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ABSTRACT 

Quantitative Evaluation of Baseflow Separation Methods Using an Integrated Hydrologic 

Model: A Case Study in a Snow-Dominated Watershed 

by 

Jihad Othman, Master of Science 

Utah State University, 2024 

Major Professor: Dr. Pin Shuai 
Department: Civil and Environmental Engineering 

Baseflow, commonly referred to as the groundwater contribution to streamflow, 

constitutes approximately 50% of streamflow in mountainous regions of the Western United 

States. Accurately quantifying the amount of baseflow is critical for water management and 

decision-making, as it significantly impacts stream water quality, low flow availability, and 

ecosystem health. Traditionally, baseflow has been estimated using conceptual and 

automated baseflow separation methods, which are known to be both arbitrary and 

ambiguous, posing a challenge to validate them. In this study, we developed an integrated 

hydrologic model that seamlessly integrated the exchange between surface and subsurface 

flows to physically quantify the baseflow component in a snow dominated catchment—Coal 

Creek Watershed (CO, USA). The simulated baseflow and streamflow from the numerical 

model were then used as a controlled experiment to evaluate the performance of four 

commonly used baseflow separation methods, including the Pettyjohn and Henning (PH) 

graphical, the United Kingdom Institute of Hydrology (UKIH) graphical, the Eckhardt digital 

filter, and conductance mass balance (CMB) methods. Simulated baseflow has an average 
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baseflow index (BFI) of around 53% with a higher BFI in dry years versus that in wet years. In 

comparison to the numerical baseflow, both UKIH graphical and Eckhardt digital filter 

methods performed relatively well with high modified Kling-Gupta Efficiency (mKGE) (0.72 

and 0.68, respectively) and Nash-Sutcliffe Efficiency (NSE) (0.58 and 0.7, respectively) values. 

However, UKIH graphical method performed poorer than the Eckhardt digital filter method in 

average and dry years when stream hydrographs resemble unimodal peaks, which are typical 

in snow-dominated catchments. Additionally, the Eckhardt digital filter showed better 

performance in matching the temporal dynamics of baseflow with a smoother hydrograph. 

Both the PH graphical and CMB methods did not perform satisfactorily in estimating 

baseflow with both mKGE and NSE values less than 0.3. Among them, the PH graphical 

method has consistently overestimated baseflow with an average BFI of 85%, whereas the 

CMB method has consistently underestimated baseflow with an average BFI of 24%. Overall, 

the Eckhardt digital filter method is promising for automated baseflow separation in snow-

dominated catchments, though the relative importance of baseflow contribution to 

streamflow may be underestimated in dry years. Our findings suggest that integrated 

hydrologic models, when calibrated, provide a quantitative way to evaluate and improve 

existing baseflow separation methods. Caution should be exercised when applying 

automated baseflow separation methods in snow-dominated catchments, and future 

investigations are warranted to thoroughly evaluate these methods in catchments with 

diverse hydroclimate conditions. 
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1 INTRODUCTION 

Baseflow, as defined by Hall (1968) is the portion of streamflow that comes from the 

groundwater discharge. Baseflow also represents relatively stable streamflow between storm 

events (Koskelo et al. 2012) and low flows during dry periods (Figure 1). Baseflow is 

generated from precipitation that infiltrates into the subsurface and later discharges into 

streams in the form of groundwater discharge. In this study, the terms baseflow and 

groundwater discharge are used interchangeably and refer to the same subsurface source 

without differentiation of shallow and deep groundwater. 

Baseflow is critical to sustaining streamflow during dry periods and contributes to 

overall streamflow during periods of high flow (Hall, 1968; Koskelo et al., 2012). In the 

mountainous watersheds of the Western United States, it is estimated that over 50% of 

streamflow originates as baseflow (Rossman & Zlotnik, 2013). Any changes in baseflow 

availability will directly impact ecosystem health. Baseflow has different ion concentration, 

pH, and temperature than the stream water and plays a significant role in determining 

stream water quality (Reynolds et al., 1986), thus affecting the living organisms that form 

ecological diversity (Li and Yue, 2016). Additionally, as a component of the basinwide water 

balance (Famiglietti,2014; McNutt, 2014), baseflow is considered in water management 

practices, including irrigation, human consumption, and flood control (Lott & Stewart, 2013; 

Tan et al., 2020). Given the importance of baseflow, accurately estimating and separating 

baseflow from total streamflow is important (S. K. Singh et al., 2019). This process ensures a 

reliable assessment of water quality and quantity and supports water resource management 

in regions facing variable climatic conditions and increasing water demands (Eckhardt, 2008).  
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Figure 1: Baseflow (dashed line) shown as part of the streamflow (solid line) is illustrated using a 
straight-line graphical separation method. Note that during the low flow period, baseflow overlaps 
with streamflow. Adopted and modified from Bosch et al. (2017) 

Numerous automated hydrograph-based and tracer-based methods have been 

developed and applied to effectively estimate and separate baseflow, enhancing our ability 

to manage and protect water resources efficiently (Table 1). The tracer-based method is used 

in conjunction with water balance calculations when tracer concentrations are known, 

assuming a defined relationship between the tracer concentration and the water source 

(Cook et al., 2008). In contrast, the hydrograph-based method does not use any tracer but 

employs conceptual algorithms to separate baseflow from streamflow (Eckhardt, 2008).  

Table 1: A comparison of the baseflow separation methods used in this study 

Baseflow 
separation 
methods 

Hydrograph-based Tracer-based  

Numerical 

Graphical Digital Filter Mass Balance 

Methods used in 
this study 

Pettyjohn & 
Henning 
(1979): 

 
Fixed interval  

 
Sliding 

Eckhardt 
(2005) 

Conductance 
Mass Balance 

(CMB)  
Miller et al. 

(2015) 

Integrated Hydrological 
models Delottier et al. 
(2022) Partington et al. 

(2012) 
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interval 
 

Local 
Minimum  

Description 

Conceptual 
method based 

on 
hydrograph 

only 

Conceptual 
method based 
on hydrograph 

only 

Conceptual 
method based 
on hydrograph 

and specific 
conductance 

Quantitative method 
based on model 

outputs 

Software/Package 
(if available) 

HYSEP - - 
ATS (Advanced 

Terrestrial Simulator) 

Required inputs 

Streamflow 
 

Catchment 
area 

Streamflow 
 

Catchment 
area 

 
Maximum 

baseflow index 
(BFImax) 

 
Recession 
constant 

Streamflow 

Continuous 
specific 

conductance 
measurements 

Meteorological forcing 
data 

Land cover 

Surface and subsurface 
characteristics  

 

 
 

There are two techniques derived from the hydrograph-based method: the Graphical 

and Digital Filter. The graphical method involves dividing the hydrograph into events of 

constant lengths of days and identifying the low flow point of each event using three 

different approaches, which are discussed in the methodology section. The digital filter 

method partitions continuously the hydrograph into two components, direct runoff and 

baseflow (Eckhardt, 2005). 

One of the commonly used graphical methods is developed by Pettyjohn and 

Henning (1979), which uses the catchment area to determine the event length of days. There 

are three different algorithms included in the method, namely fixed interval, sliding interval, 

and local minimum (LocMin), to determine the selections of the lowflow points. The 

connecting line of these specific low points forms the baseflow. Before 1991, this process 

involved manually identifying and connecting the lowflow points (Sloto & Crouse, 1996). In 
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1991, White & Sloto developed HYSEP, a computer program that automates this process 

using various algorithms (Sloto & Crouse, 1996). The results from the White & Sloto graphical 

method using HYSEP closely matched those obtained from manual hydrograph separation at 

307 streamflow measurement stations in Pennsylvania, USA. Since then, numerous methods 

have been developed, each using different algorithms for more refined baseflow separation. 

USGS has advanced this field by developing software such as the USGS GW Toolbox that 

include the HYSEP program (Barlow et al., 2022; Sloto & Crouse, 1996). Another commonly 

used graphical method is the smoothed minima method developed by the UK Institute of 

Hydrology (UKIH) in 1980. The UKIH method is considered easy to apply, as it determines 

baseflow by identifying and interpolating turning points derived from daily streamflow data 

(Gustard et al., 1992; Piggott et al., 2005; Zhang et al., 20017).  

The digital filter method involves analyzing the signal in streamflow to separate the 

baseflow, which is assumed to be the low-frequency component of the streamflow (Guzman 

et al., 2015; Eckhardt, 2008; Xie et al., 2020). The Digital Filter method assumes that the 

outflow from the aquifer, which constitutes the baseflow, is proportional to the aquifer's 

storage (Eckhardt, 2005, 2008). There are multiple digital filter methods, each with a unique 

equation form, but they all assume that baseflow is the slow-responding, low-frequency 

component of streamflow, whereas quick flow is the fast-responding, high-frequency 

component of precipitation event response (Xie et al., 2020). The earliest of these is the LH 

method (Lyne and Hollick, 1979) which uses a single-parameter filtering algorithm, 𝛽, based 

on signal analysis and processing to separate baseflow (Yang et al., 2021). However, 𝛽 has a 

low physical connection with the catchment characteristics (Xie et al., 2020). Chapman 

(1991) criticized the LH method for estimating unreasonable baseflow levels with some peak 

flow during low flow periods, where no peak flow should be present. Chapman updated the 

LH method's equation to keep the baseflow constant during non-peak flow periods, thus 



5 
 
 

preventing baseflow from decreasing during drought periods (Xie et al., 2020). Instead of 

using 𝛽, they introduced the filter parameter 𝛼 (exponential recession) to consider the 

baseflow exponential recession (Eckhardt, 2008; Xie et al., 2020). Later, Chapman and 

Maxwell (1996) further refined the method to account for the previous day’s baseflow in the 

calculation, maintaining a single-parameter filtering algorithm. Eckhardt (2005) derived a 

two-parameter recursive digital filter method with linear reservoir assumption. In addition to 

the 𝛼, Eckhardt introduced a new parameter, BFImax, representing the maximum value of the 

baseflow index, defined as the long-term ratio of baseflow to total streamflow (Yang et al., 

2021).  

Several studies have compared these methods with baseflow estimated using other 

methods as controls. Gonzales et al. (2009) compared the digital filter method developed by 

Eckhardt (2005) to a dissolved-silica-based method with six other baseflow separation 

methods, concluding that the digital filter method was the most convenient. Xie et al. (2020) 

compared five digital methods, including all the above-mentioned, and four graphical ones in 

1815 catchments across the CONUS, finding that the Eckhardt method was the best among 

them. On the other hand, Bhardwaj et al. (2024) applied the Eckhardt digital method in the 

Himalayan River basin, Northern India, along with other baseflow separation methods. Their 

evaluation using statistical and graphical indicators revealed that the Eckhardt digital method 

was not as effective, lacking versatility and reliability due to limitations in parameter 

availability. 

