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ABSTRACT

Decentralized Unknown Building Exploration By Frontier Incentivization And Voronoi

Segmentation in a Communication Restricted Domain

by

Huzeyfe M. Kocabas, Doctor of Philosophy

Utah State University, 2023

Major Professor: Mario Harper, Ph.D.
Department: Department of Computer Science

Multi-robot exploration in communication-restricted environments presents significant

challenges posed by adaptability and complexity persists as unsolved puzzles. While mak-

ing progress, existing approaches in the decentralized domain often fail due to falsely base-

lined assumptions, such as overestimating the feasibility of information broadcasting among

agents, assuming the presence of a central oracle for exploration termination, and overlook-

ing the computational overheads associated with path planning algorithms.

This dissertation delves into the advantages of agent distribution within an area, sig-

nificantly reducing exploration time. It first addresses the city roadway coverage problem

using a single agent to minimize travel distance, then explores the integration of multiple

agents to enhance efficiency. The proposed approach involves dividing the city into subar-

eas, calculating postman routes, and optimizing these segments. Strategic selection of UAV

vehicles further complements the methodology. Simulation results affirm the method’s ef-

ficacy, demonstrating improved coverage time and enabling informed decision-making by

city municipalities, accounting for cost-related considerations.

Extending the area division technique to unknown building exploration, the research

evaluates various strategies tailored to building exploration. Comparison between frontier
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and unknown target selection strategies is performed, considering factors like area allocation,

agent distribution within buildings, robot count, potential agent loss, and environmental

density. The introduced unknown goal selection strategy, driven by its greedy nature and

superior agent spreading capabilities compared to frontier counterparts, excels in coordi-

nating agents for unknown building exploration.

Additionally, the dissertation addresses the challenge of exploring unknown areas in

communication-restricted domains, employing two core techniques: implicit incentivization

of frontiers through an agent detection system and area segmentation via Voronoi parti-

tioning. These methods enhance exploration performance by promoting independence and

implicit coordination. Simulation results demonstrate the algorithms’ effectiveness across

diverse communication scenarios.

The proposed techniques have been validated with multiple simulation testing, estab-

lishing theoretical performance bounds. The results highlight a substantial performance

boost in communication-restricted domains, achieved through our combined approach of

Voronoi partitioning and implicit coordination, guiding agents efficiently within the envi-

ronment.

(87 pages)
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PUBLIC ABSTRACT

Decentralized Unknown Building Exploration By Frontier Incentivization And Voronoi

Segmentation in a Communication Restricted Domain

Huzeyfe M. Kocabas

Exploring unknown environments using multiple robots poses a complex challenge, par-

ticularly in situations where communication between robots is either impossible or limited.

Existing exploration techniques exhibit research gaps due to unrealistic communication

assumptions or the computational complexities associated with exploration strategies in

unfamiliar domains. In our investigation of multi-robot exploration in unknown areas, we

employed various exploration and coordination techniques, evaluating their performance in

terms of robustness and efficiency across different levels of environmental complexity.

Our research is centered on optimizing the exploration process through strategic agent

distribution. We initially address the challenge of city roadway coverage, aiming to minimize

the travel distance of each agent in a scenario involving multiple agents to enhance overall

system efficiency. To achieve this, we partition the city into subregions and utilize Voronoi

relaxation to optimize the size of postman distances for these subregions. This technique

highlights the essential elements of an efficient city exploration.

Expanding our exploration techniques to unknown buildings, we develop strategies

tailored to this specific domain. After a careful evaluation of various exploration techniques,

we introduce another goal selection strategy, Unknown Closest. This strategy combines the

advantages of a greedy approach with the improved dispersal of agents, achieved through

the randomization effect of a larger goal set.

We further assess the exploration techniques in environments with restricted communi-

cation, presenting upper coordination mechanisms such as frontier incentivization and area
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segmentation. These methods enhance exploration performance by promoting indepen-

dence and implicit coordination among agents. Our simulations demonstrate the successful

application of these techniques in various complexity of interiors.

In summary, this dissertation offers solutions for multi-robot exploration in unknown

domains, paving the way for more efficient, cost-effective, and adaptable exploration strate-

gies. Our findings have significant implications for various fields, ranging from autonomous

city-wide monitoring to the exploration of hazardous interiors, where time-efficient explo-

ration is crucial.
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CHAPTER 1

INTRODUCTION

Exploration of an unknown area stands as a fundamental challenge in robotics, where

systems must often navigate and explore unfamiliar environments efficiently and safely [1,2].

