Characterization of the Effects of Radiation on Skeletal and Smooth Muscle Cells

Lori Caldwell
Utah State University

Charles Harding
Utah State University

JR Dennison
Utah State University

Elizabeth Vargis
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post

Part of the Condensed Matter Physics Commons

Recommended Citation

https://digitalcommons.usu.edu/mp_post/68

This Poster is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Characterization of the Effects of Radiation on Skeletal and Smooth Muscle Cells

Lori Caldwell¹, Charles Harding¹, Eryn Hansen¹, Dr. JR Dennison², Dr. Elizabeth Vargis¹ | ¹Department of Biological Engineering, ²Department of Physics

Introduction

Muscular atrophy is a serious issue for extended spaceflight. Understanding and preventing the role of ionizing radiation in skeletal muscle loss would preserve the strength and endurance of astronauts and enable longer duration space travel and exploration. Irradiation was performed in the USU material physics group’s Space Survivability Test Chamber. C2C12 and CRL-1999 cells were exposed to dosages ranging from 0.5 – 36.8 Gy. Cell viability and growth rate were measured immediately following irradiation.

Irradiation

Cell Culture

C2C12 skeletal muscle cells were differentiated in DMEM F-12 10% FBS for 6 days then reduced to 2% FBS for 9 days. CRL-1999ortic smooth muscle cells were differentiated in DMEM F-12K with ascorbic acid, insulin, HEPES, TES, and 10% FBS for 15 days.

Suspended Cell Irradiation

C2C12 cells were suspended in 150 µl of DMEM 10% FBS medium and sealed in a 1 atm chamber. Cells were irradiated with ⁹⁰Sr at a dosage rate of 7 Gy/hour to achieve a total dosage of 0.6, 7.2, 14.6, and 36.8 Gy.

Cell Monolayer Irradiation

C2C12 and CRL-1999 cells were differentiated in 24-well plates and irradiated at a rate of 1.13 Gy/hr to achieve a total dosage of 0.5, 1, 2, and 4 Gy.

Results

Suspended C2C12 Cell Viability

LD₅₀ of undifferentiated C2C12 cells calculated at 47 Gy. Human LD₅₀ is approximately 4.5 Gy [⁷]. N = 4.

Cell morphology after 7 days. From left: Control, 7.2 Gy – overgrowth, 14.6 Gy – slowed growth, did not differentiate, 36.8 Gy – severely slowed growth, did not differentiate.

Cellular Monolayer Viability

Morphology

Cell morphology following irradiation. Top – CRL-1999 A) 0.5 Gy B) 1.0 Gy C) 2.0 Gy D) 4.0 Gy. Bottom – C2C12 E) 0.5 Gy F) 1.0 Gy G) 2.0 Gy H) 4.0 Gy

Conclusions and Ongoing Work

Conclusions

• Cell viability decreased substantially with increased accumulated radiation
• Following a 7-day recovery period, undifferentiated cell viability increased compared to Day 0
• Differentiated monolayers have a lower LD₅₀ than undifferentiated cells
• Vascular smooth muscle cells are more sensitive to radiation than skeletal muscle cells

Ongoing Work

• Irradiation of differentiated C2C12 and CRL-1999 cells in a rotary cell culture system to simulate microgravity
• Fluorescent staining for H2AX to visualize double stranded DNA damage