Metallurgical Structures of As-Cast and Heat-Treated High-Palladium Dental Alloys

William A. Brantley
The Ohio State University

Zhuo Cai
The Ohio State University

Alan B. Carr
The Ohio State University

John C. Mitchell
The Ohio State University

Follow this and additional works at: http://digitalcommons.usu.edu/cellsandmaterials

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Available at: http://digitalcommons.usu.edu/cellsandmaterials/vol3/iss1/8

This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Cells and Materials by an authorized administrator of DigitalCommons@USU. For more information, please contact dylan.burns@usu.edu.
METALLURGICAL STRUCTURES OF AS-CAST AND HEAT-TREATED HIGH-PALLADIUM DENTAL ALLOYS

William A. Brantley1,*, Zhuo Cai1, Alan B. Carr1, and John C. Mitchell2

1College of Dentistry and 2Department of Geological Sciences
The Ohio State University, Columbus, Ohio 43210

(Received for publication December 28, 1992, and in revised form March 9, 1993)

Abstract

Scanning electron microscope observations and energy-dispersive spectroscopic analyses have been performed on two first-generation and two second-generation high-palladium dental casting alloys. A specimen design simulating a maxillary central incisor coping was employed to conserve metal, while providing thin and thick sections to yield a range of solidification rates. The alloys were centrifugally cast in air, following standard dental laboratory techniques; three castings were prepared for each alloy. Each casting was sectioned to produce two mirror-image specimens, and one specimen received the appropriate oxidation heat treatment, followed by a simulated full porcelain firing sequence. After metallographic polishing, specimens were examined with a scanning electron microscope. The as-cast alloys displayed multi-phase microstructures which could be explained by the rapid solidification conditions and the relevant phase diagrams. The simulated porcelain firing heat treatment caused a variety of bulk microstructural changes in the coping sections, along with formation of complex subsurface oxidation regions which were less thick for the second-generation alloys. Elemental compositions of the palladium solid solution matrix in the heat-treated alloys were in good agreement with nominal alloy compositions provided by the manufacturers. Ruthenium-rich particles found in the microstructures of three alloys are consistent with a proposed mechanism for grain refinement.

Key Words: High-palladium dental alloys, dental casting alloys, fixed prosthodontics, scanning electron microscopy, energy-dispersive spectroscopy, dendrite, microstructure, grain refinement, strengthening mechanism, phase diagram.

*Address for Correspondence:
William A. Brantley
Section of Restorative and Prosthetic Dentistry,
College of Dentistry, The Ohio State University
305 West 12th Avenue, Columbus, Ohio 43210-1241
Telephone number: (614) 292-0773
FAX number: (614) 292-9422

Introduction

High-palladium dental alloys [> 70 weight (wt) % Pd] have achieved widespread commercial success over the past decade because of their combination of good mechanical properties and relatively low metal cost, compared to alternative gold-based alloys (Carr and Brantley, 1991). First-generation Pd-Cu-Ga alloys containing -10 wt% Cu and 6-9 wt% Ga date from the patent by Schaffer (1983) for Option, and have much higher values of hardness and yield strength than the more recently marketed second-generation copper-free alloys based upon the Pd-Ga system. While originally developed for metal-ceramic applications, these alloys have been recommended for implant-supported prostheses (Stewart et al., 1992) and removable partial denture frameworks (Asgar, 1988). Compositions of four representative high-palladium alloys are summarized in Table 1. Recent prices for these alloys differ by only -10% from those given by Carr and Brantley (1991).

The high-palladium alloy compositions have been artfully developed by the manufacturers to provide appropriate strength and ductility for clinical applications, while maintaining hardness levels which do not cause undue difficulty for the dental laboratory and clinician in finishing and adjusting the castings (Carr and Brantley, 1991). For metal-ceramic applications which require strong interfacial bonds with dental porcelain (McLean, 1979), these alloys contain the elements Cu, Ga, In, Sn (and perhaps Pd) which form oxides during the initial oxidation ("degassing") heat treatment (van der Zel, 1989). In addition, the alloy compositions have been adjusted by the manufacturers to provide a close match with the ceramic thermal contraction coefficients. This is essential to minimize the subsequent development of residual tensile stresses in the porcelain, when the metal-ceramic restoration is cooled from the porcelain glass transition temperature to room temperature after firing (McLean, 1979).

