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ABSTRACT

Analysis of Student Behavior and Score Prediction in ASSISTments Online Learning

by

Aswani Yaramala, MASTER OF SCIENCE

Utah State University, 2023

Major Professor: Hamid Karimi, Ph.D.
Department: Computer Science

This thesis presents an in-depth analysis of student behavior and score prediction in the AS-

SISTments online learning platform. Leveraging the comprehensive dataset from the EDM

Cup 2023 Kaggle Competition, we address four research questions related to the impact of

tutoring materials, skill mastery, feature extraction, and graph representation learning. To

investigate the impact of tutoring materials, we analyze the influence of students requesting

hints and explanations on their performance in end-of-unit assignments. Our findings pro-

vide insights into the role of guidance in learning and inform the development of superior

tutoring strategies. Additionally, we explore the correlation between mastery/non-mastery

of specific skills during in-unit problems and performance in corresponding end-of-unit as-

signments, shedding light on the efficacy of standard-aligned curricula. In terms of feature

extraction, we extract relevant features from extensive student activity data and determine

their importance in predicting assignment grades. This enhances student performance pre-

diction, aiding the early identification of at-risk students and enabling effective monitoring

of progress. Furthermore, we employ graph representation learning techniques to model the

complex relationships between different entities in the dataset. This yields a more nuanced

understanding of factors influencing student performance and facilitates the development
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of more accurate predictive models. Overall, our study contributes to the theoretical un-

derstanding and practical application of data mining techniques in online learning contexts,

with implications for personalized learning, interventions, and support mechanism. Our

code is publicly available in https://github.com/DSAatUSU/EDMCup2023.

(77 pages)

https://github.com/DSAatUSU/EDMCup2023
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PUBLIC ABSTRACT

Analysis of Student Behavior and Score Prediction in ASSISTments Online Learning

Aswani Yaramala

Understanding and analyzing student behavior is paramount in enhancing online learn-

ing, and this thesis delves into the subject by presenting an in-depth analysis of student

behavior and score prediction in the ASSISTments online learning platform. We used data

from the EDM Cup 2023 Kaggle Competition to answer four key questions. First, we ex-

plored how students seeking hints and explanations affect their performance in assignments,

shedding light on the role of guidance in learning. Second, we looked at the connection

between students mastering specific skills and their performance in related assignments,

giving insights into the effectiveness of curriculum alignment. Third, we identified impor-

tant features from student activity data to improve grade prediction, helping identify at-risk

students early and monitor their progress. Lastly, we used graph representation learning to

understand complex relationships in the data, leading to more accurate predictive models.

This research enhances our understanding of data mining in online learning, with implica-

tions for personalized learning and support mechanisms.
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CHAPTER 1

INTRODUCTION

Emerging technologies and evolving societal needs have propelled the digital transfor-

mation in education. A significant catalyst in this digital revolution is the rapid rise of online

learning platforms, which has seen an even more profound upsurge amid the global shift

towards remote learning necessitated by recent events [1, 2]. These platforms serve to de-

mocratize education by breaking down geographical barriers and making quality education

accessible to individuals irrespective of their location [3]. In addition, they extend the reach

of education to under-served communities and individuals with restricted mobility, ensuring

that everyone has the opportunity to learn and grow [4]. Furthermore, online learning plat-

forms generate a wealth of data ranging from detailed clickstream data to more structured

assignment and assessment data. This data-rich environment presents an unprecedented

opportunity to gain insights into the learning process and student behavior [5]. Leverag-

ing data mining and machine learning techniques, this wealth of data can be harnessed to

predict student performance, provide personalized learning experiences, and ultimately en-

hance learning outcomes [6]. The potential of such a comprehensive, data-driven approach

lies in its capacity to shape a responsive, student-centric educational landscape that adapts

to the unique needs and progress of each learner.

Two particular areas of interest in this data-rich landscape are analyzing student be-

havior and predicting exam assignment grades. Student behavior analysis in online learning

environments plays a pivotal role in understanding the learning process. With the ability

to track and record every interaction of students within the learning platform, we can un-

cover intricate patterns that characterize different learning behaviors. Detailed analysis of

these behaviors can lead to valuable insights into students’ engagement, motivation, learn-

ing strategies, and potential difficulties [7, 8]. This information, in turn, can inform the

design of personalized learning paths, interventions, and support mechanisms, contribut-
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ing to improved learning outcomes and overall student success. Parallel to this, predicting

exam assignment grades is another critical aspect of educational data mining. Predictive

models can leverage student behavior data and other relevant features to forecast their

performance in future assessments. This capability is not only essential for the timely

identification of students at risk of underperforming or dropping out but also valuable for

students and educators in monitoring progress and adjusting learning or teaching strategies

accordingly [7, 8].

With the above discussion, in this thesis, we present analyses, developed machine learn-

ing models, and experimental results while participating in the EDM CUP 2023 competition.

In the competition under discussion, the primary challenge was predicting students’ scores

on end-of-unit assignments, utilizing the clickstream data from all the in-unit assignments

the students had previously completed. The comprehensive dataset for this project was not

only constituted by student behaviors but also included additional information about the

curricula, individual assignments, problem statements, and the tutoring support provided

to the students, all of which were utilized to enhance the accuracy of our predictive mod-

els. Figure 1.1 illustrates an overview of the analytical framework for student behavior and

score prediction used in this study. In the context of this competition, we aim to answer

the following research questions. We also describe the significance of each research question

as to how it would contribute to the existing body of knowledge.

❑ RQ1. What is the impact of students requesting tutoring materials (e.g., hints and

explanations) on their performance in end-of-unit assignments?

– Significance. Investigating the impacts of requesting tutoring materials allows

for insights into the role of guidance in learning and how student initiative to seek

help influences outcomes. Furthermore, the findings can inform the development

of superior tutoring strategies, potentially improving learning experiences. To

answer this question, we employ quasi-experiments to estimate the causal impacts

of the request for tutoring materials on end-of-unit assignments.



3

❑ RQ2. What patterns exist in the correlation between mastery of specific skills during

in-unit problems and performance in corresponding end-of-unit assignments?

– Significance. This question aims to establish a connection between the mas-

tery of specific skills, aligned with the Common Core State Standards (CCSS) for

mathematics [9], during in-unit assignments and performance in corresponding

end-of-unit assignments. By analyzing how progress in CCSS-aligned skills dur-

ing unit tasks influences overall performance on end-of-unit assignments, we can

better understand how effective standard-aligned curricula foster student mas-

tery. Furthermore, the insights derived from this question can shape the design

of targeted interventions and support mechanisms, possibly leading to improved

learning experiences and alignment with CCSS guidelines. To answer this ques-

tion, we arrange previously completed problems and end-of-unit problems as a set

of items related to a student. We then employ association rule mining [10,11] to

extract dominant rules showing how previous skills (rule antecedents) influence

the end-of-unit assignment skill (rule consequent).

❑ RQ3. How can relevant features be extracted from the extensive student activity

data within the ASSISTments online learning platform for use in a predictive ma-

chine learning model for end-of-unit assignment grades? Also, what is the relative

importance of the extracted features in predicting assignment grades?

– Significance. Feature extraction and understanding their importance in grade

prediction are critical for developing more accurate predictive models [12–14].

Enhancing student performance prediction allows for earlier identification of stu-

dents at risk of under-performance [15], enabling timely support. Furthermore,

it aids students and educators in effectively monitoring progress and adjusting

strategies as necessary. We carry out extensive feature extraction and engineer-

ing from various dataset attributes to address this question. We then use these
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features as input to traditional, robust machine learning algorithms like Ran-

dom Forest. Finally, we run thorough experiments and determine each feature’s

importance.

❑ RQ4. How can graph representation learning be employed to model the complex rela-

tionships between different entities in the dataset (e.g., teacher, students, problems)?

And do the features extracted from these relationships yield any predictive power in

predicting assignment grades?

– Significance. Leveraging graph representation learning to model complex dataset

relationships can lead to a more nuanced understanding of the factors influenc-

ing student performance [15,16]. It could result in developing more sophisticated

predictive models, thereby improving grade prediction accuracy and educational

outcomes by enabling more precise and timely interventions. To address this

question, we first represent the complex relationship between different entities in

the dataset as a graph. We then apply a graph representation learning algorithm

called node2vec [17] to extract salient features from the underlying graph. It is

important to note that graph representation learning uses machine learning tech-

niques to capture and encode the properties, features, and structures of graphs

into vector representations, aiding the understanding and analysis of complex

relational data [18].

Overall, these research questions are significant as they aim to explore and understand

different aspects of student engagement, behavior, and learning patterns in an online learn-

ing context, specifically within the ASSISTments platform. In summary, our contributions

in this study are as follows:

① We comprehensively investigate the influence of requested tutoring materials on stu-

dent performance in an online learning context. In addition, our quasi-experimental

approach offers valuable insights into the causal effects of these elements on end-of-unit

assignments.
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Rule 1: Building Functions → Interpreting Functions

Rule 2: Grade 7 - Geometry → Grade 8 - Geometry

Success Item Sets

Success Rules

Failure Rules

Fig. 1.1: Framework for student behavior analysis and score prediction, used in this study,
divided into three primary sections. The top section shows our investigation into the link
between tutoring requests and student performance on end-of-unit tests. The middle portion
of the figure outlines our methodology for unearthing informative rules that elucidate the
mastery or non-mastery of Common Core State Standards (CCSS) skills during in-unit tests
linked to end-of-unit skill mastery/non-mastery and general student performance. Lastly,
the bottom segment details the employment of graph representation learning and machine
learning predictive modeling to forecast student scores on end-of-unit tests.
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② We establish a clear connection between the mastery of specific Common Core State

Standards (CCSS)-aligned skills during in-unit problems and performance on end-

of-unit assignments. This contributes to a better understanding of the efficacy of

standard-aligned curricula.

③ We conduct extensive feature extraction from various dataset attributes and establish

their importance in grade prediction tasks. Our approach enables a better prediction

of student performance, aiding the early detection of at-risk students.

④ We apply graph representation learning algorithms to model complex relationships in

the dataset. This novel application provides a more nuanced understanding of the

factors influencing student performance.

⑤ Through our comprehensive approach, we not only answer pertinent research questions

in the field of online learning but also provide a methodological framework that can

be replicated in other similar studies. This can enhance the field of educational data

mining.

⑥ Our analytical framework distinguished itself by securing the fifth position on both

the public and private leaderboards amidst competition from 49 teams1. Our public

score, in terms of Area Under the Curve (AUC), stood at 0.78072, merely 0.01068

points behind the leading team. Similarly, our private score of 0.78579 was close

behind the top team, with a minimal difference of 0.0039. This result highlights the

efficacy of our approach.

The organization of this thesis is as follows. Chapter 2 starts with a review of the

existing literature pertinent to our study. Next, Chapter 3 presents a description of the

dataset used in our analysis as well as an initial data exploration. In Chapter 4, we delve

into an in-depth analysis of the data, providing answers to RQ1 and RQ2 related to the

effects of tutoring materials and skill mastery on student performance. Subsequently, Chap-

ter 5 focuses on the process of feature extraction, the application of graph representation

1https://www.kaggle.com/competitions/edm-cup-2023/leaderboard

https://www.kaggle.com/competitions/edm-cup-2023/leaderboard
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learning, the design of predictive models, the execution of classification experiments, and

the discussion of their results, addressing RQ3 and RQ4. Finally, we conclude our study

in Chapter 6, summarizing our key findings, acknowledging the limitations of our analytical

framework and the dataset, and contemplating potential directions for future research.



