The Effect of Space Environment on Wireless Communication Devices' Performance

Landon Hillyard
Utah State University

JR Dennison
Utah State University

Jan J. Sojka
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/mp_presentations/67
The Effect of Space Environment on Wireless Communication Devices' Performance

Landon Hillyard

[Mentors: JR Dennison and Jan Sojka]

1Get-Away-Special Team
Mechanical & Aerospace Engineering
Utah State University

2Materials Physics Group
Physics Department
Utah State University

Abstract

This project evaluates the effects of the space environment on small radio hardware devices called Bluetooth (a proprietary open wireless technology standard for exchanging data over short distances) chips (hoovers). When electronics are exposed to the harsh environment outside the Earth's atmosphere, they sometimes do not perform as expected. The USU Getaway Away Special (GAS) team is now in the design stages of launching a CubeSat (a 10 cm cubed autonomous satellite to fly in Low Earth Orbit). In order to conduct experiments proposed for the USU GAS Cubesat, Bluetooth wireless communication will be used. By testing commercially available hardware in appropriate custom configurations, the reliability and quality of the CubeSat experiments will be greatly improved. The project funding will purchase enough Bluetooth hardware chips to test survivability when exposed to 100-1000 rads, a temperature range from -20°C to 100°C, and a pressure of 10⁻⁵ Torr to 10³ Torr.