2018

Parameterization of Secondary and Backscattered Electron Yields for Spacecraft Charging

JR Dennison
Utah State University

Phil Lundgreen
Utah State University

Justin Christensen

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post

Part of the Condensed Matter Physics Commons

Recommended Citation
Dennison, JR; Lundgreen, Phil; and Christensen, Justin, "Parameterization of Secondary and Backscattered Electron Yields for Spacecraft Charging" (2018). Posters. Paper 74.
https://digitalcommons.usu.edu/mp_post/74
Spacecraft charging codes model the interactions between energetic electrons and spacecraft materials through material properties called electron yields (EY). The accuracy of spacecraft charging calculations can be critically affected by the availability of accurate EY data for materials and by how the measured data are parameterized for use with spacecraft charging codes. This work investigates the effectiveness of new EY fitting models.

Most often total electron yield (TEY) is characterized by two separate parameterized curves, a secondary electron yield (SEY) curve for low-energy emission (<50 eV) and a backscattered electron yield (BEY) for high energies (>50 eV). Typical semi-empirical models describe the SEY as a function of incident electron energy in terms of material properties such as atomic number, mean excitation energy, electron range, and mean free path. Other purely empirical models use parameters which define the shape of the resulting curves rather than physical properties. The models are usually presented in reduced form, with yields scaled to the maximum yield δ_{m} and energies scaled by the energy E_e at δ_{m}. The complexity of SEY models considered here can be classified by the number of free fitting parameters, beginning with δ_{m} and E_e to include a total of 2, 3, 4 or 5 parameters.

Some electron yield models were found to be more effective than others at approximating the measured yield curves of certain materials or energy ranges; this has been quantified for each of several common spacecraft materials using χ^2 statistical analysis. The implementation of parameterized electron yield models in various spacecraft charging codes is also discussed.

I. Introduction

Electron induced electron yield describes how a material will charge electrically due to electron emission caused by incident electron, photon, or ion bombardment. Understanding this process is critical to the fields of spacecraft charging, electron microscopy, particle accelerators, as well as many others. Many spacecraft charging models use understanding of electron yield to predict how spacecraft will react to the space plasma environment and to mitigate negative effects such as electrostatic discharge, the production of stray electric fields, and environmental and to mitigate negative effects such as electrostatic discharge, the production of stray electric fields, and environmental.

II. Assumptions

The majority of yield models all make some common assumptions. The most popular assumptions are listed below:

- The problem is limited to 1 Dimension (Normal incidence only is considered)
- A Continuous Slowdown approximation is made (Energy is deposited continuously over path of incident electrons.)
- The number of secondary electrons(SE) are assumed (Electrons produced are uncollided)
- The probability of emission is estimated (Probability of SE)
- An electron range model is selected for SEY (Various models exist the most common are power law models)

III. Secondary Electron Yield

The majority of the secondary yield formulas are written in the Reduced Yield Formulas [Baroody, 1950]. It is used in plots where $\frac{d\delta}{dE}$ is plotted against $\frac{1}{E}$. δ and η is only dependent on parameters m and n. Many models use some variation of this form. Table 1 gives a summary of many models listing their fixed and free parameters along with the appropriate ratios for $r = \frac{\delta}{\eta}$. A continuous slow-down approximation is made (energy is deposited continuously over path of incident electrons).

IV. Backscattered Electron Yield

The equations that the USU MPG uses to model SEY as a function of incident energy originate from NASA's spacecraft charging simulation software NASCAP 2k (Katz, et al., 1977). The formula that NASA uses to model SEY has little to no physical basis. It was designed to reproduce the typical SEY trends, which have been seen experimentally. This model has a fixed maximum height of 1.0 at 1000 eV and the only free parameter η_0 adjusts the high energy asymptotic value (See Table 2, Fig. 5).

V. Photo-Yield and Ion-Yield

The total yield (TEY) is comprised of four different yield sources. SEY, BEY, ion yield, and photo yield. $\eta_0 = \eta_0 + \eta_0 + \frac{\eta_0}{\eta_0}$ if η_0 dips below 1, i.e. There are more electrons impinging on the surface than leaving, a net negative charge will begin to form. This net negative charge creates a repelling force towards low energy electrons and prevents their capture by the surface. Because this negative charge does not affect SE and BEY, charge can accumulate rapidly, leading to an abrupt increase in negative charge accumulation. η_0 is affected by negative charge accumulation due to the electrodynamic attraction between the negative surface and the positive ions. However, η_0 has a much smaller effect upon η_0 as observed by (Olson, 1983.)

The total yield associated with ion bombardment of a sample is typically very small and so is often overlooked in favor of a electron yield consisting of SEY and BEY only. The reasoning behind the practice of overlook ion-yield can be made apparent from the small yields associated with the large Ion Energy. At large the yield associated with H ions is a mere 1.4 electrons/ion (See Fig.2a).

Photoemission at constant reflectivity [Lai, 2008] increases approximately as $\frac{\eta_0}{\eta_0}$, where η_0 is the angle of incidence from normal. Because reflectivity scales with η_0 and photo-yield is directly proportional to reflectivity, changes to the incidence angle will also affect the charge rate (See Fig. 2b,c).

VI. References

- [Lane and Zaffarano, 1954]
- [Burke, 1980]
- [Sims, 1992]