5-15-2017

Enhanced Test Facility for Survivability and Characterization of Evolving Multiscale Materials in Extreme Plasma Environments

JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post

Part of the Condensed Matter Physics Commons

Recommended Citation

This Conference Poster is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Enhanced Test Facility for Survivability and Characterization of Evolving Multiscale Materials in Extreme Plasma Environments

Air Force Office of Scientific Research DURIP Program
Utah State University Materials Physics Group

Overview

A major upgrade to the Utah State University Space Environment Effects Materials Test Facility is proposed. Existing research focuses on scientific models and wide-ranging applications related to the evolution of complex materials (including layered and nanostructured materials and composites) due to exposure to extreme plasma environments, electric fields, temperatures, and vacuum. New synergistic vacuum test chambers will be developed, through the addition of novel instrumentation to existing systems. This will greatly enhance and extend our capabilities and range to investigate extreme environmental effects on materials and components and to determine long-term survivability of space assets.

Current/Pending SEEM Projects

Current and pending projects employing the DURIP instrumentation cover a wide array of scientific fields; these include:

- Electrostatic discharge events induced by β-radiation in high frequency RF antenna dielectric components for telecommunications satellites, via AFRL funded.
- In-Situ permittivity characterization and long-term cumulative effects of β-radiation on high performance RF communications cables at accelerated testing of full multi-year mission. Times Microwave funded.
- VUV degradation of antennas and thermal control coatings. Aerospace company funded.
- UV degradation of thermal control materials. Aerospace company funded.
- Radiation induced conductivity (RIC) of perovskite dielectric materials by total ionizing dose (TID). Sandia National Labs funding pending.
- Effects of radiation on conductivity and permittivity of space polymers for NASA Europa Mission. NASA Jet Propulsion Lab funding pending.
- Electron transport studies of spacecraft antenna coating materials. Aerospace company funding.
- Radiation Modification of Space Flight CCD Array. Space Dynamics Lab funded.
- Electron emission studies of thermal control coating materials. Aerospace company funding pending.
- Electron emission studies of low yield multipactor coating materials. Nokomis AFRL SBIR funded.
- COTS microcontrollers radiation hardening tests for CubeSat missions. USU Physics Funded. SparkFun funding pending.
- β radiation TID effects on electronic components. Aerospace company funding pending.
- Comparison of germination rates of radish seeds flown on Russian BIOM-1 mission to simulated radiation and vibrations. Funded through DoD/USU Students Gear Up Program and Tsukuba University Japan Space Student Collaboration Program. Proposed funding through NASA BIOM-02 mission.
- Space environment effects on muscles and skin cells through in-vitro tests of irradiated muscle cells. Funded through NASA USGC. Funding pending through NASA Space Radiation Biology and Human Health Countermeasures Topic.
- Pre-flight space environment hybrid thruster tests for Terrier Malamute rocket mission. NASA Undergraduate Student Instrument Project (USIP) funding pending.

Acknowledgments and References


Space Materials Analysis Research Test (SMART)

The SMART chamber probes electron emission, charging, and charge-transport properties of samples under extremes in electron, ion, and VUV/VUV/Vis/NIR radiation fluxes and cryogenic to high temperatures. Notable enhancements include:

- enhanced capabilities for high-precision and high-accuracy electron-, ion-, and photon-induced electron yield, emission and transport properties of conducting through extreme insulating materials; (iii) extended wavelength ranges, sensitivity, and imaging speed of absolute VUV/VUV/Vis/NIR radiation detection for discharge and luminescence studies; (iv) extended range, sensitivity, and acquisition speed of surface voltage measurements; (v) VUV radiation for photolytic testing and radiation damage.

Space Survivability Test (SST) Chamber

The SST chamber [2] is a high vacuum system that is particularly well suited for cost-effective tests of multiple small scale materials samples over prolonged exposure to environmental conditions—indeed may incorporate performance metrics and characterization of material properties and calibration standards—during the sample exposure cycle [5].

Electron Radiation

A high energy (~10-60 keV) and three lower energy (~10 kV to 5 keV) electron guns provide high electron fluxes.

Ionizing Radiation

100 mCi encapsulated 90Sr/90Y β-source (~90 keV to 1.5 MeV) mimics high energy (~290 keV to 2.5 MeV) geostationary electron flux.

Infrared/Violet Ultraviolet Flux

Commercial Class AAA solar simulator provides NIR/Vis/UVA/UVB electromagnetic radiation (from 200 nm to 1700 nm) at up to 4 times sun equivalent intensity.

Far Ultraviolet Flux

Kr resonance lamps provide FUV radiation flux (ranging from 10 to 200 nm) at 4x sun equivalent intensity.

Temperature Control

Temperature range from 20 K to 450 K is maintained (±2 K).

Controlled Atmosphere and Vacuum

Ultrahigh vacuum chamber allows for pressures <10-5 Pa to simulate LEO.

Video Discharge Monitoring

Using custom-developed software, live video capture and processing of electrostatic discharge events allows for real-time visual identification of discharge location, intensity, spectral range, and frequency.

Flexible Sample Mounting

Using custom developed software, live video capture and processing of electrostatic discharge events allows for real-time visual identification of discharge location, intensity, spectral range, and frequency.

Biological Testing

Biological samples, which are vacuum incompatible, can use a custom designed chamber with controlled atmosphere and temperature.