CHAPTER 2

RELATED WORK

The rapid expansion of online learning platforms and the accompanying surge in data

collection have triggered a burgeoning area of research in Educational Data Mining (EDM)

and Learning Analytics (LA). The synergy of EDM and LA has manifested a profound

capacity to decipher and employ educational data for enhancing learning and teaching

methods. These fields intricately interlace to parse educational environments and tailor

pedagogical strategies to individual learning needs [15,19–22]. The assimilation of sophisti-

cated machine learning techniques in EDM and LA has not only refined predictive models

for student success but has also provided a granular understanding of educational interac-

tions within online platforms [19].

Existing literature related to our study can be broadly categorized into four main

themes: (1) The role of tutoring materials in online learning, (2) the correlation between

in-unit skill mastery and end-of-unit performance, (3) feature extraction and importance in

predictive modeling, and (4) the use of graph representation learning in predicting student

performance.

2.1 Tutoring Materials in Online Learning

Intelligent Tutoring Systems (ITS) have sparked significant interest among researchers

and educators over several decades. Various studies and publications have explored the po-

tential and challenges of ITS, particularly in collaborative learning. In [23], the researchers

delved into expanding the Cognitive Tutor framework to facilitate the development of ITS

for collaborative learning. The study also reflected on the efficacy of the improved author-

ing tools and their role in this context. Similarly, [24] provided a comprehensive overview

of ITS, encompassing the design, development, and incorporation of ITS for collaborative

learning. It expanded on subjects like group modeling, social learning, and the application
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of ITS in online learning environments. The paper [25] is another crucial work in this field.

The authors discussed the development, execution, and lessons derived from implementing

cognitive tutors in varied educational contexts. These tutors are ITS that leverage cognitive

models to offer personalized instruction to students. Moreover, [26] presented the potential

of AI systems, including AI tutoring systems and AI teaching assistants, in augmenting

learner-instructor interaction within online learning scenarios. The authors also introduced

a theoretical framework for examining this impact. Another important research [27] ana-

lyzed the challenges mathematics teachers face when utilizing a digital mathematics text-

book integrated with an ITS. The paper discussed the ITS features and results from an

effectiveness study. On a related note, [28] conducted an empirical analysis of student

behavior in asynchronous online courses. This paper utilized data mining techniques to

discern patterns in student behavior and to forecast student achievement. Also, [29] ex-

plored the influence of assistance on learning and emotional states during problem-solving

activities with a computer tutor. This research compared the effectiveness of various as-

sistance types, such as worked examples and hints, on student learning and effect. Lastly,

the proceeding “Intelligent Tutoring Systems Conference” hosts several papers on ITS for

collaborative learning, covering adaptive feedback mechanisms, group modeling, and so-

cial learning. Overall, these studies have underlined the potential of ITS for collaborative

learning, with an emphasis on adaptive feedback mechanisms, group modeling, and social

learning. They also shed light on the hurdles and lessons drawn from the development

and implementation of ITS in diverse educational environments. Our work extends these

findings by exploring the influence of requested tutoring materials on student performance.

2.2 Skill Mastery and End-of-Unit Performance

Understanding the relationship between skill mastery during in-unit problems and sub-

sequent performance in end-of-unit assignments has been a focal point of research in the

field of educational data mining [30]. The advent of data-intensive learning environments,

such as intelligent tutoring systems and adaptive learning platforms, has fueled this re-

search. The granularity of data available from these platforms has allowed researchers to
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meticulously analyze student behaviors and learning trajectories [31]. Primarily, studies

have demonstrated a strong correlation between students’ mastery of specific skills during

in-unit problems and their performance on end-of-unit assignments [32]. The underlying

principle is the ‘mastery learning’ theory, which asserts that when students deeply under-

stand concepts in a given unit, they can effectively apply this knowledge in subsequent,

often more complex, tasks [33].

However, the process of skill mastery in learning is dynamic and iterative [34]. Learners

often exhibit a ‘staircase’ behavior, characterized by phases of quick learning followed by

periods of slower progress, which reflects the concept of ‘zone of proximal development’ [35].

As such, an accurate prediction of end-of-unit performance must consider not just the level of

skill mastery but also the trajectory and pattern of learning. Further, the nature of the skills

being learned is also crucial. Research suggests that ’hard skills’—those involving clear rules

and procedures, such as mathematical operations, may demonstrate a different relationship

between in-unit mastery and end-of-unit performance compared to ‘soft skills’—- those

involving interpretation and judgment, such as reading comprehension [36]. Therefore,

while the correlation between in-unit skill mastery and end-of-unit performance is well-

established, it is critical to consider the dynamism of the learning process, the type of skills

involved, and the unique learning patterns of individual students in our exploration of this

relationship.

Our study extends this line of research by investigating this relationship in the context

of the ASSISTments platform and the Common Core State Standards (CCSS) aligned

curriculum [37]. The ASSISTments platform, with its rich data on student interactions

and performance, provides a fertile ground for such investigations [38]. The CCSS-aligned

curriculum, with its focus on skill mastery and learning progressions, further supports the

exploration of this relationship [39].

2.3 Feature Extraction and Predictive Modeling

Identifying relevant features from a rich dataset and understanding their importance

in predicting student performance is another significant area of research in educational data
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mining [31]. This field has significantly benefited from the advent of machine learning, which

provides powerful algorithms to recognize complex patterns and predict outcomes based on

a large number of features. In the context of online learning environments, a wide variety

of data can be collected, from simple metrics such as time spent on tasks and number of

attempts [40] to more sophisticated measures like clickstream data [41] and textual data

from student interactions [42]. Such rich datasets have the potential to provide a holistic

view of the student’s learning process, capturing both cognitive and affective aspects of

learning.

Researchers have applied machine learning techniques to predict student performance

using features extracted from these data types. For instance, classification methods like

decision trees, random forests, and support vector machines have been employed to cat-

egorize students into different performance groups based on their learning behaviors [43].

Regression models have been used to predict quantitative measures of performance, such as

final course grades [14]. Meanwhile, deep learning techniques are being explored for their

ability to learn high-level representations from raw data, providing insights that were not

possible with traditional methods [44].

Yet, the feature extraction process is not straightforward. It requires domain knowledge

to identify relevant features and to interpret their importance in the predictive model. A

challenge in this process is dealing with the high dimensionality of data, which could lead

to overfitting. This issue is typically addressed through feature selection or dimensionality

reduction techniques [45]. Hence, while predictive modeling has the potential to greatly

enhance our understanding and prediction of student performance, it also calls for careful

consideration of feature extraction and selection, model choice, and model interpretation.

Our study builds on these methods by leveraging an extensive set of features extracted

from various dataset attributes in predicting end-of-unit assignment grades on the ASSIST-

ments platform.

2.4 Graph Representation Learning in Online Learning

Graph representation learning has increasingly been applied to educational data to
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understand student behaviors and predict their performance [18]. [46] presented a flexi-

ble graph-structured model for predicting students’ academic performance. The proposed

model is a graph convolutional network (GCN) that considers the complex structures of

undergraduate degree programs. [47] proposed a novel approach called R2GCN, which uses

GNNs to model the relationship between students and questions using student interactions

to construct the student-interaction-question network for generalizable student performance

prediction in interactive online question pools. Study-GNN [16] is a pipeline for student per-

formance prediction. The authors constructed multiple graphs based on different similarity

measures between students’ characteristics. Then they applied a multi-topology graph neu-

ral network (MTGNN) to classify students’ performance into pass/fail or pass/withdrawal

categories. [15] proposed DOPE, which models students’ interactions with different courses

as a knowledge graph and then uses relational graph neural networks (RGCNs) to learn

latent representations for students. Simultaneously, they used an LSTM that encodes the

temporal student behaviors. The two representations were combined to predict the stu-

dent’s performance at different points during the semester. [48] construct a graph based

on the similarity between students’ data and use a GCN as well as node2vec to create a

low-dimensional representation for students. They enriched their original dataset with the

learned representations to identify “at-risk” students. Our study contributes to this line

of research by applying these techniques to the rich dataset provided by the ASSISTments

platform, providing a nuanced understanding of student behaviors and improving the ac-

curacy of grade predictions.

In conclusion, while our work builds on a rich body of research in educational data min-

ing and learning analytics, it also makes several unique contributions. By examining the role

of tutoring materials, investigating the relationship between skill mastery and assignment

performance, conducting extensive feature extraction and analysis, and applying graph rep-

resentation learning techniques, our study contributes to the theoretical understanding and

practical application of data mining techniques in online learning contexts.



CHAPTER 3

DATASET

In this chapter, we first provide an overview of the dataset from the EDM Cup 2023

Kaggle Competition [49], detailing the tables and their salient attributes. Subsequently, we

conduct on an initial exploration of the data, wherein we present various statistical insights

derived from the dataset.

3.1 An Overview of the Dataset

The database schema for the dataset is demonstrated in Figure 3.1. Next, we describe

each table and its notable fields shown in Figure 3.1.

❑ assignment details: Each row in this table represents an assignment, including the

unit test assignments, initiated by a student. These rows record the assignment of

specific problem sequences to individual students.

❑ sequence details: Each sequence present in the dataset is represented by at least

one row in this table. Each row encapsulates a problem set comprising a sequence.

The sequences, which are organized into folders in the original dataset, have their

folder path levels mirrored in this table. The folder paths denote various attributes

such as curriculum, grade, or subject associated with the sequence.

❑ problem details: This table includes one row for each problem in the dataset, ex-

cluding some problems that have been deleted. One notable field is the Common

Core State Standards (CCSS) for Mathematics [9] skill code, which is pertinent to the

solution of the corresponding problem. The table also includes the first 32 principal

components of the BERT embedding for the problem’s text-based content, accurate

to the 8th decimal place.
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sequence_details

PK sequence_id VARCHAR(50)

sequence_folder_path_level_1 VARCHAR(50)

sequence_folder_path_level_2 VARCHAR(50)

sequence_folder_path_level_3 VARCHAR(100)

sequence_folder_path_level_4 VARCHAR(100)

sequence_folder_path_level_5 VARCHAR(100)

sequence_name VARCHAR(250)

sequence_folder_position VARCHAR(50)

sequence_problem_ids VARCHAR(1500)

hint_details

PK hint_id VARCHAR(50)

hint_creator_id VARCHAR(50)

hint_contains_image INT

hint_contains_equation INT

hint_contains_video INT

hint_text_bert_pca VARCHAR(500)

explanation_details

PK explanation_id VARCHAR(50)

explanation_creator_id VARCHAR(50)

explanation_contains_image INT

explanation_contains_equation INT

explanation_contains_video INT

explanation_text_bert_pca VARCHAR(500)

problem_details

PK problem_id VARCHAR(50)

problem_multipart_id VARCHAR(50)

problem_multipart_position INT

problem_type VARCHAR(50)

problem_skill_code VARCHAR(50)

problem_skill_description VARCHAR(150)

problem_contains_image INT

problem_contains_equation INT

problem_contains_video INT

problem_text_bert_pca VARCHAR(500)

assignment_details

PK assignment_log_id VARCHAR(50)

teacher_id VARCHAR(50)

class_id VARCHAR(50)

student_id VARCHAR(50)

FK sequence_id VARCHAR(50)

assignment_release_date INT

assignment_due_date INT

assignment_start_time INT

assignment_end_time INT

training_unit_test_scores

PK index INT

FK assignment_log_id VARCHAR(50)

FK problem_id VARCHAR(50)

score INT

evaluation_unit_test_scores

PK id INT

FK assignment_log_id VARCHAR(50)

FK problem_id VARCHAR(50)

score INT

assignment_relationships

PK index INT

FK unit_test_assignment_log_id VARCHAR(50)

FK in_unit_assignment_log_id VARCHAR(50)
sequence_relationships

PK index INT

FK unit_test_sequence_id VARCHAR(50)

FK in_unit_sequence_id VARCHAR(50)

action_logs

PK index INT

FK assignment_log_id VARCHAR(50)

timestamp INT

FK problem_id VARCHAR(50)

max_attempts INT

available_core_tutoring VARCHAR(50)

score_viewable INT

continuous_score_viewable INT

action VARCHAR(50)

FK hint_id VARCHAR(50)

FK explanation_id VARCHAR(50)

Fig. 3.1: Database schema of the data from the EDM Cup 2023 Kaggle Competition.

