A MODEL FOR ANESTHETIC WASHOUT DURING RECOVERY IN THE POST ANESTHESIA CARE UNIT

Cameron Jacobson
Department of Bioengineering, University of Utah, Salt Lake City, UT

Abstract—Hypercapnia with hyperventilation during emergence from anesthesia has been shown to reduce emergence time, yet little is known about how the subsequent recovery in the post anesthesia care unit (PACU) is affected. A mathematical model has been developed to investigate how inhaled anesthetic agents wash out of patients during recovery in order to demonstrate any difference that hypercapnia and hyperventilation during emergence might have on recovery.

I. INTRODUCTION

GENERAL anesthesia is composed of four phases: induction, maintenance, emergence, and recovery. During the induction phase, patients are placed in an anesthetized state and intubated in preparation for surgery. Maintenance is the continual administration and monitoring of anesthesia during surgery. At the end of surgery, anesthesia is discontinued and the patient is ventilated until they emerge from anesthesia, i.e. their anesthetic level is such that they regain consciousness and breathe spontaneously. Lastly, they are extubated and transported to the PACU for recovery.

The durations of the emergence and recovery phases are influenced by several factors: demographics, surgery length, anesthetic type, hemodynamics, and ventilation. First, demographics, especially body type, can affect how anesthetic is stored in the tissues of the body, e.g. fatty tissues store large amounts of anesthetic compared to other tissue types, hence, washout of the anesthetic can differ from patient to patient. Second, surgery length directly affects how long tissues are exposed to anesthetic agent. Third, anesthetic solubility is a measure of how easily anesthetic dissolves in blood and differs from agent to agent. For example, desflurane has a blood/gas solubility coefficient of 0.45, sevoflurane 0.65, and isoflurane 1.40[1], [2]. As a result desflurane washes out faster than sevoflurane, and sevoflurane washes out faster than isoflurane. Lastly, hemodynamics and ventilation affect the way in which gases, including anesthetics, enter, exit, and move throughout the body.

The cardiovascular and respiratory systems work in tandem to provide the necessary gas exchange for cellular metabolic activity throughout the body. The respiratory system exchanges O₂ and CO₂ between the atmosphere and blood; the cardiovascular system delivers the O₂ to the cells throughout the body and transports CO₂, a byproduct of cellular respiration, from the cells back to the lungs. When the concentration of CO₂ in the blood fluctuates, the cardiovascular and respiratory systems are adjusted to compensate. For example, if the arterial partial pressure of CO₂ (PaCO₂) rises—due to exercise or some kind of strenuous activity—breathing rate and cardiac output will increase and vasodilation will occur, causing an increasing in blood flow and gas exchange in the lungs in order to flush the body of excess CO₂. When PaCO₂ decreases, the opposite occurs. In the operating room, this principle is frequently taken advantage of in an effort to accelerate recovery from anesthesia.

Induced hypercapnia, or elevated PaCO₂, can be used to accelerate a patient’s recovery by washing anesthetic vapors from the body in the same way that excess CO₂ is removed[3], [4]. Hypercapnia during emergence has two important consequences: it increases cerebral blood flow—helping to quickly wash anesthetic from the brain; and it stimulates respiratory drive[5], [6], [7]. Coupled with hyperventilation, a patient is able to expel anesthetic vapors quickly and emerge from anesthesia sooner with a stronger respiratory drive.

A device, developed in our lab, called the QED-100 (AneCare, Salt Lake City, UT), is used to accomplish this task in many hospitals today[8]. The QED-100 incorporates a rebreathing reservoir to induce hypercapnia and a charcoal filter to capture expelled anesthetic gases. The QED-100 is capable of reducing emergence time by approximately 55%[8], [9], [10]. This result translates not only into a cost savings from less time spent in the OR, but perhaps more importantly, it produces a patient that can enter the PACU with less anesthetic in their system and a stronger respiratory drive, which in turn could lead to a faster, safer, and more satisfactory recovery.

The incidence rate of complications in the OR and PACU were estimated to be 1.3-5.1% and 23-24% respectively based on a collection of over 42,000 patients[11], [12], [13]. PONV and upper airway support were the most common events encountered in the PACU, each accounting for roughly 1/3 of all PACU complications (2/3 combined). One of the possible reasons for the increased rate of complications in the PACU may stem from the fact that as patients become more alert, they become more aware of pain and often require additional analgesic for pain management. Analgesics can react synergistically with residual inhaled anesthetic still present in the patient’s body, similar to how they react during the induction phase of anesthesia, which can result in adverse clinical events (e.g. respiratory depression or even loss of consciousness). Of course, there are several other factors contributing to the likelihood of complications in the PACU: surgery type, surgery length, ASA physical status, and anesthetic technique[11], [13]. However, aside from these factors, it stands to reason that a patient entering the PACU with less anesthetic in their...
system may have a greater chance of avoiding complications.

