of the three random variables predict long-term trends in the corresponding
time series equally well. While the individual predictions of the best forecasters may
differ from the actually observed values, the predicted and observed curves remained
topologically close to each other.

To support the previous observation with more evidence, we included Table 9 with
the plots of the predictions of all IN = 24, OUT = 6, and IN = 24, OUT = 24 forecasters for
hives 2123. These plots indicate that all forecaters can predict not only the falling or flat
trends in the test data, as is the case with hives 2059 and 2146, but also the rising and falling
trends, as is the case with hive 2123.

Table 7. Observed vs. predicted MSE plots for IN = 24, OUT = 6, and IN = 24, OUT = 24 forecasters
for hive 2059. The PDF may have to be enlarged to see the plots.

Weight 24-6

ANN CNN LSTM ARIMA

Weight 24-24

Temp 24-6

Temp 24-24

Traffic 24-6

Traffic 24-24
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Table 8. Observed vs. predicted MSE plots for IN = 24, OUT = 6, and IN = 24, OUT = 24 forecasters
for hive 2146. The PDF may have to be enlarged to see the plots.

Weight 24-6

ANN CNN LSTM ARIMA

Weight 24-24

Temp 24-6

Temp 24-24

Traffic 24-24

Traffic 24-24

Table 9. Observed vs. predicted MSE plots for IN = 24, OUT = 6, and IN = 24, OUT = 24 forecasters
for hive 2123. The PDF may have to be enlarged to see the plots.

Weight 6-6

ANN CNN LSTM ARIMA

Weight 24-24

5. Discussion

A key aim of our investigation was to assess the relative utility of three frequently
used ML models (i.e., ANN, CNN, and LSTM) for predicting univariate time series and
to benchmark them against the traditional ARIMA time series methodology, using three
highly distinct, in their statistical properties, measures of hive health (i.e., hive weight,
in-hive temperature, and hive entrance traffic). Since all four univariate forecaster models
performed on par in terms of MSE and trend prediction, the actual choice of a univariate
forecaster for hive weight, in-hive temperature, or hive entrance traffic may have to be
guided by other considerations. For example, if continuous access to cloud computing is
assured for a hive monitoring system, which, in turn, makes possible the continuous train-
ing of forecaster models on growing data quantities, then the results of our investigation
suggest that it does not matter which model is chosen insomuch as all models will likely
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capture trends in the time series that they are trained to predict. However, if cloud access is
not available or affordable, then ARIMA should be chosen because ARIMA models, unlike
their ML/DL counterparts like ANNs, CNNs, and LSTMs, do not require GPU computers,
which has an important practical implication for apiary science researchers interested in
deploying embedded systems that can monitor managed colonies in situ.

Due to smaller memory footprints, ARIMA models can be fitted to large datasets
in a matter of minutes even on restricted, embedded platforms such as the Raspberry Pi
platform that we used in this investigation for video data collection, which has important
implications for multisensor hive monitoring systems because embedded platforms have
smaller energy footprints than GPU farms or cloud computer clusters (cf., e.g., Kulyukin
and Kulyukin, 2023 [40]). Incidentally, our focus on shallow ANN, CNN, and LSTM models
was, in fact, motivated by the fact that deeper ML models have larger memory footprints,
which makes it hard or impossible to run them in situ on embedded platforms (cf., e.g.,
Kulyukin et al., 2021 [44]).

Another consideration for apiary science researchers and practitioners is that training
the ML models was more computationally expensive relative to ARIMA fitting; e.g., it took,
on average, ≈7 to 10 min of computational time to train one ML model for 500 epochs,
whereas the ARIMA fit to the training dataset took less than a minute. However, once
the training was completed, computing the predicted MSE on the test set took 1–2 s for
all models.

