Some Factors Influencing Ante-Mortem Changes in Muscle: A Brief Review

S. C. Seideman
S. H. Cohen
J. V. Schollmeyer

Follow this and additional works at: http://digitalcommons.usu.edu/foodmicrostructure

Part of the Food Science Commons

Recommended Citation
Available at: http://digitalcommons.usu.edu/foodmicrostructure/vol3/iss2/4
SOME FACTORS INFLUENCING ANTE-MORTEM CHANGES IN MUSCLE: A BRIEF REVIEW

S.C. Seideman, S.H. Cohen1 and J.V. Schollmeyer

Roman L. Hruska U.S. Meat Animal Research Center
PO. Box 166
Clay Center, NE 68933

1Science and Advanced Technology Lab
U.S. Army Natick Research and Development Center
Natick, MA 01760

Abstract

Ante-mortem changes to muscle microstructure are influenced in many ways. During pre-natal cell differentiation and growth, myoblasts develop and mature into cells with quite different characteristics. Incorporated into the genome of these cells is the ability to synthesize a wide variety of filaments which occupy specific niches within each myofibril. During post-natal development, depending upon the particular precursor cell lines, different fiber types are produced. These are especially important in contributing to the ultimate palatability of meat. In this paper several factors which influence ante-mortem changes to muscle microstructure are discussed. While some of these are better understood than others, all of them, nevertheless, are important.

Initial paper received January 21 1984.
Final manuscript received November 18 1984.
Direct inquiries to S.H. Cohen.
Telephone number: (617) 651-4578.

Key Words: Growth, muscle cells, intermediate fibers, enzymes, fiber types.

Differentiation and Growth of Muscle Cells

In early stages of prenatal growth, when tissues are differentiating, presumptive myoblasts may undergo a “proliferative” cell cycle, yielding two replicating myoblasts, or may undergo a “quantal” cell cycle which yields one or two postmitotic myoblasts (Holzer et al., 1973). In tissue differentiation, mitosis is the primary mechanism of cell proliferation, and two types of mitosis can occur (see Fig. 1). The first type is proliferative mitosis where presumptive myoblasts replicate. The second type is quantal mitosis where postmitotic myoblasts are formed; i.e., daughter cells may be different from parent cells and cell (tissue) differentiation is initiated.

During early prenatal development, when hyperplasia occurs, mesenchyme cells which are relatively free of thick and thin filaments (Fig. 2), undergo proliferative mitosis. They can also undergo quantal mitosis to form either fibroblasts, the primitive cells of connective tissue, or myoblasts, which are characterized as being mononucleated, but still lacking striations from the precursors of thick and thin filaments (Fig. 3) or, for that matter, striations from the precursors of several classes of intermediate filaments (keratin, desmin, vimentin, etc.) described by Lawson (1983).

Fig. 1. Differentiation of muscle cells.
Following quantal mitosis, myoblasts interact with one another and fuse to become myotubes (Fig. 4) which ultimately develop into myofibrils and then muscle (Ishikawa et al., 1968). Shortly after undergoing quantal mitosis, the mononucleated myoblasts have synthesized enough myosin, actin and tropomyosin for these proteins to be detected in thick and thin filaments (Holzer et al., 1973).

According to Fischman (1967), the cytoplasmic fusion of mononucleated myoblasts leads to multinucleated skeletal muscle fibers. The fusion is mediated by the Ca\(^{2+}\) binding protein, calmodulin, which regulates cyclic nucleotide metabolism, protein phosphorylation, microtubule assembly, cell motility, and Ca\(^{2+}\) flux across membranes (Bar-Sagi and Prives, 1983). Cells which eventually become myotubes become segregated from surrounding mesenchymal or connective tissue compartments by the acquisition of external lamellae which envelop groups of presumptive muscle cells (Kelly, 1969).

In early myotube development, thick and thin filaments begin to align, then the nuclei from fused myoblasts begin moving to the periphery of the muscle cell (Fig. 5). At this point the entire structure is considered a muscle fiber.

Differentiation of Myofibrillar Filaments

Development of myofibrils precedes formation of the sarcoplasmic reticulum and T-system (Fischman, 1967); however, during myofibrillogenesis two groups of filaments can be found (Kelly, 1968). One is a group of 100 Å diameter filaments with no orientation, the other is a group of 50 Å diameter filaments which aggregate in parallel skeins along the cell membrane. In more mature cells, 130-150 Å filaments, which are probably myosin, can be seen.

