Tests of Radiation Damage Threshold of Raspberry Pi Zerio in LEO Environment for OPAL CubeSat Project

Jonh Mojica Decena
Utah State University

JR Dennison
Utah State University

Brian Wood
Utah State University

Ryan J. Martineau
Utah State University

Michael J. Taylor
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_post

Part of the Condensed Matter Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/mp_post/72

This Poster is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Tests of Radiation Damage Threshold of Raspberry Pi Zero in LEO Environment for OPAL CubeSat Project

Jonh Carlos Mojica Decena,¹ JR Dennison,¹ Brian Wood,¹ Ryan Martineau,² Michael J. Taylor³

¹Materials Physics Group, Physics Department, Utah State University
²Utah State University Space Dynamics Laboratory
³Physics Department, Utah State University

Abstract

The use of CubeSats for space research has become of great interest in part due to the use of inexpensive microprocessors or commercial off the shelf (COTS) components. Design of electronics that can maintain full functionality over the duration of the mission requires careful determination of the space radiation environment and total ionizing dose (TID) delivered to the components in different orbits. Larger, more expensive, or longer mission satellites tend to use more expensive components than the ones used in CubeSat to assure reliability. Radiation survivability of a Raspberry Pi Zero was studied with the USU Space Survivability Test Chamber to simulate the space radiation using 0.2 to 2.5 MeV beta radiation from a Sr⁹⁰ source. These tests determined the amount of ionizing radiation that the memory and processor units can be exposed to before they exhibit radiation-induced damage or stop working altogether. The results were used to determine how much shielding the processor would need to work reliably over the mission lifetime. These results will be used for the USU-led OPAL CubeSat, which will incorporate a Raspberry Pi as its basic processor unit and data collector, to determine if this inexpensive microcomputer will survive the TID received during its 1-2 years mission in LEO, or up to >200 krad TID.

*Supported through partial funding from an URCO grant from the USU Office of Research and Graduate Studies.