Since all four methods performed on par when evaluated by the MSEs computed on
the test datasets, a theoretical implication for continuous hive monitoring is that natural
cycles of managed colonies might be mathematically described and, consequently, predicted
with various degrees of accuracy. In particular, when used as DUTS forecasters, ANNs,
CNNs, and LSTMs can be construed as applying a sliding filter of a specific length over the
value of the time series. These filters have only one dimension (i.e., time) instead of 2 or
more dimensions (i.e., width, height, transparency, red, blue, green channels, etc., as is the
case of images). In other words, these filters are non-linear transformations of a given time
series. For example, an IN = 12, OUT = 12 model runs a filter of length 12 on a DUTS and
applies a moving average with a sliding window of length 12.

The potential for over- or underfitting always exists and can never be completely
eliminated. We addressed this weakness by using the different model complexities (e.g.,
IN = 6, OUT = 6; IN = 12, OUT = 12; IN = 24, OUT = 24). Our results indicate that the
least complex IN = 6, OUT = 6 models (i.e., the models with the potential to underfit,
because they involved only 6 input and 6 output parameters), the middle complexity
IN = 12, OUT = 12 models with the potential to underfit or overfit, and the most complex
IN = 24, OUT = 24 models (i.e., the models most likely to overfit, because they had
24 input and 24 output parameters) had similar performance on the test data. Furthermore,
overfitting was unlikely to be present since each model’s complexity and performance were
assessed only on the test data of each DUTS with a 70/30 train/test split.

As electronic sensors become mainstream and smaller in size, we expect that more of
them will be integrated into precision apiculture systems capable of univariate and multi-
variate predictive modeling. It is unlikely, however, that a single sensor will be sufficient to
characterize or predict the behavior or status of a managed bee colony completely. Rather,
future predictive models for precision apiculture will likely rely on multiple sensors, such
as scales, in-hive temperature sensors, and video sensors. It is impossible to predict at this
point whether some or all of these sensor types will be used in future multisensor systems
because each of the three sensor types has its own relative advantages and disadvantages,
which we now proceed to review briefly on the basis of our longitudinal experiences
with them.

The popularity of electronic hive scales among apiary scientists may be due to their
availability, non-invasiveness, ergonomics, and relevance (Kulyukin et al., 2022 [39]). Plac-
ing hives on scales does not interfere with the natural cycles of managed colonies. The
scales do not require any structural modifications of the hive and provide a continuous,
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interpretable hive-specific data stream around the clock regardless of ambient weather
conditions. The scales are ergonomic because, while they may be awkward to move, they
do not interfere with hive inspections, and relevant because they provide data that bears
on the status and productivity of the hive. However, the scales are relatively hard to move
from apiary to apiary or within a large apiary and may require initial calibration and
subsequent repeated recalibration. If the initial calibration or a scheduled recalibration is
skipped or not properly carried out, the quality of data may be compromised.

Like scales, in-hive temperature sensors are non-invasive and relevant. An advantage
of temperature sensors over scales is their small size and smaller power footprints, which
makes them more mobile and more easily deployable than scales. However, unlike external
scales, temperature sensors may be subject to destruction when the hives in which they
are placed are infected. For example, in Arizona and Utah, the hives infected with the
American Foul Brood must be promptly destroyed by the agricultural authorities. In some
situations, depending on the degree and type of colony infection, temperature sensors may
be recovered from infected hives by being treated with alcohol or some other appropriate
disinfectant due to their small size. Since most temperature sensors are small and attached
to frames, they can be lost during inspections or when hives are moved from apiary to
apiary or within a large apiary. The reviewed literature shows that in-hive temperature is
relevant because it bears on the status of the colony. However, interpreting it may be more
challenging than interpreting hive weight or hive entrance traffic. For example, the data
extracted from an in-hive temperature sensor is likely to depend on where in the hive it is
placed (cf., e.g., Szabo et al., 1989 [23]; Meikle et al., 2016 [26]).