While the Pd-rich end of the Pd-Ga binary phase diagram provides a useful starting point to consider the physical metallurgy of these dental alloys, the published (Massalski, 1986) phase diagram (Fig. 1) is over thirty years old (Schubert et al., 1959). There are uncertainties about the positions of the liquidus, solidus and sol-
Figure 1. Palladium-gallium phase diagram (Massalski, 1986). Note that the phase designations, such as GaPd$_2$ and GaPd$_3$, are reversed from the style used in this article. Reproduced with permission from ASM International.

Table 1. Nominal1 compositions (weight %) of the high-palladium alloys studied (from Carr and Brantley, 1991).

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Palladium</th>
<th>Copper</th>
<th>Gallium</th>
<th>Gold</th>
<th>Silver</th>
<th>Tin</th>
<th>Indium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spartan*</td>
<td>79</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Protocol*</td>
<td>75</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>6.5</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Liberty**</td>
<td>76</td>
<td>10</td>
<td>5.5</td>
<td>2</td>
<td>-</td>
<td>~ balance</td>
<td>-</td>
</tr>
<tr>
<td>Legacy**</td>
<td>85</td>
<td>-</td>
<td>~ balance</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

1Manufacturer supplied; trace amounts of grain-refining elements were not reported by the manufacturers.

*William Dental, Division of Ivoclar North America, Amherst, NY. **J.F. Jelenko & Company, Armonk, NY.

vus lines, as well as the existence of a peritectoid solid-state transformation involving the formation of Pd$_5$Ga$_3$. Examination of the Pd-Cu phase diagram (Subramanian and Laughlin, 1991) indicates that Cu forms solid solutions with Pd for the Pd/Cu ratios found in the first-generation alloys. A fundamental problem with the use of phase diagrams is that metallurgical structures for dental alloys depart drastically from those expected for equilibrium conditions, because of the rapid solidification rates for typical castings (Phillips, 1991) and the relatively brief period of any post-casting heat treatment such as the porcelain firing cycles. The rapid solidification conditions encountered during the dental casting procedure shift the binary Pd-Ga eutectic reaction to lower weight
percentages of Ga than would occur for very slow cooling under near-equilibrium conditions (Guy and Hren, 1974). Moreover, Cascone (1984) reported that the additions of both copper and indium in the concentration range found for high-Pd dental alloys decrease the solid solubility of Ga in Pd. This effect also shifts the eutectic reaction in Pd-Cu-Ga alloys to lower weight percentages of Ga than for the Pd-Ga binary system.

In recent publications, we have provided extensive information about first-generation and second-generation high-palladium alloys (Carr and Brantley, 1991; Brantley et al., 1992; Carr et al., 1993). Microstructures and measurements of Vickers hardness were presented for the alloys in both the as-cast and heat-treated conditions (simulated porcelain firing cycles). The effects of using a peak investment soak or dwell temperature (mold temperature) during burnout of 1,400°F or 1,500°F (760°C or 815°C) on the resulting alloy microstructures and hardness were also discussed. The present article describes our continuing research in this area on a more fundamental level than in preceding publications. The objectives of this investigation were to provide new insight into the complex metallurgical structures of as-cast and heat-treated high-palladium alloys and to present novel information about the mechanism for grain refinement in these alloys.

Materials and Methods

The two first-generation (Spartan and Liberty) and two second-generation (Protocol and Legacy) high-palladium alloys listed in Table 1 were selected for study. Standard dental laboratory procedures and manufacturer recommendations were followed for the preparation of cast specimens. Each alloy was melted by multi-orifice gas-oxygen torch in a separate ceramic crucible (Carr and Brantley, 1991). The necessity for fusing the high-palladium alloys in a ceramic crucible has been demonstrated by Hero and Syverud (1985) and by van der Zel and Vrijhoef (1988). The alloys were centrifugally cast in air, using a standard broken arm casting machine (Kerr Division/Sybron Corporation, Romulus, MI). The specimen design was based upon the coping for a maxillary central incisor restoration and was selected to conserve metal and provide both thin and thick sections, which allowed study of a range of solidification conditions (Carr and Brantley, 1991). Each casting required only ~4.5-6 gm (3-4 pennyweights) of alloy, with at least half of the metal used for the sprue system. Wax patterns were invested in a carbon-free, phosphate-bonded investment (Cera-Fina, Whip Mix Corporation, Louisville, KY), and a peak burnout or mold temperature of 1,400°F (760°C) was employed. Three castings were prepared for each of the four alloys. The castings were bench-cooled, devested and air-abraded with 50 µm aluminum oxide particles (APM/Sterngold, Attleboro, MA).