Hydrograph and digital filter based conceptual methods are beneficial because they 

are easily automated, replicable, and require minimal data. However, despite their ease of 

use, these automated conceptual models for baseflow separation possess significant 

limitations: (1) They rely on assumptions that overlook surface, subsurface, and climate 



6 
 
 

characteristics specific to the basin, focusing mainly on discharge and basin area (Eckhardt, 

2005; Huyck et al., 2005). For example, the basin area is the only input required for applying 

the Pettyjon and Henning (PH) graphical method. (2) Digital methods use simple assumptions 

that may introduce errors in baseflow estimation. For example, the recession constant is 

estimated by assuming a linear reservoir between groundwater storage and baseflow, which 

is found to be non-linear (Huyck et al., 2005). (3) The empirical parameters used in digital 

filter methods typically have a low physical connection to the basin characteristics (Xie et al., 

2020). For example, the BFImax used in Eckhardt (2005) digital filter method has only three 

suggested values (i.e., 0.25, 0.5 and 0.8) that correspond to basins that fall into three simple 

categories (i.e., perennial streams with porous aquifers, ephemeral streams with porous 

aquifers, and perennial streams with hard rocks). Therefore, the choice of BFImax value often 

relies on a subjective interpretation of the hydrogeological condition of the study site  

(Eckhardt, 2008). Furthermore, the hydrograph-based method is often challenging to apply 

in snowmelt-dominated watersheds (Miller et al., 2015). This phenomenon is primarily 

attributed to the infrequency of quick flow events (e.g., rainfall-driven runoff events lasting 

less than five days) in snowmelt-dominated watersheds, where runoff is predominantly 

driven by prolonged snowmelt events (e.g., lasting more than a month). Snowmelt-driven 

hydrographs typically exhibit a unimodal peak discharge with gradual increases and 

decreases in flow rates and minimal variations in discharge outside the snowmelt runoff 

period (Julander and Clayton, 2018). Consequently, methods that utilize short intervals (e.g., 

5-day blocks in the UKIH method) to identify minimum streamflow points for baseflow 

separation become less effective. 

The tracer-based approach is a widely used method for streamflow separation that 

relies on mass balance equations, utilizing chemical concentrations in the stream, stream 

discharge, and the end member variables (Stewart et al., 2007). The end member is the 
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chemical concentrations of the source water. The two end-member components used to 

separate baseflow from the streamflow are runoff and baseflow end members (Caine, 1989; 

Miller et al., 2014, 2015). Different tracers including stable isotope tracers such as deuterium 

and oxygen, and major ions such as calcium, silica, and specific conductance were used to 

quantify the runoff and baseflow (Dinçer et al., 1970; Miller et al., 2014; Pinder & Jones, 

1969). According to Gonzales et al. (2009), the accuracy of the tracer-based approach is 

affected by the type of tracer for a given catchment and its heterogeneity. For example, 

stable isotopes provide information about the residence time and ratio of contribution of 

water resources and, thus, are considered one of the most accurate chemical tracers (Kendall 

& Caldwell, 1998). However, the high cost associated with sample analysis is one of the main 

limitations of using the isotopic tracers. In contrast, specific conductance-based tracer 

method has become popular due to its relatively low cost and effectiveness in separating 

baseflow from total streamflow (Cassie et al., 1996). 

The conductivity mass balance (CMB) method uses the difference in specific 

conductance (SC) between runoff and baseflow to separate the streamflow (Hayashi et al., 

2004; Stewart et al., 2007). The CMB method is often used to separate baseflow because SC 

measurements are relatively easy and inexpensive to obtain and are readily available in many 

USGS gages (Miller et al., 2015). Additionally, the CMB method has been demonstrated 

successfully for baseflow estimation in snow-dominated watersheds in the Upper Colorado 

River Basin (Miller et al., 2014). To use this method effectively, continuous, high-frequency SC 

data is preferred with information about the SC of both runoff and baseflow end members 

(Lott & Stewart, 2013; Stewart et al., 2007). However, long-term, continuous, high-frequency 

(e.g., daily) SC data is often lacking in most watersheds (Miller et al., 2015). One way to 

estimate daily SC values is to analyze the relationship between stream discharge and SC, 

which generally shows an inverse relationship with a power function (Lott & Stewart, 2013; 
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Miller et al., 2014). Others, such as Miller et al. (2015), estimated the daily SC concentrations 

using a regression analysis approach. They used the discrete SC measurements in a 

regression model to estimate the continuous SC concentration for snow-dominated 

catchments. The regression-derived was described to provide an accurate baseflow 

estimation. Then, the estimated SC was used in the CMB method to estimate the baseflow 

and compare it with a graphical method developed by Wahl and Wahl (1988). They 

concluded that the CMB method showed better baseflow estimates than the graphical 

method at 12 snowmelt-dominated sites.  

The CMB method can be challenging to apply in catchments with multiple sources of 

groundwater but is more applicable in small catchments with limited groundwater sources 

(Miller et al., 2014). Rumsey et al. (2015) used this approach with regression-based 

estimates to find daily SC values in the headwaters of the Upper Colorado River Basin. Their 

results showed that baseflow made up about half of the streamflow each year. However, the 

lack of high-frequency SC data can sometimes limit its broader use (Matsubayashi et al., 

1993). Additionally, determining the end-members SC for large-scale catchments is more 

challenging due to high spatial variation, affecting the accuracy of this method (Sanford et 

al., 2011).  

To understand the impact of these limitations on the baseflow estimation, (Mau & 

Winter, 1997), suggested validating baseflow estimations using independent methods that 

account for different forcing functions and hydrological conditions, such as numerical 

methods. These methods, which are physics-based, address many of these limitations by 

directly simulating baseflow from model outputs (Partington et al., 2012). However, many of 

those numerical models do not explicitly simulate the exchange between surface water and 
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groundwater and groundwater reservoir is often simplified, resulting in poor representation 

of baseflow (Delottier et al., 2022). 

In surface hydrologic models, groundwater flow is primarily solved using simple 

groundwater equations such as Darcy’s law (V. P. Singh, 2018). For example, Lee et al. (2014) 

discussed the Soil and Water Assessment Tool (SWAT), which contributes to baseflow 

estimation but does not directly simulate it. SWAT can simulate streamflow, surface runoff, 

aquifer percolation, and groundwater re-evaporation, and then these variables can be used 

by other models and methods, for example, conceptual methods or the integration of these 

hydrological processes, to estimate the baseflow (Lee et al., 2014). Consequently, this 

approach could not capture the dynamic nature of low flows inherent in baseflow 

(Partington et al., 2012).  

In subsurface hydrologic models, also known as groundwater models, the 

conductance concept or other techniques are used to generate baseflow. However, neither 

surface nor subsurface models alone accurately assess the integrated exchange between 

surface and subsurface water, leading to incomplete estimations of baseflow dynamics 

(Staudinger et al., 2019). An example of a subsurface model is MODFLOW, which can 

simulate saturated groundwater and unsaturated flow using Darcy’s law, though it often 

employs simplified surface flow boundaries (e.g., constant recharge) (Brunner et al., 2010).  

According to Staudinger (2019), the development of surface-subsurface, called 

integrated hydrologic models including models such as HydroGeoSphere (HGS) (Therrien et 

al., 2006), MODHMS (Hydrogeologic Inc., 2006) and Parflow (Kollet & Maxwell, 2006), has 

filled this gap by quantitatively assessing the integrated exchange between surface and 

subsurface waters. These models typically solve a 2-D overland flow equation, a 3-D Richards 

groundwater governing equation, as well as land surface energy balance such as 
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evapotranspiration and snowmelt. They often simulate spatial and temporal dynamics of 

surface and subsurface flow and their exchanges at fine spatiotemporal resolutions (e.g., 10s 

meter and daily), enabling the quantification of exchange fluxes at m to 10s m scale and sub-

daily frequency. Therefore, baseflow can be directly estimated across the watershed by 

integrating the groundwater discharge across the land surface throughout the year. 

Additionally, integrated hydrologic models are valuable for assessing simpler conceptual 

models as they eliminate the need to assume a functional relationship between baseflow 

and streamflow or rely on basic empirical relationships (Partington et al., 2012). Thus, until 

new observational techniques and conceptual hydrographical models are developed to 

address these gaps, numerical models remain the most reliable method for directly 

quantifying baseflow dynamics under varying hydrologic conditions for catchments with 

diverse characteristics (Partington et al., 2012). 

Partington et al. (2012) applied the HGS, a physically based, integrated hydrologic 

model, to conduct spatial and temporal surface and subsurface simulations. However, HGS 

was not used alone to determine the baseflow contribution to streamflow in catchments 

because of the high surface and groundwater exchange, where both losing and gaining areas 

vary along the catchment (Partington et al., 2011). To address this, Partington (2011) 

developed a hydraulic mixing cell (HMC) module in combination with HGS to demonstrate 

spatiotemporal exchange, thus allowing for effective baseflow separation. HMC is a tracking 

method for all streamflow generation mechanisms, enabling the tracking of groundwater 

discharge directly to the stream while considering travel time and surface-subsurface 

exchange, both in and out. This method helps parse streamflow into runoff and baseflow 

(Partington et al., 2011). Because this combined method relies on quantitative analysis to 

theoretically examine baseflow dynamics, the resultant baseflow was used by Partington et 

al. (2012) to compare the performance of other conceptual methods for automated 
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baseflow separation. These methods included the graphical method using different packages 

such as HYSEP (Sloto & Crouse, 1996), PART (Rutledge, 1998) and BFLLOW (Arnold and Allen, 

1999), and Eckhardt digital filter method (Eckhardt, 2005). Automated baseflow separation 

methods appear to be affected by the complexity of baseflow dynamics, as they could not 

perform satisfactorily, and no single separation method proved to be clearly superior to the 

others. It is worth noting that the numerical method used as the control followed the tilted 

V-catchment geometry employed by Panday & Huyakorn (2004) to represent the catchment. 

This assumption might have also impacted the control baseflow results. 

Delottier et al., 2022 reviewed the applications of HGS to assess the applicability of 

integrated models in both small and large catchments. They found that while the model had 

been used to directly simulate baseflow in small catchments, it had not been applied to 

regional-scale catchments. Applying HGS to regional-scale catchments is computationally 

very expensive and time-consuming (Ledoux et al., 1984). To avoid long simulation times, 

Delottier used a surface water mass balance module to obtain spatial and temporal 

infiltration, which was then used as an input to the HGS. The model performance in 

simulating baseflow was acceptable by the authors and they suggested that comparing the 

obtained baseflow with conceptual models should be explored in future research. 

Nonetheless, very few studies have simulated baseflow using integrated hydrological 

models, and even fewer have compared the baseflow results to those from automated 

conceptual methods. Therefore, there is a need for an assessment of commonly used 

baseflow separation methods, particularly in snow-dominated catchments. 

This project aims to quantitatively evaluate commonly used baseflow separation 

methods to simulate baseflow using an integrated hydrologic model in a snow-dominated, 

mountainous headwater watershed. The hydrologic model is developed and calibrated 
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against field observations. Then, the simulated baseflow from the model is used as a 

numerical control experiment to validate the estimated baseflow from the graphical, digital 

filter, and conductance mass balance methods. This work provides physically based 

recommendations to establish which commonly used baseflow separation method is 

appropriate for snow-dominated, mountainous watersheds. 

2 STUDY AREA 

The Coal Creek Watershed, our study site, is located in West-Central Colorado within 

the larger East Taylor Watershed (Figure 2). Located near Crested Butte, Coal Creek falls 

under the Hydrologic Unit Code-12 (HUC12) 140200010204, which is part of the larger East 

Taylor Watershed (HUC 14020001). The watershed covers an area of 53.2 km² and is 

characterized by its mountainous terrain, with elevations ranging from approximately 2706 

meters above sea level (m.a.s.l.) at the eastern boundary to 3770 m.a.s.l. at the western 

boundary. Described as a high alpine (Köppen and Geiger, 1930), snowmelt-dominated 

catchment, the area experiences a warm summer and humid continental climate. According 

to the Daymet dataset (Thornton et al., 2021), the watershed receives about 850 mm of 

precipitation annually, of which 530 mm falls as snow. This contributes to the total discharge 

measured daily by the USGS station number 09111250 at the watershed outlet. Vegetation in 

the watershed is diverse, comprising 62.6% evergreen forest and 20.5% shrub, along with 

other less dominant types.  
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Figure 2: Coal Creek Watershed map in the context of the USA. The red point represents the USGS 
station 09111250, which measures the output flow of the watershed through the river network and is 
used in the study for numerical method validation. The river network and the Digital Elevation Model 
(DEM) were obtained from the National Hydrography Dataset Plus (NHDPlus). 