Video cameras also have their relative advantages and disadvantages. They are easy
to deploy, ergonomic, and relevant, insomuch as, when used externally, they are not subject
to destruction due to hive infections or to loss during hive movement. Hive entrance traffic
is also relevant to the status of the colony. However, the video quality is dependent on
ambient weather, unless the lighting conditions are controlled for, which adds to the cost
and complexity. Furthermore, if hive entrance traffic quantification is performed, in part,
with ML or DL models, the resultant methods may not transfer from location to location
or from bee race to bee race due to biases in the training data that may be hard to detect
or eliminate.

A broader context for our investigation is the use of DUTS in-hive weight, in-hive
temperature, and hive entrance traffic forecasters in the longitudinal monitoring of different
queenlines in order to compare the colony-level behaviors of flight activity, foraging effort
and success, and thermoregulation. This is important in order to understand the relative
advantages and disadvantages of some bee stocks in commercial applications such as
pollination and honey production. The two bee stocks investigated in this study by the
entomological members of our research team (Meikle and Weiss) have so far been found
to differ in terms of factors such as worker survivorship, cluster temperature, and food
consumption in laboratory studies (Meikle et al., 2024 [45]). However, we are far from un-
derstanding how these factors manifest themselves in managed colonies and, consequently,
how we can use them in predictive models. Since the choice of appropriate bee stocks
can represent a considerable investment (e.g., purchase of queens and bee packages) for
commercial beekeepers, an improved understanding of colony-level behaviors is important
for the entire industry, including queen breeders.

It is also important to note that our methods may appeal to apiary science researchers
interested in natural colony cycles because we are investigating non-invasive predictive
modeling; we aim to construct predictive models by using only the sensors that do not in-
terfere with the natural cycles of managed colonies. For instance, Kulyukin and Mukherjee
(2019) [43] formulated the principle of non-invasiveness in precision apiculture as follows:

“... the sacredness of the bee space must be preserved in that the deployment of
EBM [electronic beehive monitoring] sensors should not be disruptive to natural
beehive cycles.”
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6. Conclusions and Future Work

A principal conclusion of the first part of our investigation is that the mean hive weight,
in-hive temperature, and hive entrance traffic of all 10 colonies could be predicted with a
reasonable degree of accuracy on the time spans of 12, 24, and 48 h. Another conclusion
is that, on the curated dataset, the ARIMA forecasters performed on par with the ANN,
CNN, and LSTM forecasters. Since ARIMA models can be fitted to large datasets rather
quickly on hardware platforms with smaller memory footprints, they may be a reasonable
alternative to more sophisticated ML and DL models if wireless access to cloud computing
services or to local GPU farms is not available or not affordable. Running trained ML
models on embedded platforms in situ can be challenging because their RAM memory
footprints may be prohibitively large for real-time deployment or execution. Our findings
and conclusions about the DUTS of hive weight, in-hive temperature, and hive entrance
traffic should be interpreted only in the context of the data from the ten managed hives in
Tucson, AZ, USA, and may not generalize to other climates or bee races.

In Part II of our investigation, which we intend to cover in the next article, we plan
to investigate relative differences in the traffic forecasters when traffic is measured by
OmniBeeM coupled not only with YOLOv3, but also with YOLOv4-Tiny and YOLOv7-Tiny.
We have quantified all captured videos with traffic measurements obtained with these three
trained bee object inference models but have not yet trained all possible DUTS forecaster
model types on the YOLOv4-Tiny and YOLOv7-Tiny traffic data or analyzed their relative
performance on the test data. We also plan to investigate the feasibility of learning transfer,
i.e., how well the forecaster models trained on one hive’s data can predict the test data
from a different hive. If the answer to this question turns out to be positive, then we can
entertain the possibility of constructing queenline-independent forecasters. If, on the other
hand, the answer turns out to be negative, then we can hypothesize that the hive weight,
in-hive temperature, and hive entrance traffic may be colony-specific and design studies to
investigate this hypothesis.
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Appendix A

Figure A1. Research Apiary. Two views of the USDA-ARS research apiary in Tucson, AZ, USA (GPS
coordinates: 32◦13′18.274′′ N, 110◦55′35.324′′ W), where the hive weight, in-hive temperature, and
video entrance traffic data were collected from 10 hives from June to October, 2022. The large light
gray boxes on the monitored hives protected cameras against the elements.
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Figure A2. Sensor Placement. Weight and video sensors are external; temperature sensor–internal.

