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ABSTRACT

Leveraging Generative AI For Sustainable Farm Management Techniques Correspond To

Optimization And Agricultural Efficiency Prediction

by

Samira Samrose, MASTER OF SCIENCE

Utah State University, 2024

Major Professor: Curtis Dyreson, Ph.D.
Department: Computer Science

The farm management techniques refer to the process of planning and implementing

the decisions involved in organizing and operating a farm for maximum production and

profit. It covers a wide range of activities that include designing a scheme, implementing,

and monitoring the farm’s operations to ensure efficiency, sustainability. The motivation

behind this project is to promote goal setting and achievement of reduced CO2 emissions.

(68 pages)
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PUBLIC ABSTRACT

Leveraging Generative AI For Sustainable Farm Management Techniques Correspond To

Optimization And Agricultural Efficiency Prediction

Samira Samrose

Sustainable farm management practice is a multifaceted challenge. Uncovering the

optimal state for production while reduction of environmental negative impacts and guar-

anteed inter-generational assets supervision needs balanced management. Also, considering

lots of different factors (cost, profit, employment etc), the agricultural based management

technique requires rigorous concentration. In this project machine learning models are ap-

plied to develop, achieve and improve the farm management techniques. This experiment

ensures the resultant impacts being environment friendly and necessary resource availabil-

ity and efficiency. Predicting the type of crop and rotational recommendations will disclose

potentiality of productive agricultural based farming. Additionally, this project is designed

to find the optimized farm operations that will show a stable state combining the agricul-

tural efficiency, better resource management and lowering ecologically unfriendly properties.

Additionally, generative AI is used to create data for farming management practices.
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CHAPTER 1

INTRODUCTION

Farm management study mainly focuses on preservation of the ecosystem and possi-

ble reduction of climate change. This project explores the observation on the agricultural

land in Utah along with the Wasatch Front. Housing infrastructures threaten the com-

plete disappearance of agricultural land. The significance of agricultural land preservation

is necessary. So, this project is influenced by agricultural crop and animal management

practices along with reducing climate change. Agricultural activities are one of the major

contributors to GHG emissions. Farm management impact the emission of GHGs. My goal

in this thesis is to create a framework for predicting how the large number of farms across

diverse management scenarios impact GHG emissions. The goal is to create a model that

can identify the significant influences that cause most of the GHG emissions. This will help

farmers reduce those emissions while maintaining farm productivity.

1.1 Background

The overall goal for the farm management system is to understand how agricultural

production and land management can be optimized to reduce less GHGs emission. Poten-

tially these studies are valuable for farmers, policymakers, and stakeholders for significant

progress in the future agriculture practices. Choosing suitable farm management practices

is always a hard task to perform. But with the help of artificial intelligence based mod-

els there is a higher chance to predict which practices can help to achieve a sustainable

management system while managing GHG emissions.

Figure 1.1 shows the average agriculture, forestry and fishing share of the US economy

from 2001 to 2021. The graph illustrates the growing contribution of agriculture to the

economy [1] [2]. Rising values indicate the growing agricultural sector. Additionally

this is a clear indication of a more production profitable agricultural base. Besides, the
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Fig. 1.1: Agriculture, Forestry and Fishing Share of Total, United States of America Average
(2001 - 2021).

downward trend is a sign of challenges of farming. This is certainly an important indicator

that sustainable agricultural production is expected to accomplish. The FAO states and

seeks the

“increase agricultural productivity and sustainable food production and ensure

equitable access to land, other productive resources and inputs, knowledge, fi-

nancial services, markets and opportunities for value addition and non-farm

employment, particularly for women, indigenous peoples, family farmers, pas-

toralists and fishers, in order to achieve food security and improved nutrition

and promote sustainable agriculture [3].”

The gross fixed capital formation is a potential growth in investment on possible ex-

pansion of agricultural base. Also, the increment of credit to agriculture trend means the

easier access to capital for fuel growth and innovation. Additionally, EDI inflow is the rising

foreign investment in the agriculture sector. This graph shows how agricultural experimen-

tal studies can be important and holds promising growth potential. The steady growth of
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agricultural research has always had some external factors.

Fig. 1.2: Emissions (CO2eq (AR5)) – Emissions on agricultural land (1990 - 2021).

Figure 1.2 shows the total emissions on agricultural land from 1990 to 2021. According

to the graph both emission on agricultural land and total emissions have risen since 1990.

Agricultural land based emission is around 4500 CO2eq (AR5). Here, emission (CO2eq

AR5) means carbon dioxide equivalent measured in AR5 (fifth assessment report of the

intergovernmental panel on climate change) [4]. And the total emissions are around 5,000

CO2eq (AR5).

This graph shows the increased rate of emissions and how important it is to reduce

overall CO2 emission and follow strategies in agricultural farming management. Also, an

interesting fact can be observed in this graph is the rising emissions but there is no downward

trend in agricultural outcomes. It means that the production or the agricultural practices

keep on meeting the demands of the market. These unsustainable farming practices can be a

possible reason for damage or loss in the future. Additionally, because of the emissions, there

will be climate change in the future. This can bring a negative impact on the production of
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agriculture. Such as, extreme weather event, rising temperature and low sources of water

availability. These will certainly bring negative impacts on the crop yield and livestock

production. For this reason, the experimental studies on sustainable farming management

is essential.

1.2 Related Work

There are several studies on accomplishing agriculture based sustainability. Due to

climate change and different farming management settings, there is a higher chance that

each year the demand or necessity to achieve sustainability changes. Some of the related

research on achieving sustainability are as follows.

Agroecology for a sustainable agriculture and food system from local solutions to large-

scale adoption this paper describes and applied the agroecology as their main methodology

for sustainability. There are many challenges in mankind as a mainstream [5]. Integrated

farm management for sustainable agriculture: Lessons for knowledge exchange and policy

this article suggests that integrated farm management can be a possible way to achieve

sustainability. The study is a mixed-methods approach. This paper aims to find a balance

in economic viability, environmental protection and social responsibility for efficiency [6].

Novel approaches and practices to sustainable agriculture paper is an example of

climate-smart agriculture based farming. With the rapid population growth, the food

production and balance between scientists and policymakers can have an impact on the

agricultural practices. Some suggested farming practices are discussed in the paper. The

paper also suggests adopting new approaches for different farming scenarios [7].

Natural resource management and sustainable agriculture paper discusses soil, climate

and possible solutions for sustainable food production. For the agriculture techniques, the

papers talks about the climate-smart farming, reduction of usage of crops for animal feed,

echo-friendly animal agroforestry and silvopastoral systems, redacted or no-tillage practices,

suitable crop production methods, nutrient and fertilizer management, integrated watershed

management, anaerobic digestion, climate. This reading helped a lot to understand the

importance of adopting sustainable agricultural practices [8].
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Agricultural sustainability: a review of concepts and methods paper proposes a method-

ology combining the existing review criteria and offers an analysis. The review is based on

38 studies on crop farming over ten years of data. This paper suggests that the usage of a

combination of methods can make the total framework difficult to categorize [9].

In this project the concentration of GHGs for the environmental effects are the main

concern. Not only climate change but also it has harmful effects on the economics, human

well-being [10]. Because of the farming practices on livestock, agricultural soil and crop pro-

duction, the reported GHGs emission is rising and with agriculture accounting for roughly

10% [11]. In order to capture the impacts of the various farming management practices

on GHG emission there is a need to use the whole-farm models. And that is the reason

for using automation, exploring the data and applying models on the data, finding model

sustainability and finally populating more optimized farming practices using generative AI.
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CHAPTER 2

Definition of the Objective

Farm management is a crucial part of the agricultural industry. There are many factors

that depend on the essence of managing a farm properly. Some properties include labor

management, financial planning, environment sustainability, compliance and regulation,

market analysis etc. This project covers the combination of both farm crop management

and farm animal management styles. The objective is to find and design a model for

measuring GHG emissions under different farm management scenarios.

2.1 Reduction Factors

There are many aspects or parts that are desired to be reduced for an ideal farm

management from different perspectives. Estimated cost along with the related price and

government policies are a few parts that impacts the other factors of the ranching operation.

In this project, the reduction factors are energy consumption, carbon emission.

2.2 Boosting Factors

Several boosting factors are required in the farm management. Ecological balance along

with financial success are major factors. However, sometimes this is a major problem from

the farmers perspective to visualize where to focus on to invest. In this project, the boosting

properties are productivity, animal welfare, effective resource usage and space utilization

efficiency.

2.3 Crop Prediction

The prediction of which seasonal crop to pick and how the farming management will be

that is another challenging part of farm management. So prediction of a crop type is essential

in this case. In this project, prediction of the crop type along with the recommendations
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Fig. 2.1: Overall Workflow of The Project.
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with the other properties are analyzed. This will help the farmers to understand when to

focus on which type of crop and what are the major percentages of other properties that

should be focused on.

2.4 Rotational Analysis

Not only the crop selection is important but also the rotational analysis is also crucial

for the farm management. So, this project also covers the rotational analysis based analysis

where there will be recommendations for crop types.

2.5 Design of the experiment

This project aims to design an experimental setup where from a farm management

scenario, we will find an optimized state of balancing multiple properties. Following are the

subcategories where the design of the experiment is described. Figure 2.1 shows the overall

steps taken to optimize the emission while focusing on maximizing some other necessary

factors in the whole project. This diagram shows the initial total outlines of the project.

This systematic approach uses a combination of data driven methods and machine learning

techniques. Here, in the primary step by automation the data collection is collected. Then

comes the preprocessing and feature engineering steps are taken to prepare the relevant

data for the project. By removing noise in the data the data is ready to be analyzed to

define the objects for this project.

