Functional Complementation of the PpGCN4 and PpNHX2 Genes in Arabidopsis thaliana to Study Salt Tolerance

Amanda Moravek
Utah State University, amandamariemoravek@gmail.com

Follow this and additional works at: https://digitalcommons.usu.edu/fsrs2020

Part of the Biological Engineering Commons

Recommended Citation
Functional complementation of the *PpGCN4* and *PpNHX2* genes in *Arabidopsis thaliana* to study salt tolerance

Amanda Moravek, Vishal Singh, Amita Kaundal*

Plants, Soils, and Climate Department, Utah State University

Introduction

Climate change induces unexpected weather and causes abiotic and biotic stresses in plants, which negatively affect crop growth and production. Additionally, a steady increase in the world population has been leading to higher food demand. Therefore, the development of more stress-resilient crops is essential to combat these problems. One such stress is salinity. Almond is a salt-sensitive crop, so there is a need to identify salt-tolerant almond rootstocks. *ATGCN4* is a novel gene that was identified in *Arabidopsis thaliana* to play a significant role in host-pathogen interaction and drought tolerance when overexpressed. Preliminary results show that GCN4 imparts salt tolerance too. Another gene, *AtNHX2*, is well characterized in *A. thaliana* to play a significant role in salt tolerance. However, these genes have not been studied in almonds. In this study, we are amplifying both these genes from Almond rootstock Nemagaurd to analyze how changes in their expression influence salt tolerance in *A. thaliana*.

Methods

- *PpGCN4* and *PpNHX2* CDS amplified from Almond Rootstock Nemagaurd cDNA and Native promoter amplified from gDNA.
- CDS cloned under 2X35S promoter gateway vector pMDC32, and NP fused to corresponding CDS and cloned in promoter less vector pMDC99.
- Transgenic lines of *PpNHX2* developed in the *anlh2* knockout mutant of *A. thaliana* by floral dip transformation.
- Transgenic lines of *PpGCN4* developed in the wild type *A. thaliana*, as a knockout mutant is not viable for GCN4.
- Genotyping of the transgenic line was done by using 3SS promoter, CDS, and native promoter specific primers.
- Homozygous lines were identified through germination on Hygromycin.
- Gene expression of corresponding almond genes was analyzed for each line using qRT-PCR.

Results

- Transgenic lines of *PpNHX2* under 2X35S promoter and Native promoter developed and genotyped.
- The expression analysis of *PpNHX2* was checked in both transgenic lines by qRT-PCR.
- The positive transgenic lines are in selection for homozygosity.
- *PpGCN4* Overexpression construct was transformed into *A. thaliana*.
- Cloning for *PpGCN4* under native promoter is in progress.

Conclusions

Two homozygous overexpression lines, *PpNHX2*-OE-A1, and *PpNHX2*-OE-A4 have been successfully selected. A selection process for Native promoter lines in progress. The selected line will be tested for salt tolerance. The *PpGCN4* construct for overexpression has been transformed into *A. thaliana*. The *PpGCN4* NP and CDS region are successfully isolated from Almond rootstock Nemagaurd DNA. The transgenic lines for native promoter will be developed. Both lines will be tested for salt tolerance.