While it has been shown that hypercapnia with hyperventilation shortens emergence time by removing inhaled anesthetic quickly, the actual levels of anesthetic that patients endure during recovery are not well known. A study, already in progress, has been designed to collect this data, which will then be used to validate the model for anesthetic washout.

Lerou et al. described a mathematical model for the uptake and distribution of inhaled anesthetic in a closed-circuit system[1]. A similar model has been developed to simulate not only uptake and distribution of anesthetic agent, but also washout after the breathing circuit has been removed and the patient is breathing spontaneously. Such a model will provide estimates of agent concentration throughout the body that would be difficult to attain through direct measurement—the most important one being cerebral concentration.

In Gopalikrishnan’s dissertation, he used a similar model to determine cerebral concentrations of anesthetic agent during emergence in order to estimate wake up times[14]. He was able to show that hypercapnia with hyperventilation during emergence quickly reduced the cerebral concentration of anesthetic agent, resulting in a faster wake up time. Likewise, an analogous method will be implemented in order to determine the cerebral concentration of anesthetic agent during key points of recovery. Such a model will provide information that could aid in the development of a hypercapnia-inducing device for the PACU or simply decision support for clinical staff.

II. METHODS

The mathematical model is based on a similar model described and clinically validated by Lerou, et al. [1], [15]. It consists of 13 compartments that each represent a particular tissue type or blood pool in the body. Each compartment is fashioned from a basic model where a solute of known concentration flows into a compartment of known volume, having also an outlet with known flow (Figure 1(a)). The ordinary differential equation describing such a scenario is given Figure 1(b) where V_B is the volume of the compartment, C_i is the concentration of the incoming solute with flow rate Q_i, and C_B is the concentration in the compartment and outgoing solute with flow Q_o.

From this basic model, a network of compartments was constructed to simulate the flow of solute through the various tissue groups and blood pools of the body. The solute in this model is the inhaled anesthetic desflurane. As described in Figure 2, the agent is taken in through the lungs, then into the arterial blood pool—blood pools in the model introduce a time delay to simulate circulation time. The arterial blood distributes the anesthetic agent to the various tissue groups, which then empty into the venous blood pool before returning to the lungs.

A data set collected from patients during surgery and recovery from anesthesia will be used to validate the model. This step is currently underway. Following IRB approval, 44 patients undergoing eye muscle surgery will be randomly divided in to two groups: a treatment group, which will be hypercapnic and hypervenilated during emergence; and a control group. End tidal CO$_2$ (EtCO$_2$), end tidal and inspired anesthetic agent concentration, and minute volume (MV) will be recorded during surgery and recovery. This data will be used to drive the model to simulate induction, maintenance, and emergence phases of anesthesia. In this way, the model will be preloaded with the correct amounts of agent so that washout during recovery can be simulated accurately.

From the patient demographics, lean body weight (LBW) will be estimated as

$$LBW = (1.1 \times BW) - \frac{128 \times BW^2}{(100 \times H)^2} \quad \text{(male)}$$

$$LBW = (1.07 \times BW) - \frac{148 \times BW^2}{(100 \times H)^2} \quad \text{(female)}$$

where BW is measured body weight and H is measured height[16]. Subsequently, several other physiological values will be derived from LBW for the model: blood volume, tissue volumes, cardiac output, alveolar space, etc[1]. A summary of the variables, symbols, and their relationships are given in Table I.

Using the basic model as a template (Figure 1(b)), the equation describing the rate of change in agent concentration for the alveolar space is

$$\frac{dC_A}{dt} = \frac{(Des - C_A)MV + (C_V - C_A)Q_L}{V_A}$$

The first term in the numerator describes the net change in concentration due to inhalation and exhalation of the gaseous agent; the second term describes the change in terms of the
A MODEL FOR ANESTHETIC WASHOUT DURING RECOVERY IN THE POST ANESTHESIA CARE UNIT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Relationship</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>body weight (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>height (m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fractional Concentrations

\[\frac{dC_{p}}{dt} = \frac{Q_{E}(C_{u}-C_{p})}{V_{ha}} \]