3 METHODOLOGY 

3.1 Numerical Method  

3.1.1 ATS Model Setup 

ATS (Advanced Terrestrial Simulator) is a fully distributed integrated model that 

simulates the flow of water in both surface and subsurface environments (Coon et al., 2019). 

It employs a two-dimensional diffusion wave approach, based on the Saint-Venant equation, 

to represent surface water movement, and a three-dimensional approach, using Richards 

equation, for subsurface flow. The Richards equation is described below: 
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𝜕

𝜕𝑡
(∅𝑠) + 𝛻. 𝑞 = 0, Equation 1 

 

with  

𝑞 = −
1

𝜇
𝑘𝑟𝜅(𝛻𝑝 + 𝜌𝑔), Equation 2 

Where 𝜙 is the effective porosity (-), s is the saturation (-), q is the Darcy flux (m s−1), 

µ is the dynamic viscosity (Pa s−1), kr is the relative permeability (–), κ is the saturated 

hydraulic permeability (m2), p is the water pressure (Pa), and g is the gravitational constant 

(m s−2). 

The diffusive wave approximation to overland flow is described as 

𝜕ℎ

𝜕𝑡
  +  𝛻 · (ℎ𝑣) =  𝑄𝑤  +  𝑄𝑠𝑠, Equation 3 

With 

𝑣 = −
ℎ

2
3

𝑛. max(∈, √𝛻𝑧)
∇(𝑧 + ℎ), Equation 4 

where h is the depth of ponded water (m), 𝑣 is the surface flow velocity (m s−1), 𝑄𝑤 

are all external source/sink terms (m s−1), 𝑄𝑠𝑠 is the exchange flux between surface and 

subsurface systems (m s−1), 𝑛 is Manning’s coefficient (s m−1/3), 𝑧 is surface elevation (m), and 

∈ is a small positive regularization to keep the equations non-singular in places with zero bed 

slope (m). 

The model incorporates the Priestley–Taylor equation to account for 

evapotranspiration (ET) from sources such as snow sublimation and vegetation transpiration, 

integrating these factors into the surface-subsurface simulations. The original ATS model for 

Coal Creek was developed by Shuai et al., 2022 (For details regarding model setup, please 

refer to this paper). Horizontally, the model mesh consists of 171,769 grid cells with an area 
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ranging from 5,000 m2 to 50,000 m2. Vertically, there are 19 subsurface layers, representing a 

total depth of 28 m with varying thickness. The top layer is about 5 cm thick, and the bottom 

layer is 2 m thick. The model was spin up first then used in transient simulations driven by 

the meteorological forcing dataset.  

For this study, we have extended the simulation period from 2019 to 2022. In total, 

the model covers eight years ranging from October 1, 2014, to October 1, 2022, with daily 

outputs. The first water year was excluded from the results to allow the model to stabilize. 

The model simulated variables such as groundwater discharge (assumed to be baseflow), 

streamflow, and soil saturation. The model has previously been calibrated against streamflow 

for Coal Creek from October 1, 2016, to October 1, 2019 (Jiang et al., 2023) .  

The streamflow of the period of study is compared with the observation data and 

the model performance is evaluated using the modified Kling-Gupta Efficiency (KGE) and 

standard Nash-Sutcliffe Efficiency (NSE) (Kling et al., 2012). The modified KGE metric is 

represented in the equation: 

 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛾 − 1)2 + (𝛽 − 1)2 Equation 5 

 

With  

𝑟 =
𝑐𝑜𝑣(𝑆, 𝑂)

𝜎𝑠 𝜎𝑂
 

Equation 6 

 

𝛾 =
𝜎𝑠/𝜇𝑠

𝜎𝑂/𝜇𝑂
 

Equation 7 
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𝛽 =
𝜇𝑠

𝜇𝑂
 Equation 8 

 

where S and O represent simulated and observed values, respectively, r is the 

correlation coefficient, 𝛾 is the variability ratio, 𝛽 is the bias ratio, 𝑐𝑜𝑣(𝑆, 𝑂) is the covariance 

between simulated and observed values, 𝜎 is the standard deviation, and 𝜇 is the mean. 

The modified KGE is different from the original one by the ability to detect the 

generated bias due to the input effect on the variability indicator (Gupta et al., 2009; Kling et 

al., 2012). The KGE breaks down the model performance into three components: correlation 

(r), variability (𝛾), and bias (𝛽). The correlation component evaluates the timing accuracy of 

streamflow predictions, reflecting temporal dynamics, while the variability and bias 

components assess the flow duration curve, indicating the magnitude of streamflow. The 

KGE score ranges from negative infinity, indicating the poorest model performance, to 1, 

signifying a perfect model where all three components reach unity. This representation of 

the KGE also applies to that of the NSE achieving perfect performance at the value of 1. 

3.1.2 Calculating baseflow using the numerical model simulated variables  

This section briefly explains the approach with the required assumptions to calculate 

baseflow. The hydrologic processes and variables that form the input and output of the 

surface water balance equations are precipitation, infiltration, runoff (both surface and 

subsurface), baseflow, and evapotranspiration (Dingman, 2002; Tarboton, 2003). 

𝑖𝑛𝑝𝑢𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡            Equation 9 
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𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑤𝑎𝑡𝑒𝑟 𝑛𝑒𝑡

= 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 + 𝑐𝑎𝑛𝑜𝑝𝑦 𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 + 𝑠𝑛𝑜𝑤𝑚𝑒𝑙𝑡

− 𝑒𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑟𝑢𝑛𝑜𝑓𝑓 − 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

Equation 10 

 

ATS model simulates the exchange fluxes across the river, which can be used to calculate the 

baseflow. Positive fluxes indicate exfiltration (water that leaves the subsurface and flows 

onto the river) whereas negative fluxes indicate infiltration (water enters the subsurface) 

𝑛𝑒𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 –  𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛  Equation 11 

Integrating all positive fluxes across the surface can quantify total exfiltration (infiltration) at 

each timestep. Total infiltration consists of net infiltration and re-infiltration: 

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑡 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑟𝑒_𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 Equation 12 

Net infiltration refers to the process by which water from precipitation or snowmelt 

penetrates the surface and enters the subsurface. Re-infiltration, on the other hand, 

describes the process where water that has already infiltrated at one location exfiltrates and 

then infiltrates again at a different location. For example, rainfall that infiltrates at an 

upstream location may exfiltrate into the stream at a downstream location, and then 

reinfiltrate into the subsurface (Figure 3). Similarly, total exfiltration is the sum of net 

exfiltration and re-exfiltration 

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛

= 𝑛𝑒𝑡 𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑒. 𝑔. , 𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤)

+ 𝑟𝑒_𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

Equation 13 
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Net exfiltration (also known as baseflow) refers to groundwater that emerges onto the 

surface and contributes to streamflow. Re-exfiltration describes the process where water 

that has exfiltrated at one location infiltrates again and subsequently exfiltrates at a different 

location.  Baseflow is calculated using the following equation: 

𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤 = 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑟𝑒_𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 Equation 14 

Re-exfiltration is assumed to be equivalent to re-infiltration for the daily calculations of 

baseflow. This assumption is considered reasonable under the premise that the infiltrated 

water is exfiltrated on the same day without any delay. Consequently, this timing assumption 

between infiltration and exfiltration is applied consistently across all baseflow calculations in 

this project. 

𝑟𝑒_𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑟𝑒_𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 Equation 15 

The subsurface water balance is shown in the following equations: 

∆𝑆 = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 Equation 16 

Substituting values from Equation 12,Equation 13, and Equation 15 into Equation 16 to 

obtain:  

∆𝑆 = 𝑛𝑒𝑡 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤 Equation 17 

During dry periods, when there is no snowmelt and no rainfall, infiltration (e.g., net 

infiltration) and runoff are assumed to be zero. Using Equation 16 and the assumption of 

zero net infiltration during dry periods, the dry period baseflow is calculated as follows: 
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𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤 = −𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − ∆𝑆 Equation 18 

Now that the baseflow during dry periods is calculated, it is important to note that it is not 

continuous for the entire year. To calculate the continuous baseflow for the entire year, both 

total exfiltration and re-exfiltration must be known (see Equation 14). While total exfiltration 

is directly simulated by the model, re-exfiltration can be calculated as follows:  

1. Finding the discontinuous re-exfiltration (dry): the model simulates daily total 

infiltration that could be used directly in Equation 12. After substituting  Equation 

15 in Equation 12, only net infiltration is still required to find the re-exfiltration. 

Assuming that snowmelt and rainfall are the only sources of infiltration during dry 

periods, the net infiltration is zero during dry periods. Thus, Equation 12 during 

dry periods is as follows:  

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑟𝑒_𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛
= 𝑟𝑒_𝑒𝑥𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑑𝑟𝑦)  

Equation 19 

Thus, the discontinuous re-exfiltration of dry days is now calculated  

2. Estimating the continuous re-exfiltration: the relationship between the simulated 

continuous total exfiltration and discontinuous re-exfiltration (dry) is extracted. 

Then, according to this relationship and using the continuous total exfiltration 

data, the daily continuous re-exfiltration is interpolated.  

3. Estimating baseflow: Subtract the estimated re-infiltration from the total 

exfiltration to obtain the final baseflow (see Equation 14). The baseflow is 

checked if it exceeded the streamflow, and if so, the percentage of exceedance is 

calculated as below:  
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% 𝑜𝑓 𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 =
(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤 − 𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤)

𝑠𝑡𝑟𝑒𝑎𝑚𝑓𝑙𝑜𝑤
× 100 

 

            Equation 20 

 

If baseflow exceeds the streamflow, the dry period baseflow calculated in 

Equation 18 replaces the exceeded days. replaces the exceeded days. If there is 

no dry baseflow for the exceedance days, the baseflow is removed, and those 

days are left blank.  
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Figure 3: The exchange between the surface and subsurface along the riverbed and edges through the 
bed-form-driven and meander-driven exchanges. The upper figures are adapted from Boano et al. 
(2014). The water infiltrates and is assumed to exfiltrate in the same day without any delay. Thus, the 
re-infiltration is assumed to be equivalent to the re-exfiltration.  

 

3.2 PH-Graphical Method 

The PH approach is a graphical method that was developed by Pettyjohn & Henning (1979) 

(Table 1). The PH graphical approach can be implemented using three algorithms that 

systematically connect low points into a line. Each algorithm is considered a separate 

method: the fixed interval, sliding interval, and local minimum methods (Pettyjohn and 

Henning, 1979). Sloto & Crouse (1996) explained the methodology of the three approaches 

starting with the common requirement of these methods such as the daily streamflow that is 

simulated by ATS model and the duration of the surface runoff which is calculated from the 

empirical relation: 

N = A0.2 Equation 21 
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Where N is the number of days after the runoff stops and A is the drainage area in square 

miles. The 2N values are then calculated. The 2N value should be changed to the closest odd 

integer, ensuring it remains within the range of a minimum of 3 and a maximum of 11. 

The fixed-interval method works by detecting the lowest discharge within each 

interval of 2N* days. At this lowest point, a straight horizontal line is plotted, starting at the 

beginning of the 0th day of the 2N* interval and ending at the 2Nth day (Figure 4). The 

baseflow is represented by the line connecting these lines.  

