2013

Rational Reprogramming of Fungal Polyketide First Ring Cyclization

Yuquan Xu

Tong Zhou
Utah State University

Zhengfu Zhou

Shiyou Su

Sue A. Roberts

William R. Montfort

See next page for additional authors

Follow this and additional works at: https://digitalcommons.usu.edu/bioeng_facpub

Recommended Citation
Rational Reprogramming of Fungal Polyketide First Ring Cyclization

Yuquan Xu1,6, Tong Zhou1,6, Zhengfu Zhou1,3, Shiyou Su1,3, Sue A. Roberts5, William R. Montfort4,5, Jia Zeng7, Ming Chen7, Wei Zhang8, Min Lin8, Jixun Zhan9,*, and István Molnár1

1 Natural Products Center, School of Natural Resources and the Environment, The University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
2 Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA 3 Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Beijing 100081, P. R. China 4 Department of Chemistry and Biochemistry, The University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA 5 Bio5 Institute, The University of Arizona, 1567 E. Helen St., Tucson, AZ 85721, USA * These authors contributed equally to this work. * Corresponding authors: molnar@email.arizona.edu (I. Molnár); jixun.zhan@asu.edu (J. Zhan)

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Resorcylic acid lactones (RALs) and dihydroxyphenylacetic acid lactones (DALs) represent important pharmacophores with heat shock response and immune system modulatory activities. The biosynthesis of these fungal polyketides involves a pair of collaborating iterative polyketide synthases (iPKSs): a highly reducing iPKS (hrPKS) whose product is further elaborated by a nonreducing iPKS (nrPKS) to yield a 1,3-benzenediol moiety bridged by a macrolactone. Biosynthesis of unreduced polyketides requires the sequestration and programmed cyclization of highly reactive poly-β-ketoacyl intermediates to channel these uncommitted, pluripotent substrates towards defined subsets of the polyketide structural space. Catalyzed by product template (PT) domains of the fungal nrPKSs and discrete aromatase/cyclase enzymes in bacteria, regiospecific first-ring aldol cyclizations result in characteristically different polyketide folding modes. However, a few fungal polyketides, including the DAL dehydrocurvularin, derive from a folding event that is analogous to the bacterial folding mode. The structural basis of such a drastic difference in the way a PT domain acts has not been investigated until now. We report here that the fungal versus the bacterial folding mode difference is portable upon creating hybrid enzymes, and structurally characterize the resulting unnatural products. Using structure-guided active site engineering, we unravel structural contributions to regiospecific aldol condensations, and show that reshaping the cyclization chamber of a PT domain by only three selected point mutations is sufficient to reprogram the dehydrocurvularin nrPKS to produce polyketides with a fungal fold. Such rational control of first ring cyclizations will facilitate efforts towards the engineered biosynthesis of novel chemical diversity from natural unreduced polyketides.

biosynthesis | cyclase | iterative catalysis | natural products | polyketides

Introduction

Fungal polyketides are one of the largest families of structurally diverse natural products with antibiotic, antiproliferative, immunosuppressive, and enzyme inhibitory activities. Importantly, they also provide lead compounds and inspiration for pharmaceutical drug discovery, as evidenced by the statin cholesterol-lowering agents (1, 2). Fungal polyketides are biosynthesized by multi-domain megasynthases (Type I iterative polyketide synthases, iPKSs) that employ ketoacyl synthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains to catalyze recursive thio-Claisen condensations using malonyl-CoA extender units. While the architecture of these enzymes is similar to a single module of the bacterial Type I modular PKSs (3), fungal iPKSs use a single set of active sites iteratively, analogous to dissociated bacterial type II PKSs (4). Fungal iPKSs may be classified into three subgroups (5). Highly reducing iPKSs (hrPKSs) generate complex linear or non-aromatic cyclic products by reducing the nascent β-ketoacyl intermediates to the β-alcohol, the alkene, or the alkane after each condensation step, using their ketoreductase (KR), dehydratase (DH), and enoyl reductase (ER) domains to execute a cryptic biosynthetic program (2, 6-8). Partially reducing iPKSs omit enoyl reduction to generate simple cyclic structures (5). Finally, nonreducing iPKSs (nrPKSs) feature no reducing domains, and generate a wide variety of aromatic products. nrPKSs select different starter units by a starter unit-ACP transacylase (SAT) domain (9), and mold the polyketide chains into cyclic products by regiospecific cyclizations. First-ring cyclizations are catalyzed by the product template domains (PT) (10), while the polyketide chains are terminated by Claissen cyclase (11), macrolactone synthase (12) (thioesterase, TE) or reductive release (R) domains (2).