\[\frac{dC_{r}}{dt} = \lambda C_{A} \]

\[\frac{dC_{e}}{dt} = C_{u}(1 - \frac{Q_{e}}{Q_{E}}) + C_{r}Q_{e} + C_{t}Q_{t} \]

\[\frac{dC_{A}}{dt} = \frac{(C_{u} - C_{A})(MW + (C_{u} - C_{A}))Q_{L}}{\Delta \lambda} \]

\[\frac{dC_{t}}{dt} = (C_{u} - C_{t})Q_{at} \]

\[\frac{dC_{e}}{dt} = (C_{u} - C_{e})Q_{et} \]

\[\frac{dC_{h}}{dt} = (C_{u} - C_{h})Q_{et} \]

\[\frac{dC_{k}}{dt} = (C_{u} - C_{k})Q_{et} \]

\[\frac{dC_{l}}{dt} = (C_{u} - C_{l})Q_{at} \]

\[\frac{dC_{m}}{dt} = (C_{u} - C_{m})Q_{at} \]

\[\frac{dC_{p}}{dt} = \frac{(C_{u} - C_{p})(Q_{m} + Q_{at})}{Q_{vp}} \]

\[\frac{dC_{pl}}{dt} = \frac{(C_{u} - C_{pl})(Q_{m} + Q_{at})}{Q_{vp}} \]

\[\frac{dC_{p}}{dt} = \frac{(C_{u} - C_{p})(Q_{m} + Q_{at})}{Q_{vp}} \]

\[\frac{dC_{p}}{dt} = \frac{(C_{u} - C_{p})(Q_{m} + Q_{at})}{Q_{vp}} \]

\[\frac{dC_{p}}{dt} = \frac{(C_{u} - C_{p})(Q_{m} + Q_{at})}{Q_{vp}} \]

\[\frac{dC_{p}}{dt} = \frac{(C_{u} - C_{p})(Q_{m} + Q_{at})}{Q_{vp}} \]

\[\frac{dC_{p}}{dt} = \frac{(C_{u} - C_{p})(Q_{m} + Q_{at})}{Q_{vp}} \]

Flows (L/min)

\[MV = \text{minute volume} \]

\[Q_{at} = \text{flow through adipose tissue} \]

\[Q_{b} = \text{flow through brain tissue} \]

\[Q_{CO} = \text{cardiac output} \]

\[Q_{et} = \text{flow through connective tissue} \]

\[Q_{f} = \text{flow through pulmonary shunt} \]

\[Q_{h} = \text{flow through heart tissue} \]

\[Q_{k} = \text{flow through kidney tissue} \]

\[Q_{l} = \text{flow through liver tissue} \]

\[Q_{m} = \text{flow through muscle tissue} \]

Volumes (L)

\[FRC_{c} = \text{function residual volume} \]

\[FRC_{c} = \text{function residual volume} \]

\[V_{A} = \text{alveolar space} \]

\[V_{at} = \text{adipose tissue blood} \]

\[V_{b} = \text{brain tissue blood} \]

\[V_{blv} = \text{venous blood} \]

\[V_{bt} = \text{total blood} \]

\[V_{cat} = \text{arterial blood} \]

\[V_{ct} = \text{connective tissue blood} \]

\[V_{d} = \text{dead space} \]

\[V_{h} = \text{heart tissue blood} \]

\[V_{h} = \text{kidney tissue blood} \]

\[V_{l} = \text{lung tissue blood} \]

\[V_{L} = \text{liver tissue blood} \]

\[V_{ma} = \text{muscle tissue blood} \]

\[V_{p} = \text{tidal volume} \]

\[V_{vpa} = \text{venous pool: adipose tissue} \]

\[V_{vpv} = \text{venous pool: visceral} \]

\[V_{vpv} = \text{venous pool: lean tissue} \]

\[V_{vpv} = \text{venous pool: visceral} \]

Partition Coefficients for Desflurane

\[\lambda_{at} = \text{tissue-blood in adipose tissue} = 29.0 \]

\[\lambda_{b} = \text{blood-gas} = 0.45 \]

\[\lambda_{b} = \text{tissue-blood in brain tissue} = 1.22 \]

\[\lambda_{c} = \text{tissue-blood in connective tissue} = 1.40 \]

\[\lambda_{d} = \text{tissue-blood in heart tissue} = 1.22 \]

\[\lambda_{e} = \text{tissue-blood in kidney tissue} = 0.89 \]

\[\lambda_{l} = \text{tissue-blood in lung tissue} = 1.30 \]

\[\lambda_{l} = \text{tissue-blood in liver tissue} = 1.49 \]

\[\lambda_{m} = \text{tissue-blood in muscle tissue} = 1.73 \]
The blood exiting the \(vpl \) then has concentration
\[
\frac{dC_{vpl}}{dt} = \left(C_{vpl} - C_{vpl}' \right) \left(Q_m + Q_{ct} \right).
\]