After determining appropriate objectives for different datasets, the multi-objective opti-

mization algorithms are applied. Here, the pareto and epsilon constraints optimization tech-

niques are used to achieve multiple goals. These techniques are used to find the trade-offs

and optimal solution ranges where no single objective can be improved without worsening

others. Next, for the rotational strategies, the machine learning algorithms are introduced

in this workflow. The classification, clustering using regression model then by applying

lime, a prediction based model is built to make the final decisions about crop rotation and

farm management strategies. Finally, the application of generative AI helps to populate

more optimized farm scenarios, allowing for testing and optimization of strategies in the
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simulated environment before real-world application.

2.5.1 Data Collection

The data collection from the ground level is very time consuming and complicated. In

order to resolve this problem, two of the most used farming applications are used in this

experiment. COMET-Farm and HOLOS whole-farm are used to capture the sample data

along with the carbon emission related data.

2.5.2 Finding Optimized Farm Management Scenarios

In this project, machine learning models are applied to predict the crops, finalizing

their rotational recommendations. Also, finding the optimal state where some properties

will be reduced and some will be maximized is another part of this experiment. In order to

achieve this goal, a multi objective optimization model is used.

2.5.3 Populate Scenarios

Now after finding the optimal state the project is taken in another stage where the

outcomes suggest farm management. For the purpose of finding more optimal farm man-

agement scenarios, more farm scenarios should be generated. With the aim of populating

more optimal farm scenarios, generative AI is used to evolve more farm scenarios. Here, in

this project the generative adversarial network is used.
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CHAPTER 3

Method

There are a few steps to accomplish this experiment. Automation in python is applied

first to capture necessary data for the farm management. In order to classify the crop, a

random forest classifier is used. For the rotational analysis, K-means cluster along with

XGBoost regression algorithm is applied. And for all the recommendations LIME is used

to explain the recommendations. Later, in order to find the optimal states while minimizing

and maximizing some properties, a multi-object optimization algorithm is applied. In this

experiment, ϵ-constraint and pareto optimization are used to find the optimal states.

3.1 Automation

In order to reduce the cognitive costs and workload the automation is done. In this

project the automation part is one of the most important parts. The automation provides

stability for the data collection part, successfully terminates the human effort and errors

and allows continuous data generation flourishingly. The concurrent data generation is the

main focus of applying automation in this project. The automation is done using python

script where pre-ranged data is provided in two different whole farm carbon models.

A whole farm carbon model is based on the essential information of a farm. Each farm

information is used to estimate greenhouse gas emission. In this project, two whole farm

carbon models are used to estimate the GHG emission: COMET-Farm and HOLOS whole-

farm. There are several other whole-farm applications but COMET-Farm and HOLOS are

best for the overall goals of the project.

3.1.1 COMET-Farm

COMET-Farm is a user interface (UI) based website. It helps with the visual aspects

of a website that users can easily interact with. COMET-Farm gives an estimation of
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GHG emission for past and future farm management practices. It generates data based on

provided information from the user. The results are mostly based on the past and future

farm management systems and the reports are the GHG emissions. For the automation,

COMET-Farm is run using the Selenium python library and Chrome browser. Selenium

IDE is used to recheck all the provided correct paths to execute the python code.

COMET-Farm Crop Data

COMET-farm is a website that is most popular among scientists and farmers to un-

derstand farming management. The resultant farming scenarios can capture the emissions

of that curtain farm management. There are three different types of crops selected for the

farm setup. They are orchard/vineyard, seasonal crop, annual crop. It is really complicated

to understand the full crop based farming steps. So the website is really helpful in dividing

each and every step of the crop farming related details. Different crops demand different

types of inputs as they have their own characteristics. The website is full of information on

the crop based agriculture process. Table 3.1 has the data of user input and the resultant

properties listed and the Table 3.3 has the ranges of inputs for the crops. The ranges are

recommended by experts. So, inserting these data can generate possible crop farming man-

agements with scenarios and resultant emissions. There are nearly 3600 runs of crop data

with different attributes in the database collected using the COMET-Farm model.

Comet-Farm Animal Data

COMET-Farm also has sectors to generate scenarios with animal based farming man-

agement based frameworks. There are assists to generate livestock based data for an agri-

cultural based farming perspective. Lots of different types of animal data can be given for a

certain farm scenario to observe the whole farm management. The data is the combination

of individual insetted data for each month. And this makes the farming scenarios more

realistic. The capture of the emissions depends on various types of data. So COMET-Farm

ensures that every step is close to the real farming managements. For this experimental

setup, there are three types of animals that are considered. Heifer and Steer Stocker data
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is combined as they have nearly similar inputs. COMET-Farm model has around 1400 runs

of data with different types of attributes.

3.1.2 HOLOS Whole-Farm

HOLOS whole-farm is a graphical user interface (GUI) based software. The interface

features of this application helps the users to interact with information by manipulating the

visual widgets. It allows the user to estimate the GHG emission for a certain year based

on the crop and animal agriculture information. HOLOS evaluates potential strategies to

reduce admission and forecasts the effects of such strategies on overall farm emissions. It

is based on the principles of the Intergovernmental Panel on Climate Change along with

Canadian circumstances. Basically, this software is developed in Canada based on the

nature and environment of the soil of that particular country. Table 3.2 shows the inputs of

HOLOS whole-farm model and Table 3.4 shows the input data ranges used in this project.

HOLOS whole-farm application is run using WInAppDriver python libraries with essential

installations of supporting drivers in the system.

HOLOS Crop Data

HOLOS crop based data is based on the perennial crop based. As it is a desktop

based application, different python code is written to collect data from this application.

The usage of this application is very user friendly and easy to understand. Table 3.2 is

the recommended data insertion ranges by user and outcomes from the application. And

Table 3.4 is the recommended range of data. This range of data is suggested by experts.

For the data collection, the HOLOS whole-farm is used to run approximately 1200

runs. So, the database has approximately 1200 farm scenarios of different agriculture crop

based information and carbon emission related data. The dataset has 102 different features.

HOLOS Animal Data

HOLOS also provide animal based farming scenarios. The calculation is for the annual

based GHG emissions. For the animal based agriculture HOLOS data there are different
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types of animals. Among all of those, for this experimental project, we have selected to

work with beef feedlot. It provides necessary information on the heifer and steers and other

related features. In an agriculture based animal based farm scenario, the HOLOS whole-

farm application is run 1500 times. It has 156 different features. HOLOS collects data for

each month for a specific farm management.

3.2 Model Application

The machine lerning models applied in this project are thoroughly described below.

3.2.1 COMET-Farm

In order to understand the data more accurately the data collected from COMET-Farm

is divided into two different dataset. One is related to the crop based agricultural farming

and another one based on animal based agriculture farming.

COMET-Farm Crop Data

The overall goal of this task is the optimization of production processes for reduced

environmental impact along with using generative AI to populate farm scenarios. In order

to fulfill this purpose, machine learning models like classification, clustering and regression

models application are most necessary. The purpose of this task is to understand the crop

selection and additional rotational recommendation. In order to find the optimizing crop,

the classification model is necessary to apply. Then to find the rotational strategies becomes

very challenging. As this is a regression problem. So, here regression models are introduced

to resolve this problem.

The best model depends on your specific goals. In order to predict the optimal crop

based on soil conditions, historical management practices, and desired outcomes (e.g., high

yield, low water use), classification models like Random Forest or SVM are good choices.

Here in this case, the random forest classifier is applied.

Next, for exploring crop rotation patterns that improve soil health, reduce fertilizer

needs, or promote biodiversity, clustering techniques like K-Means seem a good choice.
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(a) Comet-crop (b) Comet-animal

Fig. 3.1: Feature Importance For Each Target Column For COMET-Farm Dataset.

Later using the regression models (XGBoost) to predict the specific impact of different

rotations on these factors. Then applying techniques like LIME helps to understand how

the model arrives at its predictions, making the results more interpretable for farmers.

The collected data from the COMET-Farm website already has lots of valuable infor-

mative features included. However, for the necessity of this project some of the new features

are considered for the model.

The target feature of this task is the crop rotation index which is a new categori-

cal feature indicating the crop sequence followed in a specific period. Next, the feature

transformation part, Soil Health Indicators is the combination of existing features like ”To-

tal nitrogen%”, ”% straw Soil”, and ”Soil N20 Carbon Storage” into a single score using

Principal Component Analysis (PCA) to represent overall soil health.

Fertilizer Dependence Score is a new feature based on total fertilizer applied and harvest

year. After calculating the ratio between fertilizer application and yield, this feature is

achieved. Besides these, orchard renewal or clearing, total nitrogen applied, soil health,

carbon storage emission ratio, crop tillage category features are created for the sake of this

goal.

Here in these two Figure 3.1a and Figure 3.1b the important features are mentioned.

These feature importance helped to determine the final objectives for this project. For four

different datasets, there are four different feature importance can be seen here. The feature

importance indicates the importance of the other features on the target feature which is the
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type of crop. This feature selection is done using the random forest classifier. The higher

scores refer to how the type of crop has a larger effect on that. So, we can see that the total

nitrogen, soil N2O storage and CO2 emission have a larger impact on the type of crops.

Then, the dataset was preprocessed. There are different types of data. The numerical,

categorical, date type data are there. So, they are handled accordingly.

After feature engineering and dataset pre-processing, the random forest model is ap-

plied. The dataset is splitted into 70% for training and 20% for testing. The hyperparameter

grid for the random forest classifier are the ’n estimators’: [100, 200, 300], ’max depth’: [10,

20, 30], ’min samples split’: [2, 5, 10], ’min samples leaf’: [1, 2, 4].

Comet-Farm Animal Data

The goal of this analysis is to find the production efficiency and promote sustainable

practices. With the Comet-Farm animal dataset the main focus will be minimizing carbon

emission while maximizing the effective resource usage. To accomplish this object necessary

preprocessing steps are done. After handling the numerical, categorical and date type data,

the feature importance is observed. Then based on the importance the most important

features are selected for the analysis.