❑ action logs: This table holds clickstream data, capturing student interactions with

assignments. Specific problem interactions have corresponding unique identifiers,

and initial interactions record data about tutoring availability, type, and maximum

problem-solving attempts. The action field logs student interactions, indicating the

correctness of responses and any request for hints or explanations. In the case of

hint/explanation requests, their unique identifiers are recorded as well.

❑ hint details: Except for some deleted hints, each hint in the dataset has a corre-

sponding row in this table. It includes the first 32 principal components of the BERT

embedding for the hint’s text-based content, accurate to the 8th decimal place.

❑ explanation details: Each explanation in the dataset is represented by a row in this

table. It includes the first 32 principal components of the BERT embedding for the
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explanation’s text-based content, accurate to the 8th decimal place.

❑ training unit test scores: This table contains unit test scores used for training the

score prediction model. The scores are binary; 1 denotes completion of an open-ended

response problem or correct first-attempt response without tutoring, while 0 signifies

otherwise.

❑ evaluation unit test scores: This table includes the unit test assignment log IDs,

which will be used for score prediction in model evaluation.

❑ assignment relationships: This table specifies which assignments within the unit

correspond to the unit test assignments in the training and evaluation sets.

❑ sequence relationships: This table details the sequences that are unit tests and

the corresponding sequences within the unit.

3.2 Initial Data Exploration

Exploring the initial data is the first step towards analyzing and modeling the dataset,

enabling us to understand its characteristics and structure. Table 3.1 presents the basic

statistics for all entities in the dataset. Additionally, Figure 3.2 illustrates the distribution

of scores for all end-of-unit assignments, indicating that the dataset is slightly imbalanced in

favor of problems with score 1. Furthermore, Figure 3.3 presents the average score per grade.

Grades are determined based on the first part of the problem skill code, which will be further

explained in detail in Chapter 4.2. HSS stands for High School Statistics and Probability,

HSF for High School Functions, HSG for High School Geometry, HSN for High School

Number and Quantity, and HSA for High School Algebra. The plot indicates that grade 1

students achieved the highest average score, whereas grade 7 students obtained the lowest

average score. Moreover, Figure 3.4 illustrates the number of students who participated in

the exam. Due to the absence of information connecting students to their respective grades

in the dataset, it was not possible to categorize all 651,253 students based on their grades.
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Table 3.1: Basic statistics of the dataset

Entity Count

# Students 651,253
# Teachers 23,523
# Classes 47,401

# Sequences 10,228
# Problems 132,738

# Assignments 9,319,676
# Hints 8,381

# Explanations 4,132
# Problems per sequence µ=13
# Unfinished assignments 1,878,016
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Fig. 3.3: Average score per grade

Figure 3.5 shows the number of problems for each problem type including both in-unit

and end-of-unit problems. The most common problem type in the dataset is ‘Number’,

followed by ‘ungraded open response’. However, it is important to note that the latter

type is only available during in-unit assignments and is not included in the end-of-unit

assignments. Next, we investigated the core tutoring options available for in-unit problems

using the action logs data. Figure 3.6 depicts the distribution of these tutoring options,

revealing that approximately 40% of problems have no available tutoring. In Chapter 4.1, we

will delve deeper into whether these in-unit tutoring options enhance students’ performance

in end-of-unit assignments. Additionally, we explored the sequence details table (explained

in Chapter 3.1) to obtain average scores by grouping grades (sequence folder path level

2) and topics (sequence folder path level 3). This analysis allowed us to identify the top
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Fig. 3.8: Bottom 10 topics based on average scores of end-of-unit assignments

10 and bottom 10 topics in terms of average scores, revealing the topics where students

are struggling and excelling. Figures 3.7 and 3.8 present the top and bottom 10 topics,

respectively, based on their average scores. Figure 3.8 clearly indicates that students are

facing difficulties with topics such as ‘Rational Numbers’, ‘Inequalities, Expression and

Equations’, and ‘Circles With and Without Coordinates’, as these topics have an average

score of zero. In Chapter 4.1, we dig deeper into patterns revealing the relationship between

the different topics triangulated with student performance.



CHAPTER 4

STUDENT BEHAVIOR ANALYSIS AND ACADEMIC ACHIEVEMENT

To address RQ1 and RQ2, we embark on a comprehensive analysis of student behav-

iors and their impact on academic outcomes. In Chapter 4.1, we explore the relationship

between tutoring requests and the end-of-unit student performance, considering various

tutoring alternatives. Following this, in Chapter 4.2, we employ association rule mining

to extract meaningful patterns (rules). These rules serve to illuminate the relationship be-

tween two key concepts: a) the mastery or non-mastery of CCSS-related skills during in-unit

assignments and b) the mastery or non-mastery of CCSS-related skills during end-of-unit

problems.

4.1 Tutoring Request and Student Performance

When students engage in in-unit assignments, they have the option to request tutoring

if it is available for the specific problem they are working on. The available core tutor-

ing options include hints, explanations, and answers. Additionally, there are two auxiliary

tutoring options including skill-related videos, and live tutor. We aim to assess the effective-

ness of these tutoring options in improving student performance in end-of-unit problems.

To this end, we calculated the percentage of each tutoring option requested for each group

of end-of-unit assignment log ID and problem ID, which are associated with multiple action

log problems. The percentage of tutoring requested is determined by dividing the number

of problems for which students requested a particular tutoring option by the total number

of problems where that specific tutoring option was available. This is expressed by the

following formula:

% of tutoring option requested =
# of problems with tutoring option requested

Total # of problems with that tutoring option available
× 100

(4.1)
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Table 4.1: % Hint Requested (HR)

Grade HR (≥ 0.7) HR (< 0.3) SD t-stat p-value

1 0.65 0.86 -0.21 -2.89 3.93e−3
2 0.41 0.71 -0.30 -4.63 3.65e−6
3 0.21 0.60 -0.39 -11.00 0.00
4 0.42 0.53 -0.11 -6.52 6.93e−11
5 0.40 0.49 -0.09 -2.99 2.79e−3
6 0.34 0.59 -0.25 -30.53 0.00
7 0.38 0.56 -0.18 -25.03 0.00
8 0.45 0.54 -0.09 -7.10 1.27e−12

HSA 0.48 0.71 -0.23 -2.78 5.52e−3
HSF 0.00 0.63 -0.63 -1.84 6.72e−2
HSG 1.00 0.79 0.21 2.01 4.56e−2
HSN 0.33 0.61 -0.28 -2.09 3.88e−2
HSS 0.25 0.60 -0.35 -1.41 1.61e−1

All grades 0.38 0.61 -0.22 -51.93 0.00

Table 4.2: % Answer Requested (AR)

Grade AR (≥ 0.7) AR (< 0.3) SD t-stat p-value

1 0.76 0.78 -0.01 -0.84 3.99e−1
2 0.60 0.77 -0.17 -50.74 0.00
3 0.45 0.67 -0.22 -45.56 0.00
4 0.40 0.67 -0.27 -56.94 0.00
5 0.32 0.61 -0.29 -69.48 0.00
6 0.48 0.67 -0.19 -43.93 0.00
7 0.45 0.66 -0.21 -31.66 0.00
8 0.41 0.61 -0.20 -26.69 0.00

HSA 0.36 0.69 -0.33 -20.55 0.00
HSF 0.37 0.69 -0.32 -23.96 0.00
HSG 0.34 0.61 -0.27 -18.82 0.00
HSN 0.40 0.64 -0.24 -5.39 9.56e−8
HSS 0.35 0.49 -0.14 -5.71 1.25e−8

All grades 0.47 0.69 -0.22 -145.87 0.00

Table 4.3: % Explanation Requested (ER)

Grade ER (≥ 0.7) ER (< 0.3) SD t-stat p-value

5 0.17 0.41 -0.24 -2.35 1.91e−2
6 0.27 0.64 -0.37 -23.92 0.0
7 0.33 0.58 -0.25 -15.36 0.0
8 0.32 0.55 -0.23 -9.25 0.0

All grades 0.30 0.61 -0.31 -29.84 9.47e−194
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Table 4.4: % Skill Video Requested (SVR)

Grade SVR (≥ 0.7) SVR (< 0.3) SD t-stat p-value

2 0.83 0.77 0.07 0.68 0.50
4 0.64 0.58 0.05 0.63 0.53
5 0.43 0.50 -0.07 -1.31 0.19
6 0.63 0.54 0.09 1.11 0.27
7 0.12 0.53 -0.41 -4.22 0.00
8 0.50 0.54 -0.04 -0.35 0.73

HSF 0.75 0.64 0.11 0.62 0.54

All grades 0.52 0.54 -0.03 -0.79 0.43

Table 4.5: % Live Tutor Requested (LTR)

Grade LTR (≥ 0.7) LTR (< 0.3) SD t-stat p-value

6 0.00 0.54 -0.54 - -
7 0.86 0.53 0.33 4.01 6.13e−5
8 0.80 0.54 0.26 1.16 2.47e−1

HSF 0.89 0.65 0.24 4.67 4.36e−6

All grades 0.87 0.54 0.33 7.83 5.03e−15

Table 4.6: % Total Tutoring Requested (TTR)

Grade TTR (≥ 0.7) TTR (< 0.3) SD t-stat p-value

1 0.29 0.78 -0.50 -4.53 6.02e−6
2 0.34 0.72 -0.38 -26.24 0.0
3 0.25 0.62 -0.37 -20.15 0.0
4 0.27 0.58 -0.31 -28.58 0.0
5 0.32 0.55 -0.23 -20.47 0.0
6 0.27 0.61 -0.34 -32.19 0.0
7 0.31 0.58 -0.27 -26.80 0.0
8 0.30 0.54 -0.25 -13.78 0.0

HSA 0.24 0.60 -0.36 -4.30 1.72e−5
HSF 0.00 0.60 -0.60 -1.75 8.09e−2
HSG 0.44 0.54 -0.10 -2.66 7.79e−3
HSN 0.25 0.59 -0.34 -3.05 2.35e−3
HSS 0.43 0.45 -0.02 -0.12 9.06e−1

All grades 0.31 0.63 -0.32 -73.61 0.00
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Tables 4.1 to 4.5 present the results of our examination of the association between

students’ end-of-unit performance and their requests for the five distinct tutoring options

available. Table 4.6 consolidates the results for all tutoring options. Additionally, we

conducted a grade-specific analysis by segmenting the data based on the initial segment of

the problem skill code, which corresponds to the grade as per the CCSS guidelines. This

approach facilitated the computation of the proportion of tutoring requests for each grade

and tutoring option independently. However, not all tutoring options were accessible for

every grade or had sufficient data to enable experimentation, leading to variations across

tables. The second and third columns display the average grade of problems where the

proportion of the tutoring option, computed using Eq. 4.1, exceeds 70% and falls below

30%, respectively. The selected percentages aim to yield a stark contrast, allowing for a

more confident assessment of the impact of tutoring requests. It is worth noting that despite

the appeal of considering tutoring requests in a binary fashion (i.e., 100% and 0%), the

scarcity of cases where a student consistently requests or refrains from requesting tutoring

makes it an impractical approach for addressing RQ1. The fourth column, denoted as

SD, represents the score difference between the second and third columns. For example,

for grade 1 with hint requests, SD = -0.21 = HR (≥ 0.7) - HR (< 0.3). This difference

helps to evaluate whether requesting a tutoring option frequently within the unit yields a

better grade on the unit test (SD ≥ 0) or not (SD < 0). The fifth column showcases the

t-statistic, derived via a Student’s t-test. As a measure used in hypothesis testing, the t-

statistic determines the likelihood of the observed difference between sample means having

occurred by chance, thereby assisting in establishing statistical significance [50]. The final

columns exhibit the p-value. The outcomes of these analyses are illustrated in Tables 4.2

to 4.6. We make the following observations based on these results.

