
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Presentations Materials Physics 

Spring 5-14-2012 

In Situ Surface Voltage Measurements of Dielectrics Under In Situ Surface Voltage Measurements of Dielectrics Under 

Electron Beam Irradiation Electron Beam Irradiation 

Joshua L. Hodges 
Utah State University 

JR Dennison 
Utah State University 

Justin Dekany 
Utah State University 

Gregory Wilson 
Utah State University 

Amberly Evans Jensen 
Utah State University 

Alec Sim 
Utah State University & Irving Valley College 
Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Hodges, Joshua L.; Dennison, JR; Dekany, Justin; Wilson, Gregory; Evans Jensen, Amberly; and Sim, Alec, 
"In Situ Surface Voltage Measurements of Dielectrics Under Electron Beam Irradiation" (2012). 12th 
Spacecraft Charging Technology Conference. Presentations. Paper 55. 
https://digitalcommons.usu.edu/mp_presentations/55 

This Presentation is brought to you for free and open 
access by the Materials Physics at 
DigitalCommons@USU. It has been accepted for 
inclusion in Presentations by an authorized administrator 
of DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/mp_presentations
https://digitalcommons.usu.edu/mp
https://digitalcommons.usu.edu/mp_presentations?utm_source=digitalcommons.usu.edu%2Fmp_presentations%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.usu.edu%2Fmp_presentations%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/mp_presentations/55?utm_source=digitalcommons.usu.edu%2Fmp_presentations%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Cryogenic 
Reservoir  
(G) 

25 D-pin 
Connector 

Sample(E) 

HGRFA 
Rotation 
Shaft (B) 

 Sample Block(F) 

HGRFA (J) 
Collector 

 

HGRFA (L) 
Inner Grid 

 

HGRFA (M) 
Drift Tube 

 

Electron 
Beam 
 

HGRFA (K) 
Biased Grid 

 

Sample 
(E) 

Sample 
Current Lead 
(R) 

 

Sample Block 
(F) 

 

HGRFA (H) 
Face Plate 

 

ANR50 Motor 
(C) 
Sample Block 
(F) 

Sample (E) 

Cryogenic 
Reservoir 
(G) 

Wire Harness 

Hinged Mount 
(A) 

HGRFA Face 
Plate 
(H) 

HGRFA Shield 
(I) 

 
In Situ Surface Voltage Measurements of Dielectrics Under Electron Beam Irradiation 

Characterization and Calibration 

Abstract Experimental Applications 

Research was supported by the United States Air Force PALACE Acquire program and funding from the 
NASA/JWST Electrical Systems Working Group at Goddard Space Flight Center. 

Design of the Instrumentation 

USU Materials Physics Group 
 

Joshua L. Hodges, JR Dennison, Justin Dekany,  Gregory Wilson, Amberly Evans, and Alec M. Sim 
Utah State University, Logan, Utah 84322-4415  

Phone: (435) 760-7816, FAX: (435) 797-2492, E-mail:joshuahodges@hill.af.mill 

References 
Dennison, J. and R. Frederickson, 2002, "Proposal for Measurements of Charge Storage Decay Time and Resistivity of Spacecraft Insulators" in NASA Space 
Environments and Effects Kickoff Meeting, San Diego, CA. 
Frederickson, A., C. Benson, and J. Bockman,2003,"Measurement of Charge Storage and Leakage in Polyimides," Nuclear Inst. and Methods in Physics 
Research, B 208, 454. 
Frederickson, A. and J. Dennison,2003,"Measurement of Conductivity and Charge Storage in Insulators Related to Spacecraft Charging," Nuclear Science, IEEE 
Transactions on 50, 2284. 
Frederickson, A. R. and J. R. Dennison, 2003, "Measurement of Conductivity and Charge Storage in Insulators Related to Spacecraft Charging" in Proceedings of 
the 2003 IEEE Nuclear and Space Radiation Effects Conference, Monterey, CA. 
Hodges, J, 2010, MS Thesis, Utah State University. 
Hoffmann, R., 2010, MS Thesis, Utah State University. 
Sim, A, 2010, 11th SCTC Poster Session. 
Swaminathan, P., 2004, MS Thesis, Utah Ste University.  