The sliding-interval method involves calculating the interval width as 2N*-1. The 

median day of this new interval is then assigned the lowest discharge recorded within that 

interval (2N*-1), creating a point with the median day as the x-axis coordinate and the lowest 

discharge as the y-axis coordinate. The interval is then shifted forward by one day, and the 

new median day is assigned the corresponding lowest discharge, forming a new point with 

the new median day being the previous day plus one. This process is repeated for the entire 

period of interest. All the obtained points are then connected by straight lines to form the 

baseflow hydrograph, which represents the baseflow component of the total streamflow. 

The local minimum method also involves calculating the 2N*-1 width. The process 

starts by checking if any of the days within a 0.5(2N*-1) width to the right and 0.5(2N*-1) 

width to the left of the assigned day have a lower discharge than that of the assigned day. If 

so, the newly assigned day is the day that has the lowest discharge within the total width of 

(2N*-1). This process is repeated for the newly assigned day. If there is no lower discharge 

within this interval, this day and its discharge are assigned as a local minimum. All the local 

minimums are then connected by straight lines to represent the baseflow. This method can 

be visualized as drawing straight lines between the lowest points on the hydrograph to 

represent the baseflow.  
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Figure 4: Three approaches of PH graphical method (The 2N* used in these examples is 5 days): (a)The 
fixed-interval method. The baseflow is represented by the line connecting the upper edges of the 
black rectangles. These horizontal lines indicate the lowest discharge within each fixed 2N*-day 
interval, forming the baseflow component of the hydrograph. (b) The sliding interval method where 
one point of the coordinates of the lowest discharge and median day of the 2N*-1 interval. All the 
points are connected in green. (c) The local minimum method. Adapted from Sloto & Crouse (1996) 

3.3 UKIH Graphical Method 

The UKIH method is a smoothed minima method that estimates the baseflow by 

identifying the turning points within the hydrograph. The turning points are the days of 
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corresponding streamflow values assumed to be the entire baseflow (Gustard et al., 1992; 

Piggott et al., 2005; Zhang et al., 2017). The steps required to find the turning points are 

described by Aksoy et al. (2009), Zhang et al. (2017), and Xie et al. (2020) as follows: (1) 

partitioning the hydrograph into 5-day consecutive segments without any gaps or 

overlapping and note the days that have the minimum streamflow in the entire segment. 

These are the minimum points that have streamflow values of Q1, Q2, Q3, …, Qt, where t is 

the order of the block, (2) grouping each of three consecutive minimum points as (Q1, Q2, 

Q3), (Q2, Q3, Q4), …, (Qt-1, Qt, Qt+1), (2) selecting the groups that have Qt ≤ 1.11 Qt-1 and Qt ≥ 

1.11 Qt+1. The central points of the selected groups are the turning points. Once all turning 

points are found, the turning points are linearly interpolated as a baseflow line. The final 

baseflow hydrograph is plotted by restricting the exceedance of the baseflow line against the 

streamflow hydrograph. 

3.4 Eckhardt Digital Filter Method 

Eckhardt (2005) introduced a special technique for separating baseflow by modifying 

existing digital filter techniques, known as the recursive digital filtering method, that 

partitions streamflow into baseflow and runoff: 

𝑦𝑘 = 𝑓𝑘 + 𝑏𝑘 Equation 22 

Where y is the total streamflow,  

 f is the direct runoff, 

 b is the baseflow, 

 k is the time step, 

With the assumption of the linear reservoir, they followed the following algorithm: 
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𝑏𝑘 =
(1 − 𝐵𝐹𝐼𝑚𝑎𝑥)𝑎𝑏𝑘−1 + (1 − 𝑎)𝐵𝐹𝐼𝑚𝑎𝑥 𝑦𝑘

1 − 𝑎𝐵𝐹𝐼𝑚𝑎𝑥
 

Equation 23 

Where 𝑎 is the recession constant and 𝐵𝐹𝐼𝑚𝑎𝑥 is the maximum value of the baseflow index 

According to Eckhardt (2005), the main parameters required to apply this method 

are the recession constant and the maximum value of the baseflow index (BFImax). The 

recession constant was calculated using different methods. Xie et al. (2020) used regression 

analysis to determine the recession constant for 1815 catchments. In our study, we 

conducted a similar recession analysis and derived a recession constant of 0.988. This value 

has been utilized in the application of the Eckhardt baseflow separation method. 

As BFImax cannot be directly measured, Eckhardt (2005) analyzed results from various 

watersheds with differing hydrogeological characteristics and identified three reference 

values: BFImax = 0.8 for perennial streams with porous aquifers, BFImax = 0.5 for ephemeral 

streams with porous aquifers, and BFImax = 0.25 for perennial streams with hard rock 

aquifers. These are approximate values for BFImax and not the exact values for different 

watersheds. For this study, without field investigation, the BFImax was determined using a 

backward filtering technique (Collischonn and Fan, 2013; Xie et al., 2020). The method 

incorporates the recession constant and streamflow to filter the baseflow as follows: 

𝑏𝑘−1 =
𝑏𝑘

𝑎
 𝑤ℎ𝑒𝑟𝑒 (𝑏𝑘 ≤ 𝑦𝑘) 

Equation 24 

BFImax is calculated by dividing the maximum possible baseflow by the total streamflow. The 

details of the backward filtering operation are thoroughly described in Collischonn and Fan 

(2013).  
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3.5 Conductance Mass Balance (CMB) Method 

The CMB method requires continuous streamflow data and continuous specific 

conductance data (Stewart et al., 2007). In locations where only discrete measurements of 

SC are available, the power function that relates the SC to stream discharge can be used in 

estimating the continuous SC from the discrete SC data (Lott & Stewart, 2013). After 

estimating the continuous SC data, it can be used to determine the baseflow using the 

following equation: 

𝑄𝐵𝐹  = 𝑄 [
𝑆𝐶 − 𝑆𝐶𝑅𝑂

𝑆𝐶𝐵𝐹 − 𝑆𝐶𝑅𝑂
] 

Equation 25 

In this equation, 𝑄𝐵𝐹 is the estimated daily baseflow in m3/s, 𝑆𝐶𝑅𝑂 is the specific 

conductance of the runoff end member in µS/cm, and 𝑆𝐶𝐵𝐹 is the specific conductance of 

the baseflow end member in µS/cm. Miller et al. (2014) suggested that identifying the end 

members involves recognizing that the runoff end member, with its low SC, is best measured 

during snowmelt while assuming baseflow is minimal at peak runoff. The baseflow end 

member, which has high SC, is measured upstream, assuming that the runoff upstream is 

minimal, during the summer when baseflow is dominant.  

4 RESULTS AND DISCUSSION 

4.1 Numerical Method 

The results of the model simulating the discharge of the Coal Creek watershed are 

presented in three plots (Figure 5). The top plot shows the time series comparison between 

observed discharge (obs_Q) and simulated discharge (simu_Q) over the period from 2016 to 

2022. The middle plot displays the flow duration curve, which illustrates the exceedance 

probability of discharge rates. The bottom right plot is a scatter plot comparing observed 
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discharge with simulated discharge, along with performance metrics: R-square = 0.69, NSE 

(Nash-Sutcliffe Efficiency) = 0.68, and mKGE (modified Kling-Gupta Efficiency) = 0.76. 

The model tends to underestimate discharge during wet years, such as in 2019, and 

overestimate discharge during dry years, such as in 2021. Additionally, the model 

consistently overestimates low flow conditions. To avoid uncertainties introduced by 

differences between the simulated and observed streamflow, the simulated streamflow is 

assumed to be the truth and is used in the baseflow estimation for other methods. This 

assumption is reasonable because the study focuses on the performance of baseflow 

separation methods, provided there is no significant change in the streamflow pattern. 

Despite these gaps, the model performs well in matching the peaks during normal years, 

indicating its robustness in capturing the overall discharge patterns. 

The exceedance probability shown in the flow duration curve in Figure 5 indicates 

that the average discharge of high flow periods from the model is slightly underestimated. 

However, the exceedance probability of low flow is higher for the simulated data as 

compared to the observed data, further supporting that the model overestimates low flows. 

In general, the comparison between observed and simulated discharge in the time 

series plot indicates that the model captures the seasonal patterns and peak flows 

reasonably well. The performance metrics further support this, with R2 equals 0.69, NSE = 

0.68, and mKGE = 0.76, all indicating a good level of agreement between observed and 

simulated data (Kling et al., 2012; Nash & Sutcliffe, 1970). Thus, the model performance is 

reasonable, and its results can be used to evaluate the automated separation methods. 

To understand the characteristics of the aquifer, the surface and subsurface 

hydrologic processes, and the relationship between the streamflow and baseflow, more 

analysis was done on other surface and subsurface variables that the baseflow is sensitive to. 
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The model simulates surface ponded depth, groundwater table, and aquifer saturation both 

spatially and temporally. At point A, Figure 6 shows the seasonal change in the water table. 

The increase in the water table in 2016 occurs at the same time as the high surface ponded 

depth and subsurface saturation (Figure 7). The water table decreases with the decrease in 

the surface ponded depth and the subsurface saturation.  

The water table in the water year 2021 reached the lowest recorded during the 

study period (Figure 6). When examining the streamflow for this water year, the average is 

0.45 m3/s compared to the total average which is 0.68 m3/s, classifying it as a dry year. The 

variations in streamflow and groundwater levels correlate well; high groundwater levels and 

saturation lead to high streamflow, resulting in higher low flows during summer.  

 

 



29 
 
 

 

 

Figure 5: Comparison of observed discharge (obs_Q) and simulated discharge (simu_Q) for the Coal 
Creek watershed from 2016 to 2022. The top plot shows the time series of observed and simulated 
discharge, highlighting the model's ability to capture seasonal patterns and peak flows. The lower left 
plot displays the exceedance probability of discharge rates and indicates the model's performance 
during high flow periods (e.g., snowmelt events) while overestimating low flow conditions. The 
bottom right scatter plot compares observed and simulated discharge, with performance metrics R-
square = 0.69, NSE = 0.68, and mKGE = 0.76, demonstrating a good level of agreement between 
observed and simulated data 

 

The surface saturation maps of the entire watershed (see Figure 7) show changes in 

surface saturation before (May 05, 2016), during (June 15, 2016), and after the snowmelt 

period (July 01, 2016) in an average year, 2016. During the snowmelt, saturation reached its 
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maximum in most parts of the watershed, resulting in saturation excess overland flow. This 

runoff peak generated is closely related to variables such as the antecedent soil moisture and 

evapotranspiration (Godsey et al., 2014) impacting surface water infiltration and subsequent 

groundwater discharge, eventually, impacting the baseflow. Thus, the numerical model 

simulates all these discussed variables to integrate the baseflow.  
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Figure 6: The groundwater level contours with point A in blue and the catchment USGS output station 
in red in the upper figure on June 01, 2016. The groundwater level graphs at point A in the lower 
figure. 
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Figure 7: Upper figure: the ponded depth of the surface. Lower figure: maps of the surface saturation 
of the top 5 cm soil layer for the entire watershed in 2016 in January, just before the snowmelt on the 
first day of May, during the snowmelt on June 15, and at the end of the snowmelt on July 7th.  

 

4.1.1 Calculating the baseflow from the ATS model  

The baseflow is calculated as per Equation 19 using the simulated variables and 

approach discussed earlier in the methodology. Starting with dry periods, the baseflow 

obtained is equivalent to the total streamflow (Figure 8), based on the assumption of zero 

infiltration and no time lags between infiltration and exfiltration. This is also the streamflow 

used in the recession analysis. Figure 9 shows that during dry periods, the simulated total 

infiltration is not zero, indicating the existence of a re-infiltration process. 

