
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Fall
2023 to Present Graduate Studies

12-2023

Adversarially Reweighted Sequence Anomaly Detection With Adversarially Reweighted Sequence Anomaly Detection With

Limited Log Data Limited Log Data

Kevin Vulcano
Utah State University, kevin.vulcano@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/etd2023

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vulcano, Kevin, "Adversarially Reweighted Sequence Anomaly Detection With Limited Log Data" (2023). All
Graduate Theses and Dissertations, Fall 2023 to Present. 70.
https://digitalcommons.usu.edu/etd2023/70

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations, Fall 2023 to Present by an authorized
administrator of DigitalCommons@USU. For more
information, please contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd2023?utm_source=digitalcommons.usu.edu%2Fetd2023%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd2023%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd2023/70?utm_source=digitalcommons.usu.edu%2Fetd2023%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ADVERSARIALLY REWEIGHTED SEQUENCE ANOMALY DETECTION

WITH LIMITED LOG DATA

by

Kevin Vulcano

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Shuhan Yuan, Ph.D. Mario Harper, Ph.D.
Major Professor Committee Member

Curtis Dyreson, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2023

ii

Copyright © Kevin Vulcano 2023

All Rights Reserved

iii

ABSTRACT

Adversarially Reweighted Sequence Anomaly Detection

with Limited Log Data

by

Kevin Vulcano, Master of Science

Utah State University, 2023

Major Professor: Shuhan Yuan, Ph.D.
Department: Computer Science

The field of log sequence anomaly detection is of paramount significance, finding wide-

ranging applications in areas such as cybersecurity, network surveillance, industrial pro-

cesses, and financial transaction monitoring. This thesis introduces AdvSVDD, a deep

learning model for sequence anomaly detection. AdvSVDD, based on the concept of Deep

Support Vector Data Description (Deep SVDD), excels in the identification of anomalies

within log sequences and enhances performance under limited training data through the

integration of Adversarial Reweighted Learning (ARL). By employing the Deep SVDD

technique to map normal log sequences into a hypersphere and leveraging the loss ampli-

fication effects of Adversarial Reweighted Learning (ARL), AdvSVDD can be effectively

trained with normal log sequences, enhancing its robustness in detecting anomalies. Ex-

periments conducted on the BlueGene/L (BG/L) and Thunderbird supercomputer datasets

show that AdvSVDD can achieve higher performance than traditional machine learning and

deep learning approaches, including the foundational Deep SVDD framework. The mod-

els were evaluated on five metrics: Precision, Recall, F1-Score, ROC AUC and PR AUC.

Additional studies demonstrate the effectiveness of AdvSVDD under limited training data

and provide insight into the role of the adversarial component.

iv

(65 pages)

v

PUBLIC ABSTRACT

Adversarially Reweighted Sequence Anomaly Detection

with Limited Log Data

Kevin Vulcano

In the realm of safeguarding digital systems, the ability to detect anomalies in log

sequences is paramount, with applications spanning cybersecurity, network surveillance,

and financial transaction monitoring. This thesis presents AdvSVDD, a sophisticated deep

learning model designed for sequence anomaly detection. Built upon the foundation of

Deep Support Vector Data Description (Deep SVDD), AdvSVDD stands out by incorpo-

rating Adversarial Reweighted Learning (ARL) to enhance its performance, particularly

when confronted with limited training data. By leveraging the Deep SVDD technique to

map normal log sequences into a hypersphere and harnessing the amplification effects of

Adversarial Reweighted Learning, AdvSVDD demonstrates remarkable efficacy in anomaly

detection. Empirical evaluations on the BlueGene/L (BG/L) and Thunderbird supercom-

puter datasets showcase AdvSVDD’s superiority over conventional machine learning and

deep learning approaches, including the foundational Deep SVDD framework. Performance

metrics such as Precision, Recall, F1-Score, ROC AUC, and PR AUC attest to its pro-

ficiency. Furthermore, the study emphasizes AdvSVDD’s effectiveness under constrained

training data and offers valuable insights into the role of adversarial component has in the

enhancement of anomaly detection.

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACRONYMS . x

1 Introduction . 1
1.1 Background . 1

1.1.1 Anomaly Detection . 1
1.1.2 Log Anomaly Detection . 4
1.1.3 Challenges in Log Sequence Anomaly Detection 6

1.2 Motivation . 6
1.2.1 Limitation of Existing Log Anomaly Detection Approaches 7
1.2.2 Adversarial Learning in Anomaly Detection 7

1.3 Thesis Organization . 8

2 Related Work . 10
2.1 Traditional Approaches . 10

2.1.1 Supervised Machine Learning . 10
2.1.2 Unsupervised Machine Learning . 14

2.2 Deep Learning Approaches . 17
2.2.1 DeepLog . 17
2.2.2 LogBERT . 22

3 Preliminary . 24
3.1 Log Preprocessing . 24

3.1.1 Log Parsing . 24
3.2 Deep SVDD . 26
3.3 Adversarially Reweighted Learning (ARL) 27

4 AdvSVDD . 29
4.1 AdvSVDD Architecture . 29

4.1.1 Anomaly Detector . 30
4.1.2 Adversary . 30
4.1.3 Objective Function . 31

4.2 Training and Detection . 32
4.2.1 Training Schedule . 32
4.2.2 Foundational Anomaly Detector Training 33

vii

4.2.3 Submodel Alternation Training . 33
4.2.4 Detecting Anomalies with AdvSVDD 34

5 Experiments . 35
5.1 Experimental Setup . 35

5.1.1 Datasets . 35
5.1.2 Baselines . 37
5.1.3 Evaluation Metrics . 37
5.1.4 Implementation Details . 38

5.2 Experimental Results . 39
5.2.1 Overall Performance . 39
5.2.2 Investigating AdvSVDD . 43
5.2.3 Sensitivity Analysis of Final Linear Layer Dimensions 46
5.2.4 Visualization . 47

6 Conclusion . 49
6.1 Key Findings and Contributions . 49
6.2 Practical Implications and Impact . 50
6.3 Future Research . 50

REFERENCES . 52

viii

LIST OF TABLES

Table Page

1.1 Log Types and Examples . 5

3.1 Logs, Templates, Values . 24

3.2 Log Parsing Tools. 25

5.1 Average Performance Metrics for Anomaly Detection Models 40

5.2 Training Runtime Comparison . 42

5.3 Average Performance of AdvSVDD with Different Training Schedules . . . 44

ix

LIST OF FIGURES

Figure Page

1.1 Visual Representation of Anomaly Types 3

2.1 Log Anomaly Detection using Decision Tree and PCA 11

2.2 Log Anomaly Detection using KNN . 12

2.3 Log Anomaly Detection using SVM . 13

2.4 OCSVM and SVM decision boundaries . 15

2.5 LSTM Cell Block Architecture. 18

2.6 Hyperbolic Tangent and Sigmoid . 20

2.7 DeepLog Architecture. 22

2.8 LogBERT Architecture . 23

3.1 Drain Parse Tree Structure. 25

3.2 Deep SVDD Transformation. 26

4.1 AdvSVDD Architecture. 29

4.2 AdvSVDD Training Framework . 33

5.1 Performance of Variant Schedules . 45

5.2 F1-Scores of SVDD, AdvSVDD, and DeepLog with Varying Training Samples 45

5.3 Sensitivity Analysis of Final Linear Layer Dimensions. 46

5.4 Dimensionality Reduciton Plot for BG/L 47

5.5 Dimensionality Reduciton Plot for Thunderbird 48

x

ACRONYMS

ARL Adversarially Reweighted Learning

BERT Bidirectional Encoder Representations from Transformers

BG/L BlueGene/L Supercomputer System

Drain Depth tree based online log parsing

FN False Negative

FP False Positive

GAN Generative Adversarial Network

GRU Gated Recurrent Units

KNN K Nearest Neighbor

LSTM Long short-term memory

MLKP Masked LogKey Prediction

MSE Mean Squared Error

MVP-tree Multi-Vantage Point tree

NCD Normalized Compression Distance

NLP Natural Language Processing

OCSVM One-Class SVM

PCA Principal Component Analysis

PR AUC Precision Recall Area Under the Curve

RBF Radial Basis Function

RNN Recurrent Neural Network

ROC AUC Receiver Operating Characteristic Area Under Curve

Spell Streaming Parser for Event Logs using LCS

SVDD Support Vector Data Description

SVM Support Vector Machine

TN True Negative

TP True Positive

VHM Volume of Hypersphere Minimization

CHAPTER 1

Introduction

1.1 Background

In this section, an overview of the key concepts related to anomaly detection and log

anomaly detection is presented. The section begins with a discussion of the importance

of anomaly detection in real-world applications across various domains. Subsequently, the

section explores different types of anomalies and their classifications. Finally, the field of

log anomaly detection is introduced, along with an outline of the challenges associated with

it.

1.1.1 Anomaly Detection

Anomaly detection, also known as outlier detection, is a crucial task in the analysis

of real-world datasets. Its primary objective is to identify instances that deviate signifi-

cantly from the norm, often referred to as anomalies. These anomalies may result from

data errors or, in some cases, reveal novel and previously unknown underlying patterns or

processes. As described by Hawkins, an outlier is an observation that deviates so signifi-

cantly from other observations as to arouse suspicion that it was generated by a different

mechanism [1]. Anomaly detection plays a pivotal role across various domains, highlighting

its significance in today’s data-driven applications. Successful anomaly detection algo-

rithms find widespread application in diverse fields, where they are central to maintaining

data integrity, ensuring security, and uncovering invaluable insights. This technology serves

multiple purposes, including fraud detection in financial services, quality control in man-

ufacturing, network security in cybersecurity, diagnosis in healthcare, environmental and

industrial process monitoring.

2

Applications of Anomaly Detection

Fraud Detection In the realm of financial services, anomaly detection serves as a

guardian against fraudulent activities. By inspecting transactions and account behaviors for

deviations from typical spending or usage patterns, it aids in the identification of potentially

fraudulent activities [2].

Quality Control In manufacturing, ensuring product quality is essential. Anomaly

detection is employed to monitor manufacturing processes, identifying deviations from prod-

uct specifications or performance [3]. This ensures identification and rectification of subpar

or faulty products, maintaining high standards and minimizing waste.

Network Security Cybersecurity relies on anomaly detection to safeguard net-

works and systems against malicious intrusions. By continuously monitoring network traffic

and system behavior, any anomalous activities indicative of cyberattacks or breaches can

be detected in real-time [4]. This proactive approach fortifies digital defenses and protects

sensitive data.

Healthcare Anomaly detection plays a pivotal role in healthcare, aiding in the

diagnosis of rare diseases and the detection of medical anomalies. Medical professionals

rely on anomaly detection to identify irregularities in patient data, such as vital signs, lab

results, or medical images. This assists in the early detection of health issues and ensures

timely interventions, potentially saving lives. [5]

Environmental Monitoring Anomaly detection extends its utilization to envi-

ronmental sciences, where it is instrumental in monitoring environmental parameters [6].