The as-cast specimens were mounted in transparent metallographic resin (Epoxide, LECO Corporation, St. Joseph, MI) and sectioned perpendicular to the sprue base (Carr and Brantley, 1991). This procedure yielded two half-disk specimens which provided mirror-image cross-sections from each original casting. One specimen was carefully removed with a dental handpiece, air-abraded, ultrasonically cleaned in distilled water, and oxidized (Carr et al., 1993). For the two Williams/Ivoclar alloys (Spartan and Protocol), oxidation was carried out in vacuum (i.e., reduced atmospheric pressure in a conventional porcelain furnace) with a five-minute hold at the peak temperature of 1,850°F (1010°C). For the two Jelenko alloys (Liberty and Legacy), oxidation was performed in air with the same peak temperature, but no hold. This step was followed by a simulated full sequence (opaque layer, two body layers and glaze) of porcelain firing cycles (Vita VMK, Vident, Baldwin Park, CA), and the heat-treated specimen was then remounted in resin (Carr et al., 1993).

Following standard metallographic polishing through 0.05 µm alumina slurries, the microstructures of the high-palladium alloy specimens were revealed by etching in aqua regia solutions (Mezger et al., 1987). Judicious use of underetching or overetching provided additional information beyond that which we have previously reported about the metallurgical structures of these alloys (Carr and Brantley, 1991; Brantley et al., 1992; Carr et al., 1993).

Specimens were observed in a scanning electron microscope (SEM; JEOL JSM-820, JEOL Ltd., Tokyo, Japan), and scanning electron photomicrographs were obtained in the secondary electron image mode, using a standard Everhart-Thornley detector. Quantitative elemental compositions at selected sites in the alloy microstructures were obtained by X-ray energy-dispersive spectrometric (EDS) spot and raster analyses. The majority of these analyses were performed with a Tracer-Northern 5500 X-Ray Analyzer (Noran Instruments, Madison, WI), equipped with a Tracer-Northern Micro Z detector and a 5502 upgrade package. Additional EDS analyses were performed with a Link eXL X-ray microanalysis system with a PentaFET detector and ultrathin window (Oxford Instruments Group, High Wycombe, England). Nearly all specimens were coated with a thin carbon layer to prevent electrical charging effects with the metallographic resin disks at high magnifications. Some heat-treated Protocol and Legacy specimens were coated with a thin Au-Pd film to facilitate high-magnification observations of the resin-alloy interfacial regions.

Results

The dendritic as-cast microstructure of the first-generation alloy, Spartan, is depicted in Fig. 2 at greater resolution than in our original article (Carr and Brantley, 1991). Pronounced microsegregation ("coring") has occurred in the palladium solid solution dendrites, which freeze initially when the alloy solidifies. The lighter-contrast peripheries, which were the last

Figure 2. As-cast Spartan. The dendrites exhibit microsegregation and the presence of a needle-like precipitate in the outer portions. The complex nature of the darker contrast interdendritic regions can be clearly seen. Bar = 10 µm.

Figure 3. High-magnification of an area within the interdendritic region for as-cast Spartan. The fine-scale lamellar constituent is based upon the Pd solid solution-Pd$_2$Ga binary eutectic. Bar = 1 µm.

Figure 4. The bulk coping section for a heat-treated Spartan specimen. The as-cast dendritic structure has disappeared, and at least two secondary phases (dark contrast) coexist with the palladium solid solution phase. The rectangular-shaped phase may have some crystallographic habit. Bar = 10 µm.

Figure 5. The subsurface oxidation region in heat-treated Spartan. EDS analyses suggest that the oxide particles contain Ga$_2$O$_3$ and CuO. Bar = 1 µm.
Figure 6. As-cast Liberty, illustrating the transition region between the near-surface and bulk microstructures. In the center of this figure, the Pd solid solution-Pd$_2$Ga eutectic structure can be seen at some grain boundaries. The eutectic constituent has been removed by the etchant at other sites. Bar = 10 µm.

Figure 7. High-magnification of the eutectic structure near the transition region in Fig. 6 for as-cast Liberty. This micrograph establishes the identity of the unresolved grain boundary precipitate network in our previous publication (Carr and Brantley, 1991). Bar = 1 µm.

Figure 8. The bulk coping section for a heat-treated Liberty specimen. The residual grain boundary eutectic structure has been removed by overetching. The large secondary phase particles which are prominent at the top center and elsewhere in this figure are ruthenium-rich. Bar = 10 µm.