➪ In general, students who requested help less often (HR, AR, ER, SVR, LTR < 0.3)

performed better than those who requested more often (≥ 0.7). This is observed in

all grades for HR, AR, ER, and TTR, in grades 2, 5, and 7 for SVR, and in grade 7

and HSF for LTR.
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➪ The largest difference in performance (SD) between the two groups is observed in

Explanation Requested (ER) for grade 6, Skill Video Requested (SVR) for grade 7,

and Total Tutoring Requested (TTR) for grade 1.

➪ The t-statistic is significant (p-value < 0.05) for most cases across all tutoring options,

indicating a significant difference in the means of the two groups (those who request

help more often vs. those who request less often).

➪ In the case of Hint Requested (HR), there is a reverse trend in HSG, where those who

requested more often performed better. A similar reverse trend is observed in grade

7 and HSF for Live Tutor Requested (LTR).

➪ In the Skill Video Requested (SVR) section, there is no significant difference (p-value

> 0.05) between the performance of those who requested help more often vs. less

often in grades 2, 4, 6, 8, and HSF.

➪ In the case of Live Tutor Requested (LTR), there is a large difference (SD = 0.54) in

grade 6, but the t-statistic is not reported, suggesting an insufficient sample size or

other statistical issue.

➪ Across all grades, students who requested help less often performed better in all

tutoring options.

Additionally, we explored the percentage of correct and wrong responses in the ac-

tion logs of in-unit assignments to assess their impact on student’s grades in end-of-unit

problems. Table 4.7, 4.8 show the results. The data from Tables 4.7, 4.8 offer several key

observations about the impact of students’ correct and wrong response rates on in-unit

assignments on their final grades.

➪ For the percentage of correct responses (CR), students with a CR of 0.7 or higher

consistently have a higher grade than those with a CR of less than 0.3. This trend is

universal across all grades, with the highest difference seen in grade 2, where students

with higher CR had a 0.25 higher grade. It’s also important to note that the p-values
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Table 4.7: % Correct Response (CR)

Grade CR (≥ 0.7) CR (< 0.3) SD t-stat p-value

1 0.79 0.64 0.15 8.83 0.0
2 0.75 0.50 0.25 31.28 0.0
3 0.61 0.48 0.12 9.13 7.30e−20
4 0.54 0.35 0.19 17.19 0.0
5 0.51 0.42 0.09 12.78 0.0
6 0.51 0.48 0.04 4.14 3.56e−5
7 0.56 0.30 0.26 19.55 0.0
8 0.50 0.40 0.09 7.89 3.48e−15

HSA 0.61 0.43 0.18 7.26 6.06e−13
HSF 0.58 0.52 0.06 2.57 1.03e−2
HSG 0.52 0.50 0.03 1.40 1.62e−1
HSN 0.71 0.43 0.28 3.68 2.72e−4
HSS 0.55 0.43 0.13 3.43 6.33e−4

All grades 0.62 0.45 0.17 54.11 0.00

Table 4.8: % Wrong Response (WR)

Grade WR (≥ 0.7) WR (< 0.3) SD t-stat p-value

1 0.57 0.81 -0.24 -11.47 0.0
2 0.50 0.75 -0.25 -39.49 0.00
3 0.39 0.64 -0.25 -35.47 0.0
4 0.39 0.62 -0.23 -36.92 0.0
5 0.38 0.57 -0.19 -38.84 0.00
6 0.41 0.63 -0.23 -40.95 0.00
7 0.38 0.60 -0.22 -29.70 0.0
8 0.41 0.55 -0.14 -14.31 0.0

HSA 0.40 0.61 -0.21 -8.63 8.41e−18
HSF 0.47 0.63 -0.17 -6.71 2.14e−11
HSG 0.35 0.61 -0.26 -18.11 0.0
HSN 0.50 0.63 -0.13 -2.24 2.55e−2
HSS 0.29 0.49 -0.20 -6.31 3.25e−10

All grades 0.42 0.67 -0.24 -114.70 0.00
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for these differences are all significantly less than 0.05, suggesting these results are

statistically significant.

➪ On the other hand, for the percentage of wrong responses (WR), students with a

WR of less than 0.3 consistently have higher grades than those with a WR of 0.7 or

higher. The difference is most pronounced in grade 3, where students with lower WR

had a 0.25 higher grade. As with the CR, the p-values for these differences are all

significantly less than 0.05, confirming these results are statistically significant.

➪ In summary, students with higher CR percentages tend to perform better, while those

with higher WR percentages are more likely to struggle. This suggests that the

frequency of correct and wrong responses during in-unit assignments could be a strong

predictor of a student’s final grade.

The analysis of this part of the thesis indicates that students who request tutoring

less frequently, in most cases, perform better, potentially suggesting a higher degree of self-

reliance and capability to resolve problems independently. However, a notable exception is

the positive impact of live tutor requests (LTR) on performance, implying that direct tutor

interactions can be advantageous. Despite these correlations, causation should not be pre-

maturely assumed as the observations are context-specific. On the other hand, if a student

regularly requests assistance through hints, explanations, and answers or frequently gives

incorrect responses, it suggests that they may be grappling with the subject matter. Such

patterns could signal the need for additional teacher support [51],targeted interventions [52],

or personalized assistance [53] to bolster their comprehension and academic performance.

Therefore, discerning and addressing these struggle areas is crucial for educators to provide

suitable guidance and resources, thereby enhancing the chances of student success.

4.2 CCSS Skill Mastery and Student Performance

Analyzing the relationship between mastery/non-mastery of skills during in-unit as-

signments and end-of-unit assignments is crucial. It enables educators to understand which
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skills mastered/non-mastered during in-unit problems contribute to success/failure in cor-

responding end-of-unit problems [38,54,55]. It is important to recognize that certain skills

require prerequisite knowledge for comprehension. Therefore, if a student fails to grasp the

prerequisite skills or lacks practice in in-unit problems related to those skills, it may result

in failure to solve the corresponding skill problems in end-of-unit assignments. On the other

hand, success in mastering prerequisite skills through in-unit problems will likely lead to

success in related end-of-unit problems. Thus, it is crucial to analyze these patterns in

student performance data and identify relationships between different mathematical skills.

Success or failure in in-unit problems requires having scores for these problems. However,

unlike end-of-unit problems, since the dataset does not provide scores for in-unit problems,

we needed to determine these scores. Next, we describe how we addressed this challenge.

We combined the training and action log tables to gather all in-unit problems associ-

ated with end-of-unit problems– See Chapter 5.1. Then, we specified the scores for in-unit

problems based on the scoring criteria defined for end-of-unit problems as explained in Chap-

ter 3. More specifically, this process involves considering the ‘action’ feature while disre-

garding common actions such as ‘assignment started,’ ‘problem started,’ ‘problem finished,’

‘continue selected,’ ‘assignment finished,’ and ‘assignment resumed.’ After excluding these

common actions, eight actions remained: ‘wrong response,’ ‘answer requested,’ ‘correct response,’

‘open response,’ ‘skill related video requested,’ ‘explanation requested,’ ‘hint requested,’ and

‘live tutor requested’. Finally, the score of an in-unit problem is determined according to

Algorithm 1:

Once we determined the grades for in-unit problems, we needed to extract and fix

skill codes since. Note however, we are interested in mastery/non-mastery for skills, not

specific problems. The CCSS skill codes follow a hierarchical structure, where the first

level corresponds to the grade, and the second level represents the topic or subject. The

later levels of a CCSS skill code provide more specific descriptions, such as specific problem

details. However, these detailed levels may not be as useful since they can potentially gen-

erate skill-related patterns that are overly specific. Therefore, for the purpose of generating
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Algorithm 1 In-unit score specification

Require: in unit assignment log id: log ids of in-unit assignments
Require: problem id: problem ids of in-unit assignments
Require: action: action feature of in-unit assignment logs
Ensure: score: The score assigned to the problems based on action feature.
for all in unit assignment log id, problem id do

for action in actions do
if action = ‘open response’ then
score = 1

else if action in [‘Wrong response’, ‘hint requested’, ‘explanation requested’,
‘live tutor requested’, ‘skill related video requested’, ‘answer requested’] then
if score = Null then

score = 0
end if

else if action ‘correct response’ then
if score = Null then

score = 1
end if

end if
end for

end for

meaningful patterns, we focused on the first two levels of the skill code hierarchy, which

capture the broader grade and topic information, respectively.

So far, we have grades (success or failure) for all in-unit and end-of-unit problems

as well as their corresponding skill codes. Now, we need to specify how we can extract

meaningful “patterns”. One effective approach for achieving this is by utilizing association

rule learning/mining, which is a data mining technique employed to discover interesting

relationships or patterns within extensive datasets [10, 11] such as educational data [56].

They identify frequently occurring itemsets and generate rules that describe associations

between different items based on their co-occurrence. By leveraging these rules, educators

can gain valuable insights into patterns and dependencies among skills. To fix the idea,

in the following, we formally define the association rule mining process on the CCSS skill

codes.

Let C = {C1, C2 · · ·Ck} denote a set of CCSS skill code levels e.g., the Complex Number

System. Suppose, Ps = {ps1, ps2 · · · psn1
} is the set of end-of-unit problems (|Ps| = n1), for
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which the score is 1 i.e., success. Correspondingly, Pf = {pf1 , p
f
2 · · · p

f
n2} is the set of end-of-

unit problems (|Pf | = n2), for which the score is 0 i.e., failure. For each psi ∈ P s, we define

a transaction as Ii = {I1, I2 · · · Imi−1, Imi} where each Ij ∈ C, Imi is the skill code of the

end-of-unit problem psi , and I1, I2 · · · Imi−1 are skill codes of the related in-unit problems.