By identifying unusual changes in climate data, pollution levels, or ecosystem behavior,

scientists can better understand environmental shifts and take preventive actions against

natural disasters or ecological crises.

Anomaly Types

Although there are many flavors of anomaly detection data, they can be categorized

as sequential and non-sequential [7]. Image data is a type of non-sequential data, whereas

3

video, text and speech are considered sequential data.

In addition, anomalies can be classified into three distinct categories: point or sim-

ple anomalies, and two types of complex anomalies—contextual anomalies and collective

anomalies [8]. Point anomalies, the simplest form of anomalies, represent outliers that

significantly deviate from the expected or normal behavior.

Complex anomalies, such as contextual and collective anomalies, involve intricate pat-

terns in the data [9]. Contextual anomalies are data points that may appear normal in

isolation but are deemed unusual within specific conditions or context, relying on contextual

information for identification. Collective anomalies, involve abnormal behavior exhibited

by a group of data points as a whole, rather than by an individual data point.

Figure 1.1 provides a demonstration of all three anomaly types. Point anomalies are

presented by highlighting a specific instances of anomalous spending within a currency

dataset. Collective anomalies are illustrated by showcasing unusual repetitive transactions

that constitute abnormal behavior. Contextual anomalies are emphasized using four time

series plots. The top two depict typical patterns of house and (Photovoltaic) PV load, while

the bottom two represent these patterns during an attack scenario. Notably, all data point

values within these time series could resemble those of normal behavior, but the context

surrounding them is critical for identifying the series as anomalous.

Fig. 1.1: Left: The image displays an example highlighting the anomaly categorized as a
point anomaly in red, and the collective anomaly example is illustrated in green [8]. Right:
The image displays an example of a contextual anomaly [10].

4

1.1.2 Log Anomaly Detection

Log anomaly detection holds significant importance in the fields of data analysis and

cybersecurity. It revolves around the identification of unusual patterns or irregularities

within log data, generated by computer systems or applications. These logs serve as valu-

able repositories of information for tasks such as system monitoring, troubleshooting, and

security analysis. However, detecting anomalies within the vast volume of log entries, which

may indicate security breaches, system failures, or operational issues, poses a formidable

challenge.

The primary objective of log anomaly detection is the automated and systematic iden-

tification and flagging of these anomalies within log data. This process relies on various

techniques from statistics and machine learning to differentiate abnormal log entries from

those considered normal. Effective log anomaly detection plays a critical role in safeguarding

the security and reliability of computer systems and networks.

Categories of Log Sequence Anomalies

In log sequence anomaly detection, anomalies can be categorized into three distinct

categories: Execution Order, Operation, and Incomplete anomalies [11], each addressing a

specific aspect of abnormal log behavior.

Consider a typical log sequence in a web server application:

[A1, D1, A2, D2, A3, D3]

In this non-anomalous log sequence, there is a series of events represented by logs.

These logs include user authentication logs A followed by data access logs D, and they

occur in the expected order. This sequential pattern aligns with the normal behavior of the

system, where users first authenticate A and then access data D. Table 1.1 demonstrates

logs for the examples.

Execution Order Anomaly occurs when a sequence of logs contains normal logs,

but their execution order deviates from the expected pattern. This type of anomaly is

5

Table 1.1: Log Types and Examples

Log Type Example Log

A (Authentication) [TIMESTAMP]: [USER] authenticated

D (Data Access) [TIMESTAMP]: [USER] accessed file [FILENAME]

P (Prohibited) [TIMESTAMP]: Unauthorized access attempt by [USER]

characterized by a disruption in the typical workflow or sequence of events within the log

data. Consider the following log sequence:

[A1, D1, A2, D2, D3, A3]

In this case, the execution order anomaly occurs because the expected order of au-

thentication A followed by data access D is disrupted. In the example, D3 is logged before

A3.

Operation Anomaly is characterized by logs appearing in the log sequence when

they shouldn’t, regardless of whether these logs are normal or abnormal. It signifies that

certain actions or events have occurred out of place within the sequence. Continuing with

the same log types, consider the following log sequence:

[A1, A2, D1, D2, P1, A3, D3]

In this sequence, a prohibited action log P1 appears in the sequence, which is un-

expected. The presence of this action within the sequence classifies it as an operational

anomaly.

Incomplete Anomaly is determined when the logical correlation among logs in a

sequence is incomplete. It suggests that the contextual information necessary to fully un-

derstand the sequence of events is missing. Consider the following log sequence:

[A1, A2, D1, A3, D3]

In this sequence, all log types (authentication and data access) are present, but an

6

incomplete anomaly occurs because the data access D2 is missing. The full sequence of

events cannot be understood without it.

1.1.3 Challenges in Log Sequence Anomaly Detection

In the field of log sequence anomaly detection, many challenges are commonly encoun-

tered due to the nature of the data:

• High-Dimensional Data: Log sequences often involve a high number of dimensions,

making it challenging to extract meaningful patterns and detect anomalies effectively.

• Noise: The presence of noise in log data can complicate the task of distinguishing true

anomalies from random fluctuations.

• Imbalanced Datasets: Imbalanced datasets, where normal log sequences significantly

outnumber anomalous ones, can lead to biased models and reduced anomaly detection

accuracy [8]. As a result, the majority of log sequence anomaly detection models are

primarily trained using normal samples.

• Limited Training Data: Working with a relatively small set of training data can hinder

the model’s ability to generalize effectively to unseen sequences.

• Temporal Dependencies: Log sequences often exhibit temporal dependencies, meaning

that the order of the entries matter. Capturing these dependencies accurately is crucial

for effective anomaly detection.

1.2 Motivation

The motivation for this thesis rests upon two fundamental pillars: the recognition of

an existing limitation within existing log anomaly detection and the innovative paradigm

of adversarial learning. The first pillar pertains to an observed limitation in current log

sequence anomaly detection. The second pillar, represented by adversarial learning, intro-

duces a promising approach within the field of anomaly detection, further reinforcing the

motivation for this research.

7

1.2.1 Limitation of Existing Log Anomaly Detection Approaches

A significant limitation in existing sequential anomaly detection approaches is their vul-

nerability to overfitting when trained with limited data. Deep learning models, commonly

used for this task, are capable of capturing complex patterns. However, in scenarios with

insufficient training data, these models may memorize noise or idiosyncrasies in the training

set, which adversely affects their ability to generalize to new, unseen data. Such limitations

can impede the model’s ability to generalize effectively. This project was undertaken to

address and overcome this specific challenge.

1.2.2 Adversarial Learning in Anomaly Detection

Utilizing adversarial models to augment learner models represents a relatively novel

and innovative approach within the realm of machine learning. This approach involves the

collaboration of two key models: the learner model and the adversarial model, each with

distinct roles and responsibilities.

Learner Model

The learner model serves as the primary model designed to perform a specific machine

learning task. It may be assigned with tasks such as image recognition, natural language

processing, or anomaly detection. The learner model’s objective is to learn patterns, fea-

tures, or representations from the data to make accurate predictions or classifications. In

essence, it is the model that we aim to improve and make more resilient through the adver-

sarial approach.

Adversarial Model

The adversarial model, on the other hand, plays a unique and crucial role. Its primary

purpose is to act as an adversary to the learner model. It is designed to probe, challenge,

and find weaknesses in the learner model’s performance. Through iterative training and

various techniques, the adversarial model attempts to craft data inputs that can mislead or

confuse the learner model. By doing so, it helps reveal vulnerabilities in the learner model’s

8

decision boundaries, enhancing the model’s robustness and generalization capabilities. Es-

sentially, the adversarial model simulates potential attacks or adversarial scenarios, pushing

the learner model to become more resilient and less prone to making erroneous predictions

or classifications.

Applications of Adversarial Models in Anomaly Detection

Adversarial approaches have demonstrated their effectiveness in various domains, in-

cluding image recognition [12], natural language processing [13], reinforcement learning [14],

and within the realm of anomaly detection [15–17]. In all these applications, Generative

Adversarial Networks (GANs) play a pivotal role. GANs train an adversarial model with

a generative design, in which they learn to produce erroneous data deliberately, exploiting

vulnerabilities in the learner model [18]. This process allows the learner model to focus on

and improve upon these identified weaknesses, thereby enhancing its performance.

However, GANs are not the sole adversarial approach for enhancing learner models. Ad-

versarially Reweighted Learning (ARL) employs an adversary model to determine weights

specifically aimed at amplifying the influence of challenging samples, those that the learner

model struggles to comprehend [19]. The utilization of adversarial models, particularly

ARL, in the domain of log sequence anomaly detection remains relatively unexplored. This

underexplored area presents an enticing and motivating challenge.

1.3 Thesis Organization

This thesis comprises several chapters, each addressing specific aspects of the research.

The following sections provide an overview of the remaining content and structure of this

thesis.

Chapter 2: Related Work

In this chapter, the existing literature and research related to the topic of anomaly

detection and machine learning approaches are explored. The related work is categorized

9

into traditional approaches, including supervised and unsupervised machine learning, and

deep learning approaches, encompassing RNN-based models and Transformer-based models.

Chapter 3: Preliminary

This chapter establishes the foundation for the research by describing the essential

concepts and techniques used throughout the thesis. It covers log preprocessing techniques,

introduces the Deep Support Vector Data Description (Deep SVDD) method, and presents

the Adversarially Reweighted Learning (ARL) framework.

Chapter 4: AdvSVDD

In this chapter, the architecture of the proposed AdvSVDD model is discussed. The

components, including the anomaly detector and the adversary, are elaborated upon, along

with an explanation of the objective function guiding the model’s training. Additionally,

insights into the training details and strategies employed in AdvSVDD are provided.

Chapter 5: Experiments

This chapter presents the empirical evaluation of AdvSVDD. The experimental setup,

including datasets, baselines, evaluation metrics, and implementation specifics, is detailed.

Subsequently, the experimental results are analyzed and discussed, addressing overall per-

formance, ablation studies, and sensitivity analyses.

Chapter 6: Conclusion

The final chapter summarizes the key findings of this thesis. The implications of the

research and potential avenues for future work in the field of anomaly detection using

adversarial learning are discussed.

10

CHAPTER 2

Related Work

2.1 Traditional Approaches

This section explores traditional approaches to log anomaly detection, covering both

Supervised Machine Learning and Unsupervised Machine Learning. Additionally, specific

algorithms within each category will be discussed, including the following methods: Decision

Trees, K-Nearest Neighbors (KNN), Support-Vector Machines (SVM), Principal Component

Analysis (PCA), One-Class Support Vector Machine (OCSVM), and LogCluster.

2.1.1 Supervised Machine Learning

Supervised machine learning algorithms algorithm train on labeled data to acquire

predictive capabilities. The algorithm derives insights from the training data, where each

input is associated with an accurate outcome, known as a label. The objective of super-

vised learning revolves around developing a connection between the input data and their

corresponding label. Common supervised approaches for anomaly detection are Decision

Tree, KNN and SVM [20–22].

Decision Tree

The decision tree algorithm is a machine learning approach that constructs a hierar-

chical tree structure using input data from a training set and their associated labels. At

each step, the algorithm selects the feature that maximizes information gain, a metric that

quantifies the reduction in uncertainty when partitioning data based on a specific feature.