While the biosynthesis of most fungal polyketides requires a single iPKS enzyme, the assembly of the resorcylic acid lactones (RALs) involves a pair of collaborating hrPKS and nrPKS, acting in sequence (12-17). Fungal RALs are rich pharmacophores with estrogen agonist (zearelanone), mitogen-activated protein kinase inhibitory (hypothemycin), and heat shock response modulatory activities (radicicol and monocillin II (1), Fig. 1 (18), 19). For these RALs, the hrPKS produces a reduced linear polyketide chain that is directly transferred to the nrPKS (9). The nrPKS further extends the polyketide, closes the first 6-membered ring by aldol condensation, and releases the RAL product by macrolactone formation (Fig. 1). We have recently shown that the assembly of 10,11-dehydrocurvularin (2), a phytotoxic dihydroxyphenylacetic acid lactone (DAL) from Aspergillus terreus, employs a similar chemical modularity principle (20). Curvularins modulate the mammalian immune system by repressing the inducible nitric oxide synthase (iNOS) (21, 22). In addition, both monocillin II (1) and 10,11-dehydrocurvularin (2) act as promising broad spectrum inhibitors of various cancer cell lines in vitro by overwhelming the heat shock response, an evolutionarily conserved coping mechanism of eukaryotic cells that maintains protein homeostasis (23-26).

A crucial step during the programmed biosynthesis of aromatic polyketide natural products is the cyclization of the first ring, catalyzed by the PT domains of the nrPKS (10, 27). This event commits the highly reactive, pluripotent poly-β-ketoacyl

Reserved for Publication Footnotes
chains towards defined structural classes of the possible polyketide scaffold space. PT-catalyzed cyclizations most often follow an F-type folding mode (28, 29). From two additional acetate equivalents (28, 29) (Fig. 1), the hrPKS CcRADS1 produces a reduced pentaketide starter unit (13) that is transferred to the nrPKS CcRADS2 by the SAT domain (9) (step 1). After a further four successive condensation events with malonyl-CoA (mCoA, step 2), catalyzed by the KS of the nrPKS CcRADS2, the linear ACP-bound polyketide chain undergoes a C2–C7 aldol condensation catalyzed by the PT domain (10) (step 3). This condensation follows an F-type folding mode (28, 29). The peak in trace (i) labeled with the asterisk corresponds to 11-hydroxycurvularin, a spontaneous hydration product of 2. (B) Product profiles (HPLC traces recorded at 300 nm) of S. cerevisiae BJ5464-NpgA (13, 34) co-transformed with YEpATCURS1 and the indicated YEpATCURS2 derivatives (SI Methods): (i) YEpATCURS2; (ii) YEpATCURS2-ΔPT; (iii) YEpATCURS2-ΔPT+PTAACURS2; (iv) YEpATCURS2-PTCcRADS2. The peak in trace (i) labeled with the asterisk corresponds to 11-hydroxycurvularin, a spontaneous hydration product of 2. (B) Product profiles (HPLC traces recorded at 300 nm) of S. cerevisiae BJ5464-NpgA (13, 34) co-transformed with YEpCcRADS1 and the indicated YEpCcRADS2 derivatives (SI Methods): (i) YEpCcRADS2; (ii) YEpCcRADS2-ΔPT; (iii) YEpCcRADS2-ΔPT+PTCcRADS2; (iv) YEpCcRADS2-PTCcRADS2. Polyketide products were characterized based on their UV, ESI-MS, NMR and CD spectra, as well as Mosher’s method (see SI Methods for details on isolation and chemical characterization).
the PT domain of the AtCURS2 curvularin synthase nrPKS is firmly rooted in the C2-C7 clade of PTs which yield RALs like 1 (20). This result concurs with previous observations that fungal iPKS evolve orthogonal product specificities primarily by point mutations, and not by domain shuffling amongst distinct enzymes (2).

