Overview of Nano-satellite Environmental Tests
Standardization Project:
Test Campaign and Standard Draft

Mengu Cho
Laboratory of Spacecraft Environment Interaction Engineering
Kyushu Institute of Technology (KIT), Japan

Co-authors:
Hirokazu Masui, Toru Hatamura(KIT)
Koichi Date (IS-INOTEK), Shigekatsu Horii (SJAC) and Shoichi Obata (AstreX)
August 15, 2012, Small Satellite Conference
Micro/Nano/Pico satellite reliability

Mission success / still operational

Days survived in orbit

Satellite Mass (kg)

Satellite life in orbit vs satellite mass

10kg barrier university satellites

Agency/Traditional Makers

University/ New Makers

H. Satio, JSASS-2010-4050
Needs of testing standard

- Low success rate of micro/nano satellites
 - Acceptable to a certain degree, but
- Cannot ignore reliability if the satellites are for commercial purpose
 - One satellite still costs $1 million or more
 - “Failure is not an option”
- Low success rate may hurt reputation of micro/nano satellites
 - Scare off investment in micro/nano satellite applications
- Needs of improving reliability while balancing with low-cost and fast-delivery

Standard of test suitable for micro/nano satellites
Merit of environment test standard

• Improve the reliability of nanosatellites
• Promote worldwide trade of nanosatellite products
 – Procurement of components from the market with more confidence
• Serve contractual needs by providing reasonable test methods agreeable
 – between a satellite developer and a launch provider
 – between a satellite developer and a customer
• Guideline of environment tests for newcomers to space
NETS Project

• “Nanosatellite Environment Test Standardization” (NETS) project
 – Sponsored by Ministry of Economy, Trade and Industry (METI), Japan, starting September 2011
 – 4 members
 • International Standard Innovation Technology Research Association (IS-INOTEK)
 • Kyushu Institute of Technology (KIT)
 • The Society of Japanese Aerospace Industries (SJAC)
 • AstreX
 – 3 years project until March 2014
Project Goal

• ISO standards on nanosatellite testing
 – Including
 • Environment Tests of Nanosatellite System
 • Documentation of Nanosatellite Environment Tests
 • Environment Tests of Nanosatellite Components

Target date of completion: 2015

Definition of “nanosatellite” here;
A satellite mostly made of non-space qualified COTS components, typically less than 50kg, 50cm
Approach

Existing test standard for large/med satellites
- Very expensive, but highly reliable

GOAL
- Test standard for nanosatellites
 - Affordable and reliable

Rationales
- Basic researches using nanosatellites and their components

Tailoring
- Based on 50 year’s experience

New inventions
Approach

- Study of existing standards of satellite tests
- Interview with nanosatellite developers
- Basic research to obtain the supporting data
- International workshop
- Drafting standard
Interview with developers

• 15 nanosatellite developers
 – space agency (1), private companies (5), universities (9)
 – 18 satellite launched or under development
 – Cubesat (5), 10kg (4), 30kg (1), 50kg (7), 100kg (1)

• Launch as auxiliary payloads
 – Extensive mechanical tests following the launcher user manual
 – Vibration tests effective to detect the design and workmanship defects
 – Shock test by 13 developers
Interview with developers

• Interview with 15 nanosatellite developers

• Thermal vacuum tests
 – Often skipped for Cubesats
 • a) Schedule not enough
 • b) Facility not available
 • c) Judged unnecessary
 – All of 50kg-class or larger did or plan to do

• Radiation test
 – Single event by 3 developers only (no university)
 – Total dose by 8 developers
 – Shortage of know-how, facility & schedule
Interview with developers

• Interview with 15 nanosatellite developers (18 satellites)

<table>
<thead>
<tr>
<th></th>
<th>Cubesat</th>
<th>10kg</th>
<th>30kg</th>
<th>50kg</th>
<th>100kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full success</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Partial success*</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total loss*</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To be launched</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• All 5 satellites suffered infant mortality.
• 4 out of 5 had deployable mechanisms
 • Serious effects on the mission failure
Basic research

Power Control Unit

- Carry out
 - Thermal vacuum
 - Thermal cycle
 - Radiation
 - Vibration
 - Shock
 - Others

X-band RF transmitter

- 200W input with MPPT control
- 28V/3A output
- 196mmx200mmx56.5mm

- 3W output, 16~36V input,
- 153mmx94mmx34mm
Basic research

- Dummy satellites
 - 50kg micro-satellite bus
 - Flight hardware (OBC, PCU, Battery, COM)
 - Dummy mass (11) with internal heater
- Identify acceleration and temperature distribution within the satellite
 - Derive appropriate test levels of the components
 - Thermal balance
 - Measure 50 points
 - Modal survey and shock
 - Measure 32 points (x3 directions)
 - Compare with analysis and generalize the findings to other structural styles
Workshop

• 1st Workshop on International Standardization of Nanosatellite Technologies
• December 13, 2011 @KIT Tour
• December 14, 2011 @Kitakyushu International Conference Center
• Attended by 90 people
 – 56 Japanese, 34 from abroad

1. Needs and merits
2. Tasks
3. Stakeholder
4. Framework
5. Roadmap
Scope of testing standard

- Test requirements and methods to improve (maintain, achieve, etc) the reliability of nanosatellites
 - **Prevention of infant mortality**
 - Not to fail soon after the launch
 - Assure mission success in orbit
 - Guarantee the long life
 - **Try not to prevent new inventions**

- Test stages
 - Development
 - **Design qualification**
 - Acceptance
 - Launch-site

Key

Affordable and reliable tests
Mostly environmental, but other tests, e.g. functional, end-to-end, etc may be addressed
Resolution