This process results in a hierarchical structure where each node represents a decision

based on a feature, leading to accurate predictions. An illustrative example of a decision

tree in log anomaly detection can be found in Figure 2.1. Each node in the tree represents a

condition and the amount of samples that it will split. For example, the root node reports

11

20 samples, and after filtering the samples based on the condition event 2 = 5, it splits the

data into two. The data that met the condition were a total of 12, where the child node

reveals the condition for the subsequent splitting condition.

To prevent overfitting, decision trees use stopping criteria such as maximum tree depth.

Decision trees effectively handle both categorical and numerical features as well as inter-

pretability through their decision-making process and visualization. Additionally, they can

be integrated into ensemble methods such as Random Forests, which utilize multiple deci-

sion trees to enhance performance.

Fig. 2.1: Example of log anomaly detection using decision tree (left) and PCA (right) [23].

K-Nearest Neighbor

KNN operates by classifying data points based on the labels of their ‘k’ nearest neigh-

bors, determined using distance metrics like Euclidean or Manhattan distance. KNN’s

strength lies in its simplicity and adaptability to local data structures [24].

However, selecting the appropriate ‘k’ value is a critical consideration. Smaller ‘k’ val-

ues yield more sensitive but potentially noisy results, while larger ‘k’ values can lead to

oversmoothed decision boundaries. Effective hyperparameter tuning, often through tech-

niques like cross-validation, is essential to optimize KNN for a specific anomaly detection

task.

12

The KNN algorithm, commonly employed for anomaly detection, has been a pivotal

component in a recent method for Arrhythmia detection in ECG data. It was utilized for

an initial data analysis, followed by the integration of a Decision Tree for final classification

[25]. The KNN algorithm has recently been improved for use in log anomaly detection

[26]. Figure 2.2 depicts an innovative log-based anomaly detection approach that integrates

efficient neighbor selection and automated ‘k’ value determination, comprising three key

components. To begin, it employs the minhash algorithm for clustering similar logs into

buckets and constructs a Multi-Vantage Point tree (MVP-tree) for the samples within each

bucket. Next, it selects ‘k’ neighbors from the MVP-tree and assesses their relevance using

the Silhouette Coefficient, forming the actual neighbor sample set employed for anomaly

detection. Finally, the method computes the average distance between samples in the actual

neighbor sample set and the target sample to identify anomalies.

Fig. 2.2: Diagram illustrating the usage of the improved KNN algorithm deployed for log
anomaly detection [26].

Support-Vector Machine

SVMs are prominent in academic research and practical applications for their effec-

tiveness in classification and regression tasks. The objective of SVM is to find an optimal

hyperplane that maximizes the margin between different classes, with support vectors as

key reference points. SVMs are able to handle non-linear data through kernel functions

such as polynomial and Radial Basis Function (RBF). A regularization parameter controls

13

the trade-off between margin maximization and error minimization for when data is not

definitively separable.

SVM has also found applications in anomaly detection in textual data, where it is

used to classify events from a heterogeneous cybersecurity environment [27]. A method was

proposed for detecting security incidents from structured text, in which it leverages the

Normalized Compression Distance (NCD) to derive a set of features, which are then used

by a SVM.

NCD measure the dissimilarity between a text input T and a set of k additional log

entries {g1, g2, ..., gk}. The result is a vector of k numerical values that represent T within

a k-dimensional space. A RBF kernel allowed the SVM to handle the non-linearity of the

data. Figure 2.3 illustrates the utilization of SVM in this application. After the datasets

are split into two groups, I and G, group G log entries are organized into k generator files,

with each file containing logs from a single class. For each log in group I, NCD is utilized

to compute the distance between each of the k attribute generators. The matrix is then

used as input for the SVM to classify the anomalous data.

Fig. 2.3: Illustration of the involvement of SVM in a log anomaly detection application [27].

14

2.1.2 Unsupervised Machine Learning

Unsupervised machine learning operates independently of labeled data, which is essen-

tial for scenarios where labeling is limited, such as is often the case with anomaly detection.

In the upcoming sections, unsupervised algorithms for anomaly detection will be explored.

These include Principal Component Analysis (PCA) and One-Class Support Vector Ma-

chine (OCSVM).

Principal Component Analysis

PCA is a statistical technique used for dimension reduction. It involves projecting

high-dimensional data into a new coordinate system with a lower dimension (k principal

components) while preserving the major characteristics of the original data. PCA identifies

the principal components that capture the most variance in the high-dimensional data. It

generates two subspaces: the normal space, Sn, composed of the first k principal components

and the anomaly space Sa composed of the remaining n − k components, where n is the

original dimension.

Figure 2.1 illustrates the usage of PCA on two dimensional data thus to reduce the

feature space from two dimensions to one, PCA has selected one dimension to correspond

as the normal space, Sn, and the other to be the anomaly space, Sa. As evident by the

picture, Sn best described the plotted data, the reasoning for it’s selection to be the princi-

pal component. The anomalous point highlighted in the figure, does not coincide with the

trend of the data. The projection of the vector (2-dimensional point) onto the abnormal

subspace is compared with the projection onto the normal subspace and typically a pre-

defined threshold value determines what is an acceptable projection length. Researchers

have introduced a fault detection method that employs hierarchical PCA which utilizes dis-

tinctive characteristics of dynamic faults for the identification of faults featuring zero cross

points (ZCPs) [28].

15

One-Class Support Vector Machine

OCSVM is primarily used for anomaly detection. Its main objective is to identify

anomalies or outliers within a dataset by learning a decision boundary that encapsulates nor-

mal data points while minimizing the number of data points inside this boundary. OCSVM

seeks to find a hyperplane, that effectively separates the normal data and can apply kernel

functions such as RBF like in tradition SVM to handle non-linear data. Unlike SVMs,

OCSVMs require only training data from the normal class, as it treats the origin as belong-

ing to a special second class [29]. Figure 2.4 demonstrates a decision boundary for OCSVM

and SVM on the same data for comparison.

In recent research, OCSVM has played a significant part in security auditing, specifi-

cally in evaluating user access behavior within the information network boundaries of the

State Grid Corporation of China (SGCC) [30]. OCSVM is applied by first extracting fea-

ture vectors from user behavior data, then training an OCSVM classifier on audit logs

representing normal database operation patterns. The classifier is then employed to detect

abnormal behavior, enabling the security audit of database user access actions by identifying

deviations from established norms.

Fig. 2.4: OCSVM (left) and SVM (right) decision boundaries on the same dataset.

16

LogCluster

LogCluster is an algorithm designed for clustering textual event logs [31]. It identifies

frequently occurring words within event logs and extracts these words as tuples for cluster

identification. For each event log line, LogCluster creates a tuple of frequent words, enabling

it to initialize or update cluster candidates. If a candidate with the same tuple already exists,

its support is incremented; otherwise, a new candidate is initialized and its support is set

to 1.

A line pattern refers to a structured representation of the common elements in a group

of event log lines. These patterns are constructed from the frequent words found in the

lines. A line pattern helps capture the characteristics of a cluster of related events.

After generating and updating cluster candidates, LogCluster prunes candidates with

a support counter smaller than the user-defined threshold. The remaining candidates, along

with their respective line patterns and support levels, are reported as clusters.

This approach is primarily used for clustering textual event logs and offers utility in

log anomaly detection. The clustering process involves generating clusters from normal

training log data to encapsulate typical log behaviors. Using similarity measures such as

distance, anomalies are detected by comparing incoming log entries to established clusters of

normal log patterns. LogCluster employs a threshold to categorize log entries as anomalies,

classifying entries falling below this threshold as anomalies. A new log sequence is classified

as normal or abnormal based on its proximity to clusters.

Isolation Forest

Isolation Forest is an algorithm often used for detecting anomalies. It leverages the

principle that anomalies are easier to isolate due to their uniqueness. The algorithm ac-

complishes this by creating an ensemble of decision trees.

The process of detecting anomalies with Isolation Forest involves partitioning the data

using decision trees. Each node in a tree randomly selects a feature and a threshold value

within the feature’s range. Data points are then divided into two subsets: those below and

17

above the threshold. The partitioning recursively continues until data points are isolated

or a depth limit is reached.

Isolation Forest differentiates anomalies from normal data by calculating the average

path length for each data point across all the trees. Shorter path lengths represent fewer

required partitions, indicating anomalies. These data points receive higher anomaly scores

as they were easily isolated. Data points with longer path lengths align more closely with

normal data. The final anomaly score is often derived by aggregating the scores from all

trees. A hyperparameter can be set as a threshold to classify data points as anomalies or

normal.

2.2 Deep Learning Approaches

In the field of machine learning, the emergence of deep neural networks has brought

about a transformative shift in the domain of anomaly detection. Deep learning, a subset

of machine learning, harnesses the potential of hierarchical data representation through

the layers of neural networks, delivering notably effective results. Contemporary anomaly

detection methods based on deep learning have garnered widespread recognition and ex-

hibited superior performance across diverse application domains, surpassing conventional

techniques. In the realm of log anomaly detection, models rooted in Recurrent Neural

Networks (RNNs), utilizing Long Short-Term Memory (LSTM) or Gated Recurrent Unit

(GRU) architectures, such as DeepLog [32], have demonstrated proficiency. Furthermore,

more recent advancements in transformer-based log detection models, exemplified by Log-

BERT [33], have showcased their ability to rival the effectiveness of RNN-based models.

2.2.1 DeepLog

RNN-based models have gained traction in log anomaly detection due to their ability

to capture sequential dependencies in log data. RNNs maintain hidden states that capture

information from previous entries, allowing them to model temporal dependencies. In par-

ticular, RNN-based architectures such as LSTMs and GRUs are preferred for their ability

to handle long-range dependencies.

18

DeepLog leverages the RNN-based model for log anomaly detection. Specifically,

DeepLog adopts LSTM to analyze the structure and content of log data [32].

Long Short-Term Memory

The LSTM architecture plays a critical role in DeepLog, enabling the model to effec-

tively capture sequential dependencies inherent in log data. LSTM is a specialized RNN

architecture known for its proficiency in modeling sequential data, including log entries.

Unlike conventional RNNs, LSTMs are designed to mitigate the vanishing gradient prob-

lem, allowing them to capture and retain long-range dependencies intrinsic to sequential

data [34].

LSTMs rely on a critical element called the cell state, denoted as Ct, which enables

the flow of information across the sequential data with minimal changes. To control the

information flow, LSTMs use specialized gates. Figure 2.5 illustrates the LSTM structure

for a cell block.

Fig. 2.5: LSTM cell block architecture [35].

19

The process of updating the cell state in an LSTM is a multi-step procedure that

involves managing what information is forgotten from the previous cell state and what new

information is added.

Forget Gate (ft): The forget gate determines what information from the previous cell

state (Ct−1) should be retained and what should be discarded. It uses a sigmoid activation

function to produce values between 0 and 1.

ft = σ(Wf · [ht−1, xt] + bf)

In this expression:

• σ(z) = 1
1+e−z is an activation function that maps a real-valued number to a value

in the range of 0 to 1, illustrated in Figure 2.6. e represents the base of the natural

logarithm.