Gomer and Lazarides (1983) found that when myoblasts fuse to form myotubes, several proteins including α-actinin, desmin, light and heavy chain myosin, troponin and troponin-T begin to be synthesized. They also found an association of filamin...
changes in muscle

with the Z line and that the periphery of the Z line also contains actin and intermediate filament proteins such as desmin, vimentin and synemin. α-actinin and another intermediate filament protein—vinculin—are two actin-related proteins which Avnur et al. (1983) found to be located close to the area of microfilament-membrane association.

Several intracellular proteins with apparent organizational roles have been identified and are currently under study. Some of these include (1) fibronectin (Gardner and Fambrough, 1983) which is necessary for the attachment of myoblasts to collagen; (2) C-protein (Offer, 1973) which may be responsible for bridging thick filaments and for myosin regulation; (3) epinemin (Lawson, 1983) which is associated with vimentin filaments in non-neural cells; (4) vinculin (Geiger et al., 1980) which makes up the cortical lattice in skeletal muscle; (5) vimentin (Bennett et al., 1978; Granger and Lazarides, 1978, 1979) which, with desmin, interlinks adjacent myofibrils at the Z line; (6) α-, β- and eu-actinins (Goll et al., 1972; Maruyama, 1976; Kuroda et al., 1981) which are associated with the Z line; (7) M-protein (Masaki et al., 1968) which is a constituent of the M line; (8) synemin (Granger and Lazarides, 1980) which is associated with desmin and vimentin; (9 and 10) titin (Wang et al., 1979) and nebulin (Wang and Williamson, 1980) which are the major components of the longitudinal filaments which connect the Z lines.

The study of the antemortem synthesis of these proteins is essential for a thorough understanding of the conversion of muscle to meat.

Postnatal Development of Muscle Cells

Hypertrophy characterizes postnatal development, with muscle fibers growing by increasing in both diameter and length. The rate of size increase slows as an animal approaches maturity. Forrest et al. (1975) found the diameter of individual muscle fibers is increased as myofibrils proliferate by longitudinal splitting of larger myofibrils into smaller ones. This causes the number of myofibrils within a fiber to increase by 10–15 times during an animal’s lifetime.

The length of a muscle is increased by two mechanisms; firstly, by the fusion of myogenic cells with the existing muscle fiber; and secondly, by the generation of new contractile units, the sarcomeres, which are inserted into myofibrils where the fiber ends attach to connective tissue (Moss and LeBlond, 1971).

Muscle Fiber Types

There is evidence that differentiation into diverse fiber types occurs after the formation of muscle fibers, not before (Stockdale, 1982). Some unknown process, either endogenous or exogenous, causes the embryonic muscle fiber to change its genomic programming which leads to the differentiation of individual fiber types (Toyota and Shimada, 1981).

Red fibers are usually the ones present at birth and transform into intermediate and white fibers (Rowe and Goldspink, 1969). Tomanek (1976) reported that, in postnatal development, red fibers differentiate first into white and finally into intermediate fibers. There is a gradual transition from red to white fibers as an animal matures (Dreyer et al., 1977).

Physiologically, according to Squire (1981), mammalian muscle fibers can be distinguished by whether their energy supply is glycolytic or oxidative. Glycolytic fibers are fast contracting and appear white; oxidative fibers have a slow contractile response and appear red. These slow and fast fibers are referred to as Type I and II respectively and the Type II fast fibers are subdivided into fast oxidative/glycolytic (IIA) and fast glycolytic (IIB).

Ultrastructurally, there are three types of fibers which are recognized in fast twitch muscle. They are: white fibers which have narrow Z lines and few mitochondria; intermediate fibers which have narrow Z lines and many mitochondria; and red fibers which have both wide Z lines and many mitochondria (Gauthier, 1979). Some of the characteristics of red and white fibers are summarized in Table 1.