In other words, each transaction includes the skill codes of both the end-of-unit problem

and all related in-unit problems. The score of all problems in P s is 1 (success), where

the scores of in-unit problems are calculated using Algorithm 1. Let Is = {I1, I2 · · · In1}

represent all n1 transactions pertinent to Ps. In a similar manner, we define transaction

set If pertinent to Pf . Furthermore, we divided the datasets for each grade (first level of

skill code) to ensure that item sets or transactions are categorized by grade. Based on the

above notations, we define association rule mining for skill mastery and non-mastery rule

discovery.

Skill Mastery Rule Discovery Given Is, we are interested in strong rules in the form

of X → y, where X ⊂ C and y ∈ C. y is a single item representing the skill code of

the end-of-unit problem.

Skill Non-Mastery Rule Discovery Given If , we are interested in strong rules in the

form of X → y, where X ⊂ C and y ∈ C. y is a single item representing the skill code

of the end-of-unit problem.

In association rule learning, “strong” rules are captured by two rule-related concepts:

support and confidence. Support (S) is the proportion of transactions in the dataset that

contain a particular itemset. For a rule X → Y , it can be defined as:

Support(X ∪ Y ) =
Frequency(X ∪ Y )

Total number of transactions
(4.2)
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Confidence (C) is a measure of the reliability of the inference made by a rule. For a rule

X → Y , it can be defined as:

Confidence(X → Y ) =
Support(X ∪ Y )

Support(X)
=

Number of transactions containing X and Y

Number of transactions containing X

(4.3)

To extract rules, we used mlxtend python library [57], which uses the famous Apriori

algorithm [58,59] for efficient rule mining. To generate frequent item sets, we identify items

that occur frequently by setting a minimum support threshold of 0.8 for mastery (score

1) and 0.7 for non-mastery (score 0). Subsequently, we derive association rules using the

confidence metric, with a minimum threshold of 0.9 for mastery (score 1) and 0.8 for non-

mastery (score 0). Tables 4.9 and 4.10 demonstrate the results of association rule learning

for skill mastery and non-mastery, respectively. The first column is the rule, the second

column is the support, the third column is the confidence, and the last column is the

rule where the codes have been replaced with their English description. We obtained the

descriptions for skill codes up to level 2 from CCSS [9] since they were not included in the

dataset.

Tables 4.9 and 4.10 display the most reliable rules among all the transactions with high

support and confidence. Based on the results in Tables 4.9 and 4.10, we make the following

observations:

➪ The high support and confidence of most rules in both tables indicate that there

are strong associations among the different math skills in the dataset. For example,

the rule “8.EE → HSA.REI” in Table 4.9, with a support of 0.81 and confidence of

1.00, suggests that students who have mastered “Expressions and Equations” (8.EE)

are also very likely to have mastered “Reasoning with Equations and Inequalities”

(HSA.REI).

➪ The rule “HSN.RN, HSN.CN → HSA.REI” in Table 4.9 shows that the mastery of

the Real Number System (HSN.RN) and the Complex Number System (HSN.CN)

is highly associated with the mastery of Reasoning with Equations and Inequalities
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Table 4.9: Extracted association rules for mastery (score 1) for the entire dataset

Rule S C Rule Description

8.EE → HSA.REI 0.81 1.00
Expressions and Equations → Reasoning with
Equations and Inequalities

HSN.RN → HSA.REI 0.93 0.99
The Real Number System → Reasoning with Equations
and Inequalities

HSN.RN, HSN.CN → HSA.REI 0.86 0.99
The Real Number System, The Complex Number
System → Reasoning with Equations and Inequalities

8.EE → HSN.RN 0.80 0.99 Expressions and Equations → The Real Number System

HSN.CN → HSA.REI 0.92 0.99
The Complex Number System → Reasoning with
Equations and Inequalities

HSA.REI → HSN.RN 0.93 0.94
Reasoning with Equations and Inequalities → The Real
Number System

HSA.REI → HSN.CN 0.92 0.93
Reasoning with Equations and Inequalities → The
Complex Number System

HSN.CN, HSA.REI → HSN.RN 0.86 0.93
The Complex Number System, Reasoning with
Equations and Inequalities → The Real Number System

HSN.RN → HSN.CN 0.87 0.93
The Real Number System → The Complex Number
System

HSN.CN → HSN.RN 0.87 0.93
The Complex Number System → The Real Number
System

HSN.RN, HSA.REI → HSN.CN 0.86 0.93
The Real Number System, Reasoning with Equations
and Inequalities → The Complex Number System

Table 4.10: Extracted association rules for non-mastery (score 0) for the entire dataset

Rule S C Rule Description

HSA.REI → HSN.CN 0.79 0.93
Reasoning with Equations and Inequalities → The
Complex Number System

HSN.RN, HSA.REI → HSN.CN 0.71 0.93
The Real Number System, Reasoning with Equations
and Inequalities → The Complex Number System

HSN.RN → HSN.CN 0.81 0.92
The Real Number System → The Complex Number
System

HSA.REI → HSN.RN 0.77 0.91
Reasoning with Equations and Inequalities → The Real
Number System

HSN.CN, HSA.REI → HSN.RN 0.71 0.90
The Complex Number System, Reasoning with
Equations and Inequalities → The Real Number System

HSF.BF → HSF.IF 0.71 0.89 Building Functions → Interpreting Functions

HSN.RN, HSN.CN → HSA.REI 0.71 0.88
The Real Number System, The Complex Number
System → Reasoning with Equations and Inequalities

HSN.CN → HSN.RN 0.81 0.88
The Complex Number System → The Real Number
System

HSN.RN → HSA.REI 0.77 0.87
The Real Number System → Reasoning with Equations
and Inequalities

HSN.CN → HSA.REI 0.79 0.85
The Complex Number System → Reasoning with
Equations and Inequalities
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(HSA.REI). This reflects the progressive complexity in learning mathematics, where

advanced concepts often rely on the mastery of more basic concepts.

➪ There is one unique rule in the non-mastery table, “HSF.BF → HSF.IF”, which

suggests that students who have not mastered “Building Functions” (HSF.BF) are

also likely not to have mastered “Interpreting Functions” (HSF.IF). This could imply

that the skills required for interpreting functions are contingent on the ability to build

functions, or vice versa.

➪ Another observation is the high frequency of HSA.REI (Reasoning with Equations

and Inequalities), HSN.RN (High School Number and Quantity - The Real Number

System), and HSN.CN (The Complex Number System) in the rules, which implies

that these concepts might be fundamental to mastery for High School subjects in this

ASSISTments platform.

➪ Certain rules are evident in both Tables 4.9 and 4.10, including “The Real Number

System → The Complex Number System”. Interpreting from Table 4.9, it is inferred

that mastery in the real number system is a strong predictor for mastery in the

complex number system. Conversely, Table 4.10 implies that students who struggle

with the real number system are likely to face challenges in understanding the complex

number system. These rules underscore the interdependency of understanding these

two mathematical concepts.

➪ Finally, it is worth noting that while support and confidence are high for most rules,

they are not absolute indicators of causality. The relationships could be affected by

other factors such as the order of teaching, student demographics, etc. They do,

however, offer a strong basis for further investigation into these associations.

The diversity of skill codes in non-high school grades means that the support of their

corresponding rules is quite low and does not meet the minimum support threshold of

0.7. This explains why all the rules in Tables 4.9 and 4.10 pertain solely to high school

grades. However, to empirically demonstrate the robustness of association rule mining for
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Table 4.11: Top association rule for mastery (score 1) in each grade

Rule S C Rule Description

1.NBT → 1.OA 0.41 0.83
Grade 1 - Number and Operations in Base Ten →
Grade 1 - Operations and Algebraic Thinking

2.OA → 2.NBT 0.61 0.96
Grade 2 - Operations and Algebraic Thinking → Grade
2 - Number and Operations in Base Ten

3.NBT → 3.MD 0.15 0.57
Grade 3 - Number and Operations in Base Ten →
Grade 3 - Measurement and Data

4.OA → 4.NBT 0.45 0.88
Grade 4 - Operations and Algebraic Thinking → Grade
4 - Number and Operations in Base Ten

5.MD → 5.NBT 0.37 0.70
Grade 5 - Measurement and Data → Grade 5 - Number
and Operations in Base Ten

4.NBT → 6.NS 0.15 0.75
Grade 4 - Number and Operations in Base Ten →
Grade 6 - The Number System

7.G → 7.RP 0.47 0.81
Grade 7 - Geometry → Grade 7 - Ratios and
Proportional Relationships

7.G → 8.G 0.32 0.98 Grade 7 - Geometry → Grade 8 - Geometry

HSA.CED → HSA.REI 0.61 0.92
High School Algebra - Creating Equations → High
School Algebra - Reasoning with Equations and
Inequalities

HSF.BF → HSF.IF 0.77 0.95
High School Functions - Building Functions → High
School Functions - Interpreting Functions

7.G → HSG.CO 0.35 0.95 Grade 7 - Geometry → Congruence

HSN.RN → HSA.REI 0.93 0.99
High School Number and Quantity - The Real Number
System → High School Algebra - Reasoning with
Equations and Inequalities

6.SP → HSS.ID 0.51 1.00
Grade 6 - Statistics and Probability → High School
Statistics and Probability - Interpreting Categorical and
Quantitative Data
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Table 4.12: Top association rule for non-mastery (score 0) in each grade

Rule S C Rule Description

1.G → 1.MD 0.33 0.81
Grade 1 - Geometry → Grade 1 - Measurement and
Data

2.OA → 2.NBT 0.41 0.93
Grade 2 - Operations and Algebraic Thinking → Grade
2 - Number and Operations in Base Ten

3.NBT → 3.MD 0.20 0.75
Grade 3 - Number and Operations in Base Ten →
Grade 3 - Measurement and Data

4.NBT → 4.OA 0.48 0.88
Grade 4 - Number and Operations in Base Ten →
Grade 4 - Operations and Algebraic Thinking

5.MD → 5.NBT 0.34 0.66
Grade 5 - Measurement and Data → Grade 5 - Number
and Operations in Base Ten

5.NF → 6.NS 0.12 0.87
Grade 5 - Number and Operations - Fractions → Grade
6 - The Number System

7.G → 7.RP 0.45 0.80
Grade 7 - Geometry → Grade 7 - Ratios and
Proportional Relationships

7.G → 8.G 0.26 0.96 Grade 7 - Geometry → Grade 8 - Geometry

HSA.CED → HSA.REI 0.55 0.86
High School Algebra - Creating Equations → High
School Algebra - Reasoning with Equations and
Inequalities

HSF.BF → HSF.IF 0.71 0.89
High School Functions - Building Functions → High
School Functions - Interpreting Functions

8.G → HSG.CO 0.22 0.72
Grade 8 - Geometry → High School Geometry -
Congruence

HSN.RN → HSA.REI 0.81 0.92
High School Number and Quantity - The Real Number
System → High School Algebra - Reasoning with
Equations and Inequalities

6.SP → HSS.ID 0.51 1.00
Grade 6 - Statistics and Probability → High School
Statistics and Probability - Interpreting Categorical and
Quantitative Data

all grades, we present Tables 4.11 and 4.12, which provide the top association rules for

mastery and non-mastery across all grades, respectively, with a lower minimum support

of 0.1. Specifically, these rules were generated by taking the top rule, the one with high

support, from each grade. Analyzing Tables 4.11 and 4.12 several interesting observations

can be made:

➪ There is a clear indication that foundational concepts within the same grade are inter-

dependent, and mastery or non-mastery in one area can affect the learning outcome in

another. For instance, in Grade 2, mastery in “Operations and Algebraic Thinking”

leads to mastery in “Number and Operations in Base Ten” with a confidence of 0.96

(Table 4.11). Similarly, a lack of mastery in “Operations and Algebraic Thinking”
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has a high likelihood of resulting in non-mastery in “Number and Operations in Base

Ten” with a confidence of 0.93 (Table 4.12).