The next major tissue groups, muscle and connective tissue, drain into a blood pool called the \textit{venous pool lean tissue}. The concentration entering this pool is
\[
C_{vpv} = C_m Q_m + C_{ct} Q_{ct}
\]
and leaving
\[
\frac{dC_{vpv}}{dt} = \left(C_{vpv} - C_{vpv}' \right) \left(Q_m + Q_{ct} \right)
\]

Finally, the venous blood from the three venous pools is collected into the central venous pool. Their combined concentration is
\[
C_{v'} = \left(C_{vpv}' (Q_b + Q_h + Q_k + Q_l) \right) \frac{Q_{CO}}{Q_{CO}}
+ \left(C_{vpv}' (Q_m + Q_{ct}) \right) \frac{Q_{CO}}{Q_{CO}}.
\]

The concentration leaving the central venous pool and returning to the lungs is
\[
\frac{dC_v}{dt} = \left(C_{v'} - C_v \right) \frac{Q_{CO}}{V_{vpv}}.
\]

The plot in Figure 4 shows a simulation of anesthetic concentration during surgery, emergence, transport, and recovery of a typical patient. The blue line shows the concentration of inspired agent as recorded by the anesthesia machine. The red and cyan show the simulated arterial and cerebral concentrations. The purple and green lines show the measured and simulated end tidal anesthetic concentration respectively.

At the beginning of surgery, the clinician usually gives a high dose of agent concentration in order to quickly reach...
A MODEL FOR ANESTHETIC WASHOUT DURING RECOVERY IN THE POST ANESTHESIA CARE UNIT

Fig. 4. Simulation of anesthetic concentration for a typical patient. Note the close approximation of the simulated end tidal anesthetic agent to the measured one (purple and green lines respectively). The blue line shows the inspired concentration. The red and cyan lines show the arterial concentration and cerebral concentration respectively. The cerebral concentration is modeled as a function of PaCO$_2$. The bottom graph shows an expanded view of the washout period during recovery.

During the surgery and emergence periods, the patient data (i.e. EtCO$_2$, end tidal and inspired agent concentration, and MV) is recorded at a sample frequency of 30 sec. During transport period, no data is recorded because no monitors can be connected while the patient is moved from the OR to the PACU. Once the patient enters the PACU and is situated the sample frequency is 100 Hz. However, for this first set of simulations, data points taken every 5 min during recovery were used. This was because at every 5 min interval a calibration test was performed using a gas analyzer and spirometer to calibrate the second monitor—a device used to measure minute volume using only inductance through elastic bands placed around the chest and abdomen (this is so that patients were not required to wear an airtight mask during recovery). The data available via the gas analyzer and spirometer during the calibration periods was readily available for use in the simulation. The higher resolution data, after some work, can be made available for use in the simulation. The two main driving forces behind washout are ventilation and cardiac output. As was mentioned, during transport no data is recorded; and as illustrated in Figure 4 by the measured end tidal signal, data points in the minute volume signal were linearly interpolated as an initial attempt to compensate for the lack of data. A better interpolation method could probably be devised, although it is not really known how minute volume changes during transport. Cardiac output could also be modified to improve the model.

In the original 1991 Lerou model, cardiac output was approximated as constant, estimated as a fraction of body weight, which was also used in this model for simplicity sake[1].
However, since then studies have shown how cardiac output can be influenced by PaCO₂. In Gopalakrishnan’s dissertation, he derived a relationship between cardiac output and PaCO₂ based on measured data[14]. Implementing this relationship might also improve washout.

V. CONCLUSIONS

While the model overall appears to simulate anesthetic concentrations well, especially during the surgery and emergence periods, the discrepancies seen in the transport and recovery periods are different enough to be significant and need to be addressed before this model can be used to effectively explore anesthetic washout during recovery.

ACKNOWLEDGMENTS

The author would like to thank Dr. Dwayne Westenskow, Dr. Joseph Orr, Dr. Derek Sakata, for their direction and involvement in this project, as well as those involved in the data collection at the Moran Eye Center.

REFERENCES