Table 1. Characteristics of Red and White Muscle Fibers

<table>
<thead>
<tr>
<th></th>
<th>Red Fibers</th>
<th>White Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contains more myoglobin</td>
<td>Contains less myoglobin</td>
</tr>
<tr>
<td></td>
<td>Sudan black B positive (more lipids)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>More mitochondria</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smaller in diameter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In clumps that are surrounded by white fibers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surrounded by many capillaries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rich in sarcoplasm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less soluble protein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less connective tissue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aerobic metabolism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High oxidative enzyme activity (TCA cycle activity)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contains less glycogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slow contraction</td>
<td></td>
</tr>
<tr>
<td>Muscles:</td>
<td>Psos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soleus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trapezius</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sartorius</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Longissimus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brachioradialis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrocnemius</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6 shows the three fiber types based on their NADH reductase content. The red fibers stain dark, white fibers stain white and intermediate fibers stain less intensely than the red fibers. In addition to differing enzymatically, the ultrastructural differences are seen in Figs. 7, 8 and 9, which are electron micrographs of red, intermediate and white fibers, respectively. The graded concentration of mitochondria and Z line differences can also be distinguished.
Factors Influencing Muscle Mass

Since the number of fibers is the most important factor in limiting ultimate muscle size (Goldspink, 1974), and since the genetically determined number is achieved at or near the time of birth, increase in muscle mass is accomplished only by enlargement of muscle fibers (Luft and Goldspink, 1967). All muscle fibers enlarge, but particularly by the conversion of red fibers to larger white fibers.

Spindler et al. (1980) reported that as cattle aged, mean cross sectional area of fibers doubled overall, while the cross sectional area of white fibers increased slightly, and red fibers decreased slightly. Ashmore et al. (1972) evaluated growth patterns in piglet, lamb and calf muscles histochemically and concluded that transformation of intermediate fibers to white fibers increased at the expense of red fibers without alteration in the total number of fibers.

Reducing food intake leads to a reduction in muscle mass, since starvation causes a decrease in fiber size and, at the same time leads to a reduction in the number of myofibrils (Van Linge, 1962). Decrease in muscle bulk is directly related to a decrease in mean fiber diameter in cattle (Robertson and Baker, 1933) and in pigs (McMeekan, 1940).

Biochemical control of protein metabolism in relation to starvation is not completely understood; however, it appears that...
not only is the rate of protein degradation increased during starvation, but the rate of synthesis of new protein is decreased as well (Young, 1970). This may result from a shortage of one or more essential amino acids in the muscle fibers or it may be due to a reduction in the protein synthesizing capacity of polyribosomes.

Moody et al. (1980) postulated that the nature of the available source of energy in lamb rations caused a shift from intermediate to white muscle fibers. As the protein content of rations increased, percentages of intermediate and white fibers decreased quadratically (Johnston et al., 1975).

In general, there is no difference in the total number of muscle fibers in the same anatomical muscles of males and females; however, even though fiber size is greater in males, Brooke (1970) reported fiber type percentage difference is similar for both sexes. But, he found white fibers are smaller than red fibers in females and larger in males. On the other hand, Dreyer et al. (1977) reported that bulls had a higher percentage of red fibers and a lower percentage of white fibers than steers. This contrasts with results obtained by Bass et al. (1971) who found that significant growth occurred in guinea pig temporal muscle following administration of testosterone, and, this growth was accompanied by a change from intermediate to white fibers.

Miscellaneous Factors

At the present time, selection of meat animals is based upon the appraisal of such characteristics as muscle size and growth rate (Swatland, 1973). Being blind to all the factors contributing to muscle size and growth rate, it is not surprising that intensive selective breeding can produce or reveal anomalies such as stress susceptible pigs or double muscled cattle. Stress susceptible pigs have a higher white to red fiber ratio compared to normal pigs (Didley et al., 1970) and double muscled cattle have larger and more abundant white fibers than red, compared with normal cattle (Holmes and Ashmore, 1972).

Several researchers have related fiber diameter and muscle bundle size to meat quantity. Joubert (1956) and Hegarty (1971) reported that fiber diameter increases with age in cattle. Miller et al. (1975) found the total number of muscle fibers was more closely related to muscle mass than was fiber diameter. In addition, the authors found that faster growing pigs appeared to possess more, but smaller muscle fibers than slower growing pigs. Castle and Gregory (1929), Smith (1963) and Staun (1963) found just the opposite to be the case. They reported that animals possessing large muscle fibers are often rapidly growing and muscular.

Calkins et al. (1981) related palatability to fiber type and reported that the presence of white fibers correlated poorly with marbling and tenderness ratings; however, the presence of red fibers correlated well. The authors concluded that, since the oxidative capacity of a muscle is related to marbling and tenderness, fiber type could possibly be used to predict both marbling and tenderness.