Figure 9. The subsurface oxidation region in heat-treated Liberty (upper portion of figure). EDS analyses indicate that the grain boundary oxide deposits are Ga$_2$O$_3$ and suggest that several types of oxide particles may be embedded within the palladium solid solution grains. Bar = 10 µm.
portions of the dendrites to freeze, have the lowest Pd concentration and appear to contain precipitates with a needle-like morphology. Some isolated microscopic porosity was observed within the interdendritic regions, which are the final microstructural constituents of the alloy to undergo solidification. At higher magnification (Fig. 3), the fine-scale interlamellar spacing of < 0.5 µm within some portions of the complex interdendritic regions is apparent. This constituent, which was poorly resolved in our original photomicrographs obtained with the optical microscope and electron microprobe (Carr and Brantley, 1991), is assumed to be a eutectic structure based upon the Pd solid solution-Pd$_2$Ga binary eutectic (Schubert et al., 1959; Massalski, 1986).

After simulated porcelain firing heat treatment, the dendritic as-cast structure of Spartan was replaced by a completely different bulk microstructure in the coping sections, which is shown in Fig. 4. Morphological differences indicate that at least two secondary phases formed during the heat treatment, and the rectangular phase appears to have some crystallographic habit. An entirely different microstructure was found near the surface of the heat-treated Spartan specimens, where there was a region up to ~ 15 µm thick containing a large number of oxide particles embedded in the palladium solid solution matrix (Fig. 5). EDS analyses indicated increased concentrations of Ga and Cu in the subsurface oxidation region, which suggested that the oxide particles may be composed of Ga$_2$O$_3$ and CuO.

The near-surface region of the other as-cast first-generation alloy, Liberty, is dominated by the eutectic structure based upon the Pd solid solution-Pd$_2$Ga binary eutectic (Carr and Brantley, 1991). Fig. 6 depicts the transition region in as-cast Liberty between the near-surface microstructure and the bulk microstructure, which has been found to have equiaxed grains generally ranging in size from ~ 10-25 µm (Carr and Brantley, 1991). It was not deemed fruitful to attempt to determine an average grain size by standard quantitative metallographic techniques, because of the variation in grain size with thickness of the coping cross-section (Carr et al., 1993). The eutectic structure appears at some grain boundaries in the center of this figure, and there is isolated grain boundary porosity. The delicate nature of the eutectic structure in this region, shown at high magnification in Fig. 7, was poorly resolved in our initial optical microscope and electron microprobe observations of this as-cast alloy (Carr and Brantley, 1991). The fine-scale interlamellar spacing in Fig. 7 and for the near-surface eutectic structure appeared to be approximately the same as that for the interdendritic eutectic constituent in as-cast Spartan (Fig. 3).

After heat treatment, only traces of this eutectic constituent remained at the grain boundaries of Liberty (Carr et al., 1993). Because the microstructure in Fig. 8 was somewhat overetched, the eutectic regions have disappeared due to preferential attack by the etchant. The large secondary phase particles (light contrast from topographic effects) were found to be ruthenium-rich by
SEM Studies of High-Palladium Dental Alloys
The microstructure of a somewhat underetched, as-cast specimen of the second-generation alloy, Protocol, is displayed in Fig. 10. Well-defined grain boundaries are not evident, and there is an extensive array of secondary phase particles within the grains, along with denuded regions devoid of these precipitates near the grain boundaries (Cai, 1992). There are grain boundary voids where it appears that some unknown phase has been lost during metallographic preparation. With suitable additional etching, these grain boundary artifacts will become linked to yield the equiaxed grain structure previously reported (Carr and Brantley, 1991) for as-cast Protocol when overetched. EDS analysis indicated that large secondary phase particles observed within the grains of this as-cast alloy (not shown in Fig. 10) were Ru-rich, in agreement with our previous electron microprobe results (Carr and Brantley, 1991).