• Wf is a weight matrix specific to the forget gate. It is used to transform the concate-

nated input, which consists of two parts: ht−1 and xt.

• bf : This is the bias term for the forget gate. It is added to the weighted sum before

applying the sigmoid activation function.

• [ht−1, xt] is the concatenation of two vectors: ht−1 and xt, where ht−1 indicates the

hidden state of the LSTM at the previous time step, and xt represents the input data

at the current time step.

Input Gate (it): The input gate controls what new information should be added to

the cell state. Like the forget gate, it also uses a sigmoid activation function to regulate the

flow of information.

it = σ(Wi · [ht−1, xt] + bi),

where Wi and bi are learned parameters of the input gate.

20

Fig. 2.6: Graphs outlining the hyperbolic tangent function (left) and sigmoid function
(right).

Output Gate (ot): The output gate determines what information should be passed to

the next hidden state (ht) and, ultimately, to the output of the LSTM. It utilizes a sigmoid

activation function to decide what parts of the cell state should be included in the output.

ot = σ(Wo · [ht−1, xt] + bo),

where Wo and bo are learned parameters of the output gate.

New Candidate Values (C̃t): A candidate cell state (C̃t) is calculated using the

hyperbolic tangent (tanh) activation function. This represents the new information that

could be added to the cell state.

C̃t = tanh(Wc · [ht−1, xt] + bc),

where tanh is defined as tanh(z) = ez−e−z

ez+e−z , which maps any real-valued number to a value

in the range of −1 to 1, illustrated in Figure 2.6; Wc and bc are learned parameters to

calculate the new candidate values.

21

The cell state (Ct) is updated using the following formula:

Ct = ft · Ct−1 + it · C̃t

Here, ft represents the forget gate’s output, it is the input gate’s output, and C̃t is the

new candidate value. This equation determines how information changes in the cell state.

The forget gate decides what to remove from the previous cell state, and the input gate

determines what to add from the new candidate values.

The hidden state (ht) is computed from the updated cell state as follows:

ht = ot · tanh(Ct)

This equation utilizes the output gate (ot), which decides what part of the cell state (Ct)

should be exposed as the hidden state. The tanh function is applied to scale the values in

the cell state to be within the range of -1 to 1.

Log Anomaly Detection using DeepLog

DeepLog learns patterns from normal log sequences and can identify anomalies by

detecting deviations in the log keys or well as their parameter values.

During the preprocessing stage, logs are separated into their respective log keys and

parameter value vectors. Two distinct pathways for anomaly detection are employed, one

for log keys and the other for parameter values. These pathways combine to create a robust

detection method. Figure 2.7 displays the architecture of DeepLog.

For log key sequences, an LSTM component, named the log key anomaly detection

model is employed for training. The model learns to predict the next log key in the sequence.

In the detection phase, the predicted log keys are critical for determining a sequence to be

anomalous. DeepLog incorporates a hyperparameter, denoted as k, which can be fine-tuned.

The top k predictions refers to the k log keys with the highest probabilities. Log keys are

considered normal if they are in the top k log keys, while anything falling outside of the top

22

Fig. 2.7: DeepLog Architecture [32].

k predictions is labeled as an anomaly.

Parameter Value Vectors associated with a specific log key are concatenated and treated

as a multivariate time-series problem. These series are processed by a separate LSTMmodel,

named the Parameter Value Anomaly Detection model, during training. MSE is used to

minimize the loss between the predicted values and the true values. In the detection phase,

if a parameter value vector falls within the high confidence interval given by the Gaussian

Distribution, it is considered normal.

DeepLog will predict a sequence to be anomalous if either the paramater value anomaly

detection model or the log key anomaly detection model predicts an anomaly. It is note-

worthy that DeepLog offers the advantage of interpretability by constructing a workflow

logic representation that is updated if the model predicts a false positive.

2.2.2 LogBERT

LogBERT is a specialized Transformer-based model designed for log anomaly detection,

built upon the Bidirectional Encoder Representations from Transformers (BERT) frame-

work. Figure 2.8 presents an illustrative overview of the LogBERT architecture.

Central to the LogBERT architecture is a Transformer encoder, to provide log sequence

processing. This encoder equips LogBERT with the capacity to capture contextual rela-

tionships among log keys within sequences, effectively modeling the intricacies of sequential

log data. LogBERT’s algorithm revolves around two primary objectives: Masked Log Key

Prediction (MLKP) and Volume Hypersphere Minimization (VHM).

23

Fig. 2.8: LogBERT Architecture [33].

MLKP entails training LogBERT to predict masked log keys, log keys intentionally

obscured during training. This task leverages the known log keys to predict their masked

counterparts, equipping LogBERT with an understanding of normal log sequence patterns.

This knowledge serves as the foundation for distinguishing normal from anomalous se-

quences.

VHM introduces an additional dimension to LogBERT’s performance. It conceptualizes

log key sequence representations within a hypersphere, with the hypothesis that normal log

sequences cluster closer to the hypersphere’s center, while anomalous sequences occupy

more distant regions. Training LogBERT involves minimizing the volume enclosed by this

hypersphere. This approach not only enhances anomaly detection but also allows LogBERT

to leverage information shared among normal log sequences via the central representation,

which encapsulates collective insights from normal sequences. The collaboration between

MLKP and VHM tasks empowers LogBERT with robust log anomaly detection capabilities.

24

CHAPTER 3

Preliminary

3.1 Log Preprocessing

This section discusses log preprocessing, which marks the initial phase of log data anal-

ysis. During this phase, raw log entries are organized and converted into more accessible

formats, such as vectors. A raw log message is composed of two distinct parts: a constant

component and a variable component [36]. Table 3.1 illustrates an instance of log repre-

sentation, showcasing the separation of logs into templates and lists of values. Templates

correspond to the constant component, while the lists of values correspond to the variable

component within a raw log message. In a computer system, various templates may exist,

each associated with different sets of values.

Table 3.1: Logs, Templates, Values

Log “Error 574 occurred during step 12794”

Template “Error *** occurred during step ***”

Values 574, 12794

Unique templates can be given their own id, then a sequence of logs can be represented

as a sequence of log ids, making them compatible for models that can handle sequential

data such as Recurrent Neural Networks (RNNs).

3.1.1 Log Parsing

The goal of log parsing is to separate the constant part and variable part of a raw

log message. The constant component can be referred to as a log event, log key, or log

template. The variable component is referred to as a list of values, or parameter values.

There are various approaches set to achieve the goal of log parsing: Frequent Pattern Mining,

25

Clustering, Log-structure Heuristics, Longest Common Subsequence and Evolutionary. [37,

38]. Figure 3.2 presents a visual representation of various log parsing algorithms and their

associated characteristics.

Table 3.2: Log Parsing Tools [37].

Log Parser Year Technique Mode Efficiency Coverage Preprocessing Open Source Industrial Use

SLCT 2003 Frequent pattern mining Offline High ✗ ✗ ✓ ✗

AEL 2008 Heuristics Offline High ✓ ✓ ✗ ✓

IPLoM 2012 Iterative partitioning Offline High ✓ ✗ ✗ ✗

LKE 2009 Clustering Offline Low ✓ ✓ ✗ ✓

LFA 2010 Frequent pattern mining Offline High ✓ ✗ ✗ ✗

LogSig 2011 Clustering Offline Medium ✓ ✗ ✗ ✗

SHISO 2013 Clustering Online High ✓ ✗ ✗ ✗

LogCluster 2015 Frequent pattern mining Offline High ✗ ✗ ✓ ✓

LenMa 2016 Clustering Online Medium ✓ ✗ ✓ ✗

LogMine 2016 Clustering Offline Medium ✓ ✓ ✓ ✗

Spell 2016 Longest Common Subsequence Online High ✓ ✗ ✗ ✗

Drain 2017 Parsing tree Online High ✓ ✓ ✓ ✗

MoLFI 2018 Evolutionary algorithms Offline Low ✓ ✓ ✓ ✗

Log parsing algorithms can be categorized into two types, offline and online. Online

algorithms such as Drain are able to parse logs in real-time making them crucial for mon-

itoring and responding to events. Drain belongs to the category of log parsing algorithms

centered around the concept of parsing trees. Drain utilizes a fixed-depth parse tree that

encodes specifically crafted rules for parsing log data [39].

Fig. 3.1: Drain Parse Tree Structure [39].

26

To streamline log message handling, Drain employs a parse tree with fixed-depth nodes

(root, internal, and leaf). This tree guides log group identification, avoiding the need to

compare each message with all log groups individually. Leaf nodes store log groups, and a

parameter, maxChild, helps control the number of nodes visited during the search, improving

efficiency. Figure 3.1 illustrates a parse tree structure of depth 3. The root node points to

internal nodes that conditionally partition logs. The leaf node contains a list of log groups.

3.2 Deep SVDD

Deep SVDD is a method for one-class classification that employs the concept of a

hypersphere to achieve this task [40]. The hypersphere is described by center c and radius

R. The center, c, can be calculated from the hidden representation of the sequences as

follows:

c =
1

N

N∑
i=0

hi

where N is the total number of sequences, and hi is the hidden representation for the ith

sequence. R is determined by the distance between the furthest hidden representation and

c.

Fig. 3.2: Deep SVDD Transformation [40].

The idea of Deep SVDD is that the mappings of normal samples from the dataset will

fall within the hypersphere, while anomalies will map outside of it. Figure 3.2 provides an

illustration of the Deep SVDD transformation, showing how data points are mapped into

27

and outside of the hypersphere.

The Deep SVDD objective function optimizes the parameters of the neural network,

g(·;W), to fit a hypersphere. Here, W = {w1, ..., wL} represents the set of weights for a

neural network with L hidden layers. The Deep SVDD objective function is as follows:

min
W

1

N

N∑
i=1

||g(xi;W)− c||2 + α

2

L∑
l=1

||wl||2

Breaking down the objective function:

The first term, 1
N

∑N
i=1 ||g(xi;W)−c||2, measures the average squared distance between

the transformed instances, g(xi;W), from the input X and the hypersphere center, c. This

term encourages the model to learn transformations that map normal data points closer to

the center of the hypersphere, facilitating the separation of normal and anomalous data. The

second term, α
2

∑L
l=1 ||wl||2, represents a regularization term that encourages the network

to have smaller weights. The hyperparameter α controls the strength of regularization.

3.3 Adversarially Reweighted Learning (ARL)

Adversarial Reweighted Learning (ARL) is a machine learning approach designed to

achieve ‘fairness’ in predictive models. ARL aims to make machine learning models more

equitable in their predictions, particularly for underrepresented data points [19]. This ap-

proach addresses the need for fairness in machine learning by identifying regions within

the data where the model tends to make significant errors and incorporating an adversarial

component into the training process to achieve this objective.