Here Figure 3.1b shows some ranges of features that are most important to reduce

emission. These graphs show the feature importance summarizing how various features

influence different target objectives. For example, It can be seen that the irrigation area,

harvest yield, fertilizer application and types, temperature along with many features cover

higher importance in the datasets.

All the data related to the animal welfare of a farm management are recorded in this

dataset. The overall goal is to achieve the optimization of the production process for reduced

environmental impact. To achieve this purpose, the multi-objective optimization models

are applied. Before the model application, the dataset is preprocessed handling the missing

values, observing the outliers and handling them, normalizing the data and scaling them

accordingly. Numerical, categorical, date type data are also handled.



16

In the feature engineering step, new features are formed for the sake of project ob-

jectives. Overall energy consumption, emission, space utilization efficiency and resource

efficiency are calculated and added in the dataset. Here, the optimization will be taking

place by minimizing the overall energy consumption, emission while maximizing the space

utilization efficiency and resource efficiency. In this project LIME is used to explain the

results.

First, in order to understand the required ranges of the desired features, the random

forest model is applied on the dataset and later LIME is used to explain the detailed

ranges for the features. Then the random forest regressor is applied and LIME is initialized

for the explanations. The ranged graphs can be seen in Figure 3.1b feature importance

for each target column graph. Now it can be said that managing livestock weight and

emissions might help to optimize energy use and efficiency. Each farm needs to find a

balance depending on their specific goals, constraints, and the importance of each target

outcome. The logic of farm management based on this graph is about finding the best

balance between productivity, sustainability, and efficiency. By understanding which factors

are most important and how they impact each other, farm managers can make decisions

that reduce environmental impact, and improve the overall sustainability of the farming

operation.

In terms of farm management, these insights would suggest several strategies for manag-

ing overall energy consumption: Methane Management: Implementing strategies to reduce

methane emissions, such as diet modifications, could indirectly reduce energy consumption.

Exploring ways to utilize methane productively can turn a waste product into a resource,

potentially increasing efficiency.

Balancing Energy-Efficient Practices: Reducing energy-related CO2 emissions through

practices like improved insulation, energy-efficient equipment, and renewable energy sources

could have a dual benefit of reducing both emissions and energy consumption.

Weight Management: Considering the energy implications of the average weight of the

livestock could help in optimizing feed efficiency and the overall energy use of the farm.
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Managing the average live weight of animals to remain within a range that maximizes re-

source efficiency, avoiding the additional costs associated with maintaining heavier animals.

In summary, for effective farm management, it would be crucial to analyze the trade-offs

between environmental impact and resource efficiency. It entirely depends on ensuring that

measures to improve one do not detrimentally impact the other. In the case of animal farm

management, this data suggests there is an optimal range for maximizing efficiency, and

maintaining animal maintenance within this range could be a key strategy for sustainable

farm management.

Understanding the ranges of the target columns, the model is applied to the dataset.

The dataset is splitted into 70% for the training phase and 30% for the testing phase. Both

pareto front and ϵ-constraint models are applied. After fitting the data and combining the

objectives together.

3.2.2 HOLOS

Collected data from HOLOS whole-farm application was large enough to break it down

into two different dataset. This helps to visualize different sets of data and applying models

are comparatively simpler in this way.

HOLOS Crop Data

The sole purpose of working with HOLOS agriculture crop based data is to optimize

production processes for reduced environmental impact and applying generative AI to pop-

ulate farm scenarios. Machine learning models related to classification, clustering and re-

gression models become necessary to apply for the crop selection and rotational recommen-

dation.

From the collected data from the HOLOS whole-farm model, all the data closely related

to crop farming is stored in a separate database. HOLOS whole-farm crop data has nearly

1200 runs of data. So there is plenty of data to analyze and predict the outcomes. First, the

correlation between all the features are observed. Because of finding the relatedness of the
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(a) HOLOS-crop (b) HOLOS-animal

Fig. 3.2: Feature Importance For Each Target Column For HOLOS Whole-farm Dataset.

features, the correlation matrix helped to understand which features are most important in

this dataset.

Second, feature engineering is done. For the sake of the objective where the crop is the

focal point to crop selection with farm management rotational recommendations. So, the

crop rotational index is created using each consecutive year of a different crop. With the

target column ready to be analyzed, the dataset was carefully preprocessed handling the

numerical, categorical, date type data. Once the dataset is preprocessed and has all the

desired features, the model application step is the next.

In Figure 3.2a the features most impacting features for the HOLOS crop dataset is

shown. Some of the most important features for reduction of emission are Crop Perennial

in LumCMax, Yield, AGR Ratio, Crop Perennial of k, Tillage LumC in Max.

For holos the perennial crops are selected for the classification model. The dataset

is divided as training set 70%, testing set size 15% and validation set size 15%. Some

other features are important for the farm management and crop rotational suggestions. So,

besides the features collected from the feature engineering step, there are some more features

taken into consideration for the crop classification step. The hyper parameter tuning is done

using the ’n estimators’: [100, 200, 300], ’max depth’: [10, 20, 30], ’min samples split’: [2,

5, 10], ’min samples leaf’: [1, 2, 4].

For the crop recommendation step both clustering and regression algorithms are used.

Hyperparameter tuning settings for K-means clustering are as ’n estimators’: [100, 300,
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500], ’max depth’: [3, 5, 7], ’learning rate’: [0.01, 0.05, 0.1], ’subsample’: [0.7, 0.8, 0.9], ’col-

sample bytree’: [0.7, 0.8, 0.9], ’gamma’: [0, 0.1, 0.2], ’reg alpha’: [0, 0.1, 0.5], ’reg lambda’:

[1, 1.5, 2]. The crop rotation index is used as the target column for the rotational suggestion.

Here, for each cluster, randomized search is performed to find the optimal hyperparameter

for the XGBOOST regression.

HOLOS Animal Data

This analysis of animal based agriculture based farm management explores the effi-

ciency and promoting sustainable practices. Holos-Animal will be minimizing carbon emis-

sion and energy consumption while maximizing the productivity of animal welfare. Lime

is then utilized for both the Pareto optimization and the ϵ-constraint model selection. The

goal is to use resources as efficiently as possible while minimizing CO2 emissions. The Fig-

ure 3.2b is important features with valuable ranged data of HOLOS animal based dataset.

From a farm management perspective, this information is useful to understand different

farming practices. For example, managing livestock weight and emissions might help to

optimize energy use and efficiency.

A thorough model is built to improve production operations by utilizing all of the

parameters included in the dataset, such as animal characteristics, diet composition, hous-

ing, and waste management, among others. The goal is to maximize output and animal

welfare while minimizing overall energy use and emissions. Here, ϵ-constraint and pareto

optimization are the machine learning models most appropriate for this use case.

This is a framework, not a single model, for addressing issues with competing goals.

In your situation, increasing productivity and reducing energy and emissions are at odds.

MOO techniques, such as Pareto optimization or ϵ-constraint, are able to provide solutions

that strike a good compromise between these objectives.

The holos application collects agricultural related data. Both crop and animal manage-

ment data is collected to calculate the carbon footprint of that certain farm setting. From

the application using some pre-ranged data of farm managements, the dataset is built. The

whole data is divided into two groups. HOLOS crop data and HOLOS animal data.
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In this part, data collected from the HOLOS crop will be analyzed. First the data is

preprocessed. Handling the missing values, handling impute missing values using techniques

like mean, median, mode imputation is considered for this analysis. After that, actively

identifying the outliers using statistical methods like Z-score, interquartile range (IQR). in

the part not only outliers are observed but also they are handled using winsortization or

logarithmic transformation. Categorical data is properly labeled. StandardScaler is used to

scale the data.

For the feature engineering part, the overall energy consumption, emission, productiv-

ity, and animal welfare scare are calculated using the existing features from the dataset.

Next, the dataset is ready for the model application. For the optimization task, there is a

need of observing the target column ranges which will be controlling the action of the target

column. The overall goal is to learn the data and use it to predict more optimized states.

As some features will be maximizing and some will be decreasing, the understanding of the

ranges of these features are crucial. So, first the random forest model used as a regression

model targeting the four desired features. After that, LIME is used to explain the model.

The explanation gives the ranges of the features.

Then the dataset is split to apply the ϵ-constraint and pareto optimization algorithms.

Pareto fronts demonstrate the multidimensional design space. And ϵ-constraint or epsilon

constraint model ensures the optimal states for one object while keeping the other factors

constrained to specific values. The pareto front and epsilon constraint models are introduced

to the dataset by checking the data points, determining which target columns to focus on,

fitting the data then combining the whole structure of the object which is minimization and

maximization of certain features.

3.2.3 Optimization Using Machine Learning Algorithms

The workflow of this project mainly follows the optimization of the production process

for reduced CO2 emission. Utilizing all the important features in the dataset, a compre-

hensive model is built to optimize the production process. The objective is to minimize

overall energy consumption and emission while maximizing productivity and farming wel-
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(a) COMET-Farm Target Columns. (b) HOLOS Target Columns.

Fig. 3.3: Target Column States After Optimization.

fare. Then examining and promoting energy efficiency based farm management techniques

for different crops and rotational strategies.

For this purpose, Multi-objective optimization algorithms like pareto optimization and

epsilon constraint optimization techniques are used. These algorithms are applied to find

the trade-off solutions between conflicting objectives. Then applying random forest classifier

along with KMeans clustering and XGBoost regressor for the rotational strategy recommen-

dations. FInally generative AI is used in more popular farm scenarios. In Figure 3.3a and

Figure 3.3b we can see how optimization algorithm worked on the dataset. Here is the plot

where we can observe the reduction and boosting factors of this project.