The bulk microstructure of an overetched, heat-treated Protocol specimen is provided in Fig. 11. Extensive observations have established that this alloy also has equiaxed grains ranging in size from ~ 10-25 µm, similar to that for Liberty (Carr and Brantley, 1991; Carr et al., 1993). Numerous voids are present within the grain interiors and along the grain boundaries, where the secondary phase particles in Fig. 10 were lost during polishing and etching. In contrast to the dramatic effects on the as-cast dendritic (Spartan) and eutectic (Liberty) structures for the two first-generation alloys, the simulated porcelain firing heat treatment caused more subtle changes in the bulk microstructure of as-cast Protocol (Carr et al., 1993). However, as in the two other alloys, the near-surface microstructure of heat-treated Protocol was totally different from that in the bulk coping sections. A subsurface oxidation region (Fig. 12) tended to be lost during metallographic preparation and was only occasionally observed at the specimen-resin interface. Moreover, the initially fluid metallographic resin infiltrated the surface oxide and subsequent polymerization shrinkage detached this poorly adhering layer from the alloy, leaving an interfacial gap (Brantley et al., 1992; Carr et al., 1993). The extent of the grain boundary oxide deposits, assumed to be Ga2O3, from the elevated Ga concentration obtained by EDS, suggested that the subsurface oxidation region was typically ~ 10 µm thick, although the thickness in Fig. 12 is ~ 10-15 µm.

The microstructures for Legacy, the other second-generation alloy, generally resembled those for Protocol. Optimal etching of the as-cast microstructure was less difficult for Legacy, and numerous precipitates within grains and denuded regions near grain boundaries can be seen in Fig. 13. Our previous extensive observations have shown that this alloy also has equiaxed grains with sizes from ~ 10-25 µm (Carr and Brantley, 1991), very similar to those for Liberty and Protocol. Faint striations within grains may be associated with compositional fluctuations (Carr and Brantley, 1991) or deformation processes (slip or twinning) (Cai, 1992) during solidification. As with Protocol, as-cast Legacy specimens exhibited minimal porosity (Carr and Brantley, 1991), and the size and shape of these voids suggested an alternative origin from loss of secondary phase particles. The large particles in Fig. 13 were again found to be Ru-rich. While heat treatment appeared to have little effect on the bulk microstructure of Legacy, the amount of etching for Fig. 14 has been adjusted to illustrate the different configurations which were found for the secondary phase particles. These precipitate particles were generally too small for EDS analysis (Carr et al., 1993), although large Ru-rich particles with dimensions similar to those in Fig. 13 were again conspicuous. Fig. 15 shows that the subsurface oxidation region for Legacy contained presumed Ga2O3 grain boundary deposits to a depth of ~ 10 µm, and a portion of the adjoining bulk equiaxed grain structure is also visible.

Because of the heterogeneous and fine-scale nature of the microstructural constituents, elemental analyses were not performed on the as-cast alloys and only at selected representative sites in the heat-treated alloys to provide general comparisons to the nominal compositions in Table 1. The approximate concentrations of Pd, Ga and Cu in the bulk matrix grains or regions were in excellent agreement with the alloy compositions reported by the manufacturers (Cai, 1992; Carr et al., 1993). EDS analyses with the Tracer-Northern system indicated relatively large rhenium concentrations in the bulk matrix grains or regions of all four heat-treated alloys, ranging from ~ 1-4 wt% (Cai, 1992). However, when these analyses were repeated with the Link eXL system, the Ru concentrations were generally below the detection limit of ~ 0.5 wt%. Rhenium, another grain-refining element for high-palladium alloys (Schaffer, 1983; Prasad, 1983), was not detected.

Discussion

The fine-scale microstructures with eutectic constituents for as-cast Spartan and Liberty are striking evidence for the rapid solidification of these alloys under standard dental casting conditions (Carr and Brantley, 1993).
SEM Studies of High-Palladium Dental Alloys

For Spartan, the interdendritic regions and outer portions of the palladium solid solution dendrites in Fig. 2 have complex metallurgical structures which are presumably associated with variations in the Pd/Ga ratio during solidification. Our current X-ray diffraction (XRD) studies of as-cast Spartan Plus, which has a composition nearly identical to that of Spartan, may provide information about the structures of these phases (Brantley et al., 1993).

It is tempting to assume that the obstacles to dislocation movement caused by these microstructural constituents provide the dominant hardening and strengthening mechanism for these two first-generation alloys. However, clear evidence that this is not the case has been provided by our recent Vickers hardness measurements (Carr et al., 1993) on the as-cast and heat-treated alloys (Table 2). Although the dendritic structure of as-cast Spartan (Fig. 2) is eliminated by the simulated porcelain firing heat treatment (Fig. 4), there is no corresponding change in hardness and presumably also yield strength (Dieter, 1986). Table 2 also shows that the near-elimination of the eutectic structure in heat-treated Liberty (Fig. 8) only resulted in a decrease in hardness of 15%.