The present work aimed to define how different regiospecific outcomes for first ring cyclization are programmed into nrPKS enzymes. By exploiting the orthogonal aldol condensation regiospecificities of the related PT domains of the nrPKSs for 1 and 2, we attempted to alter this program to switch F and S type cyclization modes. Achieving precise control of regiospecificity during the engineered biosynthesis of fungal polyketides is central to producing biologically active "unnatural products", and may guide efforts to generate novel chemical diversity from natural precursor-derived fungal polyketides.

Results and Discussion

PT domains are necessary for programmed polyketide formation. Throughout this study, we have used an in vivo reconstituted system for polyketide production, whereby recombinant hrPKS + nrPKS pairs are expressed from compatible plasmids in the host Saccharomyces cerevisiae BJ5464-NpgA to produce 1 (9 mg/l, isolated yield), 2 (6 mg/l), and their derivatives (13, 34). Deletion of PT domains has previously been shown in the Tang and Townsend laboratories to yield shunt metabolites whose backbones have undergone spontaneous cyclizations (12, 27, 29). Thus, at the start of this work we considered it to be possible that PTACURS2 is simply an inactive enzyme that does not contribute to the folding of the nascent polyketide chain, and thus the DALScaffold of 2 is a serendipitous derailment product retained by evolution. To exclude this possibility, we have deleted the PT domain of AtCURS2 as well as the PT domain of CcRADS2, the radicicol/monocillin II nrPKS of Chaetomium chiversii (14). However, the corresponding yeast expression strains produced no polyketides (Fig. 2). Complementation of the PT-less nrPKSs with their dissected PT domains, expressed as separate ORFs, led to the rescue of the production of the native products 1 (1 mg/l) and 2 (2 mg/l), respectively (Fig. 2). The success...
of the experiment contrasts previous in trans domain complementation attempts that did not yield observable products in vivo (1, 29), and emphasizes that appropriate protein–protein docking, substrate recognition and processing still can take place with dissected domains expressed in heterologous hosts. Taken together, these experiments show that the PT-less nrPKSs and the freestanding PT domains are all catalytically active. The absence of RAL/DAL product formation in the absence of PT domains thus indicates that these domains fulfill an essential role in both systems, and that un-templated poly-β-ketones are not released by these nrPKSs.

Portability of aldol cyclization programs. Recent experiments to replace PT domains in nrPKS model systems showed that the register of F-type aldol condensations may be switched (29, 35), with the incoming PTs enforcing a subtle shift of the substrate chains in the catalytic chambers to expose different carbons (C2, C4 or C6) to the catalytic histidine for deprotonation and enolate formation (10). Thus, we were interested to see whether first ring cyclizations may also be reconfigured between F- and S-type folding modes by exchanging PT domains. This would require radical re-routing of the polyketide substrate chain to expose carbons (C2 for F-type or C3 for S-type) (28) to the phosphopentenyl dithioester. As shown above and observed previously by others (1, 29, 30), in trans reconstitution of iPKSs from dissected domains incurs a penalty for catalysis, in terms of product yield and/or foldability. Thus, we elected to conduct these experiments with nrPKSs where the heterologous PT domains replace their native equivalents in cis (29). Replacement of the PT domain of AtCURS2 with PT CcRADS2 led to the production of two isocoumarins, both resulting from C2-C7 aldol cyclizations. The priming acyl chain of 3 (0.3 mg/l) corresponds to the expected product of the hrPKS AtCURS1, while the major product 4 (3 mg/l) features a carbonyl at C15 (Fig. 2A). The formation of 3 and 4 indicates that PT CcRADS2 is able to process a shorter substrate (an octaketide as opposed to its native nonaketide) while faithfully executing an F-type first ring closure. Time course analysis of the fermentation with *S. cerevisiae* BJ5464-NpgA [YPEpATCURS1 and YEppATCURS2-PT CcRADS2] (Fig. 3A) shows that 3 is the primary product 24 hr after the induction of polyketide production, but by 48 hr the formerly minor product 4 becomes dominant. Extending the cultivation to 72 hr and beyond increased only the production of 4 but did not eliminate 3, nor did it lead to the production of additional polyketide products. Similarly, incubation of purified 3 with the untransformed yeast host strain *S. cerevisiae* BJ5464-NpgA led to the gradual, albeit not complete, replacement of formation of 3 to 4 (Fig. 3B). It was confirmed that the untransformed yeast host strain does not produce 3 or 4, nor is 3 converted to 4 by spontaneous oxidation in the culture medium in the absence of yeast cells (Fig. 3B). Thus, 4 derives from a chance oxidation of the 15-OH of 3 by an endogenous enzyme of the yeast host.