3.2.4 Generative AI application

In order to populate the optimized farm scenarios generative adversarial networks

(GAN) is used. This framework leans from the base cases and generates new data us-

ing similar characteristics. GAN uses two different neural network models to learn and

classify the bases cases properly. The first neural network is known as generator network

and second one is known as discriminator network (CNN). In a mathematical way, GAN

uses probability distribution with a loss function. In this project GAN is used after finding

the optimal states to generate more optimal farm based management systems.
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Table 3.1: COMET-Farm Data Input.

Farm User Input Defaults Emission
Operation Required Provided Calculated

Annual Crop/ Type of crop, Planting Date, % straw, Soil Total Soil N20
Hay/ Grass or Harvest Date, Yield, Grazing fertilizer applied Carbon Storage
Seasonal Crop start date, Grazing end date, Moisture % Total & emission

Grazing rest period, Implement nitrogen% Energy CO2
date, Implement pass fertilizer Ammonium
date Fertilizer type Fertilizer nitrogen %
total N applied, Manure Date,
Manure Type, Manure amount

applied, Irrigation date,
Inches per application, Liming
date, Liming type, Burning

Orchard/ Type of crop, Prune, Renew, Total fertilizer Soil N20
Vineyard Implement date, Implement applied Moisture % Carbon Storage

crop pass fertilizer date Fertilizer Total nitrogen % & emission
type, Fertilizer total N Ammonium nitrogen % Energy CO2

applied, Manure Date, Manure
Type, Manure amount applied,

Irrigation date, Inches per
application, Liming date,
Liming type, Burning

Beef Feedlot diet on Feedlot, # Beef Typical mature weight Entire CH4
heifers, # Beef Steers, % of solid removed Manure CH4

Primary breed, Average daily Manure produced per Manure CH4
heifers, weight gain, Average day % nitrogen % Manure N20
daily weight steers, Average content in manure Energy CO2
live weight steers Type of

feed Feed % Feeding situation
Solid/liquid separator Separator
type Solid treatment method
Liquid treatment method,

Manure system

Beef Steer unique herds # Beef steers or Typical mature weight Entire CH4
or Heifers heifers Average body weight % of solid removed Manure CH4
stockers Average daily weight gain Manure produced per Manure CH4

Average mature weight Hours day % nitrogen % Manure N20
work each day Type of feed Feed content in manure

% Feeding situation Solid/
liquid separator Separator type
Solid treatment method Liquid

treatment method Manure system
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Table 3.1: COMET-Farm Data Input.

Farm User Input Defaults Emission
Operation Required Provided Calculated

Dairy # unique herds # Roofed Entire CH4
Lactating facility # Dry Lot # Pasture % of solid removed Manure CH4

Cow Range Daily feed intake Average Manure produced per Manure CH4
live body weight Days in milk day % nitrogen % Manure N20
Type of feed Feed % Housing content in manure Energy CO2
type days manure in housing
Feeding situation Solid/liquid
separator Separator type Solid

treatment method Liquid
treatment method Manure system
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Table 3.2: HOLOS-Farm Data Input.

Farm Operation User Input Required Defaults Provided Emission Calculated

Crops/ Area of annual crops & Fertilizer inputs Soil N20
Grassland / fallow, Area of perennial crop Crop yields Soil Carbon
land use Area of grassland, Tillage Soil type and Storage or
change System, Area of irrigation, texture Emission Energy

Herbicide usage CO2

Beef Cow-calf # Cows, Types of grazing area, Calf crop rate # Entire CH4
Pasture and feed quality Feed bulls Manure CH4
additive in diet Spring or fall Manure N20
calving, Year round grazing or Energy CO2
winter feeding, Calves sold or
kept for back grounding, #

months kept, Manure handling
system

Beef Feedlot Type of feedlot, Feedlot Initial and Final Entire CH4
capacity and/or # months filled, weights Manure CH4
Barn housing usage, Ration mix, Manure N20
Feed additive in diet, % steers Energy CO2
in lot, Feed gain ratio, Average
daily gain, Manure handling

system

Beef Stocker # cattle, # months grazed, Initial and Final Entire CH4
Pasture quality, Feed additive weights Manure CH4

in diet, % steers in herd, Manure N20
Average daily gain

Dairy # unique herds # Roofed Entire CH4
facility # Dry Lot # Pasture % of solid removed Manure CH4

Range Daily feed intake Average Manure produced per Manure CH4
live body weight Days in milk day % nitrogen % Manure N20
Type of feed Feed % Housing content in manure Energy CO2
type days manure in housing
Feeding situation Solid/liquid
separator Separator type Solid

treatment method Liquid
treatment method Manure system
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Table 3.3: COMET-Farm Data Input Ranges.

Variable Sub-Variable Options

Step 1 - Selected Activities for the Cropland, Pasture,
Activities Current Project Orchards/Vineyards Range

Step 2 - Field Parcel Locations Orchard File Forage File
Management

Historic Pre-1980 Management Irrigation (Pre-1980s) Livestock grazing
Management Upland non-irrigated (Pre-1980s)

Lowland non-irrigation (Pre-1980s)

1980-2000 Management annual crops in rotation continuous hay/
pasture in rotation continuous hay annual
crops in rotation continuous hay livestock
grazing fallow-grain orchard or vineyard

1980-2000 Tillage Intensity No till Reduced tillage Intensive tillage

Baseline Type of crop Orchard/Vineyard Crop Annual crop/hay/grass
Seasonal cover crop Management

Crop Selection For Orchard/Vineyard Crop : Cherries Grape-
raisan Grape-table Grape-wine (¿1950 GDD)

Peaches and Nectarines Pistachio For Annual &
crop/hay/grass : Alfalfa Barley Corn Corn
silage Grass Grass-legume mix Oats Rye
Sorghum Spring wheat Winter wheat. For

Seasonal cover crop : Annual Rye -
Legume - Radish Annual Rye Legume

Annual Rye Austrian Winter Pea Cereal
Rye Clover Corn Forage Radish Millet Oilseed
Radish Winter Grain - Other Sorghum Vetch

Did you prune? For Orchard/Vineyard Crop : Yes or No

Did renew or clear your orchard/ For Orchard/Vineyard Crop : Yes or No
vineyard this year?

Planting Date For Annual crop/hay/grass : 5/1 to 7/1
For Seasonal cover crop : 9/1 to 11/1

Harvest date For Annual crop/hay/grass : 7/1 to 11/1
For Seasonal cover crop : 4/1 to 6/1

Harvest Straw For Annual crop/hay/grass : 12 to 72
For Seasonal cover crop : 12 to 72

Harvest Yield For Annual crop/hay/grass : Alfalfa - 4.3
Tons/acre Barley - 93 bu/acre Corn - 24
tons/acre Corn silage - 24 tons/acre Grass
- 138 bu/acre Grass-legume mix Oats - 154
bu/acre Rye - 154 bu/acre Sorghum - 54
bu/acre Spring wheat - 54 bu/acre Winter

wheat - 54 bu/acre

Grazing Start Date Grazing End For Annual crop/hay/grass : 4/1 10/1 21
date Rest Period
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Table 3.3: COMET-Farm Data Input Ranges.

Variable Sub-Variable Options

Tillage, Implements and Planting For Orchard/Vineyard Crop : Mow For Annual
crop/hay/grass : No Tillage Mow Zero Soil

Disturbance No implement passes For Seasonal
cover crop : Intensive Tillage Reduced Tillage
Mulch Tillage Ridge Tillage Strip Tillage No
Tillage Crimp Broadcast Seed Aerial Seed

Fertilizer Type For Orchard/Vineyard or Seasonal or Annual
crop:Ammonium Nitrate (34-0-0) Ammonium

Nitrate Phosphate (23-23-0) Ammonium Nitrate
Phosphate (27-14-0) Ammonium Phosphate

Sulphate (16-20-0) Ammonium Polyphosphate
Solution (10- 34-0) Ammonium Sulphate

(21-0-0) Ammonium Thiosulphate Solution
(12-0- 0) Anhydrous Ammonia (gas)

(82-00-00) Calcium Ammonium Nitrate
Calcium Nitrate Diammonium Phosphate

(18-46-0) Element-N (N) Element-P (P) Mixed
Blends Monoammonium Phosphate (11-55-00)

Monoammonium Phosphate (12-51-00) Potassium
Nitrate Urea (46-00-00) Urea Ammonium Nitrate
(30-00-00) Urea Ammonium Phosphate (27-27-00)

Urea Ammonium Phosphate (34-17-00)

Fertilizer Date For Orchard/Vineyard Crop : May 01 For Annual
crop/hay/grass : Two weeks after planting
date For Seasonal cover crop : Two weeks

after planting date

Fertilizer Total N Applied For Orchard/Vineyard or Seasonal or
Annual crop: 19 - 151

Manure Type For Orchard/Vineyard or Seasonal or Annual
crop: Alfalfa Meal Beef Manure, Solid Beef
Slurry Blood, Dried Bone Meal Chicken -
Broiler (litter), Solid Chicken - Broiler

Slurry Chicken - Layer Slurry Chicken Layer
- Solid Compost or Composted Manure, Solid
Dairy Manure, Solid Dairy Slurry Farmyard
Manure, Solid Feather Meal, Solid Feather

Meal Fish Emulsion Fish Scrap Guano Horse
Manure, Solid Other Manure, Solid Sheep

Manure, Solid Soybean Meal Swine Manure,
Slurry Swine Manure, Solid

Manure Date For Orchard/Vineyard Crop : May 01 For
Annual crop/hay/grass : Two weeks before
Planting Date For Seasonal cover crop :

Two weeks before Planting Date

Manure Applied Amount For Orchard/Vineyard or Seasonal or
Annual crop: 5 - 25
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Table 3.3: COMET-Farm Data Input Ranges.