Figure A3. Weight and temperature Sensors. LEFT: Tekfa electronic scale B-2418. RIGHT: an
internal wireless temperature sensor (Hobo MX2201) placed at the top bar of the middle frame in
the second (higher) box of each monitored hive with one temperature sensor per hive. Since the
temperature sensor is placed inside the hive, it is not affected by sunlight.

Figure A4. Traffic sensor hardware. LEFT: The hardware is placed into a separate wooden box on top
of the hive and separated from the hive by an inner hive cover. RiGHT: A Raspberry Pi v2 camera
(8 megapixel, 1080 × 1920 pix resolution) is connected to the Raspberry Pi computer; the camera
looks down on the landing pad of the hive from the top of the second super in Figure A2.
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Figure A5. Bee motion counts with OmniBeeM. A frame from a video with detected flying bee
objects (cf. Kulyukin and Kulyukin, 2023 [40] for the details of the bee traffic analysis algorithm).

model = Sequential()
model.add(Dense(5, input_shape=(num_in_steps, num_features),

activation=’relu’))
model.add(Flatten())
model.add(Dense(num_out_steps))
model.compile(optimizer=’adam’, loss=’mse’)

Figure A6. ANN forecaster. The artificial neural network (ANN) MA in each forecaster F̂MA ,V,IN,OUT .
Since we performed univariate time series forecasting, num_features = 1; num_in_steps and
num_out_steps assumed the values of intake and horizon, respectively, in Table 4. The input layer
feeds into a fully connected, i.e., dense, layer of 5 ReLU-activated nodes. The output of the dense
layer is flattened, i.e., turned into a 1D vector, and fed into a fully connected layer with the number of
nodes specified by num_out_steps. MA is compiled with the Adam optimizer function and the mean
squared error (MSE) loss function.

model = Sequential()
model.add(Conv1D(filters=5, kernel_size=2, activation=’relu’,

input_shape=(num_in_steps, num_features)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(10, activation=’relu’))
model.add(Dense(num_out_steps))
model.compile(optimizer=’adam’, loss=’mse’)

Figure A7. CNN forecaster. The convolutional neural network (CNN) MC in each forecaster
F̂MC ,V,IN,OUT . In MC, num_features = 1; num_in_steps and num_out_steps are the values in Table 4.
The input layer of MC feeds into a convolutional layer with 5 filters and kernel size of 2; the nodes of
the convolutional layer are activated with ReLU. The convolutional layer feeds into a max pooling
layer with a pool size of 2. The output of the max pooling layer is flattened and fed into a fully
connected, i.e., dense, layer of 10 ReLU-activated nodes. The fully connected layer feeds into another
fully connected layer of num_out_steps nodes. Each Mc is compiled with the Adam optimizer
function and the mean squared error (MSE) loss function.
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model = Sequential()
model.add(LSTM(10, activation=’relu’,

input_shape=(num_in_steps, num_features)))
model.add(Dense(num_out_steps))
model.compile(optimizer=’adam’, loss=’mse’)

Figure A8. LSTM forecaster. The long short-term memory (LSTM) model ML in F̂ML ,V,IN,OUT . In
ML, num_features = 1, and num_in_steps and num_out_steps assume the values in Table 4. The
input layer of ML feeds into an LSTM layer with 10 ReLU-activated nodes. The output of the LSTM
layer feeds into a fully connected layer with num_out_steps nodes. Each ML is compiled with the
Adam optimizer function and the mean squared error (MSE) loss function.
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