The yeast strain co-expressing CcRADS1 and CcRADS2-PT AtCURS2 yielded a novel compound (5, Fig. 2B), although with a low productivity (0.3 mg/l). Structural characterization of this product revealed that 5 harbors a novel carbon skeleton featuring a CS-C3 dihydroxyphenylacetic acid moiety bridged by an S-membered lactone (SI Methods). Thus, PT AtCURS2 is competent to process a longer substrate (a nonaketide as opposed to its native octaketide) while retaining its ability to direct an S-type folding and cyclization event. The 4-oxo-2-oxacyclooctanone ring of 5 may be produced by the facile attack of the C1 carboxyl on C11 of the enone; the involvement of the TE domain in this reaction cannot be excluded at this point.

Collectively, these experiments show that the F- or S-type regiospecificities of first ring cyclizations are solely programmed by the PT domains of collaborating iPKSs (29, 35). This programming is portable amongst nrPKS platforms, without influencing starter unit choice or the number of extensions carried out by the rest of the chassis. The formation of the isocoumarins 3 and 4 and the 8-membered lactone 5 suggests that the nrPKS TE domains may hydroylate products with simplified condensation patterns, but they are unable to form a macrolactone using a carbon chain with an isomeric fold. The low product yield of 5 suggests that CcRADS2 is a more stringent chassis, less amenable to combinatorial replacement of its domains.

Homology models of PT AtCURS2 and PT CcRADS2. To identify the structural basis of the programing of regiospecificity in PT domains, we have created homology models of the PT AtCURS2 and the PT CcRADS2 domains, based on the experimentally determined structure of the PT domain of NSAS from *Aspergillus parasiticus* (PT NSAS, PDB ID: 3HRR and 3HRQ) (10). The nrPKS NSAS catalyzes the formation of norsoronic acid, a C20 polyketide primed with hexanoic acid, with the PT NSAS directing an F-type folding mode first ring cyclization event (28) in the C4-C9 register, followed by a second ring closure at C2-C11. In spite of relatively low sequence similarities with PT NSAS (PT AtCURS2: 22% identity and 41% similarity; PT CcRADS2: 20% identity and 40% similarity), combined structural evaluation and fold recognition scores of 3.6 (PT CcRADS2) and 3.47 (PT AtCURS2) obtained from the reliability assessment engine PCONS5 (37) indicated that the fold recognition is reliable for both PT AtCURS2 and PT CcRADS2 (a PCONS score > 2.17 is considered reliable, a score > 1.5 is considered significant). PT NSAS features a long, straight cyclization chamber and a hydrophobic hexyl-hinging region that accommodates the starter unit, with the substrate bound in an extended conformation (10). In contrast, homology modeling had suggested that PKS4, the zearalenone nrPKS from *Gibberella fujikuroi* (10, 16, 38) contains a PT domain with a wider, curved catalytic chamber where the substrate adopts a conformation (10). Similar to the model proposed for PT PKS4, the hydrophobic hexyl-binding region present in PT NSAS was found to be closed off in both PT AtCURS2 and PT CcRADS2 by the bulky side chains of two phenylalanine residues (Fig. 4). First, a replacement of M1495 of NSAS by phenylalanine (AtCURS2: F1445, CcRADS2: F1472) narrows the hexyl-binding region. Next, the side chain of another phenylalanine residue in place of G1547 (AtCURS2: F1445, CcRADS2: F1472) directly clashes with the tail of the palmitic acid that occupies the pocket in structure 3HRR. This latter phenylalanine is also conserved not only in all other RAL PT domains (14-16, 38), but also in clades II, III and V of characterized PT domains (29). Thus, the hrPKS-derived reduced acyl chains of the nascent intermediates for 1 and 2 may not be sequestered in a deep, buried pocket (10) in these enzymes.