(Top) Repeated linear calibration 
measurements of the large electrode give a 
calibration factor of 1084±0.5 Vsample /Vprobe 
with a correlation coefficient of 1.000.  
(Middle) Raw data from an in situ voltage 
ramp run, to determine ground drift, voltage 
drift, and calibration factor curves. (Bottom)  
Multiple ground drift measurements show 
the need for a self calibration. Two runs 
show two distinctly different curves with 
time constants of  1325±32 seconds and 
1450±36 seconds. With our unique self 
calibration the errors due to reproducibility 
of these curves are negligible.  

(Top) An idealized electrical 
schematic developed to treat each 
leakage path as an RC circuit.  
Time dependant errors in Eq.(1) 
are negligible for elapsed times 
after ground calibration of <150 s.  
Terms in Eq.(1) are identified in 
the table below.  (Bottom) An 
equation for the approximant 
relative error for large (blue) and 
small (red) electrodes was built 
based on Eq.(1) and the table 
below. 
 
 
 

New instrumentation has been developed for non-contact, in vacuo measurements of the electron beam-induced surface voltage as a 
function of time and position for non-conductive spacecraft materials in a simulated space environment. Used in conjunction with the 
capabilities of an existing ultrahigh vacuum electron emission analysis chamber, the new instrumentation facilitates measurements of 
charge accumulation, bulk resistivity, effects of charge depletion and accumulation on yield measurements, electron induced 
electrostatic breakdown potentials, radiation induced conductivity effects, and the radial dispersion of surface voltage.   
 

The novel system uses two movable capacitive sensor electrodes that can be swept across the sample to measure surface charge 
distributions on samples, using a non-contact method that does not dissipate sample charge.  Design details, calibration and 
characterization measurements of the system are presented, for a surface voltage range from <1 V to >30 kV, voltage resolution <1 V, 
and spatial resolution <1.5 mm.  Extensive characterization tests with externally biased conductors were performed to calibrate the 
system and determine the instrument stability, sensitivity, accuracy, range, spatial resolution and temporal response.   
 

Two types of measurements have been made on two prototypical polymeric spacecraft materials, low density polyethylene (LDPE) and 
polyimide (Kapton HNTM) to illustrate the research capabilities of the new system.  First, surface voltage measurements were made 
using a pulsed electron beam, while periodically measuring the surface voltage.  Second, post charging measurements of the surface 
voltage were conducted, as deposited charge dissipated to a grounded substrate.  Theoretical models for sample charging and 
discharge are outlined to predict the time, temperature, and electric field dependence of the sample net surface voltage.  The good 
agreement between the fitting parameters of the model is discussed and the corresponding physical parameters determined from the 
literature and measurements by related techniques. 

Design Goals 
When designing an instrument, the physical parameters of the 
measurements being made drive the design of the apparatus.  The 
constraints on these parameters (actual values shown in green) are 
based on the electrical properties of typical spacecraft materials.  
•Range: <1 V based on breakdown voltages of semiconductors to 
>10 kV, for breakdown voltages of insulators (1.2 V -30 kV) 
•Resolution: ~10% of lower range (0.2 V) 
•Response Speed: ~1-10 seconds based on low resistivity response 
time and minimum time for environmental changes (7 sec) 
•Stability: >105 seconds based on typical insulator decay times (~∞  
due to self calibration) 
 
Actual instrument parameters are green 
 

Extensive testing helped develop an understanding of all effects factoring into 
Eq.(1), that converts probe voltage to a sample voltage.   
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Linear voltage calibration compares sample voltage to probe 
voltage 
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(1084.5±0.5) L.E. 
(14900±125) S.E. 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
Offset of electronics value is enveloped in the Probe offset 
and adjusted by user on front panel of EFTP controller 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜 [1
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 (1.0±.8)mV 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜  
Drift of the EFTP controller, value is small on typical 
timescales of measurements 

Typically (2.0±0.2)mV/hr 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  
Probe Voltage Offset, determined from the exponential fit to 
the drift data 

Measured each run 
(13±3)mV 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜  
Probe ground drift rate, determined from the exponential fit 
to the drift data 
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Measured each run 
(32±0.8)mV/s 

𝜏𝜏𝑑𝑑  

Time constant of the probe ground drift, determined from 
the exponential fit to the drift data 

Measured each run typical  
on the order of 
(1400±100) s  

𝛽𝛽 
Sample voltage drift slope, determined from the exponential 
fit to the drift data �1 − 𝑒𝑒𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 � �1
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(2.5±0.4) 1/V 