ARL works by introducing a minimax game between two key components: the learner,

gθ, and the adversary, λϕ. These components are trained alternately, and their interplay

forms the core of ARL’s objective function:

J(θ, ϕ) = min
θ

max
ϕ

N∑
i=1

λϕ(xi, yi) · Lce(gθ(xi), yi)

Breaking down this objective function:

28

The set of parameters, θ, are learned to minimize the expected loss, which is computed

using the cross-entropy loss function, denoted as Lce, on the predictions gθ(xi) for input-

label pairs (xi, yi). For binary classification, the cross-entropy loss is given by:

Lce(gθ(x), y) = −[y log(gθ(x)) + (1− y) log(1− gθ(x))]

In the case of multiclass classification with K classes, it is expressed as:

Lce(gθ(x), y) = −
K∑
k=1

yk log(gθ(x)k)

The parameters ϕ are learned to maximize the expected loss. Here, λϕ represents an ad-

versarial assignment of weights, calculated as:

λϕ(xi, yi) = 1 +N ·
fϕ(xi, yi)∑N
i=1 fϕ(xi, yi)

where fϕ is a neural network component of the adversary.

The adversarial component, represented by fϕ, plays a crucial role in ARL. It acts

as a neural network tasked with identifying regions within the data where the learner (gθ)

makes significant errors. Essentially, it pinpoints areas of the dataset where the model needs

improvement, allowing ARL to focus its efforts on these specific regions.

The purpose of the adversarial assignment of weights, λϕ, is to determine how much

emphasis is placed on different data points during training. By strategically assigning

weights, ARL encourages the learner to improve its performance in regions where errors are

most prevalent, ultimately leading to a fairer predictive model.

29

CHAPTER 4

AdvSVDD

4.1 AdvSVDD Architecture

This section introduces the AdvSVDD framework consisting of two submodel compo-

nents and the objective function. AdvSVDD is a deep learning neural network for log se-

quence anomaly detection, based on Deep SVDD. This framework leverages ARL to enhance

the performance of anomaly sequence detection trained using the Deep SVDD method. Ad-

vSVDD consists of two main components: the anomaly detector and the adversary. Figure

4.1 illustrates the architecture of AdvSVDD.

Fig. 4.1: AdvSVDD Architecture.

30

4.1.1 Anomaly Detector

The anomaly detector, denoted as gθ, incorporates an LSTM component. The anomaly

detector processes input log sequences, xi, to generate a hidden state, hi. The final hidden

state of the LSTM component for an input sequence can be expressed as hi = LSTM(xi).

hi represents the entire sequence in a d-dimensional space and is the output of the anomaly

detector, gθ.

The core of the anomaly detector’s training relies on the Deep SVDD loss, encouraging

the model to map log sequences within a hypersphere defined by center c. The distance

between this center and the sequence with the furthest vector representation corresponds

to the radius of the hypersphere. The center and the radius will provide the necessary

requirements to build a decision boundary for anomaly detection.

The loss responsible for training the anomaly detector can be defined as the Mean

Squared Error (MSE) between the hidden representations, hi, given by gθ(xi), and the

center of the hypersphere, c, which can be formulated as:

1

N

N∑
i=1

||hi − c||2

This formula encourages the anomaly detector to represent the training data in close

proximity to the center and will provide the basis to construct the complete loss function.

4.1.2 Adversary

The adversary submodel in AdvSVDD, similar to the anomaly detector, employs its

own LSTM component to represent input log sequences. To discriminate the LSTM compo-

nent in gθ and hidden representation it generated, the hidden representation of the sequence

generated by the adversary can be written as h
′
i = LSTM ′(xi) However, the adversary in-

troduces a crucial distinction: a linear layer. This linear layer maps the hidden state into

M dimensions, enabling the adversary to adjust its weights and manipulate the resulting

vector values. Subsequently, a sigmoid function is applied to the output vector.

31

The role of the adversary in AdvSVDD is to enhance the influence of log sequences

that are farther from the center. As a result, the anomaly detector interprets sequences

with greater distances from the center as anomalies. This functionality proves especially

valuable when dealing with smaller training datasets where the hypersphere’s surface is not

precisely defined based solely on the hidden vector representations.

To express the of transformation of the hidden state h′i into M dimensions through a

linear layer, the subsequent equation can be employed

fϕ(xi) = σ(Wfrh
′
i + bf),

where fϕ(xi) represents the vector produced by the final layer of the adversary model when

processing data point xi. Wfr and bf are the learned matrix and bias parameters. This

equation defines how the hidden state h′i is transformed intoM dimensions and subsequently

processed using the sigmoid activation function, resulting in the final layer’s output for the

adversary.

λϕ(xi) signifies the adversarial weight assigned to data point xi by the adversary model.

It is computed as the mean of the values produced by the final layer of the adversary model

when processing data point xi. The mathematical expression for λϕ(xi) is

λϕ(xi) =
1

M

M∑
j=1

fϕ(xi)j ,

where λϕ(xi) denotes the adversarial weight for data point xi and j is an index iterating

over the M number of elements of the final layer vector. This equation explicitly defines

λϕ(xi) as the average of the final layer values produced by the adversary model for data

point xi, quantifying the extent to which the adversary assigns importance to that specific

data point during adversarial training.

4.1.3 Objective Function

The essence of the ARL equation is to use λϕ as a weight to the loss calculated for a

32

particular data point and the target. In the case of AdvSVDD, the data point is the hidden

representation of xi, hi, and the target is the center of the hypersphere, c. Thus, λϕ must

be the weight associated with the squared error (SE) between hi and c. In its simplest

description, the loss for the anomaly detector is a Mean of Weighted Squared Errors and

can be defined as follows:

1

N

N∑
i=1

λϕ(xi) · ||hi − c||2

The loss for the adversary is simply the negative of the anomaly detector loss value. Thus,

the completed objective function of AdvSVDD, denoted as J(θ, ϕ), is formulated as follows:

J(θ, ϕ) = min
θ

max
ϕ

1

N

N∑
i=1

λϕ(xi) · ||hi − c||2

This equation consists of two sets of parameters, θ and ϕ, that are to be optimized. θ

corresponds to the parameters of the anomaly detector, while ϕ corresponds to the param-

eters of the adversary. The objective function entails two optimization operations: minθ

and maxϕ. The min operation seeks to find values for θ that minimize the function, while

the max operation aims to find values for ϕ that maximize the function. The optimization

is performed over N log sequences, and the weight λϕ(xi) influences the magnitude of the

squared error for each sequence, making it a dynamic factor in the overall objective.

4.2 Training and Detection

In this section, the AdvSVDD training framework is outlined, encompassing scheduling

parameters, foundational anomaly detector training, and submodel alternation training.

The section concludes with a brief overview of anomaly detection with AdvSVDD.

4.2.1 Training Schedule

Specific parameters play a pivotal role in shaping the AdvSVDD training schedule:

1. Total Number of Epochs (T): This parameter dictates the overall duration of

AdvSVDD training, representing the total number of epochs.

33

2. Initial Anomaly Detector Duration (s): The initiation of the submodel alterna-

tion training phase occurs at a defined epoch s.

3. Cycle Duration (u): Within the submodel alternation training phase (spanning

from epoch s to T), the training is organized into cycles, each covering a fixed number

of epochs denoted as u.

The entire training process spans T epochs. Prior to the starting point, s the anomaly

detector undergoes foundational training. Epoch s marks the commencement of the sub-

model alternation training phase. Each cycle lasts for u epochs. The training phases are

illustrated in Figure 4.2.

Fig. 4.2: The training progresses from left to right. The orange portion of the figure
corresponds to the anomaly detector training. The blue portion of the figure corresponds
to the adversary training.

4.2.2 Foundational Anomaly Detector Training

In phase one, the anomaly detector trains independently for a set number of epochs, s,

without the presence of an adversary. This separation is critical because, during this initial

phase, the model has not yet acquired a comprehensive understanding of the intricacies

within the training data. During this period, the adversarial weights are set to be an M

dimensional vector consisting of ones. The result is reducing the adversarial weight to 1,

effectively simplifying the loss function to the MSE.

4.2.3 Submodel Alternation Training

In phase two, the adversary is introduced into the training process. The output from

34

fϕ is used to calculate λϕ to serve as a unique weight for the SE of hi and c. This weighted

loss is employed to train the adversary, causing the output from fϕ to update the final

resulting weight, λϕ.

The underlying principle governing this method revolves around cyclic alternation be-

tween two crucial submodels: the anomaly detector and the adversary. This alternation

occurs at regular intervals of u epochs, ensuring that only one submodel is actively trained

at any given time.

4.2.4 Detecting Anomalies with AdvSVDD

Detecting anomalies with AdvSVDD involves a straightforward process. During the

training phase, the algorithm minimizes the volume of the hypersphere. This minimization

leads to the reduction of the radius (R), which is defined as the distance between the center

of the hypersphere and the farthest hidden representation. The obtained center (c) and

R together form a decision boundary represented by the surface of the hypersphere. In

the evaluation phase, incoming data points (xi) are classified as normal if their hidden

representation (hi) distance to c is smaller than R (within the hypersphere). Conversely,

data points are classified as anomalous if their hi has a distance to c that exceeds R (outside

the hypersphere).

The adversarial weight, (λϕ) plays a crucial role in this process. It is applied to the

squared error between a hidden representation and c. As a result, the learned radius used

to establish the decision boundary is influenced. Specifically, the model can place emphasis

on points closest to the surface of the hypersphere.

35

CHAPTER 5

Experiments

5.1 Experimental Setup

In this section, the foundational elements of the experimental setup will be presented.

Commencing with an introduction to the datasets. Following the dataset overview, the data

splitting strategy will be expounded upon. The baseline models and the evaluation metrics

will be introduced. Finally, this section will conclude by presenting implementation details

of the AdvSVDD model.

5.1.1 Datasets

Two datasets used in this project: the Blue Gene/L (BG/L) Dataset and the Thunder-

bird Dataset. Both datasets are massive and provide both non-anomalous and anomalous

logs.

Blue Gene/L

The BG/L dataset, is a collection of data from the Blue Gene/L supercomputer sys-

tem deployed at Lawrence Livermore National Labs (LLNL). Developed by International

Business Machines Corporation (IBM), Blue Gene/L is designed with high-performance

computing capabilities and capacity for massive parallel processing.

For data preprocessing, the Drain log parser was used to extract structured informa-

tion from raw and unstructured log messages. The column structure of the BG/L dataset

includes fields such as LineId, Label, Timestamp (recorded date and time), Node, Time,

NodeRepeat, Type, Component, Level, Content, EventId, EventTemplate, and Parame-

terList. Additionally, a sliding window approach with a window size of 20 and a step size

of 10 was applied to the first 5,000,000 rows to split the log files into sequences.

36

Thunderbird

The Thunderbird dataset is a collection of data from the Thunderbird supercomputing

system produced by Dell and installed at Sandia National Labs (SNL). The Thunderbird

supercomputing system is a prominent high-performance computing (HPC) system primar-

ily employed for scientific and research purposes. This dataset encompasses various logs

and event information generated by the Thunderbird system.