Variable Sub-Variable Options

Irrigation Inches per For Orchard/Vineyard Crop : Once per
application week starting 5/1 - 11/1 For Annual

crop/hay/grass : Once every 11 days
starting 5/1 - 11/1 (starts from planting
date) For Seasonal cover crop : Once per
week 9/1 to 6/1(starts from planting date)

Liming For Orchard/Vineyard or Seasonal or
Annual crop: None

Burning For Orchard/Vineyard or Seasonal or
Annual crop: No Burning

Step 3-Animal Units of measure Metric
Agriculture

Select Animal Types Beef-heifer stockers Beef-steer stockers
Stockers Feedlot cattle Dairy-lactating cows

# unique herds For Beef-steer and Beef-heifer Stockers: 1
For Dairy-lactating cows: 1

# diets fed on feedlot For Stockers Feedlot cattle: 1

# Heifers For Stockers Feedlot cattle and Beef-heifer
Stockers : 1 - 500

# Steers For Stockers Feedlot cattle and
Beef-steer Stockers: 1 - 500

Average weight stockers body For Beef-steer & Beef-heifer Stockers:362

Average stockers weight gain For Beef-steer and Beef-heifer
daily Stockers: 0.6 - 2.5

Average stockers mature weight For Beef-steer & Beef-heifer Stockers:545

Primary Breed For Stockers Feedlot cattle: Angus Brahman
Charolais Chianina Gelbvieh Hereford

Limousin Main Anjou Pinzgauer Red Poll
Sahiwal Simmental South Devon Tarentaise Other

Average Daily gain weight For Stockers Feedlot cattle: for Spring,
Summer, Fall, Winter for both Heifers and

Steers 0.6 - 2.5

Average Live weight For Stockers Feedlot cattle: from Jan - Dec
for both Heifers and Steers 362 - 545

Do you use ionophores For Stockers Feedlot cattle: Yes or No

Fat Content in the diet For Stockers Feedlot cattle: 1% Supplemental
Fat 2% Supplemental Fat Four or higher added

fat content No supplemental fat added

Grain Type in diet For Stockers Feedlot cattle: Steam Flaked
or High Moisture Unprocessed or Dry Rolled

Barley rather than corn or sorghum

Concentrate % in diet For Stockers Feedlot cattle: More than 60%
grain 45 to 60% grain Less than 45% grain
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Table 3.3: COMET-Farm Data Input Ranges.

Variable Sub-Variable Options

# Roofed Facility For Dairy-lactating cows: 1 - 500

# Dry Lot For Dairy-lactating cows: 1 - 500

# Pasture Range For Dairy-lactating cows: 1 - 500

Average daily feed in-take For Dairy-lactating cows: 0

Average weight live body For Dairy-lactating cows: 362 - 545

Average daily feed in-take For Dairy-lactating cows: 305

Days in milk For Dairy-lactating cows: 28.6

Range feed of months for For For Dairy-lactating cows and Beef-steer
and Beef-heifer Stockers: Select Jan to Dec

Types of Feed For Dairy-lactating cows and Beef-steer and
Beef-heifer Stockers: Alfalfa Birdsfoot

Bromegrass Cheatgrass Elephant grass Grain
Grass Meadow Oat Orchardgrass Prairie Rye

Sanfoin Sorghum Sudangrass Vetch Wheat Wheatgrass

Percentage of feed For Dairy-lactating cows and Beef-steer
and Beef-heifer Stockers: 100 %

Primary Feeding Situation For Beef-steer and Beef-heifer Stockers:
Stall Pasture Grazing large areas

Housing Type For Dairy-lactating cows: Pit Storage
Bedded Pack Flushed or Scraped

Pit Storage Type For Dairy-lactating cows: Deep Shallow

Pit Storage housing days in For Dairy-lactating cows: 1-7

Bedded Pack Type For Dairy-lactating cows: Active Mix No Mix

Bedded pack housing days in For Dairy-lactating cows: 1-7

Flushed or Scraped area of Barn For Dairy-lactating cows: 0.4 - 2.8

Use Solid/Liquid Separator For Dairy-lactating cows and Beef-steer
and Beef-heifer Stockers and feedlot

cattle: Yes or No

Storage Method For Dairy-lactating cows and Beef-steer
and Beef-heifer Stockers and feedlot cattle:
Temporary stack and long-term stockpile

Composting Aerobic lagoon Anaerobic digester
with biogas utilization or methane capture
Thermochemical Conversion (Pyrolysis,
Incineration, Gasification) Constructed
wetland Daily spread Deposited on

Pasture/Range/Paddock Removed offsite
Land applied

Separator type For Dairy-lactating cows and Beef-steer
and Beef-heifer Stockers and feedlot cattle:
Stationary inclined screen Vibrating screen

Rotating screen Centrifuge Decanter centrifuge
Roller press Pressure filter Other
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Table 3.3: COMET-Farm Data Input Ranges.

Variable Sub-Variable Options

Solid Method Treatment For Dairy-lactating cows and Beef-steer and
Beef-heifer Stockers and feedlot cattle:

Temporary stack and long-term stockpile
Composting Thermochemical Conversion
(Pyrolysis, Incineration, Gasification)

Daily spread Deposited on Pasture/Range/
Paddock Removed offsite Land applied

Liquid Method Treatment For Dairy-lactating cows and Beef-steer
and Beef-heifer Stockers and feedlot cattle:
Aerobic lagoon Anaerobic digester with
biogas utilization or methane capture
Thermochemical Conversion (Pyrolysis,
Incineration, Gasification) Constructed

wetland Daily spread Deposited on Pasture/
Range/Paddock Removed offsite Land applied

Solid Storage Cover Type System For Dairy-lactating cows and Beef-steer
and Beef-heifer Stockers and feedlot cattle:
AUncovered solid Covered solid Uncovered

semi-solid Covered semi-solid

Solid Storage Is the manure For Dairy-lactating cows and Beef-steer and Beef-
stored for more or less than heifer Stockers and feedlot cattle: Long term

six months? (more than six months) Short term (less than
six months)

Composting Method For Dairy-lactating cows and Beef-steer and Beef-
heifer Stockers and feedlot cattle: In Vessel

Static Pile Intensive Windrow Passive Windrow

Aerobic Volume lagoon Total For Dairy-lactating cows and Beef-steer and
Beef-heifer Stockers and feedlot cattle:

400 - 20,000

Aerobic lagoon Is the system For Dairy-lactating cows and Beef-steer and
aerated naturally or by forced Beef-heifer Stockers and feedlot cattle:

aeration? Natural Aeration Forced Aeration

Anaerobic digester with biogas For Dairy-lactating cows and Beef-steer and
utilization or methane capture Beef-heifer Stockers and feedlot cattle: Steel

digestre Type or lined concrete or fiberglass digesters with a
gas holding system (egg shaped digesters) and

monolithic construction. Up-flow anaerobic sludge
blanket (UASB) type with floating gas holders

and no external seal Unlined concrete/ferrocement/
brick masonry arched type gas holding section and

monolithic fixed dome digesters Other



30

Table 3.4: HOLOS-Farm Data Input Ranges.

Farm Operation Min Value Max Value Multiple Option

Farm Name Any Name

Farm year 1900 2050

Eco district 358 1091

Province Alberta

Ecozone Smiarid Pairies

Soil Texture Fine Medium Coarse

Soil Type Black/Gray Chernozem
Brown Chhernozem Dark

Chernozem Eastern Canada

Present Till Management Practice No Till Reduce Intensive

Past Till Management Practice No Till Reduce Intensive

LumC Max -6071 6071

k 0.0091 0.35

Precipitation(mm) 0 1524

Potential Evapotran spiration(mm) 0 1524

F topography 0 100

Soil N2O Breakdown(%) 0 100

Average Temp C -100 100

RF Texture 0 1

RF Tillage 0 1

EF Eco (kgN2O-N/kgN) 0.0016 0.0017

Leaching Fraction 0.05 0.3

EF Leaching (kgN2O-N/kgN) 0.0075 0.0075

Volatilization Fraction 0.1 0.1

EF Volatilization (kg N2O-N/kgN) 0.01 0.01

Global Warming Potential (CO2) 1 1

Global Warming Potential (CH4) 28 28

Global Warming Potential (N2O) 265 265

Crop - Perennial Hay - Grass Hay - Legume Hay
- Mixed Hay and Forage Seed

Other

Area (ha) 0.1 3

Year Seeded 1910 2020

Yield (kg DM/ha) 2242 13450

Stand Length (yrs.) 1 10

Irrigated Yes or No

Herbicide N Fertilization Rate 22 169 Yes or No
(kgN/ha)

P Fertilization Rate (kgP2O5/ha) 56 135

Moisture Content (w/w) 0.02 0.75

AGR N Concentration (kgN/kg) 0.005 0.018

BGR N Concentration (kgN/kg) 0.007 0.015
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Table 3.4: HOLOS-Farm Data Input Ranges.

Farm Operation Min Value Max Value Multiple Option

Yield Ratio 0.12 0.72

AGR Ratio 0.08 0.6

BGR Ratio 0.08 0.6

Fuel Energy (GJ/ha) 0.34 2.83

Herbicide Energy (GJ/ha) 0 0.23

LumCMax -6071 6071

k 0.0091 0.35

Beef Feedlot Finish- ers Group 1

Ash Content (%) 8 8

Bo 0.19 0.19

CD Steer 1 1

CD Heifer 0.8 0.8

# Days 0 31

# Heifers 1 1000

Initial Heifer Weight (kg) 362 363

Final Heifter Weight (kg) 817 817

Heifer ADG (kg) 0.6 2.5

# Steers 1 1000

Initial Steer Weight (kg) 362 363

Final Steer Weight (kg) 545 545

Steer ADG (kg) 0.6 2.5

Soil Type Black/Gray Chernozem
Brown Chhernozem Dark

Chernozem Eastern Canada

Housing Confined No Barn Housed
In Barn Enclosed Pasture

Open Range Custom

Diet Barley Corn Custom

Diet Additive None 2% Fat 4% Fat
Custom

Manure System Pasture Solid Storage
Compost Intensive Compost

Passive Custom



CHAPTER 4

RESULTS

Farm management is a dynamic and continuous process. It is essential to regulate the

evaluation and adaptation to record the changing conditions. A closer observation can be

helpful to plan strategically, improve the resilience and efficiency of certain operations that

can lead to a long term sustainability and success. The results of this project show how

to strategically plan farm managements to maximize some factors while reducing GHGs

emission.

