10-17-2014

Cathodoluminescence Events Coincident with Muon Detection

Kenneth Zia

Justin Dekany
Utah State University

JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Condensed Matter Physics Commons

Recommended Citation
Kenneth Zia, Justin Dekany and JR Dennison, "Cathodoluminescence Events Coincident with Muon Detection," American Physical Society Four Corner Section Meeting, Utah Valley University, Orem, UT, October 17-18, 2014.
Motivation

High energy cosmic rays interacting with the upper atmosphere decay into Muons that are present at the surface. Due to interactions with the atmosphere, they have a decay rate that is proportional to the altitude. With this correlation we were able to determine counts per minute on the order of ~1 hour in Logan Utah (altitude 1370 m). Fig. 2 also shows and angle dependence though the muon’s decay.

Abstract

Samples of highly disordered insulating material were irradiated with 1 keV electron beams, resulting in three forms of light emission with differing duration: arcs (~1 s duration), flares (~100 s), and cathodoluminescence (as long as beam is on). The arc and cathodoluminescence phenomenon are well understood, while the flares are not. Flares were observed at intervals of ~2 per hr. This is within a factor of 2 for the expected muon cross-section at an altitude of Logan, UT (1370 m) caused by high altitude cosmic rays. Based on this suggestive evidence, we have proposed incorporation of standard muon coincidence detection apparatus into our vacuum cathodoluminescence test facility. Measurements of the muon cross-section zenith angle and angle-dependence will provide calibration of the muon detector. If muon evidence coincides with the flare events, this will provide definitive evidence of the flare origin. We will discover whether a correlation between flares of charged sample are caused by transitory muons which trigger discharge and subsequent recharging during our testing of space materials.

Scintillators’ Setup and Calibration

Scintillator Construction

• Parts
 - Photomultiplier Tube (PMT)
 - Organic Scintillator

 A crystalline structured material that excites through interaction with cosmic rays and emits blue light.

• Assembly
 - Assembled into one unit with the scintillator attached to the PMT’s face and allows for optical transmission directly to the PMT.

Muon Detection and Coincidence

Detector Arrangement

- Limitations
 - Electron Emission Test chamber (EET chamber) has challenging geometry for placement of the detectors (See in Fig. 3)
 - Efficiency of finding coincidence with the detectors relies on the incident angle of the muons and is restricted by the chamber. (optimally the detectors would be closely positioned on top and bottom of the sample with very little room for the muons to interact with the sample while without being detected).

- Solution
 - By determining the angle with the greatest flux of muons, we can cut down efficiency of the detectors’ coincidence ability.

Muon Detection

- Muon decays in the atmosphere and travels into the laboratory.
- Muon interacts with first detector and creates a current pulse.
- Muon deposits charge onto the sample and creates a flare.
- Muon interacts with the second detector and joins the first pulse of current in the coincidence unit.

Coincidence

- All three sets of data (Detector 1, Detector 2, and EET chamber data) are collected into the discriminating coincidence unit to determine coincidence between the flare and muon.

Fig. 1: Current through sample vs. time showing the three types of emission. (b) Optical density vs. time showing the three types of emissions.[Dennison, 2011]

Fig. 2: Shows decay of cosmic rays into muons [Drake 2012]

Fig. 3: Vacuum chamber with scintillating detectors arranged around the sample.

Fig. 4: Coincidence experiment schematic.

Fig. 5: Hamamatsu R8233 PMT

PMT’s are checked for optimal operation voltage and current (minimize dark current). Scintillating detector is set at specific angles to determine the angle of incidence for maximum muon flux due to the decay at the specific altitude. Then with both scintillators, efficiency of the two being able to count the same particle at a set separation and angle are needed to account for the percentage of flares observed without proper coincidence with one scintillator detecting and the other not for wider or narrower angles of incidence.

Fig. 6: BNC Mounting apparatus for PMT

Bell-curve represents the atmospheric muons that are being detected.

Fig. 7: Angular dependence of muon counts [Landecker, 1976].

References and Acknowledgements

We gratefully acknowledge contributions from the Materials Physics Groups. This work was supported through funding from Space Dynamics Laboratory.

http://hermes.physics.adelaide.edu.au/astrophysics/muon/