2018

A Collaborative Solution to Harmful Algal Blooms in Utah

Kyle Hillman
Utah State University

Bethany Jensen
Utah State University

Ammon Balle
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/roch

Part of the [Biological Engineering Commons](https://digitalcommons.usu.edu/roch)

Recommended Citation

https://digitalcommons.usu.edu/roch/93
A Collaborative Solution to Harmful Algal Blooms in Utah

Kyle Hillman, Bethany Jensen, and Ammon Balle, *Utah State University* | Ronald Sims, Ph.D., *Utah State University*

The Problem

Harmful algal blooms (HABs)...
- affect Utah Lake, Scofield Reservoir, Jordanelle Reservoir, Mantua Lake, and other water bodies throughout Utah
- are toxic to public health, the environment, and the economy

Approach to Solution

- Three-step approach using detection, extraction, and sustainable disposal of HABs
- Detection using Utah Water Research Laboratory (UWRL) AggieAir unmanned aerial vehicle (UAV) technology
- Extraction using USU HAB harvester
- Disposal in Central Valley Water Reclamation Facility (CVWRF), Utah’s largest wastewater treatment plant and a potential option for biological treatment of toxic algae

Preliminary Results

- Light filters were able to differentiate toxic from non-toxic algae for potential UAV detection
- Prototype HAB harvester successfully extracted HAB algae
- Preliminary treatability test resulted in measurable cyanotoxin reduction in biological treatment using CVWRF anaerobic sludge
- Scientific literature and the UDEQ (Utah Department of Environmental Quality) agree that continuing and upscaling this research is necessary

Recommendations

- Continue supporting USU research, the UDEQ, and UWRL because they are leaders in battle against HABs in Utah

Figure 3 – Measureable reduction of cyanotoxin using CVWRF biological treatment with no change in control