4.1 COMET-Farm Model

Data collected from comet-farm website is highly valuable and complex. The collected

data make it challenging to create comprehensive models that capture all the relevant

outcomes. Overall, comet-farm website enable the best available evidence-based decision-

making process.

The optimization algorithms are applied in the dataset and these Figure 4.1 show the

outcomes after algorithm application. Here, the pareto front optimization works as the al-

gorithm that cannot be improved in one objective direction without sacrificing performance

in the other. The epsilon-constrained is optimization where one objective function is mini-

mized by the optimizer while the other objective functions are constrained to specific values.

Trade off between different features and show different correlations among features. We will

be observing the reduction of emissions while maximizing different desired objectives. In

the figure, it can be seen that the trade offs between emission and soil nutrients levels,

the well distribution of soil health scores, the higher fertilizer efficiencies, the correlation

between soil health and fertilizer score and the significance of ammonium nitrogen on soil

N2O emission.
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Fig. 4.1: Feature Trade-offs After Optimization.
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(a) Learning Curve For Ran-
domized Search For COMET
Crop Dataset

(b) Distribution Of Mean Best
Scores For COMET Crop
Dataset

(c) Histogram Of Cluster
Size For COMET Crop
Dataset

Fig. 4.2: Machine Learning Models Application On Comet-Farm Crop Dataset.

4.1.1 COMET-Farm Crop Data

The purpose of this analysis is the crop selection and rotation recommendation. The

results for the COMET-Farm crop data are discussed below.

Figure 4.2a shows the performance of the the random forest classifier. The curve plots

the mean test score of the randomized search algorithm over the number of iterations. In the

plot we can see that the curve trends slightly upward as the number of iteration increases. It

means that the model is learning and improving itself as the number of iterations increases.

However the curve flattens slightly towards the end. It means that the model is approaching

its maximum performance which is the optimal state.

Figure 4.2b is a histogram plot where each bar is a range of mean test scores. The

higher the bar, the greater likelihood that the groups scored within that range. The mean

test scores vary only slightly so overall the plot shows little variance.

This part of the project demanded the necessity of usage of clustering algorithms. In

order to recognize and capture the similar groups of items the K-Means algorithm is applied

here. It helped to increase the chances of accurate prediction based on the previous behavior

within the groups. Additionally, the K-Means algorithm helped to recognize the dynamics

of each group. Figure 4.2c depicts the size (in data points) of each cluster. Most clusters

are between 10 and 15 data points. However there are clusters with large numbers of data

points too. A few clusters have between 40 and 50 data points. In short, the graph shows

that clusters are formed with a small number of groups of data points where most of the
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(a) Results After Classification Algorithm (b) Scatter Plot Of Clusters For
COMET Crop Dataset

Fig. 4.3: Results After Classification And Clustering Algorithms.

groups are relatively small.

In the Figure 4.3a we can see the results of a classification algorithm where we can

observe some of the most interesting facts. One of them is that the crop type has no impact

on the emissions and soil health. This means the farm managements are nearly perfect

when this data is collected. The farm scenario is an example where farmers along with the

farm management helped reduce emission. Another fact is there is no clear trend between

ammonium nitrogen and fertilizer dependence. This indicates that there is no noticeable

pattern seen in these two features. So, there should be a variety of practices that are highly

needed. Also, low and mid-scores indicates the optimal fertilizer practices.

Figure 4.3b is a scatter plot that shows the data points all together based on their shared

common characteristic. Here we can see that the data points are grouped into mostly three

different colors. This shows the positive correlation between fertilizer dependence score and

the number of soil health indicators. The impacts of soil with a higher fertilizer dependence

score tend to have more than the soil health indicators. Also, the data points can be

seen as a clustered form. This suggests that there are three different types of soil. And,

these different types of soils have their own characteristic relationship between fertilizer

dependence score and soil health indicators.

Figure 4.4a shows the RMSE for each cluster. Here, we can see the performance of the

difference between values predicted by the model and the values actually observed. The
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(a) RMSE Scores For Each Cluster For COMET Crop
Dataset.

(b) Actual VS Predicted Rota-
tion Index For Each Cluster For
COMET Crop Dataset.

Fig. 4.4: Observation Of Each Cluster

green bar is the best RMSE score observed during the model cycle. And the best RMSE

score is 0.73. The blue bars are the overall observations during the model execution. From

this graph, we can understand each data point as clusters which show the RMSE score for

that particular cluster. The scores vary across the clusters.

Figure 4.4b actual vs predicted rotation index for each cluster is the comparison be-

tween the actual and the predicted rotation indexes for fifty clusters. In this graph each

data point is a cluster. Depending on these results, the crop recommendation and rotation

selection recommendation plots are added later. As there are lots of farm recommendations,

some of the recommended farm scenarios are added in this project to show results.

Figure 4.5a distribution of impacts demonstrates the larger scale of frequent impacts

fall between 1.0 and 1.05. There are about 200 impacts in this range, the frequency of the

impacts become less as the impact progresses further away from 1.0. Additionally, below

0.95 and above 1.15, there are less impacts. The histogram shows most of the impacts

happened aunts 1.0. A few outliers on either side of 1.0. This means that the impact tends

to be relatively similar in magnitude where there are a few exceptions.

Figure 4.5b rotation selection recommendations impact vs data point shows the re-

lationship between impacts and data points which is the clusters. Here, we can see that
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(a) Distribution Of Impacts For COMET
Crop Dataset.

(b) Rotation Selection Recommendations Im-
pact VS Data Point For COMET Crop
Dataset.

Fig. 4.5: Analyzing Impacts of Each Cluster.

there is a weak positive correlation between the number of clusters and the impacts of the

rotation selection recommendations. With the increment of the number of the data points,

the impact of the rotation selection recommendations tends to increase. Also, there are

many clusters with a low number of data points with a high impact.

In this Figure 4.6a the LIME explanations can be seen for the COMET crop dataset.

Here, the carbon storage emission ratio consistently appears as a positive contributor in

all the categories. And the consistency of this feature impacts the scores across different

predictions. Besides, the positive importance and impacts of soil composition, oil health

indicators.

Figure 4.6b elbow curve for K-means clustering represents the inertia (the sum of

squared distances between data points and their allocated cluster centers) for different

numbers of clusters populated by the K-means clustering algorithm. From this graph we

can see that the number of clusters increments and the decrease of the inertia. Because of the

increment of the number of clusters, the it generally decreases the overall distance between

data points and their cluster centers. The general shape of each cluster is supposed to be

smaller and tighter. So, this is the reason for the decrease of inherits with the increment of

the number of clusters. But, the point or position where the diminishing returns no progress

or further learning by adding more clusters. And that creates the elbow effect in the graph.

In this graph the elbow showed up around the 4 or 5 clusters. Basically, the graph suggests
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(a) LIME Explanation of COMET-Crop (b) Elbow Curve For K-Means Clustering For
COMET Crop Dataset.

Fig. 4.6: Results of LIME Explanation And Elbow Curve.

(a) Rotation Selection Recommendations Im-
pact VS Data Point For COMET Crop
Dataset.

(b) A Closer Look At The ROC Curve For
Crop Selection Classification For COMET
Crop Dataset.

Fig. 4.7: ROC Curve For Crop Selection Classification For COMET Crop Dataset.

that picking 4 or 5 clusters reached the minimization of the inertia. So, considering more

clusters beyond this level shows no remarkable decrease.

Figure 4.7a ROC curve for crop selection classification shows the tread-off between

correctly identifying a crop which is the true positive rate and incorrectly identifying the

crops which is the false positive rate. The curve appears as a straight diagonal line that

means that the false positive rate and true positive rate are equal. There are three different

classes representing three different types of crops.

A closer look at the above ROC curve can be seen in Fig. 4.7b. It shows some insights

from the AUC (area under the curve). From the AUC we can understand the performance
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of a specific ROC curve. Here, three different crops have AUCs as 0.49, 0.53, 0.51. This

means that the model is learning by making a few mistakes.

4.1.2 COMET-Farm Animal Data

Using the agriculture animal based data, the analysis is done by minimization of CO2

emission while maximizing effective resource usage. Then populating more optimized farm

scenarios with GAN.

Fig. 4.8: Parallel Coordinate Plot, Optimization Visualization On Scatter Plot And 3D
Scatter Plot For COMET Animal Dataset.

Figure 4.8 parallel coordinate plot, optimization visualization on scatter plot, 3d Scatter

plot demonstrates different representation of the optimized states situations. Every features

are shown as a line and then we can see that more resource efficiency tend to have lower

emission. As lines are higher on the resource efficiency axis and lower on the emission axis.

Also, the overall energy energy consumption is lower too after optimization. The second

plot shows that the scatter plots of pareto optimal and epsilon constraint states. The pareto

optimal shows the reduction of emission and overall energy consumption without sacrificing

resource efficiency. And for the epsilon constraint optimization, keeping the level of resource

efficiency fixed or minimum, the optimization is trying to minimize the emission and overall

energy consumption. Also the resource efficiency is constrained.

The scatter plot shows the relationships between overall energy consumption against
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(a) Target Columns After Optimization For
COMET Animal Dataset.

(b) LIME Explanation of COMET-Animal
Dataset.

