Utah State University DigitalCommons@USU

Fall Student Research Symposium 2022

Fall Student Research Symposium

12-6-2022

Inter-Step Height Variation and Observations of Fall-Related Events During Stairway Negotiation

Shandon Poulsen Utah State University, shandon.poulsen@gmail.com

Follow this and additional works at: https://digitalcommons.usu.edu/fsrs2022

Part of the Social and Behavioral Sciences Commons

Recommended Citation

Poulsen, Shandon, "Inter-Step Height Variation and Observations of Fall-Related Events During Stairway Negotiation" (2022). *Fall Student Research Symposium 2022*. 60. https://digitalcommons.usu.edu/fsrs2022/60

This Book is brought to you for free and open access by the Fall Student Research Symposium at DigitalCommons@USU. It has been accepted for inclusion in Fall Student Research Symposium 2022 by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Inter-step height variation and observations of fall-related events during stairway negotiation

Shandon L. Poulsen, Chayston B. Brown, Christopher J. Dakin & Sara J. Harper

The New York Stairway

Inter-step height variations

Variations of 6.35 mm (about 1/4 inch) may cause more falls

Variations greater than 9.525 mm (3/8 inch) related to 60% of falls on stairs.

OVERVIEW

Why research falls?

How can we reduce falls on stairs?

A possible solution

Why research falls?

How can we reduce falls on stairs?

The simple answer:

The simple answer:

Build better stairs.

Occupational Safety and Health Administration (OSHA)

Height Variations

- East Stairway
- Upper 5 mm
- Lower 14 mm

East Stairway Inter-step Height Variability Range: 5 mm Inter-step Height Variability Range: 14 mm

West Stairway

- Upper 12 mm
- Lower 14 mm

Question #1

Are falls associated with greater step height variations?

Prediction

- More falls on flights with greater variation
 - Possible mechanisms: Assumptions of uniformity or lack of attention

A Possible Solution

Basis of intervention: Striping

- Step edge striping <u>5.5 cm</u>
 wide
- Vertical Striping on <u>first and</u> <u>last stair faces</u>

Question #2

Where there is greater height variation, do more falls occur on an unaltered or striped (intervention) stairway?

Prediction

 <u>More falls</u> will occur on the <u>unaltered</u> <u>stairway</u> on flights with <u>greater variation</u>

The Questions:

- Are falls associated with greater step height variations?
- Where there is greater height variation, do more falls occur on an unaltered or striped (intervention) stairway?

How did we go about testing this?

Methods

- Primarily college-aged adults
- Security cameras
- Fall events were recorded by flight and stairway condition

Results

- Question #1: More falls on flights with greater variation?
 - <u>Yes!</u>
 - 16 of 20 observed falls
- Question #2: Were there more falls on the control stairway with greater variation?
 - <u>Yes!</u>
 - 13 of 16 observed falls

	Control	Stripe/Intervention	
Low Variance	2 Fall-related Events LC	2 Fall-related Events LS	
High Variance	13 Fall-related Events HC	3 Fall-related Events HS	

Monte Carlo Simulation (P = 0.0358)

Discussion

- Striping, a simple, vision-based strategy, may reduce fall risk
- If a primarily young, healthy population benefits from striping, what about those who could benefit the most?

Future work

- Apply the intervention to high-risk populations
 - Older adults
 - Those with visual impairment

Acknowledgements

I would like to thank Christopher Long, Samantha Corbridge, Alex Braeger, Brevin J. Zollinger, Amy E. Hale, Emmalee Rolfe, McKay Wilding, and Erika Larsen for their efforts in coding video observations.

I would also like to thank USU Facilities for installing the video cameras and striping intervention.

Research support provided by a 2020 Utah State University Undergraduate Research and Creative Opportunity Grant.

References

Centers for Disease Control and Prevention. (2021, August 6). Facts about falls. Centers for Disease Control and Prevention. Retrieved September 29, 2022, from https://www.cdc.gov/falls/facts.html

Centers for Disease Control and Prevention. Web-based Injury Statistics Query and Reporting System (WISQARS) [online]. [cited 2021 January 19]. Available from URL: www.cdc.gov/injury/wisqars. Atlanta, GA: National Center for Injury Prevention and Control.

Cohen J, LaRue C, Cohen H. Stairway Falls An Ergonomics Analysis of 80 Cases. Professional Safety. 2009;54.

Elliott DB, Foster RJ, Whitaker D, Scally AJ, Buckley JG. In analysis of lower limb movement to determine the effect of manipulating the appearance of stairs to improve safety: A linked series of laboratory-based, repeated measures studies. JPublic Health. 2015;3(8):1-56.

Moreland B, Kakara R, Henry A. Trends in Nonfatal Falls and Fall-Related Injuries Among Adults Aged ≥65 years—United States, 2012-2018. MMWR Morb Mortal Wkly Rep 2020;69(27):875-881. DOI: 10.15585/mmwr.mm6927a5

Templer J. The Staircase. Cambridge, MA: Massachusetts Institute of Technology 1992.

Observations and age groups

Monte-Carlo Simulation

- Four assumptions were used to code our hypotheses for the total number of falls observed (n=20):
 - (1) Falls in HC > falls in LC
 - (2) Difference between LS and LC < 2 falls
 - (3) Number of falls in HC will be ≥ two times of HS
 - (4) Difference between LC and HC > the difference between LS and HS
- Probability of a distribution meeting these assumptions occurring by chance is P=0.0358

Γ.	Control	Stripe/Intervention	
Low Variance	2 Fall-related Events LC	2 Fall-related Events LS	
High Variance	13 Fall-related Events HC	3 Fall-related Events HS	

Occupational Safety and Health Administration (OSHA)

1910.25(b)(3) – Stairs should have <u>uniform riser</u>
 <u>heights and tread depths</u> between landings

- 1926.1052(a)(3) <u>Variations</u> in riser height or tread depth <u>shall not be over ¼ in (0.635 cm)</u> in any stairway system
 - Last amended FR 68795, Dec. 17, 2019.

Tread depth

Tread depth ranges (cm)					
West upper	0.6	East upper	0.4		
West lower	3.8	East lower	3.8		

At a glance

Why

- Falls present a health and financial burden

How

Step edge and face striping may reduce fall risk on stairs

Further work

- High-risk populations (i.e., older adults)