The transmission electron microscopy (TEM) study by Oden and Hero (1986) suggests that the fundamental strengthening mechanism in first-generation high-palladium alloys is complex. These authors presented evidence that the high hardness and strength of an alloy with a composition very similar to that of Spartan arises from local strain fields associated with a complex network of face-centered tetragonal (fct) Pd₃Ga₅Cu₁₋ₓ precipitates < 20 nm thick. These results were consistent with earlier X-ray diffraction experiments by Khablyev et al. (1980) on a non-dental 79Pd-10Cu-9Ga (wt%) alloy also very similar in composition to Spartan. While no XRD evidence was found by Mezger et al. (1987) in several commercial high-palladium dental alloys for the fct phases reported by Oden and Hero, the apparent inconsistency is not surprising since this experimental technique has relatively low resolution for secondary phases present in small amounts (Cullity, 1978).

The formation of a submicron Pd₃Ga₅Cu₁₋ₓ precipitate network in the Pd solid solution matrix of first-generation alloys only requires atomic movements over relatively short distances and thus may be plausible. In contrast, a bulk peritectoid reaction similar to that reported in binary alloys (Schubert et al., 1959; Massalski, 1986) for the transformation of Pd₅Ga and the Pd solid solution to Pd₃Ga will be suppressed by rapid solidification conditions. The complex precipitates described by Oden and Hero would likely be stable with heat treatment, thus accounting for the stability of hardness for Spartan in Table 2. Although the as-cast hardness for Liberty is decreased slightly after heat treatment, strengthening mechanisms similar to those for Spartan might be expected since both alloys contain similar amounts of Pd, Cu and Ga (Table 1). It is speculative to link the lower hardness of Liberty with a lower Ga content without detailed knowledge about the strengthening mechanisms.

The nature of the fundamental strengthening mechanisms for the second-generation alloys, Protocol and Legacy, is also conjectural although the greater hardness of Legacy might be related to differences in Ga, Au, Ag, and In contents (Table 1). The much lower hardness of these two alloys, compared to Spartan and Liberty, indicates that some different basic mechanism is involved. The presence of numerous small secondary phase particles within the grains of as-cast Protocol (Fig. 10) and Legacy (Fig. 13) suggests that incoherent precipitates (Dieter, 1986) provide the strengthening mechanism. These precipitates, which form during solidification of the alloys, would not be greatly affected by subsequent heat treatment, accounting for the very small (~ 5%) difference in hardness for the as-cast and heat-treated conditions. While the larger particles within the grains of Protocol and Legacy are Ru-rich, analytical TEM will be required to determine the compositions of the secondary phases.

Although the microstructures of the as-cast second-generation alloys obviously do not represent equilibrium conditions, it is useful to examine appropriate binary phase diagrams (Massalski, 1986) formed by the elemental components and speculate about the compositions of possible phases. Such considerations suggest that Pd-Ga, Pd-Ru and Ga-In phases may form, along with a Pd-In phase in regions where the Pd/In ratio is decreased because of microsegregation. The absence of any eutectic microstructural constituent in the as-cast second-generation alloys, which have Ga concentrations similar to those of the first-generation alloys, confirms the influence of Cu in shifting the position of the binary Pd-Ga eutectic which was reported by Cascone (1984). The actual compositions of phases in the first-generation and second-generation heat-treated alloys may be complex, since under equilibrium conditions each phase must contain some amount of each elemental component, according to the principles of metallurgical thermodynamics (Darken and Gurry, 1952).

German (1982) has reported that the formation of Pd-In, Pd-Ga and Pd-Zn intermetallic compounds appears to provide significant strengthening effects in Au-Pd dental alloys (52-84 wt% Au, 14-37 wt% Pd). He concluded that the very rapid hardening rate for these alloys during heat treatment was due to spinodal decomposition. TEM investigations will be required to determine if submicron precipitates with compositions similar to those reported by German are also found in the high-palladium alloys.

We have recently discussed scanning electron photomicrographs of the heat-treated high-palladium alloys elsewhere (Brantley et al., 1992; Carr et al., 1993) and only the principal metallurgical phenomena will be summarized. The homogenization of the bulk microstructures of the first-generation alloys (Figs. 4 and 8) is accomplished with the aid of high-diffusivity paths in the fine-scale interdendritic (Spartan) and eutectic
ond-generation alloys, there will necessarily be some re-
duction in residual stresses from solidification and in the
as-cast elemental microsegregation (Carr et al., 1993).
The latter effect is aided by the relatively short elemental
diffusion lengths associated with the fine grain size. The
appearance of narrow and well-defined grain boundaries
in Protocol after heat treatment (Fig. 11) is a conse-
quence of this reduction in microsegregation.