Fig. 4.9: Optimized Target Columns And LIME Explanation of COMET-Animal Dataset.

emission. The blue points represent the original data from the database. The red stars

show the Pareto optimal states. Here, the Pareto optimal state suggests that one of the

objectives can not be improved without worsening the other. In this management system,

this is the most efficient configuration while considering the energy and emissions. The

green diamonds show the results of the epsilon constraint model. This model sets a limit

(epsilon value) on the secondary objectives and tries to optimize the primary objective.

These graphs show the changes in the farm practices after energy consumption, emis-

sions, resource efficiency. This helps to make decisions while finding balanced farm man-

agement practices considering environmental impact and efficiency.

Figure 4.9a target columns after optimization shows the target columns effects after

optimization. It shows the comparison between before overall energy consumption, emission

states and after the optimized states of overall energy consumption, emission states. The

graph shows a twin peak distribution with one peak is around -1.0 and another one is around

1.0.

This graph shows the overall energy consumption before states which are in light blue

bars. The histogram suggests a bell shaped distribution, which is a normal distribution.

This indicates that most farms have an average level of energy consumption, with fewer

farms having very high or very low energy consumption. The emissions before states are

in light orange bars. This histogram also seems to be approximately normally distributed,

centered around a middle value with tails extending to higher and lower emissions. It
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(a) Comet Farm Crop-Selection and Rota-
tional Recommendation.

(b) Comet Farm Crop-Selection and Rota-
tional Recommendation With Impact Indica-
tor.

Fig. 4.10: Some Optimized Farm Scenarios 001.

(a) Comet Farm Crop-Selection and Rota-
tional Recommendation.

(b) Comet Farm Crop-Selection and Rota-
tional Recommendation With Impact Indica-
tor.

Fig. 4.11: Some Optimized Farm Scenarios 002.

(a) Comet Farm Crop-Selection and Rota-
tional Recommendation.

(b) Comet Farm Crop-Selection and Rota-
tional Recommendation With Impact Indica-
tor.

Fig. 4.12: Some Optimized Farm Scenarios 003.

shows that emissions across farms are also mostly average, with fewer at the extreme ends.

These results suggest that the data is very likely to be real farming managements where

the majority of data points have moderate energy usage and emissions levels, with fewer

instances of very high or low values. The overall distribution shows the inefficiencies and

areas for potential improvement. For example, if a farm is on the higher end of energy

consumption, investigating and adopting more energy-efficient practices could be beneficial.

Now, from this data, it can be analyzed the identification of outliers which can lead

to determining if there are farms with unusually high or low values for these metrics and

understanding why. Also, defining targets for energy consumption and emissions reduction
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based on the distribution. Optimization strategies where moving the distribution towards

more desirable outcomes such as leftward shift indicating reduced energy consumption and

emissions.

Overall energy consumption before optimization which is the light blue bars and after

Optimization which is the dark blue bars suggests that a shift towards the left in the dark

blue histogram. This indicates energy consumption after optimization. Also, the optimiza-

tion has successfully reduced overall energy consumption across the dataset. Additionally,

emissions before optimization which are the light orange bars and after optimization which

are the dark orange bars show the energy consumption, the emissions histogram. They also

have a leftward shift post-optimization. The reduction in the frequency of higher values

implies that emissions have decreased the optimization.

In this Figure 4.9b the LIME explanation of the COMET animal dataset can be seen

where it is clear that the inverse impacts of CO2 and CH4 levels. Also, the entire CH4

greater than 0.53 consistently shows a positive impact. Again, the CH4 levels, average live

weight and CO2 emissions appear repeatedly.

Subsequently the optimization aided to find desired goals. The farm scenarios after

optimization effects on other features are included here. The number of features are too

many to add here in the discussion section. Here in these Figure 4.10, Figure 4.11 and

Figure 4.12 come of the crop selection along with the rotational recommendations can be

seen.

After achieving the optimized state, based on this information the generative adver-

sarial network (GAN) is used to populate more optimized farming management scenarios.

Figure 4.13a and Figure 4.13b show a few of the base case scenarios and the populated farm-

ing scenarios generated by the GAN. Now, the GAN application helps to generate more and

new farm scenarios. In the GAN generated plots, we can see some of the generated farm

scenarios of COMET crop based and COMET animal based farms.

This shows the comparison of the distribution of generated data to real data to vali-

date how well the model captures the real-world distributions of key farm metrics. Also,
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(a) GAN Generated Farm Scenarios For
COMET-Crop Dataset.

(b) GAN Generated Farm Scenarios For
COMET-Animal Dataset.

Fig. 4.13: GAN Generated Some Farm Scenarios.

evaluating and exploring different scenarios can be helpful to see how changes in certain

conditions can affect farm outcomes. The new generated data is useful to identify the range

of outcomes for various metrics under different scenarios to assess potential risks and the

robustness of farm management strategies.

Figure 4.14 In this graph, the Overall Energy Consumption and Emissions plots show

that both real and generated data show a similar distribution. It suggests that the model

generating the data can closely replicate or predict the actual energy consumption and

emission patterns observed in the real data. The Space Utilization Efficiency plot shows

there is a significant difference between the real and generated data. The real data show

higher counts for low values of space utilization efficiency, while the generated data do not

capture this skewness as effectively. Again the Resource Efficiency distribution plot shows

the real and generated resource efficiency data show some discrepancies, particularly around

the peak counts, suggesting the GAN model could not fully replicate the actual distribution

of resource efficiency.

Here, after the application of GAN, the target columns are observed to find interesting

outcomes. In the plots, we can see the target columns of the after GAN application. From
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Fig. 4.14: Target Columns After GAN Application For COMET Animal Dataset.

this, we can say that the generated data is closely matched with the real data distribution.

Sometimes, limitations in the abilities of generative models can be seen too. The limita-

tions are mostly happening in the lower end values. Also, the fit indicates the effective

performance in capturing the central tendencies.

The comparison between real and generated data can help validate and improve pre-

dictive models used in farm management. For space utilization efficiency and resource

efficiency, there are notable differences between the real and generated data. Model tuning

is necessary for further analysis.

As the generated data comes from a predictive model, the model is more reliable for

predicting energy consumption and emissions rather than space and resource efficiency. So,

if energy consumption predictions are accurate, managers could focus on optimizing energy

usage on the farm based on model projections. Generating data can be used to test various

”what-if” scenarios and their impact on farm performance, helping in strategic planning and

risk management. But the overall goal is to refine the real data into a generated database

where the replication of data will be nearly accurate to the original database.

In Figure 4.15, Figure 4.16 and Figure 4.17 we can see some of the optimized and GAN

generated new farm management scenarios for COMET crop based practices. Next, some
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(a) (b)

Fig. 4.15: Comet Crop-Optimized And GAN Generated Farm Scenarios 001.

(a) (b)

Fig. 4.16: Comet Crop-Optimized And GAN Generated Farm Scenarios 002.

(a) (b)

Fig. 4.17: Comet Crop-Optimized And GAN Generated Farm Scenarios 003.

of the optimized and GAN generated COMET animal based farm management scenarios

can be seen in Figure 4.18 and Figure 4.19.
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(a) (b)

Fig. 4.18: Comet Animal-Optimized And GAN Generated Farm Scenarios 001.

(a) (b)

Fig. 4.19: Comet Animal-Optimized And GAN Generated Farm Scenarios 002.

4.2 HOLOS Whole-Farm Model

In this part, we will be exploring the results gained from the collected data of HOLOS

whole-farm model. One is crop related data and another one is livestock based data which

are collected using HOLOS software application based tool.

In this Figure 4.20 we can see the trade-offs of HOLOS dataset. The figure shows the

overall correlation while the optimization is applied on the dataset. From the plot, there are

important trade-offs that can be seen in the energy CO2 emission and the storage values.

This indicates that a range of CO2 emissions or energy storage efficiency is optimized.

Next, other notable factors are the reduction in soil N2O emissions, yield ratio optimization,

impact of precipitation, interdependencies among matrics like changes in N2o breakdown

impact yield ratios or how energy CO2 emissions correlates with precipitation level.
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Fig. 4.20: Feature Trade-offs of Optimization For HOLOS-Whole Farm.
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(a) Learning Curve For Randomized Search
For HOLOS Crop Dataset.

(b) Distribution of Mean Test Scores For HO-
LOS Crop Dataset.

Fig. 4.21: Analyzing Results of Machine Learning Algorithms On HOLOS-Crop Dataset.

4.2.1 HOLOS Crop Data

With the HOLOS crop data, the application of machine learning and optimization

algorithms support the achievement of the crop selection and rotation recommendations.

Figure 4.21a learning curve for randomized search graph shows the performance of the

algorithm. The performance improves with the number of iteration increases. The curve

starts to flatten out at around the 50th iteration and that is the maximum performance of

this algorithm. Overall the graph shows that the algorithm is learning and improving the

performance.

Figure 4.21b distribution of mean test scores is a normal distribution histogram. It

suggests that almost all the tests have a mean score between 0.190 and 0.200. And that

means most of them performed similarly on the testing phase. There are also fewer tests

that scored very high or very low on the testing phase.

This Figure 4.22a shows the aftermath of the classification algorithm of HOLOS dataset.

From this plot, it can be seen that the yield efficiencies do not correlate the CO2 emissions.

The efficiency of N2O breakdown due to presentation can be observed here too. But it is

also noticeable that the high precipitation does not correlate with high N2O breakdown for

the orchard and seasonal crops.

Figure 4.22b scatter plot of clusters demonstrates the positive correlation between fer-

tilizer dependence scare and number of clusters. With the increment of fertilizer dependence
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(a) Results After Classification Algorithm. (b) Scatter Plot of Clusters For HOLOS
Crop Dataset.

Fig. 4.22: HOLOS-Crop Dataset After Application Of Machine Learning Algorithm.

(a) R2 Scores for Each Cluster For HOLOS
Crop Dataset.

(b) Actual vs Predicted Rotation Index for
Each Cluster For HOLOS Crop Dataset.