Conclusion

Ante-mortem changes in muscle obviously affect the ultimate palatability of meat; however, it is not just one event occurring prior to slaughter which determines how tough or tender meat will be. Many factors have to be considered as being potentially responsible for determining ultimate acceptability. The variations in a given muscle between individual animals, sexes and species exacerbate the problem. There are just so many factors, a solution awaits further research.

References

of development of muscle fiber type and size in normal and
molecular weight proteins associated with desmin and vimentin
Chicago, IL, 24:319–349.
Holmes JHG, Ashmore CR. (1972). A histochemical study
of development of muscle fiber type and size in normal and dou-
Ishikawa H, Bischoff R, Holzer H. (1968). Mitosis and inter-
Johnston DM, Stewart DF, Moody WG, Boling JA, Kemp
JD. (1975). Effect of breed and time on the size and distribution
Joubert DM. (1956). An analysis of factors influencing post-
natal growth and development of the muscle fiber. J. Agric. Sci.
47:59–102.
Kelly DE. (1968). Myofibrillogenesis and the differentiation
160:474.
89:297–310.
1905.
Luft AR, Goldspink G. (1967). Large and small muscles. Life
Sci. 6:1821–1826.
protein constituting the M-line of myofibrils. J. Biochem. 71:
355–357.
McMeekan CP. (1940). Growth and development of the pig
with special reference to carcass quality characteristics. J. Agri.
Sci. 30:276–344.
Miller LR, Garwood VA, Judge MD. (1975). Factors affecting
porcine muscle fiber type, diameter and number. J. Anim. Sci.
41:66–77.
Moody WG, Kemp JD, Mahyuddin M, Johnston DM, Ely
DG. (1980). Effect of feeding systems, slaughter weight and sex
on histological properties of lamb carcasses. J. Anim. Sci. 50:
249–256.
Moss FP, LeBlond CP. (1971). Satellite cells as a source of
Offer G. (1973). C-protein and the periodicity in the thick fila-
Robertson JD, Baker DD. (1933). Histological differences in
the muscles of full and rough fed steers. Univ. of Michigan Res.
Bull. #200, pp. 1–11, Ann Arbor, MI.
different muscles in both sexes of mice. 1. Normal mice. J. Anat.
104:519–530.
Smith JH. (1963). Relation of body size to muscle cell size
and number in the chicken. Poult. Sci. 42:283–293.
changes in bovine muscle fiber types as influenced by breed
Staun H. (1963). Various factors affecting number and size
and the embryogenesis of skeletal muscle. In: “Muscle Develop-
ment, Molecular and Cellular Control.” Ed. by ML Pearson,
Swatland HJ. (1973). Muscle growth in the fetal and neonatal
Tomanek RJ. (1976). Ultrastructural differentiation of skeletal
muscle fibers and their diversity. J. Ultrastructure Res. 55:
212–227.
Toyota N, Shimada Y. (1981). Differentiation of troponin in
cardiac and skeletal muscles in chicken embryos as studied by
Van Linge B. (1962). The response of muscle to strenuous
components of striated muscle. Proc. Natl. Acad. Sci. 76:
3608–3702.
Young VR. (1970). The role of skeletal and cardiac muscle
in the regulation of protein metabolism. In: “Mammalian Protein
Metabolism.” Ed. by Munro HN, Academic Press, New York,

Discussion with Reviewers

Reviewer III: What is the definition of mitosis in the context of
this review?
Authors: Typically, mitosis is the resolution of nuclear chroma-
tin into a thread-like form that separates into chromosomes. Each
chromosome divides, resulting in two new cells. What distinguishes
myoblasts from other cells which undergo mitosis is the
type of contractile protein precursor present. These embry-
onic proteins may be preferentially distributed among different
cells during the cell cycle.

Reviewer II: Please elaborate on features shown in Fig. 2.
Authors: At the stage of the cell cycle shown in this figure the
filaments have just begun to be synthesized. Since only a very
few filaments can be seen, we assume that the photomicrograph
is of a relatively immature cell.

Reviewer I: Could you please explain what is the difference in
taste between the meat of a normal pig and that of a stress sus-
ceptible pig?
Authors: The meat which comes from a stress susceptible pig is
pale, soft and exudative or PSE. When this type of meat is
cooked, because it has a decreased water holding capacity, it
is much less juicy than normal.