 

Figure 8: Dry baseflow discharge during the dry season of the year when rainfall and snowmelt are 
zero 
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Figure 9: The dry period baseflow is shown in this plot on the left axis. The right axis shows the total 
infiltration (negative) and the total exfiltration (positive). The net infiltration is supposed to be zero 
during dry periods (when there is a dry period baseflow). The total infiltration during the dry periods 
is not zero, meaning that this is not the net infiltration, but the total including the re-infiltration 

 The continuous baseflow was calculated following the approach in calculating 

baseflow using the numerical model simulated variables. Starting with the interpolation of 

the continuous re-exfiltration, Figure 10 illustrates the linear relationship between the total 

exfiltration and re-exfiltration. Although some points of high re-exfiltration and total 

exfiltration did not fit within the linear interpolation, the R2 value is approximately 0.99, 

indicating a strong correlation. It is worth noting that the discontinuous re-exfiltration data 

used to determine the linear correlation are of low value because they represent dry periods 
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only, which might affect the extrapolation of re-exfiltration during high flow periods.

 

Figure 10: Relationship between re-infiltration and total exfiltration during the dry period. The linear 
fit equation demonstrates a high correlation (R² = 0.9883) between the two variables, with only minor 
deviations at higher exfiltration values. 

The obtained baseflow is shown in Figure 11Figure 12. There were 560 days of 2555 

total days (percentage of 22%) where the calculated baseflow was slightly higher than the 

streamflow with an average exceedance of 6.5%. To determine the timing and extent of 

exceedance, Table 2 shows that May is the only month without any exceedance, while July, 

August, and September have high average exceedance. According to Figure 12, the 

exceedance is not substantial when compared to the average streamflow. However, when 

compared to the streamflow on the same day, it appears exaggerated because the 

streamflow is already low, making any exceedance more noticeable. Additionally, from July 

to September, the streamflow exhibits many small fluctuations that should also be reflected 

in the re-infiltration but cannot be accurately estimated using the interpolation method. 

These small errors in baseflow estimation may not be noticeable during high flow periods 

because the significant difference between streamflow and baseflow means any extra 
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discharge added to the baseflow will not exceed the streamflow. However, during the lower 

flow periods in July, August, and September, these errors become more apparent. In other 

low-flow months, the baseflow does not significantly exceed the streamflow because the 

streamflow is relatively stable, and interpolation works effectively in these cases. Another 

caveat about this approach is that there may be extrapolation errors as the data used for 

developing the linear regression model only contains data during dry periods without any 

high flows. 

 

Figure 11: The baseflow calculated using water balance and re-infiltration interpolation. The baseflow 
exceeds the streamflow at percentage of 21.5% of the days (560 days during the period from 2015 to 
2022). 
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Figure 12: Zoom-in plots of the month showed significant baseflow exceedance. 

Table 2: The exceedance average of baseflow for each month of the year in percentage for the entire 
period (2015-2022). The statistics of exceedance such as the minimum, the maximum, and the SD. 

month 
average 

exceedance (%) 
min 

exceedance (%) 
max 

exceedance (%) 
SD 

exceedance  

1 2.9 0.0 7.2 2.6 

2 2.9 0.0 7.2 2.0 

3 2.7 0.2 6.1 1.8 

6 6.5 0.3 9.7 2.8 

7 7.4 0.2 23.9 5.6 

8 11.0 0.0 29.9 6.5 

9 9.1 0.2 24.1 6.4 

10 6.1 0.2 16.8 4.6 

11 1.4 0.8 2.0 0.9 

12 1.1 0.0 2.7 0.9 

 

To address this issue, the days of exceedance were replaced by the dry-period baseflow or 

completely removed if it was not a dry period. Consequently, small gaps appeared in the final 

baseflow, as shown in Figure 13. These gaps, however, do not significantly alter the overall 

shape of the baseflow curve. We will use this baseflow as control points in comparison with 
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other baseflow separation methods. It is worth noting that the final baseflow is converted to 

m³/s to maintain consistency with other methods, facilitating the eventual comparison of 

different methods. 

Baseflow variation between different water years is shown in Figure 14 and Figure 15. In 

terms of baseflow peak timing, the baseflow in 2017 (wet year) reached the peak around 

July 01, however, the highest baseflow in 2018 (dry year) occurred around June 01 (Figure 

14). Also, the length of the baseflow peak is longer in 2017 than in 2018. This variation in 

peak timing as per dry, wet, and average years is significant and consistent for most of the 

years. However, in terms of baseflow magnitude compared to the total streamflow, e.g., BFI, 

the BFI of wet years is slightly below the average for the entire period of study and slightly 

higher than the average in dry years (Figure 15). The minimum BFI, 46.8%, was recorded in 

2019 while the maximum BFI, 61%, was recorded in 2018. The variation didn’t exceed the 

ratio of ±0.15 of the average BFI, 53.24%. This means that the baseflow is mostly stable. 
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Figure 13: Baseflow of Coal Creek calculated using the results and variables of the numerical method. 
The upper graph shows the entire period of study from 2015 to 2022. The lower graph: zoom in to the 
period between July 2021 and November 2021. Short gaps appear in the curve due to the 
interpolation of the re-infiltration, resulting in a small margin of error in baseflow calculations that 
slightly exceeded the streamflow. 
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Figure 14: Comparing water years 2017 (wet year) and 2018 (dry year) baseflow. The peak is reached 
in dry years earlier than that of the wet year. 

 

 

Figure 15: BFI percentage of all water years from 2016 to 2022 compared to the average. 
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4.2 PH-Graphical Method 

In our case, catchment area A is 20.1 square miles (Equation 21). The N value is 1.8, 

and the 2N is 3.6. The closest odd integer to 3.6 is 3, so the 2N* that will be used now is 3, 

not 3.6. It is worth noting that 3 is also the lower limit of the 2N interval, and results might 

be affected (see Equation 21). 

The results of baseflow separation using the three different approaches—fixed, slide, 

and LocMin—are presented in Figure 16. Only the simulated streamflow by the ATS 

numerical model is used to separate the baseflow in this method. Statistically, the average 

baseflow of all the approaches is very high (above 0.55 m³/s ) compared to that of the 

streamflow average (0.68 m³/s ). LocMin approach has the lowest average of 0.56. Moreover, 

the lowest maximum of all the approaches is 7.76 while the streamflow maximum is 8. This 

means that some major peaks were considered to be mostly baseflow. 

For further evaluation, as all three methods showed similar results, the LocMin 

approach will be used in the final comparison. Figure 17 provides more details for the 

LocMin baseflow curve, specifically for the period between May and October of 2016 which 

has both types of peaks, short-term and long-term peaks. Before May 20 and after July 01, 

the streamflow peaks were short and the baseflow was separated well, likely generated by 

rainfall or quick snowmelt events. However, between the two dates, the model struggles 

with long-term peaks generated by snowmelt in snow-dominated catchments. 
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Figure 16: The three approaches of PH graphical baseflow separation method. The top plot shows the 
baseflow obtained using the slide interval approach. The middle plot shows the results of the LocMin 
approach. The bottom plot shows the results from the fixed interval approach.  

  

Figure 17: Baseflow curve obtained from the three approaches of PH graphical method for the period 
between April 2016 and October 2016. 



43 
 
 

4.3 UKIH Graphical Method 

The UKIH method separated the baseflow from the total simulated streamflow for 

the entire period (Figure 18). In 2016, streamflow peaks were short before May 15 and after 

July 01 and long between them. The UKIH method effectively separates the baseflow of most 

of these short and long peaks. However, the baseflow is characterized by connected 

segments of straight lines. 

Focusing on the long peaks created by snowmelt, the timing and magnitude 

variations of the baseflow are discussed in this section. The baseflow recorded the highest 

value of approximately 3.64 m³/s on June 07, 2016, even though this was an average year. In 

contrast, 2017 and 2019 were wet years, yet the baseflow reached only 2.7 m³/s on June 02 

and 2.3 m³/s on June 07, respectively. In dry years, the peak reached around 1.1 m³/s on May 

13, 2018, and around 2.6 m³/s on June 03, 2021. Thus, the peak record of some dry years is 

higher than the peak of wet years, and the highest baseflow was observed in an average year 

rather than in a wet year. This variation also appears between years of the same category, 

such as two dry years. Regarding the timing, the variation also occurred between dry years. 
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Figure 18: UKIH baseflow separation method. The upper figure shows the entire period and the lower 
one zooms in to show the separated baseflow in the average year 2016.  
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4.4 Eckhardt Digital Filter Method 

This section describes the resultant baseflow using the digital filter method, 

specifically the Eckhardt approach (Figure 19). The BFImax value of 0.763 is obtained using the 

backward filtering technique (Equation 25). The lower plot zooms in 2016 to demonstrate 

the performance on both short-term and long-term peaks. In 2016, the baseflow was 

separated for both types of peaks, with the baseflow representing a high ratio of the 

streamflow during high flow periods and a lower ratio during low flow periods. 

More quantitative analysis shows that the maximum estimated baseflow recorded is 

3.82 m³/s, which is around 48% of the maximum streamflow (8 m³/s). However, the mean 

baseflow is 0.4 m³/s, constituting 59% of the average streamflow (0.68 m³/s). This indicates 

that during very high streamflow events, the baseflow does not represent a high ratio. And 

because the average baseflow-to-average streamflow ratio is high, this means that lower 

peak streamflow events include a higher baseflow ratio.  
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Figure 19: Baseflow Separation using Digital Filter Methods. The BFImax and recession constant used 
are 0.763 and 0.99 respectively. The upper figure includes the entire period of study, while the lower 
one is a zoom-in to parts of 2016.   

4.5 Conductance Mass Balance (CMB) Method 

The streamflow is simulated and obtained from the numerical model, and the 

specific conductance (SC) is obtained from the 09111250-gage station on USGS. However, 

the conductivity observations are discrete, with only around 26 measurements available for 

Coal Creek from 2015 to 2022 (Figure 20). A power relationship between SC and Q is 

obtained based on those 26 measurements: 

𝑆𝐶 = 155.59 × 𝑄−0.31 Equation 26 

Where 𝑆𝐶 is the specific conductance in µS/cm and 𝑄 is the daily mean discharge in m3/s. 

The R2 value of this power relationship (Figure 21) is around 0.38, indicating that only around 

40% of the SC data can be explained by the discharge (Figure 21). Particularly, data with SC 

lower than 100 µS/cm and higher than 300 µS/cm are the least likely to follow the trendline. 



47 
 
 

  

 
Figure 20: Specific conductance measured at 09111250-gage station extracted from USGS and 
simulated discharge by the ATS numerical model. The SC is available after 2019. The end members are 
also shown in this figure 

The baseflow end member used in this study (415 µS/cm) is the highest conductance 

recorded in the summer in Coal Creek on August 15, 2022, when streamflow reached 0.12 

m3/s. The runoff end member is the lowest SC measured for Coal Creek which, is 65 µS/cm 

on June 05, 2019, when streamflow reached 3.3 m3/s (Figure 20). 
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Figure 21: Specific Conductance-Discharge power relationship and the R2 

The developed power law relationship (Equation 26) was used to estimate the SC 

when no observations were available, e.g., converting the discrete data to continuous data. 

The estimated SC, as shown in Figure 22, does not capture the extreme values observations, 

very high and very low specific conductivity during dry and wet years, but only captures the 

average variation in the SC during an average year. These challenges generate a margin of 

error when using the estimated SC to estimate the baseflow. Therefore, the end members 

were extracted from the observed data but not from the estimated SC.  