𝜏𝜏𝑣𝑣  
Time constant of sample voltage drift, determined from the 
exponential fit to the drift data 

(-6x10-6±2x10-6) 
mV/s 
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shows the surface voltage response of  
LDPE during irradiation by a non-penetrating 
electron beam at ~ 5keV with a fluency of ~ 1.1 
nA/cm2.  The net charge deposited in the 
material is proportional to the surface voltage.  
The equilibrium voltage is established as 
charge  increases filling the density of trap 
states Nt in the material.  The relation between 
the surface voltage, injection current J0, capture 
cross section s, range r, permittivity ε, and total 
density of states is given by where K and 
m are constants related to the  quantum nature 
of the  material interface [A Sim].  
 
The residual plot shows excellent agreement 
with error of the fit ranging from 3% to 10%, 
with very good agreement between the literature 
and fitted material parameters (see Table ). 

Charge Accumulation from Incident Electron Flux. 

Charge Dissipation of Highly Insulating Materials. 

Radial Distribution of Stored Charge and Lateral Charge Dissipation. 

shows the surface decay of Kapton 
after cessation of charging.  Voltage decays as 
charge leaks from the trapped states to the 
ground plane. The surface potential Vs(t) (  
is proportional to the initial voltage V(0), de-
trapping  rate, trapping rate, mobility, and the 
dispersion parameter α=T/T0, where T0 defines 
the spread of traps in the mobility gap. 
  
The residual plot shows excellent agreement 
between the model and data, with residuals of 
between 3% and 5%. Again, there is very good 
agreement between the literature and fitted 
material parameters (see Table ). 

Experiment examined the radial distribution 
of charge, and the possibility of lateral 
charge dispersion over time (TOP). The 
three figures at left show the normalized 
spatial profile of the charge for successive 
discharge times (red) at 60 s, 1 hr and 2 
days after deposition and the expected 
profile of a Gaussian beam with a 5.6 mm 
FWHM (green) (Bottom). The peak voltage 
was monitored over time: the amplitude 
decayed at a rate very similar to that 
observed in the charge dissipation 
experiment above.  These results suggest 
dissipation through the thin film and no 
appreciable lateral diffusion of charge. 
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A. HGRFA Hinged Mount 
B. Sample Carousel/HGRFA             

Rotation Shaft 
C. UHV Stepper Motor 
D. Sample Block Faraday Cup 
E. Sample (10 mm) 
F. Sample Block 
G. Cryogen Reservoir 
H. HGRFA Face Plate 
I. HGRFA Hemispherical Shield 
J. HGRFA Collector 
K. HGRFA Bias Grid 
L. HGRFA Inner Grid 
M. HGRFA Drift Tube 
N. Electron Flood Gun 
O. LED Light Source 

P. Surface Voltage Probe (SVP) 
Q. Au Electron Emission 

Standard 
R. Sample Current Lead 
S. SVP Faraday Cup 
T. SVP 7 mm Diameter Au 

Electrode 
U. SVP 3 mm Diameter Au 

Electrode 
V. SVP Wiring Channel 
W. EFTP Vacuum Feedthrough 
X. EFTP Witness Plate 
Y. Electrostatic Field Probe 
Z. Probe XYZ Translator 

Legend 

Hemispherical Grid Retarding Field Analyzer (HGRFA) Figs. 1-6 
(1) Photograph of sample stage and HGRFA detector (side view). (2) 
Cross section of HGRFA. (3) NEEDS A CAPTION HERE (4) Photograph 
of sample stage showing sample and cooling reservoir. (5) Side view of 
the mounting of the stepper motor. (6) Isometric view of the HGRFA 
detailing the flood gun, optical ports, and wire harness. 
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Surface Voltage Probe (SVP) Figs. 7-16  
(7) Photograph of sample side of surface voltage probe assembly. (8)Photograph 
of the SVP with the collecting hemisphere removed. (9) 6 axis EFP translation 
stage mounted parallel to a witness plate. (10) Photograph of Au SEE standard 
and Aquadag surface of the SVP. (11) Diagram of HGRFA interior with SVP, 
looking toward the sample. (12) Air side of SVP with the witness plate 
feedthrough and connectors. (13) Overall dimensions of SVP  with center of 
gravity indicated. (14) Exploded view of SVP internal parts. (15) Exploded view 
of SVP motor assembly. (16) Surface voltage probe block diagram. 
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