The RAL/DAL PT models retain the large substrate binding chamber where cyclization occurs (10). This cyclization chamber appears constricted at the residues corresponding to V1337 and A1399 of NSAS (AtCURS2: M1319 and P1336, CcRADS2: M1322 and P1374) but this is compensated by substitutions with less bulky side chains corresponding to P1355 and W1371 (AtCURS2: G1318 and F1324, CcRADS2: G1335 and F1390, Fig. 4). The cyclization chamber is proposed to feature an active site dyad (AtCURS2: H1299 E1497, CcRADS2: H1325 E1532) where the aspartic acid (D1545) that polarizes the catalytic base (H1545) in NSAS is replaced by glutamic acid. This functionally conserved replacement is present in all known RAL and DAL PT domains (14-16, 38), but not in clades II-V of functionally characterized PT domains (29). The same D to E replacement is nonetheless common in dehydratases with a fold similar to those of PT domains, and was also found in some type II PKS aromatase/cyclase enzymes (32). After deprotonation of C6 (AtCURS2) or C2 (CcRADS2) by the catalytic base, the enolate intermediate is thought to be stabilized by the backbone amine of V521 (AtCURS2) or N547 (CcRADS2) (10). After the collapse of the enolate and aldol addition to the
carbonyl, the oxygenation may be stabilized by a network of water molecules that are coordinated in NSAS by S1584, D1583, T1586 and N1528. Only some of these residues are conserved in AtCURS2 (S1524, E1527, V1528, and V1525) and CcRADS2 (S1538, E1539, V1532, and N1547), and similar replacements are also present in all RAL PT domains (14-16, 38). The secondary half of the oxyanion hole is provided by the backbone amine of a glycine in DH domains and hydratases with which PT domains share a double hot dog fold and a proposed evolutionary origin (10). For NSAS, this glycine was seen to be replaced by P1352, but this residue is restored to glycine in all known RAL PT domains (14-16, 38) (AtCURS2: G1318, CcRADS2: G1335). The corresponding position is occupied by serine in classes II, III and V of PT domains (29). The electrophilic carbonyl that takes part in the aldol cyclization is polarized via hydrogen bonding through the same water network, while hydrogen bonding with an asparagine that is conserved in all functionally characterized PT domains (29) may help to orient the substrate in the chamber (NSAS: N1525, AtCURS2: N1558, CcRADS2: N1531).