The observed very high SC of around 400 µS/cm in the dry year 2018 is very different 

from the estimated SC of around 250 µS/cm, although it is one of the highest estimated SC. 

Conversely, during the highest flow in 2019, the SC was measured at around 60 µS/cm but 

estimated to be around 100 µS/cm. However, all other observations between 100 and 250 

µS/cm are closely estimated by the power functions, validating the estimation method. The 
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main reason for this discrepancy is that data with SC between 250 and 350 µS/cm are better 

interpolated. 

  

  
Figure 22: The CMB Method. The blue curve is the estimated daily specific conductivity using the 
power function with discharge provided in Figure 21. The green dots are the observed SC. All the 
observed SC between 100 and 250 µS/cm significantly matching the estimated SC. The values below 
and above this range are not well estimated. 

Using Equation 25, the daily baseflow is calculated and then plotted as shown in 

Figure 23. From 2016 to 2019, the baseflow is lower than the low flow but shows some 

variation with changes in the streamflow, most likely due to precipitation. Although the 

baseflow during high flow follows some fluctuations that could be linked to infiltration and 

snowmelt processes impacting streamflow, the baseflow is significantly low. Furthermore, 

the difference in streamflow from one year to another is not reflected in a significant 

difference in the baseflow. For example, the baseflow ratio of 2017 over 2021 is 0.98, not 

indicating a substantial difference between dry and wet years. In contrast, the streamflow 
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ratio of the same years, 0.5, indicates a significant difference between the two years (Table 

3). 

This lack of a significant difference in baseflow between dry and wet years could be 

linked to the accumulation of errors starting from the interpolation of the continuous SC. To 

determine if the interpolation also affected the baseflow estimation not considered as the 

yearly highest and lowest streamflow, a statistical analysis and comparison is provided in the 

next section for all the methods. 
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Figure 23: Discharge Hydrograph with Baseflow Separation using CMB Methods. 

 

Table 3: Highest streamflow and baseflow of wet (2017) and dry (2022) years. 

  
Highest 

baseflow 
(m3/s) 

Date of highest 
baseflow 

Highest 
streamflow 

(m3/s) 

Date of 
highest 

streamflow 

2017 0.42 09/06/2017 8.00 15/06/2017 

2021 0.41 27/05/2021 3.92 27/05/2021 

2021/2017 
ratio 

0.98  0.49  

 

4.6 Baseflow Separation Methods Evaluation 

Using the numerical baseflow as the control, the performance of the graphical, digital 

filter, and CMB baseflow separation methods are evaluated using common metrics. The 

quantitative statistics are provided in Table 4 andTable 5 including the RMSE, NSE, and KGE 

for each method baseflow with the numerical method baseflow estimation. In addition, it 

includes the minimum, maximum, mean, and SD of each method baseflow. The fraction of 
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baseflow (BFI) was also added for each method. The BFI is the percentage of total baseflow 

volume to total streamflow volume.  

 During the overall period (Figure 24), different methods of baseflow separation show 

varied performance compared to the numerical model baseflow. both UKIH graphical and 

Eckhardt digital filter methods performed relatively well with high mKGE (0.72 and 0.68, 

respectively) and NSE (0.58 and 0.7, respectively) values. On the other hand, both the PH 

graphical and CMB methods did not perform satisfactorily in estimating baseflow with both 

mKGE and NSE values less than 0.3. Among them, the PH graphical method has consistently 

overestimated baseflow with an average BFI of 85%, whereas the CMB method has 

consistently underestimated baseflow even during low-flow periods with an average BFI of 

24% as compared to an average BFI of 53% for the numerical method. This is further 

evidenced by the bias term 𝛽 from the decomposed mKGE, where 𝛽<1 indicates 

underestimation (i.e., mean baseflow is smaller than the mean of the reference) and 

𝛽>1 indicates overestimation (i.e., mean baseflow is larger than the mean of the 

reference). CMB baseflow shows the smallest 𝛽 (=0.41) and the PH graphical baseflow 

shows the largest 𝛽 (=1.55).  
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Figure 24: Baseflow curves from all the used methods in this study. 

Table 4: Statistics of all the used method in this study. The RMSE, NSE, and KGE of baseflow from each 
method with the numerical hydrological model baseflow are calculated. The fraction of baseflow (ratio 
of baseflow volume to streamflow volume).  

Method Min (m3/s) Max (m3/s) 
Mean 
(m3/s) 

SD 
volume  
(*10^8 

m3) 
BFI (%) 

Numerical  0.05 2.43 0.4 0.44 0.79 53 

PH Graphical 0.1 7.85 0.58 0.96 1.28 85 

UKIH 
Graphical 0.1 3.64 0.46 0.59 1.02 68 

Eckhardt 
Digital 0.09 3.82 0.42 0.6 0.93 62 

CMB 0.07 0.42 0.16 0.1 0.36 24 
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Table 5: mKGE components, NSE, and RMSE of each method compared to the numerical baseflow 

Method KGE r KGE 𝛾 KGE 𝛽 mKGE NSE RMSE 

PH Graphical 0.94 1.49 1.55 0.26 -1.24 0.66 

UKIH Graphical 0.92 1.16 1.21 0.72 0.58 0.29 

Eckhardt Digital 0.96 1.3 1.1 0.68 0.7 0.27 

CMB 0.94 0.54 0.41 0.25 0.09 0.42 

 

In the year-by-year analysis (Figure 25 and Table 6), typical dry, average, and wet 

years are selected to show a detailed comparison of the two best performing methods: the 

Eckhardt digital filter and the UKIH graphical baseflow separation methods. Generally, the 

Eckhardt baseflow closely aligns with the numerical baseflow across different years, 

demonstrating better performance in average (e.g., mKGE = 0.85 in 2020) and dry years (e.g., 

mKGE = 0.90 in 2021) but worse performance in wet years (e.g., mKGE = 0.51 in 2017). The 

performance of the UKIH method is highly variable across different years. It usually performs 

well in wet years (e.g., mKGE = 0.83 and 0.84 for 2019 and 2017, respectively) but not as well 

in other years. This is likely due to the inherent limitation of the method, which uses a short 

5-day window to find the local minima of the hydrograph. Consequently, the UKIH method 

does not perform well when the streamflow hydrograph exhibits a unimodal flow peak. For 

example, during the dry year of 2021, the UKIH method does not clearly separate baseflow, 

which follows the general unimodal shape of the streamflow. Consequently, the UKIH 

method significantly overestimates baseflow with a BFI of 82%, which is 29.3% higher than 

the numerical baseflow. Additionally, the shape of the UKIH baseflow is often arbitrary and 

sometimes unnatural compared to the Eckhardt baseflow. For example, during the wet year 
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of 2017, the peak UKIH baseflow occurred in early June, around 17 days ahead of the peak 

streamflow. Furthermore, the UKIH baseflow shows a single peak instead of the double 

peaks seen in the streamflow. In comparison, the Eckhardt baseflow shows a smoother curve 

with peak baseflow following peak streamflow, although it may also struggle to capture 

multiple baseflow peaks. For example, in the average year of 2016, the Eckhardt baseflow 

shows a single peak in late June with a monotonic increase, missing another peak in early 

June. This is further evidenced by the correlation term r (i.e., timing) of the decomposed 

mKGE. The UKIH baseflow shows the lowest correlation (r=0.92) whereas the Eckhardt 

baseflow shows the highest correlation (r=0.96). 

To compare baseflow interannual variability, yearly BFI values were calculated for the 

Eckhardt digital filter and UKIH methods (Table 6). The yearly UKIH BFI shows a higher 

variability similar to the numerical BFI, whereas the Eckhardt BFI displays a more stable 

pattern that does not show a significant reduction in BFI in dry years, which may 

underestimate the important contribution of baseflow to streamflow during drought. 



56 
 
 

 

 

 



57 
 
 

 

 
Figure 25: All separation methods used in this study in addition to the numerical method. The upper, 
middle, and lower plots show the results of the periods from 02-2016 to 09-2016, 02-2017 to 09-2017, 
and 02-2021 to 09-2021 respectively. 

 

Table 6: Yearly BFI percentage, mKGE, and NSE of the digital filter and UKIH methods in addition to the 
numerical method 

season Water Year 
BFI % (numerical 

model ATS) 
BFI % 

(Eckhardt) 
BFI % (UKIH) 

dry 

2018 61.0 66.7 66.3 

2021 52.7 63.6 82.0 

wet 

2017 49.6 64.3 56.5 

2019 46.8 61.9 56.2 

average 2016 56.6 66.1 74.7 
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2020 51.5 63.2 74.2 

 

  

mKGE NSE 

season Water Year  Eckhardt UKIH Eckhardt UKIH 

average 

years 

2016 0.61 0.49 0.62 0.10 

2020 0.85 0.66 0.90 0.78 

wet years 

2017 0.51 0.84 0.22 0.74 

2019 0.61 0.83 0.50 0.77 

dry years 

2018 0.82 0.79 0.94 0.77 

2021 0.90 0.55 0.94 0.42 

4.7 Uncertainties, Limitations, and Future Work 

 Starting from the quote "All models are wrong, but some are useful" (Box and 

Draper, 1987), the application of numerical models comes with inherent uncertainties in 

terms of parameters and assumptions. Even after calibration, the numerical model shows the 

discrepancy between the simulated and observed streamflow. For example, the simulated 

low flow is overestimated during dry periods (Figure 5). To ensure a fair comparison and 

minimize the uncertainties, all estimated baseflow are based on the simulated streamflow in 

their methods. Additionally, due to the limitation of the model, simulated baseflow is not a 

direct output but rather based on the mass balance in the subsurface (i.e., baseflow = net 
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groundwater discharge = total groundwater discharge – re-exfiltration). In the analysis, we 

developed a linear relationship between re-exfiltration and total groundwater discharge 

based on results during dry periods. The re-exfiltration during wet periods was then 

estimated by the linear regression, which may introduce extrapolation errors. Future work 

could take a stream-centric mass balance approach for estimating the baseflow by 

delineating the streambed region in the model (Shuai et al 2023).   

 Both the PH and UKIH graphical methods can be sensitive to the choice of window 

size (i.e., N) for determining the local minima or turning points for the baseflow hydrograph. 

As Miller et al (2015) showed in their analysis of the optimal N value in the UKIH method, the 

BFI value decreased with increasing N value and a larger N value (> 10 days) was suggested 

for use in snow-dominated areas.  In our study, a 5-day window size was used in separating 

baseflow using the UKIH method, causing the estimated baseflow to be high. Unfortunately, 

the N value used in the PH graphical method is typically determined based on the catchment 

area. As a result, a small N is often used in small catchments such as the Coal Creek 

Watershed. Future work should be focused on optimizing the N value before applying the 

graphical methods. 

 The digital filter method relies on two parameters: the recession constant and BFImax. 

In this study, the recession constant was calculated first and then used to calculate BFImax. 

Thus, uncertainties arose from the recession analysis test and the assumption that 

streamflow on days without rainfall and snowmelt represents the recession streamflow, 

leading to uncertainties in BFImax calculations and, consequently, the baseflow estimation. To 

test the sensitivity of the estimated baseflow to BFImax, BFImax was varied by +/- 0.1, ranging 

from 0.663 to 0.863. The estimated baseflow increases with increasing BFImax as evident in 
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Figure 26. For a small change of BFImax from 0.763 to 0.663, the baseflow decreased 

significantly (Table 7).  