➪ The lower minimum support of 0.1 allows for the identification of rules across different

grades, showing the long-term effect of mastering or failing to master certain skills.

For example, mastery in “Grade 4 - Number and Operations in Base Ten” has an

association with mastery in “Grade 6 - The Number System” with a confidence of

0.75. This association may imply that early proficiency in number operations forms a

crucial foundation for understanding the number system in later grades (Table 4.11).

➪ Some rules exist both in the mastery and non-mastery tables, emphasizing the criti-

cal role of certain skills. One such rule is “Grade 7 - Geometry → Grade 7 - Ratios

and Proportional Relationships”, suggesting a strong interconnection between under-

standing geometry and ratios in Grade 7.

➪ High School associations are well-represented. High School topics such as Algebra

and Functions show up with high support and confidence. For example, the rule

“High School Functions - Building Functions → High School Functions - Interpreting

Functions” appears in both tables with high confidence, indicating that the ability to

build functions is highly indicative of the ability to interpret them, and vice versa.

These findings underline the effectiveness of association rule mining in capturing the

relationships between different mathematics skills across grade levels and success statuses,

providing invaluable insights for personalized teaching and learning approaches.



CHAPTER 5

STUDENT END-OF-UNIT ASSIGNMENT GRADE PREDICTION

In this chapter, we primarily address RQ3 and RQ4 through the presentation and

discussion of our experimental results. The process of feature engineering, which is cru-

cial to our approach, is detailed in Chapter 5.1. In Chapter 5.2, we delve into a unique

type of feature, the graph representation learning. Following this, we outline the machine

learning predictive models used in our study in Chapter 5.3. Implementation settings are

subsequently clarified in Chapter 5.4 followed by evaluation metrics in Chapter 5.5. Finally,

we detail the experimental results of predicting end-of-unit student grades in Chapter 5.6,

where we also discuss the significance and implications of our findings.

5.1 Feature Engineering

Feature engineering plays a crucial role in machine learning models as it involves se-

lecting and transforming raw data into a format that can be effectively used for training

and evaluation. To prepare the data for machine learning models, we performed feature

extraction from the given dataset. The feature extraction process involved combining the

training and evaluation data and extracting relevant information mainly from four tables:

action logs, assignment details, problem details, and sequence details– See Chapter 3. Next,

we explain each group of features.

❑ Action Log Features. To retrieve the action logs associated with unit test assign-

ment log IDs, we utilized the assignment relationships table to obtain all the in-unit

assignment log IDs corresponding to each unit test assignment log ID– See Table 3.1.

Using these in-unit assignment log IDs, we retrieved the relevant action log features.

However, it is important to note that even within each in-unit assignment log ID,

different problems had varying values for each feature. For example, for the same in-

unit assignment log ID, problem ID ‘28UPV22XPX’ had a maximum of 3 attempts,
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while problem ID ‘C9YS98XFX’ had a maximum of 1 attempt. On the other hand,

machine learning models require only one record for each combination of the unit test

assignment log ID and the corresponding end of the unit problem ID. Therefore, it

was crucial to find an appropriate approach to aggregate this information for each

unit assignment log ID and problem ID group. To resolve this issue, for certain fea-

ture types such as ‘max attempts’, ’score viewable’, and ’continuous score viewable’,

we selected the most frequently occurring value within the group. For ‘action’ and

‘available core tutoring’ features, we performed one-hot encoding, and the sum of the

values was taken for the group. Taken together, the size of Action Log Features ended

up being 21.

❑ Assignment Detail Features. Sequence IDs were obtained for all unit test as-

signment IDs from the assignment details table. This sequence Id is further used to

get sequence details features. Additionally, we calculated a new feature called ‘% of

assignment not finished’ based on the assignment end date. We determined whether

an assignment was completed or not by checking if the assignment end date was

empty. If the end date was empty, it indicated that the student had not completed

the assignment, and we marked those instances as ‘not completed.’ For each unit-test

assignment log ID, we calculated the percentage of uncompleted assignments.

❑ Sequence Detail Features. Based on the sequence ID, we retrieved sequence-

related features such as ‘sequence folder path levels’ 1, 2, 3, and 4 from the sequence

details table. These four features were represented using one-hot encoding, adding

172 dimensions to the feature vector due to the unique values in each of the sequence

folder path levels.

❑ Problem Detail Features. For the end-of-unit problems in the training and eval-

uation sets, we obtained all problem-related features from the problem details table.

The feature ‘problem skill code’ was split into four parts because each part holds sig-

nificance according to the CCSS. After one-hot encoding, this added 133 dimensions
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to the feature vector. Additionally, the ‘problem type’ feature was represented using

one-hot encoding, resulting in 10 dimensions. We represented the ‘problem skill de-

scription’ feature by 32-dimensional BERT PCA embeddings, while the BERT PCA

embeddings for the ‘problem text’ were already provided in the data. Other problem

features, such as ’problem contains image’, ’problem contains video’ and ‘problem con-

tains equation’, were already in binary format and used as they were. Additionally, we

introduced a new feature called ‘problem multipart ID frequency’, taking into account

the problem multipart ID present in the dataset. This feature captures the number

of occurrences of a specific problem multipart ID within the dataset. Taken together,

the size of Problem Detail Features ended up being 210.

Table 5.1: Description of features and their dimensions

Feature
Category

Brief Description Dim

Action Log

These include features related to action logs associated with unit test
assignment log IDs. Information for these features is retrieved and
aggregated from various sources. This includes different approaches for
different types of features like ‘max attempts’, ‘score viewable’,
‘continuous score viewable’, ‘action’, and ‘available core tutoring’.

21

Assignment
Detail

These include features related to sequence IDs and a calculated feature
known as ‘% of assignment not finished’ based on the assignment end
date.

1

Sequence
Detail

These features are based on the sequence ID and include ‘sequence
folder path levels’ 1, 2, 3, and 4. These features are represented using
one-hot encoding.

172

Problem
Detail

These include various problem-related features obtained from the
problem details table. Features are processed differently based on their
type, such as ‘problem skill code’, ‘problem type’, ‘problem skill
description’, ‘problem text’, and others. A new feature, ‘problem
multipart ID frequency’ was also introduced.

210

Total: 404

All other features, like explanation details and hint details, which were mentioned in

the Chapter 3 but not included in this feature extraction explanation, did not contribute

significantly to improving the performance of the machine learning models. Therefore, we
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excluded them from the feature set described here. In summary, the feature extraction pro-

cess involved combining data from multiple tables, handling varying values within groups,

performing one-hot encoding, and utilizing existing embeddings. This resulted in expanded

data with additional dimensions, enhancing the representation of the data for machine

learning models. For convenience, Table 5.1 includes a brief description of each feature

category and its dimension.

5.2 Graph Representation Learning

5.2.1 Graph Structure.

As an additional step towards understanding and modeling student behavior within

the ASSISTments learning platform, we delved into graph representation learning. Graph

representation learning involves capturing relationships within a graph to learn informative

node and edge representations [60]. We hypothesize that the structural features hidden in

the relationships between different entities in the dataset could help predict the outcome of

the end-of-unit tests. To validate this hypothesis, first, we identified 5 entities in the dataset

as nodes in the graph: ‘student’, ‘teacher’, ‘class’, ‘problem’, and ‘sequence’. Also, we used

4 types of connection (edge types) that are sufficient to represent the relations between

the entities in the dataset: ‘teacher-class’, ‘class-student’, ‘student-problem’, and ‘problem-

sequence’. Other connections, such as ‘student-teacher’, can be encoded by a combination

of ‘student-class’ and ‘class-teacher’ edges. This helped us avoid high edge density in the

graph while retaining the important structural information. Figure 5.1 shows the structure

of the final constructed graph.

5.2.2 Graph Construction.

To populate the graph, we first added nodes for students that took the end-of-unit

tests. For these students, we used the assignment relationships table to find all of the

related in-unit assignments that they were assigned. The information about the classes

those students took (in-unit as well as end-of-unit) and their teachers is also available



40

Class 1

Class 2

Teacher 1

Teacher 2

Teacher 3

Student 1

Student 2

Student 3

Problem 6

Sequence 1

Sequence 2

Sequence 3

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Fig. 5.1: The constructed graph between different entities in the dataset

in the assignment details table. Therefore, we added nodes for classes and teachers and

connected students to their classes and classes to teachers who taught them. We then

added nodes for the end-of-unit problems and created edges between the problems and

the students who worked on them. Then, again using the assignment relationships table,

we found the relevant action log records to each end-of-unit assignment where we could

find the problems that the students completed within the unit. Subsequently, we created

edges between students and the relevant problems they performed an action on during the

unit. For each problem (end-of-unit or within the unit), we also found their corresponding

sequence and created an edge between problems and their sequence. Table 5.2 shows the

basic properties of the constructed graph.

5.2.3 Graph Representation Learning.

We utilized a random-walk-based representation learning algorithm named node2vec [17]

to map the nodes in the graph to an embedding space. node2Vec is a popular algorithm

designed to capture the structural and community properties of nodes in a graph by gen-

erating low-dimensional vector representations, or embeddings, for each node. node2Vec

builds on the concept of random walks within a graph [61]. It explores the idea that nodes
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Table 5.2: Properties of the constructed graph.

Attribute Value

Type Heterogeneous

# Node types 5

# Students 34652

# Problems 59109

# Sequences 5766

# Teachers 2024

# Classes 3055

# Total nodes 104606

# Edges 5527865

Density 0.001

that are close to each other in the graph tend to have similar roles and functions. The

algorithm achieves this by sampling random walks of a specified length from each node in

the graph. These random walks capture the local neighborhood information around each

node. By treating each random walk as a sequence of nodes, node2Vec uses a modified

Skip-gram model, a popular method from the field of natural language processing [62], to

learn embeddings. The Skip-gram model is trained to predict the likelihood of encountering

a node in the random walk based on its neighboring nodes. After applying node2vec, we

used the learned embedding for the end-of-unit problem to enrich the representation even

further. We also ran experiments to investigate the effectiveness of embeddings in grade

prediction without the use of hand-crafted features explained in Chapter 5.1. Our exper-

iments show that graph representation learning is beneficial in the grade prediction task.

We detail our experimental results in Chapter 5.6.

5.3 Predictive Models

For the end-of-unit grade prediction, we employed an assortment of models, includ-

ing Random Forest, Gradient Boosting, XGBoost, LightGBM, ExtraTrees, and a Mean

Ensemble of the previous five models. The rationale behind this selection is multi-fold:

❑ Robustness and Flexibility: All these models, namely Random Forest, Gradient



42

Boosting, XGBoost, and ExtraTrees, are known for their robustness and flexibility [63,

64]. They can handle different types of data and are less prone to overfitting compared

to other machine learning models.

❑ Performance: XGBoost and LightGBM are gradient boosting frameworks that have

proven to be very efficient and effective in a wide range of regression and classification

tasks [65, 66]. They have also shown superior performance in numerous machine

learning competitions.