Similar to the BG/L dataset, data preprocessing involved the use of the Drain log

parser to extract structured information from raw log messages. The column structure of

the Thunderbird dataset includes fields such as LineId, Label, Timestamp (date and time

of the log entry), User, Month, Day, Time, Location, Component, PID, Content, EventId,

EventTemplate, and ParameterList. The same sliding window approach with a window size

of 20 and a step size of 10 was was applied to the first 5,000,000 rows to split log files into

sequences.

Dataset Split Details

The splitting technique is identical for both the BG/L and Thunderbird datasets. As

the sliding window was applied to the dataset. The entries were filtered to contain two

columns: EventId and Sequence label. EventId is a list of the ids corresponding to the id

of each log template. The Sequence label column contains the label for if the sequence is

anomalous or normal.

The dataset is split into three sets: a training set with 10,240 samples, a validation

set with 11,264 samples, and a testing set with 11,264 samples. The class distribution

within these sets includes 30,720 normal samples and 2,048 abnormal samples. Notably,

the training set comprises entirely normal samples, while both the validation and testing

sets include 1,024 abnormal samples for a resulting ratio of ten normal samples for every

one abnormal sample. The training, validation and test sets are saved into a csv file to be

used indefinitely. All experiments were conducted using these csv files and sampled from

when specified.

37

The split resulted in the Thunderbird csv file containing a total of 523 unique log keys,

compared to the BG/L csv file containing 114 unique log keys). Each sequence contains a

total of 20 log keys.

5.1.2 Baselines

As baseline models used for comparison, the following were implemented and evaluated:

• Isolation Forest (iForest) was implemented using 100 estimators.

• One-Class Support Vector Machine (OCSVM) was implemented, and the validation

set was used to find the best-performing nu hyperparameter within the range of 10−5

to 10−2, with a step size of 5× 10−5.

• The DeepLog component, Log Key Anomaly Detection model, for log sequence anomaly

detection was implemented. Using a hidden dimension of 128, two LSTM layers and a

learning rate of 10−5. Furthermore, during the validation phase, the hyperparameter

k was tuned for best performance.

• Support Vector Data Description (SVDD) was selected to evaluate the adversary

component of the proposed AdvSVDD model. When the adversary component of

AdvSVDD is turned off for the entirety of the training, it corresponds directly as

the SVDD baseline. The hyperparameters are identical between the AdvSVDD and

SVDD models.

All models were trained on the exact same data, sampled from the training set using the

same seed.

5.1.3 Evaluation Metrics

Precision, Recall, F1-score, ROC AUC (Receiver Operating Characteristic Area Under

Curve), and PR AUC (Precision Recall Area Under the Curve) are utilized to assess the

models throughout the validation and testing phases. The F1-score for the anomalous class

was used as the criteria for selecting the best model during the validation phase.

38

Precision measures the model’s ability to correctly identify positive instances. High

precision indicates the model’s effectiveness in minimizing false positive errors, which is

especially important in applications like log sequence anomaly detection. It is calculated

as:

Precision =
TP

TP + FP

Recall, also known as sensitivity, evaluates the model’s capacity to detect all relevant

positive instances within a dataset. High recall is essential when missing positive cases could

have significant consequences, as is often the case with anomaly detection. It is calculated

as:

Recall =
TP

TP + FN

The F1-Score strikes a balance between precision and recall, offering a composite mea-

sure of a classifier’s performance. This metric is useful for evaluating models on imbalanced

datasets, as it considers false positives and false negatives equally. It is calculated as:

F1-Score =
2× Precision× Recall

Precision + Recall

The ROC AUC metric assesses a model’s ability to distinguish between positive and

negative classes by examining the area under the Receiver Operating Characteristic curve.

A higher ROC AUC value indicates better discrimination capability.

PR AUC is another binary classification metric that considers the trade-off between

precision and recall. It is particularly suitable for imbalanced datasets and is calculated by

examining the area under the Precision-Recall curve. A higher PR AUC value signifies a

model’s ability to maintain a high level of precision while preserving an acceptable level of

recall.

5.1.4 Implementation Details

The AdvSVDD implementation involves several crucial hyperparameters and configu-

rations. Initially, the batch sizes for the training, validation, and testing datasets are set

39

at 32, determining the number of data points processed simultaneously during training and

evaluation. To ensure impartiality in training and evaluation, all models, including the

baseline models, undergo training with the same ten seed values.

The AdvSVDD architecture comprises an anomaly detector with an embedding dimen-

sion of 50 and a hidden dimension of 256, incorporating a single LSTM layer. Similarly, the

adversary network also employs a single LSTM layer with matching embedding and hid-

den dimensions. The AdvSVDD was scheduled to begin the submodel alternation training

phase at epoch 210, with a cycle duration of 5 epochs.

Adam Optimization

Both the anomaly detector and the adversary are optimized utilizing the Adam algo-

rithm [41]. Adam has proven to be a powerful optimization algorithm by combining the

two key concepts of momentum in AdaGrad [42] and the exponentially weighted averages

in RMSprop [43].

Adam was utilized with a learning rate of 10−2, with a β1 (for momentum) and β2 (for

exponentially weighted averages) values of 0.9 and 0.999 respectively.

5.2 Experimental Results

In this section, experimental results are outlined for all evaluation metrics, followed by

an examination of the influence of the adversary during training. The investigation explores

the effects of varying the number of normal samples for training and employing different

training schedules for AdvSVDD. Additionally, the section includes a sensitivity analysis

on the number of dimensions in the final linear layer of the adversary.

5.2.1 Overall Performance

Table 5.1 provides an overview of average performance metrics for anomaly detection

models on the BG/L and Thunderbird datasets. For each model and dataset, the values

are presented with their corresponding standard deviations.

40

Table 5.1: Average Performance Metrics for Anomaly Detection Models

Dataset Model Precision Recall F1 ROC AUC PR AUC

BG/L

iForest 0.1466±0.006 0.3212±0.001 0.2013±0.006 0.5670±0.004 0.2648±0.003

OCSVM 0.6703±0.082 0.8982±0.204 0.7636±0.139 0.9281±0.102 0.7889±0.133

DeepLog 0.8052±0.191 0.8620±0.113 0.8104±0.114 0.9025±0.060 0.8526±0.086

SVDD 0.8984±0.060 0.9955±0.009 0.9436±0.034 0.9919±0.006 0.9472±0.031

AdvSVDD * 0.9144±0.054 0.9942±0.011 0.9519±0.031 0.9923±0.006 0.9546±0.028

Thunderbird

iForest 0.2697±0.006 0.8957±0.009 0.4145±0.007 0.8265±0.004 0.5874±0.004

OCSVM 0.5173±0.016 0.9896±0.010 0.6793±0.014 0.9486±0.005 0.7539±0.009

DeepLog 0.3552±0.278 0.4380±0.182 0.2899±0.041 0.6345±0.039 0.4221±0.079

SVDD 0.6968±0.184 0.9214±0.068 0.7823±0.144 0.9356±0.049 0.8127±0.110

AdvSVDD * 0.7086±0.149 0.9218±0.094 0.7949±0.117 0.9397±0.054 0.8187±0.101

Precision

In both the BG/L and Thunderbird datasets, AdvSVDD outperforms other models

in terms of precision. It achieves a precision of 0.9144±0.054 in the BG/L dataset and

0.7086±0.149 in the Thunderbird dataset. On the other hand, iForest consistently exhibits

the lowest precision in both datasets, with scores of 0.1466±0.006 in BG/L and 0.2697±0.006

in Thunderbird.

In the BG/L dataset, OCSVM and DeepLog perform better than iForest in preci-

sion, with scores of 0.6703±0.082 and 0.8052±0.191, respectively. SVDD achieves a precision

of 0.8984±0.060. AdvSVDD leads in the BG/L precision scores with 0.9144±0.054, a 1.6%

difference with second place.

In the Thunderbird dataset, AdvSVDD 0.7086±0.149 remains the top performer in pre-

cision. With SVDD at a close second with a score of 0.6968±0.184.

Recall

In both the BG/L and Thunderbird datasets, AdvSVDD demonstrates strong recall

performance in anomaly detection. Surprisingly, iForest exhibits a notably high recall in the

Thunderbird dataset, with a score of 0.8957±0.009 despite a low recall of 0.3212±0.001 in the

BG/L dataset. This is opposite to DeepLog, which initially exhibited a higher recall in the

BG/L dataset. DeepLog has a significant decline in recall when applied to the Thunderbird

dataset, transitioning from a recall of 0.8620±0.113 to a recall score of 0.4380±0.182.

41

In the BG/L dataset, AdvSVDD achieves a recall of 0.9942±0.011, positioning it among

the top performers in correctly identifying anomalies. However, it’s worth noting that

AdvSVDD is the second-highest performer in recall, slightly trailing SVDD, which attains

a recall of 0.9955±0.009.

In the Thunderbird dataset, AdvSVDD has a slight edge over SVDD in terms of recall,

with AdvSVDD achieving a recall of 0.9218±0.094 compared to SVDD’s recall of 0.9214±0.068.

It’s noteworthy that OCSVM exhibits the highest recall in this dataset, surpassing both

AdvSVDD and SVDD with a score of 0.9896±0.010.

F1-Score

AdvSVDD demonstrated superior performance in the F1-Score metric, outperforming

all other models on both datasets. Specifically, AdvSVDD achieved a score of 0.9519±0.031

in the BG/L dataset and 0.7949±0.117 in the Thunderbird dataset. Notably, across both

datasets, AdvSVDD not only surpassed SVDD in F1-Score but also showcased a lower

standard deviation.

An intriguing observation emerges as all the deep learning models exhibit a notable

decline in performance when transitioning from the BG/L dataset to the Thunderbird

dataset. In contrast, iForest experiences an increase in performance. Specifically, in the

BG/L dataset, iForest achieved an F1-Score of 0.2013±0.006. However, in the Thunderbird

dataset, iForest’s performance notably improves, yielding a score of 0.4145±0.007.

PR AUC and ROC AUC

In both the BG/L and Thunderbird datasets, the comparisons of the models through

the lens of the PR-AUC metric are essentially the same as F1-Score, with different values.

Through the lens of the ROC AUC metric, the comparisons are the same in the Thun-

derbird dataset, and slightly different in the BG/L dataset. In the BG/L dataset, the

OCSVM achieves a ROC AUC score of 0.9281±0.102 overtaking DeepLog’s ROC AUC score

of 0.9025±0.060.

42

Standard Deviations

An intriguing observation arises regarding the variability in precision and recall for

AdvSVDD compared to SVDD. Across both datasets, AdvSVDD exhibited a lower standard

deviation than SVDD in precision (BG/L: 0.054 vs. 0.060, Thunderbird: 0.149 vs. 0.184),

but its standard deviation in recall was larger (BG/L: 0.011 vs. 0.009, Thunderbird: 0.094

vs. 0.068). However, it is noteworthy that the increase in standard deviation in recall was

comparatively smaller than the decrease in the standard deviation in precision. This results

in AdvSVDD having a smaller standard deviation for F1-Score than SVDD (BG/L: 0.031

vs. 0.034, Thunderbird: 0.117 vs. 0.144).