The CMB method relies on continuous SC observation to estimate baseflow. In our 

site, only 37 discrete SC samples are available, which may cause large discrepancy in 

estimated baseflow (Miller et al., 2015). In our study, we developed a regression model to 

estimate the continuous SC based on the discrete SC following the Miller et al. (2015) 

approach. A low R2 was obtained from the power inverse relationship, which cause large 

uncertainties in estimating the continuous SC data. Furthermore, the limited SC data may 

impact the end member selection since the discrete sample did not cover the time series of 

the streamflow, especially during high flows. To test the sensitivity of baseflow and runoff 

end member, we varied the end member values by +/- 10%. The results showed that the 

58.5 runoff end member has the highest peak and the 71.5 runoff end member has the 

lowest peak while the baseflow end member curves are located between them. Thus, 

baseflow is more sensitive to runoff end members than baseflow end members (Figure 27). 

Lastly, our findings are based on a single catchment with a relatively small area, 

which may not represent other snow-dominated systems with different characteristics. 

However, due to the high computational cost associated with calibrating integrated 

hydrologic models, the numerical method could not be easily applied across various 

catchments. Future work could leverage the advancement in machine learning to develop 

surrogate models for estimating baseflow in snow-dominated systems. 

 A summary of all used methods is provided in Table 8.  
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Figure 26: Sensitivity test for Eckhardt method by changing the BFImax values. 

Table 7: The BFI percentage obtained from the Eckhardt method using different BFImax. 

BFI_max 0.663 0.763 0.863 Numerical Model 
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BFI (%) 74 62 53 53 

 

 

 

 

Figure 27: Sensitivity test for CMB by changing the runoff or baseflow end members. Only one of them 
is changed at a time. 
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Table 8: Brief description of all the used methods in this study 

Method  Assumptions Advantages Limitations 
Recommendations for 
baseflow separation 

Numerical 
(e.g., ATS) 

- Re-infiltration equals 
re-exfiltration.  
- A linear relationship 
exists between the 
total exfiltration and 
the re-exfiltration 

- Physically based  
- All storage and 
water fluxes are 
quantifiable  

- Difficult to 
calibrate  
- Computationally 
expensive  
- Data intensive 

- Could be used for baseflow 
separation regardless of 
catchment characteristics  

PH 
Graphical  

- Event length (i.e., 
2N) can be calculated 
from the catchment 
area 

- Easy to apply 
and automate 
- Minimal data 
requirement 

- Event length has 
no physical 
connection to 
catchment 
characteristics 
- Could not separate 
baseflow when peak 
flow 

- Not suitable for baseflow 
separation in small, snow-
dominated catchments  
- Baseflow tends to be 
overestimated 

UKIH 
Graphical 

- Event length is 
typically fixed at five 
days 

- Easy to apply 
and automate 
- Minimal data 
requirement 

- Event length has 
low physical 
connection to 
catchment 
characteristics 
- Not effective in 
separating 
hydrographs with a 
unimodal shape 

- Not recommended for snow-
dominated catchments  

Eckhardt 
Digital Filter 

- Baseflow is the low-
frequency component 
of the hydrograph 
- Linear reservoir 
assumption 
- The ratio of 
groundwater recharge 
to quick flow is 
constant over time  

- Easy to apply 
and automate  
- Minimal data 
requirement 

- Fitting parameters 
have low physical 
connection to 
catchment 
characteristics 

- Shows promise for the 
qualitative estimation of 
baseflow in snow-dominated 
catchments, though the 
relative importance of 
baseflow during dry periods 
may be underestimated 

CMB  

- Baseflow and runoff 
end members are 
distinctively different 
and often constant 
- Contributions from 
other end members 
are negligible 
- An inverse power 
function exists 

- SC data is 
relatively easy to 
obtain in the field  

- Uncertainties in 
end members  
- End members may 
be spatially and 
temporally variable 
- Not all sites have 
SC measurements 

- The estimated baseflow is 
highly sensitive to the choice 
of end members, posing a 
challenge for applying this 
method without detailed 
knowledge about the site 
- Baseflow during dry periods 
tend to be underestimated  
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between the SC and 
streamflow.  

 

5 CONCLUSION  

An integrated hydrologic model is developed to quantify the baseflow component of the 

streamflow in a snow-dominated watershed from 2015 to 2022. The calculated baseflow was 

then used as a control to evaluate four commonly used conceptual baseflow separation 

methods: the PH graphical, the UKIH graphical, the Eckhardt digital filter, and the CMB 

methods. Overall, the Eckhardt digital filter method is promising for the qualitative 

estimation of baseflow in snow-dominated catchments, although it may underestimate the 

relative importance of baseflow contribution to streams during dry years. The UKIH graphical 

method tends to overestimate baseflow in snow-dominated catchments, particularly when 

the hydrograph exhibits a unimodal peak, which is typical in snow-dominated watersheds. 

The PH graphical method significantly overestimates baseflow regardless of the hydrograph’s 

shape due to the short event window (e.g., typically less than five days) used in determining 

local minima (i.e., the turning point). Conversely, the CMB method significantly 

underestimates baseflow due to limited SC observation and uncertainties in end members, 

and further testing is warrantied to determine its suitability for baseflow separation in snow-

dominated catchments. 

Integrated hydrologic models, when calibrated, provide a physical and quantitative 

way to estimate baseflow. However, their applications may be limited due to their high 
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computational costs associated with model calibration. Future studies should focus on 

improving existing automated baseflow separation methods by optimizing the fitting 

parameters and relating them to watershed hydroclimatic characteristics. Additionally, future 

work should focus on the evaluation of baseflow separation methods in catchments that 

cover a range of diverse hydroclimate conditions. 

6 DATA AVAILABILITY STATEMENT 

All data and codes used in the analysis are available under the following link:  

https://github.com/hydroaggie/CoalCreek 

7 REFERENCES 

Barlow, P. M., McHugh, A. R., Kiang, J. E., Zhai, T., Hummel, P., Duda, P., & Hinz, S. 
(2022). U.S. Geological Survey Hydrologic Toolbox — A graphical and mapping 
interface for analysis of hydrologic data: U.S. Geological Survey Techniques 
and Methods. https://doi.org/10.3133/tm4D3 

Bhardwaj, S. S., Jha, M. K., & Uniyal, B. (2024). Assessing Efficacy of Baseflow 
Separation Techniques in a Himalayan River Basin, Northern India. 
Environmental Processes, 11(1). https://doi.org/10.1007/s40710-024-00680-z 

Bosch, D. D., Arnold, J. G., Allen, P. G., Lim, K. J., & Park, Y. S. (2017). Temporal 
variations in baseflow for the Little River experimental watershed in South 
Georgia, USA. Journal of Hydrology: Regional Studies, 10, 110–121. 
https://doi.org/10.1016/j.ejrh.2017.02.002 

Box, G. E., & Draper, N. R. (1987). Empirical model-building and response surfaces. 
John Wiley & Sons. 

Brunner, P., Simmons, C. T., Cook, P. G., & Therrien, R. (2010). Modeling surface 
water-groundwater interaction with MODFLOW: Some considerations. 
Ground Water, 48(2), 174–180. https://doi.org/10.1111/j.1745-
6584.2009.00644.x 

Caine, N. (1989). Hydrograph separation in a small alpine basin based on inorganic 
solute concentrations. Journal of Hydrology, 112(1–2), 89–101. 
https://doi.org/10.1016/0022-1694(89)90182-0 

https://github.com/hydroaggie/CoalCreek
https://doi.org/10.1016/j.ejrh.2017.02.002
https://doi.org/10.1016/0022-1694(89)90182-0


66 
 
 

Caissie, D., Pollock, T. L., & Cunjak, R. A. (1996). Variation in stream water 
chemistry and hydrograph separation in a small drainage basin. Journal of 
Hydrology, 178(1–4), 137–157. https://doi.org/10.1016/0022-1694(95)02806-4 

Chapman, T. G. (1991). Comment on “Evaluation of automated techniques for 
base flow and recession analyses” by R. J. Nathan and T. A. McMahon. In 
Water Resources Research (Vol. 27, Issue 7, pp. 1783–1784). 
https://doi.org/10.1029/91WR01007 

Collischonn, W., & Fan, F. M. (2013). Defining parameters for Eckhardt’s digital 
baseflow filter. Hydrological Processes, 27(18), 2614–2622. 
https://doi.org/10.1002/hyp.9391 

Cook, P. G., Wood, C., White, T., Simmons, C. T., Fass, T., & Brunner, P. (2008). 
Groundwater inflow to a shallow, poorly-mixed wetland estimated from a 
mass balance of radon. Journal of Hydrology, 354(1–4), 213–226. 
https://doi.org/10.1016/J.JHYDROL.2008.03.016 

Delottier, H., Therrien, R., Young, N. L., & Paradis, D. (2022). A hybrid approach for 
integrated surface and subsurface hydrologic simulation of baseflow with 
Iterative Ensemble Smoother. Journal of Hydrology, 606, 127406. 
https://doi.org/10.1016/J.JHYDROL.2021.127406 

Dinçer, T., Payne, B. R., Florkowski, T., Martinec, J., & Tongiorgi, E. (1970). Snowmelt 
runoff from measurements of tritium and oxygen‐18. Water Resources 
Research, 6(1), 110–124. https://doi.org/10.1029/WR006i001p00110 

Eckhardt, K. (2005). How to construct recursive digital filters for baseflow 
separation. Hydrological Processes, 19(2), 507–515. 
https://doi.org/10.1002/hyp.5675 

Eckhardt, K. (2008). A comparison of baseflow indices, which were calculated with 
seven different baseflow separation methods. Journal of Hydrology, 352(1–2), 
168–173. https://doi.org/10.1016/J.JHYDROL.2008.01.005 

Godsey, S. E., Kirchner, J. W., & Tague, C. L. (2014). Effects of changes in winter 
snowpacks on summer low flows: Case studies in the Sierra Nevada, 
California, USA. Hydrological Processes, 28(19), 5048–5064. 
https://doi.org/10.1002/hyp.9943 

Gonzales, A. L., Nonner, J., Heijkers, J., & Uhlenbrook, S. (2009a). Comparison of 
different base flow separation methods in a lowland catchment. In Hydrol. 
Earth Syst. Sci (Vol. 13). www.hydrol-earth-syst-sci.net/13/2055/2009/ 

Gonzales, A. L., Nonner, J., Heijkers, J., & Uhlenbrook, S. (2009b). Comparison of 
different base flow separation methods in a lowland catchment. In Hydrol. 
Earth Syst. Sci (Vol. 13). www.hydrol-earth-syst-sci.net/13/2055/2009/ 

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the 
mean squared error and NSE performance criteria: Implications for improving 

https://doi.org/10.1029/91WR01007
https://doi.org/10.1016/J.JHYDROL.2008.03.016


67 
 
 

hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. 
https://doi.org/10.1016/J.JHYDROL.2009.08.003 

Gustard, A., Bullock, A., & Dixon, J. M. (1992). Low flow estimation in the United 
Kingdom. Institute of Hydrology. 

Hall, F. R. (1968). Base‐Flow Recessions—A Review. Water Resources Research, 
4(5), 973–983. https://doi.org/10.1029/WR004i005p00973 

Hayashi, M., Quinton, W. L., Pietroniro, A., & Gibson, J. J. (2004). Hydrologic 
functions of wetlands in a discontinuous permafrost basin indicated by 
isotopic and chemical signatures. Journal of Hydrology, 296(1–4), 81–97. 
https://doi.org/10.1016/J.JHYDROL.2004.03.020 

Huyck, A. A. O., Pauwels, V. R. N., & Verhoest, N. E. C. (2005). A base flow 
separation algorithm based on the linearized Boussinesq equation for 
complex hillslopes. Water Resources Research, 41(8), 1–18. 
https://doi.org/10.1029/2004WR003789 

Institute of Hydrology, 1980a, Low flow studies: Wallingford, Oxon, United 
Kingdom, Report No. I, 41 p. 