❑ Handling High-Dimensional Spaces: Random Forest and ExtraTrees are particu-

larly effective in high-dimensional spaces and can model complex interactions between

features [67,68].

❑ Ensemble Learning: Ensemble learning is a powerful way to improve model perfor-

mance by combining several base models, which can reduce variance (bagging tech-

niques like Random Forest and ExtraTrees) or bias (boosting techniques like Gradient

Boosting, XGBoost, and LightGBM) [69]. The Mean Ensemble model was used to

capitalize on this benefit by averaging the predictions of the individual models, thereby

further improving the overall performance and robustness of the prediction.

In summary, these models were selected due to their ability to handle various types of data,

superior performance records, flexibility, and the advantage of ensemble learning which is

conducive to achieving more accurate and robust predictions. Next, we present a brief

technical description of each model.

5.3.1 Random Forest

Random Forest is a machine learning algorithm that combines multiple decision trees

to make predictions. It is an ensemble learning method that aggregates the results of

individual trees to produce a final prediction. Each tree in the forest is trained on a random

subset of the data and features, reducing overfitting and improving generalization. Formally,

given a dataset D = {(xi, yi)}ni=1, Random Forest builds T decision trees {ht(x)}Tt=1 using
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bootstrapped subsets of D. The final prediction is obtained by averaging the individual

tree predictions:

H(x) =
1

T

T∑
t=1

ht(x) (5.1)

5.3.2 Gradient Boosting

Gradient Boosting is a machine learning algorithm that builds an ensemble of weak

prediction models, typically decision trees, in a sequential manner. It works by iteratively

adding models to correct the errors made by previous models. Each new model is trained

on the residuals of the previous models, optimizing the overall prediction. Formally, given a

dataset D = {(xi, yi)}ni=1, gradient boosting builds an ensemble of weak learners {ht(x)}Tt=1

by minimizing the loss function L(y, F (x)):

F (x) =

T∑
t=1

αtht(x) (5.2)

where αt is the step size at iteration t.

5.3.3 XGBoost

XGBoost (eXtreme Gradient Boosting) is an ensemble method that combines multi-

ple weak prediction models, typically decision trees, to create a strong predictive model.

XGBoost employs a unique gradient boosting framework that optimizes a loss function by

iteratively adding new models to correct the errors made by the previous models. For-

mally, given a dataset D = {(xi, yi)}ni=1, XGBoost builds an ensemble of T decision trees

{ht(x)}Tt=1 by minimizing the regularized loss function L(y, F (x)) + Ω(ht):

F (x) =

T∑
t=1

ht(x) (5.3)

where Ω(ht) is the regularization term that controls the complexity of the decision trees.
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5.3.4 LightGBM

LightGBM (Light Gradient Boosting Machine) is a gradient boosting framework that

uses tree-based learning algorithms. It employs a novel technique called Gradient-based

One-Side Sampling (GOSS) to select the most informative instances for training, resulting in

faster convergence and reduced memory usage. Given a dataset D = {(xi, yi)}ni=1 consisting

of n observations, LGBM builds an ensemble of decision trees {ht(x)}Tt=1 using a gradient-

based boosting framework. The final prediction for a new observation x is obtained by

summing the individual tree predictions, weighted by the learning rate (η):

H(x) = η

T∑
t=1

ht(x)

where η is the learning rate that scales the contribution of each individual tree predic-

tion in the final ensemble prediction.

5.3.5 ExtraTrees

ET, or Extra Trees, is an ensemble learning algorithm that is similar to Random

Forests. It builds multiple decision trees using bootstrapped subsets of the training data.

However, unlike Random Forests, ET selects random splits for each feature and does not

perform feature-specific threshold optimization. The final prediction is made by averaging

the predictions of all the individual trees. Formally, similar to Random Forest, Ensemble

Trees (ET) is a machine learning algorithm that builds an ensemble of decision trees using

bootstrapped subsets of a given dataset D = {(xi, yi)}ni=1. The final prediction in ET is

obtained by averaging the individual tree predictions, as shown in the following formula:

H(x) =
1

T

T∑
t=1

ht(x) (5.4)

5.3.6 Mean Ensemble

The mean ensemble model combines predictions from the five classifiers, including Ran-

dom Forest (RF), XGBoost (XGB), LightGBM (LGBM), Extra Trees (ET), and Gradient
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Boosted Classifier (GBC), by averaging their predictions. By integrating the strengths of

each classifier and mitigating biases or weaknesses, this ensemble approach enhances gen-

eralization performance and accuracy. The diverse modeling techniques of these classifiers

contribute to the ensemble’s ability to capture a wide range of patterns and make more ro-

bust predictions. Overall, the mean ensemble strategy serves as a powerful tool in machine

learning for achieving improved predictive performance.

5.4 Implementation Settings

After extracting all the features as explained in Chapter 5.1, we standardized both

training and evaluation data using the StandardScaler package from scikit-learn [70]. Stan-

dardization helps to bring the features to a common scale, enabling fair comparisons and

preventing features with larger magnitudes from dominating the model’s learning process.

For tuning the hyperparameters of each predictive model mentioned in Chapter 5.3, we

utilized the RandomizedSearchCV from scikit-learn. We performed 10-fold cross-validation

while tuning the hyperparameters. Additionally, we used the scikit-learn package to imple-

ment the Random Forest, Gradient Boosting, and Extra Trees methods. For the XGBoost

model, we employed the XGBoost Python package [71], while we used the lightgbm pack-

age [72] for implementing the LGBM model. We made use of the node2vec package1 for the

node2vec implementation described in Chapter 5.2. The hyperparameters used in learning

node embeddings with node2vec are as follows: embedding dimension: 32, number of walks:

100, walk length: 10, and window size: 10. Ultimately, we implemented all the evaluation

metrics mentioned in Chapter 5.5 using the scikit-learn package.

5.5 Evaluation Metrics

We utilized different evaluation metrics to measure the performance of our predictive

models. These metrics allowed us to quantitatively assess the effectiveness and accuracy of

our models in making predictions. Let TP, FP, TN, and FN are the number of true positive,

1https://pypi.org/project/node2vec/

https://pypi.org/project/node2vec/


46

false positive, true negative, and false negative samples, respectively. The following are the

definitions of the metrics used for evaluation:

Accuracy is a metric that measures the overall correctness of a model’s predictions. It

calculates the ratio of the number of correct predictions to the total number of predictions

made.

Accuracy =
TP + TN

TP + FP + TN + FN

Precision is a metric that quantifies the model’s ability to correctly identify positive

instances out of the total instances it predicted as positive.

Precision =
TP

TP + FP

Recall measures the model’s ability to identify all positive instances correctly.

Recall =
TP

TP + FN

F1-score is the harmonic mean of precision and recall. It provides a single metric that

combines both precision and recall, giving a balanced measure of a model’s performance.

F1-score = 2× Precision×Recall

Precision+Recall

AUC measures the ability of the model to correctly classify positive and negative

samples across different thresholds. It represents a probability curve that quantifies the

model’s separability between classes. A higher AUC indicates better predictive capability,

as it signifies a stronger ability to accurately classify samples as belonging to their respective

classes.

5.6 Experimental Results

Table 5.3 summarizes the results of our extensive experiments. We define three ex-

perimental settings to illustrate the effectiveness of graph embedding techniques in the
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Table 5.3: Performance of developed ML models across three settings and for different
evaulation metrics. In each column and for each setting, the bold value indicates the best
model according to that metric. The underlined value indicates the best across all settings.

Setting Model Accuracy Precision Recall F1 score AUC

(I)
Hand-crafted features

(Chapter 5.1)

XGBoost 0.72238 0.74441 0.80658 0.77425 0.78295

Random Forest 0.71402 0.73045 0.81694 0.77128 0.77005

Extra Trees 0.69865 0.70906 0.83001 0.76479 0.74925

LGBM 0.72370 0.74361 0.81177 0.77620 0.78473

Gradient Boosting 0.72257 0.74296 0.81030 0.77517 0.78245

Mean Ensemble 0.72437 0.74043 0.82075 0.77853 0.78383

(II)

Student
+

Problem embedding
(Chapter 5.2)

XGBoost 0.68305 0.72894 0.73711 0.73300 0.73251

Random Forest 0.69458 0.72626 0.77444 0.74958 0.74286

Extra Trees 0.69094 0.72168 0.77543 0.74759 0.74115

LGBM 0.68579 0.72203 0.76039 0.74071 0.73338

Gradient Boosting 0.69068 0.72525 0.76621 0.74517 0.73982

Mean Ensemble 0.69165 0.72763 0.76329 0.74504 0.74174

(III)

Hand-crafted features
(Chapter 5.1)

+
Problem embedding

(Chapter 5.2)

XGBoost 0.70857 0.74560 0.76843 0.75685 0.76520

Random Forest 0.71218 0.73662 0.79750 0.76585 0.77084

Extra Trees 0.71737 0.74689 0.78831 0.76704 0.77279

LGBM 0.71967 0.74990 0.78780 0.76838 0.78145

Gradient Boosting 0.71507 0.74887 0.77825 0.76328 0.77443

Mean Ensemble 0.72784 0.74979 0.80880 0.77818 0.78977

end-of-unit grade prediction task.

❑ Setting (I): This setting only uses hand-crafted features, detailed in Chapter 5.1, as

input to the machine learning models. These features are derived from the raw data

without the application of graph embedding techniques. The aim here is to evaluate

the performance of models based on explicit feature engineering.

❑ Setting (II): This setting uses a combination of the end-of-unit problem embeddings

and student embeddings as inputs to the models. Embedding techniques are used here

to represent the problems and students in a high-dimensional space. The purpose of

this setting is to investigate the effectiveness of embedding methods in representing

students and problems.

❑ Setting (III): In this setting, the models are trained on data that combines both

hand-crafted features and problem embeddings. This setting is designed to study

whether the combination of hand-crafted features and embeddings can improve the

performance of the models in predicting students’ scores.
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Based on the results presented in Table 5.3, we make the following observations.

➪ In setting (I), which uses only hand-crafted features, the Mean Ensemble model per-

forms best in terms of accuracy and F1 score. Notably, Extra Trees model gives the

best recall, indicating that it is the best at identifying true positive cases.

➪ For setting (II), where we use the embeddings of the student and end-of-unit problem,

the Random Forest model seems to outperform the others, providing the highest

accuracy and F1 score. However, the Extra Trees model provides the highest recall,

similar to setting (I).

➪ In setting (III), where both hand-crafted features and problem embeddings are used,

the Mean Ensemble model outperforms all other models in terms of accuracy, F1

score, and AUC. This shows the benefits of combining various models’ predictions.

➪ In setting (I), all models perform very closely to each other in terms of AUC, suggesting

that hand-crafted features can provide a consistent baseline for different models.

➪ In setting (II), despite only using low-dimensional features and lacking information

related to students’ actions within the units, a relatively high AUC is achieved. This

indicates the power of embedding techniques in capturing complex structural relation-

ships in the data without the need for complicated hand-crafted features, which may

not be obtained readily.

➪ In setting (III), the results not only confirmed the effectiveness of graph embedding but

also showed that combining these embeddings with hand-crafted features can further

enhance prediction performance. This setting achieved the best results in terms of

accuracy and precision among all settings.

➪ The Mean Ensemble model consistently demonstrates strong performance across all

settings, often achieving the highest or near-highest values for several metrics. This

suggests that the ensemble approach, which leverages the strengths of multiple models,

can effectively enhance the prediction performance.
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➪ The Extra Trees model shows particular strength in recall across both settings I and

II, indicating its ability to correctly identify positive instances in the dataset.