• Participants of 1st Workshop of International Standardization of Nanosatellite Technologies recognize that
 – International standardization for nanosatellite testing has a great merit for the growth of worldwide nanosatellite activities and utilization

and agree to

 – Cooperate as experts toward establishment of an ISO standard on nanosatellite testing

December 14, 2011

Passed unanimously
How to proceed

• NETS project team will lead the standardization efforts on behalf of the community

• Set-up a mailing list server @KIT
 – nets-project@langmuir.ele.kyutech.ac.jp

• Set-up a file server @KIT
 – http://cent.ele.kyutech.ac.jp/nets_web.html
 – Distribute
 • Proceedings of the workshops
 • Standard draft
 • Others
How to proceed

- 2nd Workshop (December 10 to 14, 2012 @ Kitakyushu)
 - Test demonstration at KIT (2 day)
 - Presentation of research results by participants (1 day)
 - Discussion of working draft ver.1 (2 day)
Draft outline

• Outline of the working draft ver.1 released in April, 2012
• Available at http://cent.ele.kyutech.ac.jp/nets_web.html
• Space systems —Design Qualification and Acceptance Tests of Micro/Nano Satellite and Units

Table of contents can be found in the paper
Conclusion

• Urgent need to improve the reliability of micro/nano satellites
• International standardization of micro/nano satellite environment testing will provide reliable test standards while keeping the low-cost and fast-delivery nature.
• “Nano-satellite Environment Test Standardization” (NETS) project started
• If you want to join the project mailing list, please send your intent to nets_office@langmuir.ele.kyutech.ac.jp
• The project web page is now open at http://cent.ele.kyutech.ac.jp/nets_web.html
• The second workshop will be at Kitakyushu from Dec. 10 to 14, 2012
 – Test Demonstration
 – Research presentation
 – Line-by-line discussion of the working draft ver.1
Interview with developers

• Interview with 15 nanosatellite developers (18 satellites)
• Most of the universities referred only to the launcher user manual
• The private companies referred to JERG-2-002, GSFC-STD-7000, ECSS-E-ST-10-03C and others.
 – Not exactly followed the traditional standards.
• Universities commented the importance of not binding the educational satellites, especially Cubesat-class by the testing standards.
• Developers of >10kg satellites welcomed the idea of standard and expressed the needs of standard that helps the procurement of the satellite units.
 – Want more clear data of temperature range and mechanical properties for the products sold in the market.
Satellite Contractual Needs

• Nanosatellite application provider (Buyer of satellite)
• Nanosatellite manufacturer (Seller of satellite)
 – Unsure about an appropriate level of reliability balanced with the cost and schedule
 – Buyer may want the same level of test/verification processes as large/med satellites
 – Seller may want to minimize the cost/schedule for the test/verification
 – Needs of agreed-upon criteria of test/verification
 • Defacto standard may evolve over time. But can we wait?
 • Needs of research to support the criteria
Needs from newcomers

• Newcomers to space through nanosatellite development
 – Local small business
 – Developing countries
 – Universities

• Needs of a guideline of test/verification methods which are affordable and reliable
Launch Contractual Needs

• Philosophy on test methods of piggy-back satellites differs among launch provider
 – Example: Shock test

• Satellite developer wants to design independent of launcher

• Needs for a reasonable test method agreeable between a satellite developer and a launch provider
 – In Interface Control Document (ICD), simply refer to “ISO-???” as a test method
Countries attended workshop

- Austria
- Brazil
- Canada
- China
- Egypt
- England
- France
- Germany
- India
- Indonesia
- Israel
- Italy
- Japan
- Korea
- Malaysia
- México
- Mongolia
- Netherlands
- Nigeria
- Peru
- Singapore
- Spain
- Thailand
- Turkey
- UK
- USA
- Viet Nam

Attended by 27 countries

Participant list is available on Web
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>March, 2012</td>
<td>Table of contents distributed</td>
</tr>
<tr>
<td>May, 2012</td>
<td>ISO/TC20/SC14 Plenary Meeting</td>
</tr>
<tr>
<td>Summer, 2012</td>
<td>Working Draft ver.1</td>
</tr>
<tr>
<td>October, 2012</td>
<td>ISO/TC20/SC14/WG1 Meeting</td>
</tr>
<tr>
<td>December, 2012</td>
<td>2nd Workshop @kitakyushu</td>
</tr>
</tbody>
</table>
| March, 2013 | Working Draft ver.2
| | **New Work Item Proposal** |
| May, 2013 | ISO/TC20/SC14 Plenary Meeting |
| **Summer, 2013** | **3rd Workshop @Tokyo** |
| Fall, 2013 | Committee Draft ver.1 (CD/C) |
| | ISO/TC20/SC14/WG1 Meeting |
| **March, 2014** | **Committee Draft ver.2 (CD/V)** |
| Fall, 2014 | DIS/V registration and voting |
| **Spring, 2015** | **DIS/V voting ends, FDIS for editing** |
| Fall, 2015 | ISO publication |
Study of existing standards

• Comparison of
 – ISO-15864
 – SMC-S-016
 • US Space and Missile Systems Center Standard
 – NASA-STD-7002A
 • NASA PFT
 – GSFC-STD-7000
 • Goddard Space Flight Center (NASA)
 – ECSS-E-ST-10-03C
 – JERG-2-002
 • JAXA
• Comparison tables are found in the paper
Basic research

- Comparison between thermal vacuum and thermal cycle
 - 14 cycles of -24°C~+61°C
 - Cold start at -40°C

Example of temperature profile during thermal cycle test