Institute of Hydrology, 1980b, Low flow studies: Wallingford, Oxon, United 
Kingdom, Report Wallingford, UK: Institute of Hydrology. 
http://nora.nerc.ac.uk/id/eprint/9093/. 

Jiang, P., Shuai, P., Sun, A., Mudunuru, M. K., & Chen, X. (2023). Knowledge-
informed deep learning for hydrological model calibration: an application to 
Coal Creek Watershed in Colorado. Hydrology and Earth System Sciences, 
27(14), 2621–2644. https://doi.org/10.5194/hess-27-2621-2023 

Julander, R. P., & Clayton, J. A. (2018). Determining the proportion of streamflow 
that is generated by cold season processes versus summer rainfall in Utah, 
USA. Journal of Hydrology: Regional Studies, 17, 36-46. 

Kendall, C., & Caldwell, E. A. (1998). Fundamentals of Isotope Geochemistry. 
Isotope Tracers in Catchment Hydrology, 51–86. 
https://doi.org/10.1016/B978-0-444-81546-0.50009-4 

Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube 
basin under an ensemble of climate change scenarios. Journal of Hydrology, 
424–425, 264–277. https://doi.org/10.1016/J.JHYDROL.2012.01.011 

Kollet, S. J., & Maxwell, R. M. (2006). Integrated surface–groundwater flow 
modeling: A free-surface overland flow boundary condition in a parallel 
groundwater flow model. Advances in Water Resources, 29(7), 945–958. 
https://doi.org/10.1016/J.ADVWATRES.2005.08.006 

Konrad, C. P. (2022). BFS-A Non-Linear, State-Space Model for Baseflow Separation 
and Prediction. https://doi.org/10.3133/sir20225114 

https://doi.org/10.1016/J.JHYDROL.2009.08.003
https://doi.org/10.1016/J.JHYDROL.2004.03.020
https://doi.org/10.1029/2004WR003789
https://doi.org/10.5194/hess-27-2621-2023


68 
 
 

Koskelo, A. I., Fisher, T. R., Utz, R. M., & Jordan, T. E. (2012). A new precipitation-
based method of baseflow separation and event identification for small 
watersheds (<50 km2). Journal of Hydrology, 450–451, 267–278. 
https://doi.org/10.1016/J.JHYDROL.2012.04.055 

Ledoux, E., Girard, G., & Villeneuve, J. P. (1984). PROPOSITION D’UN MODELE 
COUPLE POUR LA SIMULATION CONJOINTE DES ECOULEMENTS DE 
SURFACE ET DES ECOULEMENTS SOUTERRAINS SUR UN BASSIN 
HYDROLOGIQUE. HOUILLE BLANCHE, 39(1–2). 
https://doi.org/10.1051/lhb/1984005 

Lee, G., Shin, Y., & Jung, Y. (2014). Development of web-based RECESS model for 
estimating baseflow using SWAT. Sustainability (Switzerland), 6(4), 2357–
2378. https://doi.org/10.3390/su6042357 

Lott, D. A., & Stewart, M. T. (2013). A Power Function Method for Estimating Base 
Flow. GroundWater, 51(3), 442–451. https://doi.org/10.1111/j.1745-
6584.2012.00980.x 

Matsubayashi, U., Velasquez, G. T., & Takagi, F. (1993). Hydrograph separation and 
flow analysis by specific electrical conductance of water. Journal of 
Hydrology, 152(1–4), 179–199. https://doi.org/10.1016/0022-1694(93)90145-Y 

Mau, D. P., & Winter, T. C. (1997). Estimating ground-water recharge from 
streamflow hydrographs for a small mountain watershed in a temperate 
humid climate, New Hampshire, USA. Ground Water, 35(2), 297–304. 

Miller, M. P., Johnson, H. M., Susong, D. D., & Wolock, D. M. (2015). A new approach 
for continuous estimation of baseflow using discrete water quality data: 
Method description and comparison with baseflow estimates from two 
existing approaches. Journal of Hydrology, 522, 203–210. 
https://doi.org/10.1016/j.jhydrol.2014.12.039 

Miller, M. P., Susong, D. D., Shope, C. L., Heilweil, V. M., & Stolp, B. J. (2014). 
Continuous estimation of baseflow in snowmelt-dominated streams and 
rivers in the upper Colorado River Basin: A chemical hydrograph separation 
approach. Water Resources Research, 50(8), 6986–6999. 
https://doi.org/10.1002/2013WR014939 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual 
models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–
290. https://doi.org/10.1016/0022-1694(70)90255-6 

Panday, S., & Huyakorn, P. S. (2004). A fully coupled physically-based spatially-
distributed model for evaluating surface/subsurface flow. Advances in Water 
Resources, 27(4), 361–382. 
https://doi.org/10.1016/J.ADVWATRES.2004.02.016 

Partington, D., Brunner, P., Simmons, C. T., Therrien, R., Werner, A. D., Dandy, G. C., 
& Maier, H. R. (2011). A hydraulic mixing-cell method to quantify the 



69 
 
 

groundwater component of streamflow within spatially distributed fully 
integrated surface water–groundwater flow models. Environmental Modelling 
& Software, 26(7), 886–898. https://doi.org/10.1016/J.ENVSOFT.2011.02.007 

Partington, D., Brunner, P., Simmons, C. T., Werner, A. D., Therrien, R., Maier, H. R., 
& Dandy, G. C. (2012). Evaluation of outputs from automated baseflow 
separation methods against simulated baseflow from a physically based, 
surface water-groundwater flow model. Journal of Hydrology, 458–459, 28–39. 
https://doi.org/10.1016/J.JHYDROL.2012.06.029 

Pettyjohn, W. A., & Henning, R. (1979). Preliminary Estimate of Ground-Water 
Recharge Rates, Related Streamflow and Water Quality in Ohio. 

Pinder, G. F., & Jones, J. F. (1969). Determination of the ground‐water component of 
peak discharge from the chemistry of total runoff. Water Resources Research, 
5(2), 438–445. https://doi.org/10.1029/WR005i002p00438 

Piggott, A. R., Moin, S., & Southam, C. (2005). A revised approach to the UKIH 
method for the calculation of baseflow/Une approche améliorée de la 
méthode de l'UKIH pour le calcul de l'écoulement de base. Hydrological 
Sciences Journal, 50(5). 

Rossman, N. R., & Zlotnik, V. A. (2013). Review: Regional groundwater flow 
modeling in heavily irrigated basins of selected states in the western United 
States. In Hydrogeology Journal (Vol. 21, Issue 6, pp. 1173–1192). 
https://doi.org/10.1007/s10040-013-1010-3 

Rumsey, C. A., Miller, M. P., Susong, D. D., Tillman, F. D., & Anning, D. W. (2015). 
Regional scale estimates of baseflow and factors influencing baseflow in the 
Upper Colorado River Basin. Journal of Hydrology: Regional Studies, 4(PB), 
91–107. https://doi.org/10.1016/j.ejrh.2015.04.008 

Sanford, W. E., Nelms, D. L., Pope, J. P., & Selnick, D. L. (2011). Quantifying 
components of the hydrologic cycle in Virginia using chemical hydrograph 
separation and multiple regression analysis. 
https://doi.org/10.3133/sir20115198 

Santhi, C., Allen, P. M., Muttiah, R. S., Arnold, J. G., & Tuppad, P. (2008). Regional 
estimation of base flow for the conterminous United States by hydrologic 
landscape regions. Journal of Hydrology, 351(1–2), 139–153. 
https://doi.org/10.1016/j.jhydrol.2007.12.018 

Shuai, P., Chen, X., Mital, U., Coon, E. T., & Dwivedi, D. (2022). The effects of spatial 
and temporal resolution of gridded meteorological forcing on watershed 
hydrological responses. Hydrology and Earth System Sciences, 26(8), 2245–
2276. https://doi.org/10.5194/hess-26-2245-2022 

Shuai, P., Jiang, P., Coon, E. T., & Chen, X. (2023). The importance of explicitly 
representing the streambed in watershed models. Hydrological Processes, 
37(12), e15043. 

https://doi.org/10.1029/WR005i002p00438
https://doi.org/10.5194/hess-26-2245-2022


70 
 
 

Singh, S. K., Pahlow, M., Booker, D. J., Shankar, U., & Chamorro, A. (2019). Towards 
baseflow index characterisation at national scale in New Zealand. Journal of 
Hydrology, 568, 646–657. https://doi.org/10.1016/j.jhydrol.2018.11.025 

Singh, V. P. (2018). Hydrologic modeling: progress and future directions. In 
Geoscience Letters (Vol. 5, Issue 1). SpringerOpen. 
https://doi.org/10.1186/s40562-018-0113-z 

Sloto, R. A., & Crouse, M. Y. (1996). HYSEP: A COMPUTER PROGRAM FOR 
STREAMFLOW HYDROGRAPH SEPARATION AND ANALYSIS. 
https://doi.org/10.3133/wri964040 

Staudinger, M., Stoelzle, M., Cochand, F., Seibert, J., Weiler, M., & Hunkeler, D. 
(2019). Your work is my boundary condition!: Challenges and approaches for 
a closer collaboration between hydrologists and hydrogeologists. Journal of 
Hydrology, 571, 235–243. https://doi.org/10.1016/J.JHYDROL.2019.01.058 

Stewart, M., Cimino, J., & Ross, M. (2007). Calibration of base flow separation 
methods with streamflow conductivity. Ground Water, 45(1), 17–27. 
https://doi.org/10.1111/j.1745-6584.2006.00263.x 

Tan, X., Liu, B., & Tan, X. (2020). Global Changes in Baseflow Under the Impacts of 
Changing Climate and Vegetation. Water Resources Research, 56(9). 
https://doi.org/10.1029/2020WR027349 

Therrien, R., McLaren, R., Sudicky, E., & Panday, S. (2006). HydroGeoSphere: A 
three-dimensional numerical model describing fully integrated subsurface 
and surface flow and solute transport. HydroGeoLogic Inc., Herndon, VA. 

Thornton, P. E., Shrestha, R., Thornton, M., Kao, S. C., Wei, Y., & Wilson, B. E. 
(2021). Gridded daily weather data for North America with comprehensive 
uncertainty quantification. Scientific Data, 8(1). 
https://doi.org/10.1038/s41597-021-00973-0 

Xie, J., Liu, X., Wang, K., Yang, T., Liang, K., & Liu, C. (2020). Evaluation of typical 
methods for baseflow separation in the contiguous United States. Journal of 
Hydrology, 583. https://doi.org/10.1016/j.jhydrol.2020.124628 

Yang, W., Xiao, C., Zhang, Z., & Liang, X. (2021). Can the two-parameter recursive 
digital filter baseflow separation method really be calibrated by the 
conductivity mass balance method? Hydrology and Earth System Sciences, 
25(4), 1747–1760. https://doi.org/10.5194/hess-25-1747-2021 

Zhang, J., Zhang, Y., Song, J., & Cheng, L. (2017). Evaluating relative merits of four 
baseflow separation methods in Eastern Australia. Journal of hydrology, 549, 
252-263. 

  

https://doi.org/10.5194/hess-25-1747-2021

	Quantitative Evaluation of Baseflow Separation Methods Using an Integrated Hydrologic Model: A Case Study in a Snow-Dominated Watershed
	Recommended Citation

	tmp.1726535644.pdf.EUHTB