Fig. 4.23: Clusters Observation of HOLOS-Crop Dataset.

score, the number of clusters increases. This means that the more distinct groups of soil

health indicators in the soil that are highly dependent on fertilizer.

Figure 4.23a R2 scores for each cluster shows the fifty cluster records. Some clusters

have R2 scare close to 1 which indicates a very good fit for the regression mode. Other

clusters have scares close to zero which mean poor fit. In the graph the scores vary through-

out the clusters. The negative scores indicate the regression model performance is worse

than simply predicting the average values. Overall, the model has fit the data well for some

clusters but not for every cluster.

Figure 4.23b actual vs predicted rotation index for each cluster which is a scatter plot.
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(a) Rotation Selection Recommendations -
Impact vs Data Point For HOLOS Crop
Dataset.

(b) LIME Explanation For HOLOS-Crop
Dataset.

Fig. 4.24: Closer Look At The Impacts And LIME Explanations of HOLOS-Crop Dataset.

We can see that most of the data points are scattered around the diagonal line. But there

are some deviations from the line too. This indicates that models’ predictions are not

perfect. Also, there is a positive correlation between the predicted and actual values. There

is a cluster which is in the bottom left corner of the graph. This means that model may

under-predict the rotation index for some clusters. The diagonal predicted clusters seem to

be more expected in this graph.

Figure 4.24a rotation selection recommendations impact vs data point graph is a line

plot indicating the impact of rotation selection recommendations of the data points. The

increment of slightly upwards of the graph depicts the impact of the rotation selection

recommendation system as the size of the data point increases.

From this Figure 4.24b we can see the LIME explanation for the HOLOS crop based

dataset. Here, a strong and positive impact of soil carbon levels can be seen. Also, lower

AGR and BGR ratios show negative impacts in the predictors. But, soil carbon has com-

monly positive influences across different outputs like soil N2O levels.

Figure 4.25a elbow curve for the K-means clustering model shows that number of

clusters vs the inertia which is the sum of squared errors (SSE). the number of clusters

increases as the inertia gradually decreases. This means that with more clusters, there are

more centers to potentially be closer. Here, the overall distance from the data points to

their cluster centers tends to decrease. The elbow curve starts to show at around 7 or 8.
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(a) Elbow Curve for K-Means Clustering For
HOLOS Crop Dataset.

(b) ROC Curve for Crop Selection Classifica-
tion For HOLOS Crop Dataset.

Fig. 4.25: Final Cluster and Classification Algorithm Results of HOLOS-Crop Dataset.

Figure 4.25b ROC (receiver operating characteristic) curve for crop classification model

shows that the models performance is better than random predictions tendencies. The

curves seem to not come closer to the top-left side of the graph which is more expected.

The area under the curve (AUC) for this model is class 0 is 0.40.

4.2.2 HOLOS Animal Data

The purpose of this part of the analysis is minimizing energy consumption and CO2

emission while maximizing productivity and animal welfare. Then populating more opti-

mized farm scenarios with GAN.

Fig. 4.26: Parallel Coordinate Plot, Scatter Plot and 3D Scatter Plot For HOLOS Animal
Dataset.
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(a) Target Columns After Optimization For
HOLOS Animal Dataset.

(b) LIME Explanation For HOLOS-Animal
Dataset.

Fig. 4.27: Optimization and LIME Explanations of HOLOS-Animal Dataset.

Figure 4.26 parallel coordinate plot shows how each features as a line. Now we can

see that the high overall energy consumption and emission have high values. And animal

welfare score scores are spread out in the graph. Some of them have really high values and

others have low values. The optimization visualized scatter plot demonstrates more details

of the parallel coordinate plot. The data points are more distributed around the upper

right corner. These are the overall energy consumption and emission values. The size of the

circle in this area carries the variations in animal welfare score. Figure 4.26 3D scatter plot

shows the similar results in different visualization formats. From these plotted graphs we

can see that the epsilon constraint model fits better for the desired objective of this goal.

Figure 4.27a manifests the changes in target column for optimization that strengthens

the rotation selection for improving the efficiency. In this figure, we can see the target

columns after optimization phase and how the optimized states look like. The optimized

states of overall energy consumption and emission features are in one graph showing how

the optimization worked. The rotational selection significantly reduces the overall energy

consumption and emission while increasing the productivity and animal welfare score.

In the Figure 4.27b the LIME explanations can be seen for the HOLOS animal based

dataset. There is a strong connection of CO2 levels in the predicted outcomes. Also, the

high methane levels have a positive impact on welfare scores. Besides, it is clear that the

optimization of feed for temperature conditions improves productivity and overall energy

efficiency.
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(a) HOLOS-Whole Farm Crop-Selection and
Rotational Recommendation.

(b) HOLOS-Whole Farm Crop-Selection and
Rotational Recommendation With Impact In-
dicator.

Fig. 4.28: Some Optimized Farm Scenarios 001.

(a) HOLOS-Whole Farm Crop-Selection and
Rotational Recommendation.

(b) HOLOS-Whole Farm Crop-Selection and
Rotational Recommendation With Impact In-
dicator.

Fig. 4.29: Some Optimized Farm Scenarios 002.

From this observations, it can be said that the maintenance of soil nutrient levels

leads to less emission, the improvement of soil health is a long term productivity practices,

less ammonium nitrogen leads to less emission, overuse of nitrogen (fertilizers) leads to

increased emissions, tillage affects higher CO2 emissions, sometimes higher yields might

reduce emissions, different irrigation practices are a necessity, the reduction of methane

emissions (diet modifications) is needed, additional renewable energy sources usage, average

weight of the livestock helps in optimizing feed efficiency and the overall energy use of the

farm. Also, using energy efficient machineries or practices and high biomass crops might be

beneficial.

Some of the features with optimized plots of other features are included here. Now, after

applying the machine learning models some of the optimized crop selection and rotational

strategies can be seen in Figure 4.28, Figure 4.29 and Figure 4.30.

Now collecting the new farm scenarios considering both models. With this informa-

tion, generative AI model is used to populate more farm optimized farm scenarios. The

generative adversarial network (GAN) model is used in this case for populating the opti-



54

(a) HOLOS-Whole Farm Crop-Selection and
Rotational Recommendation.

(b) HOLOS-Whole Farm Crop-Selection and
Rotational Recommendation With Impact In-
dicator.

Fig. 4.30: Some Optimized Farm Scenarios 003.

(a) GAN Generated Farm Scenarios For
HOLOS-Whole Farm Crop Dataset.

(b) GAN Generated Farm Scenarios For
HOLOS-Whole Farm Animal Dataset.

Fig. 4.31: GAN Generated Some Farm Scenarios.

mized scenarios. In order to generate more optimized synthetic data, the generator neural

network architecture is built with two hidden layers. Also, the discriminator of the neural

network architecture is built using two hidden layers. Here, the weight of the discriminator

is frozen during the training phase of GAN. During the training phase, the generator and

discriminator work alternatively.

Next, after applying GAN on the optimized farm scenarios we can see some of the pop-

ulated farm scenarios in Figure 4.31a and Figure 4.31b for HOLOS crop and animal based

farm management practices respectively. Finally, the base cases and variations generated

by the GAN are plotted. Figure 4.31b shows the final results.

In the Figure 4.32 the aftermath of GAN application while observing the target columns
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Fig. 4.32: Target Columns After GAN Application For HOLOS Dataset.

(a) (b)

Fig. 4.33: HOLOS Crop-Optimized And GAN Generated Farm Scenarios 001.

can be seen for the HOLOS dataset. Here, the generative model can be seen to struggle

with the extreme values or the outliers. This limitation does not bring much variety in the

new populated GAN optimized farm scenarios. So, the presence of mixed match data can

be seen in real and generated data.

Finally, some of the HOLOS crop based optimized and GAN generated farm recommen-

dations can be seen in Figure 4.33 and Figure 4.34. Also, HOLOS animal based optimized

and GAN generated farm practices are shown in Figure 4.35, Figure 4.36 and Figure 4.37.
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(a) (b)

Fig. 4.34: HOLOS Crop-Optimized And GAN Generated Farm Scenarios 002.

(a) (b)

Fig. 4.35: HOLOS Animal-Optimized And GAN Generated Farm Scenarios 001.

(a) (b)

Fig. 4.36: HOLOS Animal-Optimized And GAN Generated Farm Scenarios 002.

(a) (b)

Fig. 4.37: HOLOS Animal-Optimized And GAN Generated Farm Scenarios 003.



CHAPTER 5

FUTURE WORK AND CONCLUSION

5.1 Future Work

Generated data from COMET-Farm and HOLOS whole-farm can be used in analyzing

and finding optimal resolutions. Such as energy efficiency equipment, livestock management,

ranching operation management, environmental factors, profitability increment, analyzing

and implementation of renewable energy integration in farm scenarios, optimizing irrigation

practices, reducing feed waste, waste heat recovery, life cycle analysis, eco-friendly infras-

tructure based scientific research. The emission data depends on the time and policies.

So, optimization needs more careful concentration. One of the most popular optimization

models is DQN (deep Q networks) which is a reinforcement learning model. Using DQN

and GAN could bring more productive outcomes in the future. Besides, some of the adap-

tations of new technologies are highly recommended in farming management. For example,

introduction of precision agriculture tools, automated irrigation systems or advanced ana-

lytics for better decision making practices. Also some changes in farming practices can be

beneficial. Also, resource management can be impactful in energy savings.

5.2 Conclusion

This experimental project gives a complete comprehensive understanding of how agri-

culture based farming management can be achieved with the reduction of GHG emission.

The atmospheric GHG concentration is extremely harmful for the future farming and ecosys-

tem. Also, with these sustainable farming management techniques, the production and

farming management can be well balanced. It is really complicated to find an optimal state

in agricultural based farming management. However, finding a proper balance between

different factors can provide more productivity and less GHGs emission rate.
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