Conversion of S- and F-type folding modes by structure-based site-directed mutagenesis. A superimposition of the models for PTs of T. repentis and CcRADS2 (47% sequence identity and 65% similarity) showed that the active sites and the cyclization chambers of these two enzymes are highly conserved. Nevertheless, PTAtCURS forms a first ring in the C8-C3 register with a folding mode analogous to the S-type, while PTccRADS catalyzes an F-type folding mode (28) first ring closure in the C2-C7 register. We have identified three key differences that we hypothesized would result in a change in substrate orientation in the binding pocket, and lead to the orthogonal cyclization regiospecificities observed in 1 vs. 2 (Fig. 5A). First, L1609 of PTccRADS is replaced by W1584 near the substrate entrance in PTAtCURS. The bulky side chain of this tryptophan narrows the entrance of the cyclization chamber of PTAtCURS, and may serve to direct C2 of the penetrating acyl chain away from the catalytic histidine. Leucine is strictly conserved at this position in all characterized RAL PTs (14-16, 38) and predominates (with methionine as an alternative) in clade II-V PTs catalyzing various F-type cyclizations (29). Next, both PTAtCURS and PTccRADS (as well as all other characterized RAL PTs) display a tyrosine-phenylalanine residue pair on opposing faces at the rear of the binding pocket. Remarkably, these residues are inverted in PTAtCURS vs. all known RAL PT domains (PTAtCURS: F1455 and Y1579, PTccRADS: Y1478 and F1501). By participating in hydrogen bond networks (Y or by contributing to a hydrophobic surface of the pocket (F), these residues may help to position the chain such that either C8 (PTAtCURS) or C2 (PTccRADS) would be presented to the catalytic base (PTAtCURS: H1538, PTccRADS: H1525), leading to S-type (PTAtCURS) or F-type (PTccRADS) cyclization outcomes. Notably, all three distinguishing residues (W1584, F1455 and Y1579) are conserved between PTAtCURS and the PT domain of an orphan hPKS-nrPKS system in the genome of Pyrenophora triticir- repentis PT1C-BFP (GenBank: EU47225 and EU47223): this putative DAL synthase is the closest ortholog of the dehydrocurvularin synthase AtCURS1-AtCURS2 (20). Although the highlighted residues are positioned such that substrate binding is expected to be affected, verification of the specific contacts must await the determination of the crystal structures of these domains with bound substrates/products. In the meantime, these three residues may serve as distinguishing sequence signatures to predict RAL vs. DAL formation by orphan biosynthetic systems found in sequenced fungal genomes.

To test our structural analysis, we systematically replaced one, two or all three of the identified residues (F1455, Y1579, and W1584) in AtCURS2 with their counterparts in CcRADS2, and co-expressed these enzymes with AtCURS1 in yeast. Single mutations did not alter the regiospecificity of first ring closure in the product (Fig. 5B). Double mutations either eliminated product production (P1352Y + W1584L), or yielded a mixture of 2 and 4, indicating a relaxed aldol condensation regiospecificity for some of these mutant enzymes. Finally, the enzyme with all three mutations produced only 3 and 4 (0.2 and 2 mg/l, respectively), with no detectable 2. Thus, these three selected point mutations were sufficient to completely transform the native C8-C3 (S-type) regiospecificity of PTAtCURS to C2-C7 (F-type, Fig. 5B). The converse experiment (replacing Y1478, F1501 and L1609 in CcRADS2 with the corresponding residues of AtCURS2 in all combinations) reduced the yield or completely eliminated the production of 1, but did not provide 5 or any other detectable C8-C3 DAL (Fig. S1). The absence of the expected product may not be surprising if we consider the low yield of 5 even with CcRADS2-PTAtCURS, where the incoming PTAtCURS domain has presumably been optimized by evolution for the effective synthesis of C8-C3 products. A similar recalcitrance to alteration of stereocontrol has been noted for KR and ER domains during site-directed mutagenesis (but not during complete domain exchanges) in the context of modular PKS systems. Presumably, any proofreading activity from downstream domains (e.g. the TE in our system) may override the effects of subtle alterations of the active site architecture (3, 39, 40).

The current work affirms that first ring cyclization regiospecificity in fungal collaborating iPKSs is programmed in the composition and geometry of the cyclization chambers of the PT domains. Exploiting structural information on PT domains, we have gained insight into the origins of the programming of this folding specificity. Replacement of just three select residues of the product cyclization chambers in a keyhole surgery-like approach converted a PT domain from an atypical, C8-C3-specific, S-type folding mode cycloasmatype to a typical, C2-C7-selective, F-type folding mode enzyme, as predicted. The identified signature residues may be used to predict polyketide folding modes in orphan RAL/DAL biosynthetic systems. More importantly, rational reprogramming of polyketide folding modes in fungal iPKSs opens new possibilities for the designed biosynthesis of novel unnatural polyketides with isofucoid folds, including cancer cell proliferation inhibitors and immune system modulators.