Examining the F1-Score and PR AUC metrics reveals that when seeking a balance

between Precision and Recall, AdvSVDD appears to be more dependable than SVDD. It

consistently maintains a lower standard deviation across both datasets while delivering

superior performance.

Table 5.2: Training Runtime Comparison

Dataset Model Time (Min:Sec)

BG/L
DeepLog 49:14
SVDD 5:50

AdvSVDD 5:58

Thunderbird
DeepLog 217:57
SVDD 5:49

AdvSVDD 5:52

Training Runtime Comparison

Table 5.2 displays the runtime of different models on the BG/L and Thunderbird

datasets. Runtimes are presented for DeepLog, SVDD, and AdvSVDD models.

There are two key takeaways from the runtime comparison.

1. AdvSVDD and SVDD benefit from the fact that their optimization does not depend

on the number of log keys. For DeepLog, the runtime scaled with the number of

43

unique log keys in the datasets (BG/L: 114, Thunderbird, 523) due to the validation

phase optimizing the k hyper-parameter as explained in 5.1.2.

2. The addition of the Adversary in AdvSVDD only results in a minimal increase in

runtime compared to SVDD. This makes sense since for any given epoch in phase

two, either the Anomaly Detector or Adversary is being trained. The adversary has

an additional linear layer for training.

5.2.2 Investigating AdvSVDD

Experiments were conducted to investigate the impact of adversary during training.

The studies were designed for the purpose of evaluating AdvSVDD performance under

different conditions: the influence of different training schedules on AdvSVDD and the

effect of varying the number of normal samples used for training.

Scheduling Variants for Training AdvSVDD

The study evaluated three scheduling variants for AdvSVDD: AdvSVDD-1, AdvSVDD-

2, and AdvSVDD-3. All variants were assessed on the BG/L and Thunderbird datasets,

each trained on 1024 normal training samples. All variants utilized a training schedule with

T = 300. Thus, trained for a total of 300 epochs.

s represents the number of epochs allocated to training the anomaly detector before

involving the adversary. For AdvSVDD-1, s = 205, and the training schedule involved

alternating cycle durations. The first, (u1), lasted for 10 epochs, focusing on training

the anomaly detector, followed by a cycle (u2) with a duration of 5 epochs, dedicated to

adversary training. This cycling continued until T was reached.

AdvSVDD-2 and AdvSVDD-3 used a similar approach with cycle durations, but sim-

plified it by combining u1 and u2 into a single value, u. The cycle duration was set to

u = 5 for both variants. AdvSVDD-2 had a schedule with s = 220, while AdvSVDD-3 had

a schedule with s = 210.

In Table 5.3, the average performance metrics for the three variants are presented.

44

Table 5.3: Average Performance of AdvSVDD with Different Training Schedules

Dataset Model Precision Recall F1 Score ROC AUC PR AUC

BG/L
SVDD 0.8984±0.060 0.9955±0.009 0.9436±0.034 0.9919±0.006 0.9472±0.031

AdvSVDD-1 0.9047±0.067 0.9949±0.011 0.9464±0.037 0.9919±0.007 0.95±0.033

AdvSVDD-2 0.9091±0.061 0.9941±0.012 0.9487±0.034 0.9918±0.007 0.9518±0.031

AdvSVDD-3 * 0.9144±0.054 0.9942±0.011 0.9519±0.031 0.9923±0.006 0.9546±0.028

Thunderbird
SVDD 0.6968±0.184 0.9214±0.068 0.7823±0.144 0.9356±0.049 0.8127±0.110

AdvSVDD-1 * 0.7179±0.15 0.922±0.083 0.8017±0.118 0.9408±0.05 0.8235±0.102

AdvSVDD-2 0.7057±0.159 0.9367±0.085 0.7996±0.133 0.9462±0.055 0.8241±0.112

AdvSVDD-3 0.7086±0.149 0.9218±0.094 0.7949±0.117 0.9397±0.054 0.8187±0.101

An interesting observation is that AdvSVDD-3 excelled in the BG/L dataset while

AdvSVDD-1 exhibited the poorest performance. However, on the Thunderbird dataset,

AdvSVDD-1 outperformed the other variants, with AdvSVDD-3 delivering the weakest

performance. The scores for SVDD are also in the table for comparison.

AdvSVDD-3 consistently performs the best among the three variants. This could

indicate that a longer initial training phase, larger (s), for the anomaly detector is beneficial

for the BG/L dataset.

On the Thunderbird dataset, AdvSVDD-1 emerges as the top performer, especially in

terms of Precision and F1 Score. This implies that, for the Thunderbird dataset, a shorter

initial training phase (s) for the anomaly detector yields better results. Notably, the choice

of cycle duration appears to play an important role in performance, as this is the only

variant that allows the anomaly detector to train for twice as long as the adversary during

the cyclic training phase.

One of the most significant findings is the dataset-specific performance of the variants,

highlighting the need to adapt the training schedule to suit the specific characteristics of

the dataset, as there is no single solution for all datasets. The variations in dataset-specific

performance among the AdvSVDD variants underscore the importance of tailoring the

training schedule and cycle duration to the dataset.

Figure 5.1 Demonstrates the performance on both datasets for the three variant sched-

ules, including no schedule (SVDD) throughout the ten different seed values.

Beginning with the BG/L dataset, SVDD struggled with seed 1 whilst all AdvSVDD

45

Fig. 5.1: Bar charts illustrating the F1-scores of variant schedules on the BG/L (left) and
Thunderbird (Right) datasets.

variants outperformed. SVDD slightly edges in some seeds but it’s always minimal when

compared to the runs where the AdvSVDD variants show superior performance. The largest

performance boost happened in seed 9 with AdvSVDD-3 outperforming the rest exhibiting

an F1-score of 0.9442 whilst the rest of the models perform under 0.90.

The results for the Thunderbird dataset shows a similar phenomena. The SVDD model

slightly edges in some seeds, such as seed 8, but it is minimal with compared to the per-

formance boosts when the adversary models outperform. Seed 7 demonstrates the most

evident example.

Varying the Number of Training Samples

Fig. 5.2: F1-Scores of SVDD, AdvSVDD, and DeepLog with Varying Training Samples

46

In Figure 5.2, F1-Scores are compared for SVDD, AdvSVDD, and DeepLog models

with increasing training samples on the BG/L (left) and Thunderbird (right) datasets.

Significantly, SVDD and AdvSVDD consistently outperform DeepLog on both datasets. As

training samples increase, AdvSVDD and SVDD show similar performance trends, with

more pronounced differences in datasets below 2048 samples. The Thunderbird dataset,

with a significantly higher number of unique log keys (523) compared to BG/L (114 unique

log keys), highlights these distinctions. The disparity in log keys potentially contributes to

diminished performance on the Thunderbird dataset.

An interesting trend emerges: AdvSVDD tends to converge toward SVDD performance

as training samples increase. This aligns with expectations, where a larger dataset better

represents the hypersphere. Notably, the efficacy of adversarial weight-induced variability

shines in scenarios with smaller training samples, enhancing the model’s ability to generalize

in the absence of an optimal hypersphere definition.

5.2.3 Sensitivity Analysis of Final Linear Layer Dimensions

The final linear layer in the adversary was examined by varying the number of dimen-

sions, M . The following dimensions were tested: 1, 8, 16, 32, 64.

Fig. 5.3: Sensitivity Analysis of Final Linear Layer Dimensions.

47

Figure 5.3 illustrates AdvSVDD-3’s F1-scores on 1024 training samples using different

final linear layer dimensions on the BG/L and Thunderbird datasets. The figure suggests

that mapping to a single dimension performs relatively well. Following is an initial drop off

in performance until the dimensions are tuned. Exceeding the tuning results in another drop

in performance. This phenomena is present in both datasets. However, the line depicting

BG/L demonstrates it with lower dimension values. This could be potentially be as a result

of the differences in the datasets, particularly the amount of log keys.

5.2.4 Visualization

Figure 5.4 (BG/L) and Figure 5.5 (Thunderbird) illustrate hidden representations of

normal and anomalous log sequences in the test data. These representations were obtained

after training AdvSVDD on 1024 normal training samples. The 256 dimensions of the

hidden representations were reduced to two dimensions using PCA.

Fig. 5.4: Dimensionality Reduciton Plot for BG/L

The BG/L dataset plot displays distinct clusters of abnormal sequences, while the

Thunderbird plot lacks evident anomaly clusters. Notably, false positives (depicted in blue)

are distant from the majority of mappings, aligning with expectations of a distance-based

decision criterion. As anticipated, false negatives (depicted in red) are infrequent in both

48

Fig. 5.5: Dimensionality Reduciton Plot for Thunderbird

datasets and occur when anomalous points are closely mapped to the center.

An additional observation focuses on the range spanned by both axes in the BG/L and

Thunderbird plots. Particularly, the Thunderbird plot exhibits a larger span in both axes.

This suggests that the model encountered difficulties in effectively mapping normal points

to the center of the hypersphere.

The variation in mapping effectiveness could be a factor in the distinctive clustering

observed in the BG/L dataset, where anomalous points tend to cluster apart from the

majority of normal points. Conversely, the plot of the Thunderbird dataset does not depict

clear clusters of anomalous data points, suggesting a different mapping dynamic.

49

CHAPTER 6

Conclusion

The field of log sequence anomaly detection holds significant academic and practical

importance, with applications in areas such as cybersecurity, network surveillance, indus-

trial processes, and financial transaction monitoring. This thesis introduces the AdvSVDD

architecture, a deep learning model designed to address the challenge of limited training

data in sequence anomaly detection.

6.1 Key Findings and Contributions

AdvSVDD excels in identifying anomalies within log sequences and enhancing the

sequence anomaly detection process under limited training data through the integration of

two key concepts. Deep SVDD, a One-Class Classification framework and Adversarially

Reweighted Learning.

AdvSVDD was evaluated on two datasets, BG/L and Thunderbird using percision,

recall, F1-Score, ROC AUC and PR AUC. Comparisons with baseline models and a non-

adversarial SVDD model demonstrated AdvSVDD’s superiority, emphasizing the impact of

the adversarial component.

The investigation on the different training schedules demonstrated the enhancement

effect of the adversarial component in AdvSVDD as all variations outperformed the tradi-

tional SVDD model. The study on the number of normal samples for training highlighted

that the impact of the AdvSVDD framework is most effective with limited training data,

and the involvement of the adversary does not hinder the performance as the number of

training data increases. The sensitivity analysis provided some insight into the dimensional

effect on final linear layer of the adversary. Demonstrating that it is dataset-dependent but

follows a typical pattern across both the BG/L and Thunderbird dataset.

50

6.2 Practical Implications and Impact

The integration of adversarial techniques in AdvSVDD offers significant implications

for log sequence anomaly detection. Its ability to excel in scenarios with limited training

data makes it suitable for data-scarce applications.

The inclusion of the adversarial component within AdvSVDD becomes evident through

rigorous comparisons with the traditional SVDD model. The enhanced performance of Ad-

vSVDD underscores the effectiveness of the adversarial training schedule. This has signifi-

cant implications for researchers seeking to leverage adversarial approaches in their anomaly

detection models.