It was not possible to determine whether the grain
sizes of the as-cast high-palladium alloys were signifi-
cantly altered by heat treatment (Carr et al., 1993).
However, from materials science principles, little change
in the as-cast grain size would be expected because mi-
crosegregation during solidification (Winegard, 1964)
should have strong immobilizing effects on grain bound-
aries (Reed-Hill, 1973) in the as-cast alloys. Moreover,
it has been found that the grain size of cast dental gold
alloys is not generally affected by subsequent heat treat-

The complexity of the subsurface oxidation regions
arises because each heat-treated alloy contains at least
two oxidizable elements (Cu, Ga, In, Sn and perhaps Pd)
(van der Zel, 1989). An indirect chemical leaching tech-
nique has been employed by van der Zel (1989) to deter-
mine compositions of the oxides for several first-genera-
tion alloys. While not an objective of this investigation,
the composition and thickness of the surface oxide layers
on the high-palladium alloys is currently under investiga-
tion in our laboratory. Present SEM evidence (Figs. 5,
9, 12 and 15) suggests that the subsurface oxidation re-
gion thickness is greater for the first-generation alloys,
and may also be greater for an as-cast microstructure with
equiaxed grains rather than a dendritic structure (Carr et
al., 1993). Our results suggest that the thickness of the
subsurface region is not determined by whether the ambi-
et environment for oxidation is air or vacuum (dental
porcelain furnace), since Spartan and Protocol were oxi-
dized in vacuum whereas Liberty and Legacy were oxi-
dized in air.

Although the possible role of copper in determin-
ing the thickness of the subsurface oxidation regions is
conjectural, the greater efficiency of rapid diffusion
processes along grain boundaries compared to the inter-
dendritic regions seems plausible. The Ga₂O₃ deposits
and grossly widened grain boundaries in Liberty and the
two second-generation alloys after heat treatment dramat-
ically demonstrate the major role of grain boundary dif-
fusion processes during alloy oxidation. Suoninen and
Hero (1985) have attributed the formation of Ga₂O₃ grain
boundary deposits in first-generation alloys to the rela-
tively low free energy of formation for this oxide species.
These authors also observed oxide particles with enriched
gallium and copper concentrations in the alloy Option,
which has essentially the same composition as Spartan
(Carr and Brantley, 1991), after bonding to porcelain, in
agreement with the present investigation.

The grain-refining element ruthenium appears to
have considerable importance for the high-palladium
alloys studied in the present investigation, presumably de-
termining whether the as-cast microstructure will be den-
dritic or have equiaxed grains. While information about
the grain-refining techniques employed by manufacturers
is proprietary, existing references suggest that the amount
of grain-refining element (ruthenium or rhenium) incor-
porated in the high-palladium alloy compositions does not
exceed ~ 0.5 wt% (Schaffer, 1983; Prasad, 1983;
Vaidyanathan and Prasad, 1987), which is consistent with
our EDS analyses with the Link eXL system. The only
high-palladium alloy in the present study where the large
rhenium-rich particles were not prevalent was Spartan.
This alloy had a dendritic as-cast microstructure and thus
should not contain grain-refining elements. Moreover,
because of discrepancies in the other elemental concentra-
tions obtained with the two EDS systems, it was consid-
ered that accurate determination of the compositions of the
microstructural phases for the four high-palladium alloys
would be a difficult task requiring a separate study.

Lastly, from a review of the mechanisms proposed
in the materials science literature (Banerji and Reif,
1987), the grain refinement of the high-palladium alloys
by rhenium may be related to the peritectic reaction at
the Pd-rich end of the Pd-Ru phase diagram (Massalski,
1986), shown in Fig. 16. Although this proposed model
is speculative, particles of a Pd-Ru phase would serve as
sites for the subsequent heterogeneous nucleation of the
palladium solid solution, which is ordinarily considered
the first solid phase to appear in these alloys during
solidification. While the ruthenium-rich particles were
frequently not observed at the centers of grains, the
photomicrographs suggest that these particles could be
removed during metallographic procedures and deposited
at the grain boundaries. An analogous grain-refining
mechanism would be expected for rhenium, since the Pd-
Re phase diagram also contains a peritectic reaction at the
Pd-rich end (Massalski, 1986). Support for this model
will require the use of analytical TEM to determine the
compositions of secondary phase particles within the
grains and at the grain boundaries of the commercial
alloys. Additional studies using model alloy compositions
to investigate the mechanism for grain refinement and the
compositions of metallurgical phases in high-palladium
alloys are planned.