➪ XGBoost performs consistently well, particularly in terms of precision in settings I

and III. This highlights the model’s ability to limit the number of false positives in

its predictions.

➪ LightGBM and Gradient Boosting have relatively stable performance across different

settings, showing their robustness in different feature spaces.

➪ The performance of Random Forest is notably high in setting II, where only embed-

dings are used, demonstrating its ability to handle high-dimensional data.

➪ Overall, we observe that combining hand-crafted features with problem embeddings

(setting III) provides the highest performance across most metrics, underlining the

importance of integrating domain-specific features with learned embeddings for ed-

ucational grade prediction. Notably, the AUC, the metric used in EDM Cup 2023

Kaggle Competition, is the highest in this setting compared to the other two.

Feature Importance. Figure 5.2 demonstrates the relative importance of different

hand-crafted features in predicting the student grade in setting (I). We make the following

observations based on the results presented in this figure.

➪ The most important feature appears to be the end-of-unit problem text, which is

provided as a 32-dimensional embedding vector in the dataset.

➪ Actions that students took within the unit, such as tutoring requests and responses to

questions, are shown to significantly affect the student grades, reinforcing our analysis

in Chapter 4.1.

➪ The problem skill description and problem skill code also feature among the top 5

most important features, reflecting the relationship between students’ grades and the

skills they are being tested on. This point underscores the importance of our analysis

in Chapter 4.2.
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Fig. 5.2: Feature importance of hand-crafted features explained in Chapter 5.1

➪ The sequence folder path level 3, which describes what unit the sequence is part of, is

among the top 5 important features. More descriptions for other sequence path levels

can be found on the dataset website [49].

➪ The importance of available core tutoring types within the unit in predicting the

student’s grade is worth noting, implying that instructional methods can be indicative

of student performance.



CHAPTER 6

CONCLUSION

In this chapter, we begin by presenting a summary of our study in Chapter 6.1. Fol-

lowing this, we will delve into the limitations of our analytical framework and the dataset

in Chapter 6.2. We will conclude the chapter by highlighting several promising avenues for

future research in Chapter 6.3.

6.1 Summary

This thesis presented a machine learning approach to predict end-of-unit grades in an

intelligent tutoring system, specifically focusing on the ASSISTments learning platform.

The study explored the use of both hand-crafted features and graph representation learning

to improve prediction accuracy. The thesis began by introducing the motivation behind the

study, highlighting the importance of predicting student performance in educational sys-

tems to provide personalized interventions and support. It also emphasized the potential

of intelligent tutoring systems to enhance student learning outcomes. Next, we discussed

the dataset used in the study, which contained detailed information about student actions,

problem features, and performance outcomes. We explained how various features, such as

problem text, student actions, problem skills, and sequence information, were extracted

from the dataset to create hand-crafted features for prediction. The thesis then delved

into graph representation learning, where relationships between entities in the dataset were

modeled using a graph structure. Five entities, including students, teachers, classes, prob-

lems, and sequences, were represented as nodes in the graph, and connections between

them were defined as edges. The constructed graph provided valuable structural informa-

tion for predicting end-of-unit grades. After constructing the graph, a random walk-based

representation learning algorithm called node2vec was employed to map the nodes to an

embedding space. The node2vec algorithm captured the local neighborhood information of
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each node and generated low-dimensional vector representations. The learned embeddings,

along with the hand-crafted features, enriched the representation of end-of-unit problems

and enhanced the prediction accuracy. To evaluate the predictive models, we employed an

assortment of machine learning algorithms, including Random Forest, Gradient Boosting,

XGBoost, LightGBM, Extra Trees, and a Mean Ensemble of these models. Each model

was evaluated based on various metrics such as accuracy, precision, recall, F1 score, and

AUC. The thesis defined three experimental settings to analyze the effectiveness of hand-

crafted features and graph embeddings. The results of the experiments showed that the

Mean Ensemble model consistently performed well across different settings, often achieving

the highest or near-highest values for multiple metrics. The combination of hand-crafted

features and problem embeddings (Setting III) yielded the best performance, indicating the

importance of integrating domain-specific features with learned embeddings. The Extra

Trees model demonstrated strength in recall, XGBoost exhibited stability and precision,

and Random Forest performed effectively in handling high-dimensional data. The thesis

also included a feature importance analysis, which highlighted the significance of different

hand-crafted features in predicting student grades. Features related to problem text, student

actions within the unit, problem skills, and sequence information contributed significantly

to the prediction performance.

In conclusion, the thesis provided an in-depth analysis of student behavior in the AS-

SISTments learning platform. We discovered meaningful and informative patterns about

tutoring requests and CCSS-related skill mastery/non-mastery. Also, the thesis presented a

comprehensive machine learning approach to predict end-of-unit grades in the ASSISTments

learning platform. By combining hand-crafted features and graph embeddings, the study

achieved improved predictive performance. The findings emphasized the power of ensemble

learning and the importance of integrating domain-specific knowledge with learned repre-

sentations. The results had practical implications for the development of intelligent tutoring

systems and personalized learning interventions to support student success in educational

settings.
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6.2 Limitations

While the machine learning approach presented in this thesis has shown promising re-

sults in predicting end-of-unit grades in the ASSISTments learning platform, it is important

to acknowledge several limitations that should be considered when interpreting the findings

and implications of this research.

✘ End-of-unit Test Administration Clarification: The administration method of

end-of-unit tests remains ambiguous. For example, it’s uncertain whether these tests

have an associated action log. Obtaining further details about these end-of-unit tests

could potentially enhance our analysis and score prediction capability.

✘ Concealed Problem Text: As highlighted in Chapter 5.6 (Figure 5.2), the prob-

lem’s textual description is a key feature in predicting end-of-unit problem scores.

Regrettably, we only had access to the BERT embedding of the text; the actual de-

scription remained undisclosed. We posit that access to this textual information could

provide deeper insights into the nature of the problems, potentially leading to a more

comprehensive understanding of students’ behavior and the ASSISTments platform.

✘ Generalizability of Findings: The findings and results of this study are based

on a specific dataset from the ASSISTments learning platform. The generalizability

of the predictive models and their performance in other educational platforms or

contexts may vary. Different platforms may have unique features, student populations,

or educational settings that could impact the effectiveness and applicability of the

models.

✘ Data Availability and Completeness: The availability and completeness of the

data can affect the accuracy and robustness of the predictive models. In this study, the

analysis relies on the data provided by the ASSISTments learning platform, which may

have limitations or missing data points. The presence of missing data or incomplete

records could introduce biases or impact the model’s ability to capture certain patterns

or relationships.



54

✘ Limited Feature Space: The feature space used in the predictive models is based

on the available data and domain-specific features. While efforts have been made to

extract relevant features, there may be other unexplored features or contextual factors

that could potentially improve the prediction accuracy. Incorporating a wider range of

features, such as additional demographic or socio-economic information, may provide

a more comprehensive understanding of student performance.

✘ Potential Bias and Fairness Issues: Predictive models in educational contexts

need to be carefully evaluated for potential biases and fairness issues. The models’

predictions and outcomes may be influenced by factors such as student demographics,

prior academic performance, or socio-economic backgrounds. It is important to assess

the models’ performance across different subgroups to ensure they are not perpetuat-

ing existing inequalities or disadvantaging certain student populations.

✘ Causality and Interpretability: Predictive models provide associations and corre-

lations between variables but may not establish causal relationships. While the models

can accurately predict end-of-unit grades, they may not fully explain the underlying

factors or mechanisms driving student performance. Further research is needed to

uncover the causal links and provide a deeper understanding of the factors that con-

tribute to student success.

✘ Ethical Considerations: The use of predictive models in education raises ethical

considerations related to student privacy, informed consent, and data protection. It

is crucial to adhere to ethical guidelines and regulations to ensure the responsible and

ethical use of student data. Safeguards should be implemented to protect student

privacy and ensure data security throughout the data collection, analysis, and storage

processes.

✘ Human Factors and Teacher Influence: The predictive models in this study

focus primarily on student-level factors and do not explicitly consider the influence

of teachers or instructional practices on student outcomes. Teachers play a crucial
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role in shaping student learning experiences, and their impact on student performance

should be taken into account for a comprehensive understanding of grade prediction.

By acknowledging these limitations, researchers and educators can better interpret the

findings of this study and recognize areas where further research and improvements are

needed. These limitations provide opportunities for future research to address the gaps and

refine the predictive models for more accurate and contextually relevant grade predictions.

6.3 Future Directions

While the presented machine learning approach for predicting end-of-unit grades in the

ASSISTments learning platform has provided promising results, there are several potential

future directions that could further enhance the predictive performance and extend the

research in this domain.

✰ Integration of Additional Data Sources: Exploring the integration of additional

data sources, such as demographic information, socio-economic factors, or prior aca-

demic performance, could provide a more comprehensive understanding of student

behavior and improve the accuracy of grade predictions. By incorporating a wider

range of features, the models may capture additional patterns and relationships that

contribute to student success.

✰ Temporal Analysis: Conducting a more detailed temporal analysis could offer in-

sights into the progression of student performance over time. Examining how student

actions and problem-solving skills evolve throughout a unit or across multiple units

could provide valuable information for predicting end-of-unit grades. Temporal mod-

eling techniques, such as recurrent neural networks or attention mechanisms, could

be explored to capture the sequential nature of student interactions.

✰ Dynamic Adaptation: Investigating the potential for dynamic adaptation in the

prediction models could further enhance their effectiveness. By continuously updating

and adapting the models based on real-time student data, the models can be fine-tuned
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to account for individual variations and changes in student behavior. This adaptive

approach would enable more personalized and timely interventions to support student

learning and improve grade prediction accuracy.

✰ Interpretability and Explainability: Enhancing the interpretability and explain-

ability of the predictive models is crucial for building trust and understanding in the

educational context. Developing techniques to explain the model’s predictions and

provide transparent insights into the features and relationships influencing the pre-

dictions would be valuable. This could facilitate effective communication between ed-

ucators, students, and other stakeholders, leading to more informed decision-making.

✰ Transferability and Generalizability: Assessing the transferability and generaliz-

ability of the developed models to other educational platforms and contexts would be

valuable. Validating the models on diverse datasets from different educational systems

or domains would provide insights into their robustness and applicability beyond the

specific ASSISTments learning platform. This would contribute to the broader field

of educational data mining and help identify best practices for grade prediction in

various settings.

✰ Intervention Strategies: Moving beyond grade prediction, exploring the potential

for developing intervention strategies based on the predictive models could be an in-

teresting avenue for future research. Leveraging the predictions to identify students

at risk and designing targeted interventions or adaptive learning paths could have

a significant impact on student outcomes. Evaluating the effectiveness of these in-

terventions and their impact on student performance would be an important next

step.

✰ Ethical Considerations: As with any predictive modeling in education, ethical con-

siderations should be a priority. Investigating potential biases, fairness, and equity
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issues in the predictive models should be addressed. Ensuring that the models are sen-

sitive to individual differences, avoid perpetuating inequalities, and promote inclusive

educational practices is crucial.

By exploring these future directions, researchers can further advance the field of pre-

dictive analytics in intelligent tutoring systems, improve the accuracy of grade predictions,

and contribute to the development of effective personalized learning interventions to support

student success.
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