Beyond its practical implications, the AdvSVDD framework serves as a foundational

reference for future research in adversarial anomaly detection. It has the potential to

stimulate further exploration in this field and inspire the development of advanced tech-

niques. Researchers looking to integrate adversarial methods within their anomaly detection

methodologies could find valuable insights and a starting point in this work.

6.3 Future Research

Potential future research avenues include the incorporation of the parameter value

vector into AdvSVDD architecture. This addition holds promise for significantly enhancing

the log anomaly detection capabilities of AdvSVDD.

Furthermore, a deeper exploration of the interaction between the anomaly detector

and the adversary within AdvSVDD is warranted. Investigating optimal parameter config-

urations and training strategies could lead to further advancements in AdvSVDD’s perfor-

mance. Specifically, exploring variations in the dimensional structure of the two distinct

LSTM components in AdvSVDD presents a compelling avenue.

In the context of weight value generation, future research might extend beyond the

mean of the linear layer. Exploring alternative methods, such as using the max of the

linear layer or employing more intricate functions, could result in more effective weight

values. This exploration is geared towards enhancing the loss calculation between the

51

hidden representation of critical data points and the center of the hypersphere.

Domain-specific integration of AdvSVDD is another promising research direction. In-

vestigating its performance in other domains with limited sequential data, such as in health-

care, could demonstrate the framework’s efficacy compared to state-of-the-art models.

Additionally, expanding the application of AdvSVDD to dynamic, real-time datasets is

a rich area for exploration. Future research could evaluate its performance in such contexts,

providing insights into the potential and limitations of AdvSVDD in dynamic scenarios.

52

REFERENCES

[1] D. M. Hawkins, Identification of outliers. Springer, 1980, vol. 11.

[2] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of anomaly detection
techniques in financial domain,” Future Generation Computer Systems, vol. 55, pp.
278–288, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167739X15000023

[3] G. A. Susto, M. Terzi, and A. Beghi, “Anomaly detection approaches for
semiconductor manufacturing,” Procedia Manufacturing, vol. 11, pp. 2018–2024,
2017, 27th International Conference on Flexible Automation and Intelligent
Manufacturing, FAIM2017, 27-30 June 2017, Modena, Italy. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2351978917305619

[4] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications, vol. 60, pp.
19–31, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804515002891

[5] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, “Deep learning
for medical anomaly detection – a survey,” 2021.

[6] S. Russo, M. Lürig, W. Hao, B. Matthews, and K. Villez, “Active learning for
anomaly detection in environmental data,” Environmental Modelling & Software, vol.
134, p. 104869, 2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1364815220309269

[7] P. P. Pawar and A. C. Phadke, “A survey on different techniques for anomaly detec-
tion,” in International Conference on Computational Intelligence. Springer, 2022, pp.
365–380.

[8] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” 2019.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[10] A. M. Kosek, “Contextual anomaly detection for cyber-physical security in smart grids
based on an artificial neural network model,” in 2016 Joint Workshop on Cyber- Phys-
ical Security and Resilience in Smart Grids (CPSR-SG), 2016, pp. 1–6.

[11] C. Zhang, X. Wang, H. Zhang, J. Zhang, H. Zhang, C. Liu, and P. Han,
“Layerlog: Log sequence anomaly detection based on hierarchical semantics,”
Applied Soft Computing, vol. 132, p. 109860, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1568494622009097

https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://www.sciencedirect.com/science/article/pii/S0167739X15000023
https://www.sciencedirect.com/science/article/pii/S2351978917305619
https://www.sciencedirect.com/science/article/pii/S1084804515002891
https://www.sciencedirect.com/science/article/pii/S1084804515002891
https://www.sciencedirect.com/science/article/pii/S1364815220309269
https://www.sciencedirect.com/science/article/pii/S1364815220309269
https://www.sciencedirect.com/science/article/pii/S1568494622009097
https://www.sciencedirect.com/science/article/pii/S1568494622009097

53

[12] T. Zhang, A. Wiliem, S. Yang, and B. Lovell, “Tv-gan: Generative adversarial net-
work based thermal to visible face recognition,” in 2018 international conference on
biometrics (ICB). IEEE, 2018, pp. 174–181.

[13] Y. Zhu, Y. Zhang, H. Yang, and F. Wang, “Gancoder: an automatic natural language-
to-programming language translation approach based on gan,” in Natural Language
Processing and Chinese Computing: 8th CCF International Conference, NLPCC 2019,
Dunhuang, China, October 9–14, 2019, Proceedings, Part II 8. Springer, 2019, pp.
529–539.

[14] I. Rasheed, F. Hu, and L. Zhang, “Deep reinforcement learning approach for au-
tonomous vehicle systems for maintaining security and safety using lstm-gan,” Ve-
hicular Communications, vol. 26, p. 100266, 2020.

[15] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, “f-anogan:
Fast unsupervised anomaly detection with generative adversarial networks,” Medical
image analysis, vol. 54, pp. 30–44, 2019.

[16] A. Geiger, D. Liu, S. Alnegheimish, A. Cuesta-Infante, and K. Veeramachaneni,
“Tadgan: Time series anomaly detection using generative adversarial networks,” in
2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 33–43.

[17] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised
anomaly detection via adversarial training,” 2018.

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014.

[19] P. Lahoti, A. Beutel, J. Chen, K. Lee, F. Prost, N. Thain, X. Wang, and E. H. Chi,
“Fairness without demographics through adversarially reweighted learning,” 2020.

[20] D. Jalal and T. Ezzedine, “Decision tree and support vector machine for anomaly detec-
tion in water distribution networks,” in 2020 International Wireless Communications
and Mobile Computing (IWCMC), 2020, pp. 1320–1323.

[21] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure diagnosis using deci-
sion trees,” in International Conference on Autonomic Computing, 2004. Proceedings.,
2004, pp. 36–43.

[22] B. Wang, S. Ying, G. Cheng, R. Wang, Z. Yang, and B. Dong, “Log-based anomaly
detection with the improved k-nearest neighbor,” International Journal of Software
Engineering and Knowledge Engineering, vol. 30, no. 02, pp. 239–262, 2020.

[23] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log analysis for
anomaly detection,” in 2016 IEEE 27th International Symposium on Software Relia-
bility Engineering (ISSRE), 2016, pp. 207–218.

[24] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based approach in clas-
sification,” in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and

54

ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings. Springer,
2003, pp. 986–996.

[25] M. S. bin Sinal and E. Kamioka, “Early abnormal heartbeat multistage classification
by using decision tree and k-nearest neighbor,” in Proceedings of the 2018 Artificial
Intelligence and Cloud Computing Conference, ser. AICCC ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 29–34. [Online]. Available:
https://doi-org.dist.lib.usu.edu/10.1145/3299819.3299848

[26] B. Wang, S. Ying, and Z. Yang, “A log-based anomaly detection method with efficient
neighbor searching and automatic k neighbor selection.” Scientific Programming, pp.
1 – 17, 2020. [Online]. Available: https://dist.lib.usu.edu/login?url=https://search.
ebscohost.com/login.aspx?direct=true&db=asn&AN=143540910&site=ehost-live

[27] G. de la Torre-Abaitua, L. F. Lago-Fernández, D. Arroyo, and S. Kot-
siantis, “A compression-based method for detecting anomalies in tex-
tual data.” Entropy, vol. 23, no. 5, p. 618, 2021. [Online]. Avail-
able: https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?
direct=true&db=asn&AN=150474981&site=ehost-live

[28] F. Zhou, J. H. Park, and Y. Liu, “Differential feature based hierarchical
pca fault detection method for dynamic fault,” Neurocomputing, vol. 202, pp.
27–35, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231216300273

[29] K. Heller, K. Svore, A. Keromytis, and S. Stolfo, “One class support vector machines
for detecting anomalous windows registry accesses,” 12 2003.

[30] Y. Li, T. Zhang, Y. Y. Ma, and C. Zhou, “Anomaly detection of user behavior for
database security audit based on ocsvm,” in 2016 3rd International Conference on
Information Science and Control Engineering (ICISCE), 2016, pp. 214–219.

[31] R. Vaarandi and M. Pihelgas, “Logcluster - a data clustering and pattern mining algo-
rithm for event logs,” in 2015 11th International Conference on Network and Service
Management (CNSM), 2015, pp. 1–7.

[32] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 1285–1298. [Online].
Available: https://doi.org/10.1145/3133956.3134015

[33] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,” 2021.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[35] X. H. Le, H. Ho, G. Lee, and S. Jung, “Application of long short-term memory (lstm)
neural network for flood forecasting,” Water, vol. 11, p. 1387, 07 2019.

https://doi-org.dist.lib.usu.edu/10.1145/3299819.3299848
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=143540910&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=143540910&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=150474981&site=ehost-live
https://dist.lib.usu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=asn&AN=150474981&site=ehost-live
https://www.sciencedirect.com/science/article/pii/S0925231216300273
https://www.sciencedirect.com/science/article/pii/S0925231216300273
https://doi.org/10.1145/3133956.3134015

55

[36] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log parsing for large-
scale log data analysis,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 6, pp. 931–944, 2018.

[37] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and benchmarks
for automated log parsing,” 2019.

[38] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-supervised log
parsing,” pp. 122–138, 02 2021.

[39] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing approach with
fixed depth tree,” in 2017 IEEE International Conference on Web Services (ICWS),
2017, pp. 33–40.

[40] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. Müller, and M. Kloft, “Deep one-class classification,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 4393–4402.
[Online]. Available: https://proceedings.mlr.press/v80/ruff18a.html

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[42] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” J. Mach. Learn. Res., vol. 12, no. null, p. 2121–2159, jul
2011.

[43] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

https://proceedings.mlr.press/v80/ruff18a.html

	Adversarially Reweighted Sequence Anomaly Detection With Limited Log Data
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	Introduction
	Background
	Anomaly Detection
	Log Anomaly Detection
	Challenges in Log Sequence Anomaly Detection

	Motivation
	Limitation of Existing Log Anomaly Detection Approaches
	Adversarial Learning in Anomaly Detection

	Thesis Organization

	Related Work
	Traditional Approaches
	Supervised Machine Learning
	Unsupervised Machine Learning

	Deep Learning Approaches
	DeepLog
	LogBERT

	Preliminary
	Log Preprocessing
	Log Parsing

	Deep SVDD
	Adversarially Reweighted Learning (ARL)

	AdvSVDD
	AdvSVDD Architecture
	Anomaly Detector
	Adversary
	Objective Function

	Training and Detection
	Training Schedule
	Foundational Anomaly Detector Training
	Submodel Alternation Training
	Detecting Anomalies with AdvSVDD

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details

	Experimental Results
	Overall Performance
	Investigating AdvSVDD
	Sensitivity Analysis of Final Linear Layer Dimensions
	Visualization

	Conclusion
	Key Findings and Contributions
	Practical Implications and Impact
	Future Research

	REFERENCES