Conclusions

The as-cast microstructures of the four high-palla-
dium alloys studied were consistent with the rapid solidi-
fication conditions and the appropriate phase diagrams.
Heat treatment simulating oxidation and complete porce-
lain firing cycles caused homogenization of the two first-
generation alloy microstructures along high-diffusivity
paths in eutectic or interdendritic constituents. The mi-
crostructures of the two second-generation alloys ap-
peared to be minimally affected by heat treatment, other
than a decrease in elemental microsegregation. All heat-
treated alloys contained subsurface oxidation regions,
which were less thick in the second-generation alloys.
Bulk matrix compositions determined by EDS for the
heat-treated alloys were in good agreement with compositions provided by the manufacturers. A peritectic mechanism consistent with SEM observations has been proposed to account for the grain refinement by ruthenium in these alloys.

Acknowledgment

This investigation was supported by a research grant from the College of Dentistry.

References

Reed-Hill RE (1973) Physical Metallurgy Principles (2nd ed). Brooks/Cole Engineering Division,
W.A. Brantley et al.

Monterey, CA, 311-314.

Discussion with Reviewers

H.J. Mueller: Although only small differences existed between the atomic numbers for most of the elements contained in the alloys, was imaging performed by backscattered electrons to attempt to detect differences in composition? Usually, this technique has merit for alloys revealing dendritic formation and coring effects.

Authors: We have performed backscattered electron (BSE) imaging on the as-cast Spartan which has a dendritic microstructure and found that little additional information appeared to be provided beyond that available in secondary electron images. We have found that comparison of the SEI and BSE images were useful for study of the near-surface oxidation regions in the first-generation alloys. These photomicrographs will appear in a forthcoming publication (Carr et al., 1993, in press).

H.J. Mueller: Can the authors comment on the relationship between the subsurface oxidation regions found in the heat-treated high-palladium alloys and the porcelain-metal bonding?

Authors: We have found that the metal-ceramic bonding between these high-palladium alloys and Vita VMK porcelain is significantly better for the first-generation alloys, compared to that for the second-generation alloys (Papazoglou et al., J. Prosthet. Dent., to be published). We are currently employing SEM observations and EDS analyses to investigate the interdiffusion processes and interfacial structure.

H.J. Mueller: Are heat treatments available for these alloys used for implant and removable partial denture applications? It may be desirable to change the yield strength and other mechanical properties, depending upon application.

Authors: This is an important area for future study. However, without knowledge of the fundamental strengthening mechanisms in these alloys, studies to determine appropriate heat treatments will necessarily be empirical.

R.A. Fournelle: The outer regions of the Pd-rich dendrites (not the interdendritic regions) shown in Fig. 2 appear to contain Widmanstätten precipitates. How do the authors account for their formation?

Authors: We concur with this observation. As a consequence of the complex solidification processes for this alloy, these precipitates are expected to have a different Pd/Ga ratio than found for the interdendritic constituents. Well-defined (Widmanstätten) orientation relationships between these precipitates and the dendrites are certainly plausible. We are currently investigating the structures of the phases in as-cast Spartan Plus (nearly identical composition to Spartan) by X-ray diffraction and plan to study this matter by transmission electron microscopy.

R.A. Fournelle: The authors suggest that the lamellar structure in the Spartan alloy (Fig. 3) results from eutectic solidification. Although this is feasible from a phase diagram point of view (Fig. 1), morphologically these regions appear to have formed by boundary migration, i.e., by discontinuous precipitation. Indeed, in the Discussion of the microstructure of the Liberty alloy (Figs. 6 and 7), the authors seem uncertain as to whether the lamellar structure should be considered eutectic or discontinuous precipitation. Can the authors comment in more detail about these structures?

Authors: From our present experiments we are unable to comment on the detailed mechanisms for the formation of the lamellar structures in as-cast Spartan and Liberty. While we have adopted the eutectic constituent designation for these two alloys, it may indeed be possible that these structures have formed by means of discontinuous precipitation through boundary migration processes. This is an interesting area for further study in the physical metallurgy of these complex alloys.

R.A. Fournelle: In Fig. 10 there appear to be precipitation-free zones near the grain boundaries. Could the authors comment on their origin?

Authors: We have noticed these zones (Cai, Master of Science Thesis, 1992, Ohio State Univ.), but are currently unable to provide comments about their origin other than noting a linkage with the grain boundary precipitate network which was removed by etching.