Materials and Methods

Strains and Culture Conditions. E. coli DH10B and plasmid pET11.2 (Fermen- tas) were used for routine cloning and sequencing. Saccharomyces cerevisiae BJ5464-NpgA (MATα ura3-52 his3Δ1200 leu2-3 Δ1 trpl1 pep4:His3 pbr1 Δ16.8 can1 GAL) (31, 41) was maintained on yeast extract peptone dextrose agar (YPD, Difco), and transformed using the small scale lithium chloride protocol (42). The yeast – E. coli shuttle vectors YepADH2p-FLAG-URA and YepADH2p-FLAG-TRP (20) are based on the YepADH2p vectors with the URA3 or with the TRP1 selectable markers (13). Primers used in this study are listed in Table S2. Details on the construction of gene variants and expression constructs are described in the SI Methods. For each recombinant yeast strain, three to five independent transformants were analyzed for the production of polyketides by small scale fermentation, and fermentations with representative isolates were repeated at least three times to confirm results.

Small scale fermentation and analysis of products. Yeast strains were cultured in 50 mL of SC medium (0.67% yeast nitrogen base, 2% glucose, and 0.72 g/l Trp/UrA DropOut supplement) at 30°C with shaking at 250 rpm. When the OD600 reached 0.6, an equal volume of YM medium (1% yeast extract, 2% peptone) was added to the cultures, and the fermentation was continued at 30°C with shaking at 250 rpm for an additional 2 days. The cultures were adjusted to pH 5.0, and extracted with equal volumes of ethyl acetate three times. The collected organic extracts were evaporated to dryness and analyzed by reversed phase HPLC (Kromasil C18 column, 5 µm, 4.6 mm x 250 mm; eluted with 5% aqueous acetonitrile for 5 min, followed by a linear gradient of 5-95% CH3CN over 10 min, and 95% CH3CN for 10 min at a flow rate of 0.8 ml/min; detection at 300 nm). Analysis of the time course of the production of 3 and 4, biotransformation of 3 to 4 by Saccharomyces cerevisiae BJ5464-NpgA, and scale-up of fermentations and isolation of polyketide products for structure elucidation are described in the SI Methods.
Chemical characterization of polyketide products. Optical rotations were measured for 1H, 13C, and 2D NMR (COSY, HMQC, HMBC, ROESY) spectra were recorded in DMSO-d6, CDCl3 or CD3OD on a JEOL ECEX-300 spectrometer. ESI-MS data were collected on an Agilent 6120 Single Quad LC-MS. See SI Methods for details.

Homology Modeling. Sequences of the PT-M1,2 and PT-B2,3 domains were submitted to the BioinfoBank Meta Server (3D jury) (43). Models based upon the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank PDBs structures 3HRQ and 3HRR (10) were generated by several homology modeling servers. Carbon-alpha models generated by the SAM-HMM server (44) were ranked by 3DJury as most representative and chosen for use. All atom models were created using MODELLER (45). There were no significant differences between the models based upon 3HRQ and those based upon 3HRR. PCONS5 (37) was used to evaluate fold recognition.

Acknowledgements. This work was supported by grants from the National Science Foundation (MCB-0948751 to I. M.), the National Institutes of Health (AI065357 to J. Z., HL062969 to W. R. M.), Utah State University (Seed Program to Advance Research Collaborations, to J. Z.), the National Research and Development Project of Transgenic Crops of China (2011ZX008009-003-002 to L. M.) and the National Basic Research Program of China (2013CB733903 to L. M.). Professors N. A. Da Silva (University of California, Irvine) and Y. Tang (University of California, Los Angeles) are thanked for providing the yeast host strain and expression vectors.