A robot’s ability to effectively explore and understand the operational workspace is critical

for navigation and task/mission completion [3, 4]. Key tasks for successful exploration

include navigating through the environment, obstacle avoidance, and accurate mapping of

the surroundings [5]. Uncertainties associated with unexplored environments compound

the exploration process (unpredictable map, sensor limitations), emphasizing the need for

exploration capabilities that can adapt and perform effectively [5, 6].

In recent years, the demand for autonomous exploration has surged across various do-

mains, including search and rescue operations [7–10], city-wide monitoring [11,12], disaster

response [13, 14], and space exploration [15–17]. Consequently, researchers are developing

exploration algorithms to cater to diverse needs, ensuring that robots can explore unknown

areas with precision and reliability [18,19].

An exploration algorithm’s primary goal is to complete exploration tasks in the shortest

possible time, especially in time-critical applications [20, 21]. Achieving this goal necessi-

tates careful sub-goal selection and navigation, which attempts to explore large areas of an

unknown map with minimal travel [22, 23]. This exploration heavily relies on the robot’s

sensor capabilities to perceive the environment and the algorithms that devise strategies

to navigate to the optimal location [22, 23]. While this task is relatively straightforward

for a single robot, it becomes significantly more challenging when multiple robots are in-

volved. In multi-robot exploration, effective robot coordination is crucial to ensure the

timely completion of exploration tasks [24, 25]. Coordinating these robots is essential to

prevent them from exploring the same area, a challenge that persists even in environments

where communication between robots is allowed.
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Robot deployment in communication restricted environments increases complexity as

each platform cannot access communication networks for data sharing or localization via

Global Positioning System (GPS) [26,27]. This challenge arises from the inability to share

information among robots, necessitating a heavy reliance on individual sensor capabilities

to navigate and explore unknown environments. In these environments, localized commu-

nication (Peer-to-Peer (P2P)) between robots may still be possible, but even this may be

denied in certain applications (military) [28, 29]. In such cases, robots face the daunting

task of exploring unknown areas in teams with little coordination and rely on traditional

algorithms for exploration.

The most common unknown area exploration algorithms are based on a closest Frontier

exploration strategy [30], depending on the specific choice in the algorithm, the frontier

selection can be modified to improve performance [31]. However, most of these approaches

are either tested in specific environments [32, 33], assume the capability of data sharing

between agents [34], or with a central map (oracle) [35]. However, these approaches are

not applicable in fully communication-restricted domains where robots cannot share any

information.

To address these challenges, task allocation strategies such as Voronoi partitioning of

the exploration area can be utilized to assign independent sub-tasks to each robot [32, 36,

37]. The subregions of the partitioned area are assigned to robots at the beginning phase

of exploration. After the task allocation, robots explore their assigned area without any

communication or explicit coordination. This approach can be used in a wide range of

applications when communication is fully restricted, and robots fully rely on their own

sensor capabilities to explore unknown areas.

We can partially relax the zero-communication condition to improve coordination lo-

cally, without explicit sharing of information among agents. Robots can utilize signal

strength to estimate other robots’ locations in the operation domain. Utilizing this in-

formation, an implicit coordination mechanism can be developed which chooses frontiers
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differently. Combining the Voronoi partitioning and agent detection mechanism, robots im-

prove exploring individual subregions and better coordinates in their assigned subdomains.

This document details the technology developed for multi-robot coverage, exploration,

and coordination in uncertain and unknown maps. In Chapter 2, we demonstrate how to

cover a city in a timely manner using multiple robots by subdividing the city road network

into subregions and assigning a similar load of work to each agent. Chapter 3 details

a similar area division technique applied in unknown buildings and measures its effects

on exploration performance. Also, the potential loss of agents during exploration and its

impact on the speed of exploration can be observed. Chapter 4 explains the coordination

using Voronoi partitioning and agent detection mechanisms under various communication

restrictions.

1.1 Key Contributions

The major contributions of this work are listed:

• A novel approach to cover a city using multiple robots subdividing the city network

and assigning a similar load of work to each agent. (Chapter 2)

• Demonstration of the benefits of segmentation of unknown building and different

distribution techniques’ performances under different complexity of building maps

(Chapter 3)

• Investigating the performance effects of exploration strategies under the two agent

loss scenarios (full loss and recoverable) (Chapter 3)

• Coordinating multiple agents in various levels of communication restricted domains

using Voronoi partitioning and agent detection mechanism (Chapter 4)



CHAPTER 2

CITY ROADWAY COVERAGE

2.1 Motivation and Earlier Work of Roadway Coverage

In recent years, Unmanned Aerial Vehicle (UAV) systems have been used in various

key tasks related to smart cities such as package delivery, wireless access points, traffic

monitoring, firefighting, and agriculture [38–40]. UAV applications in smart cities often

include many drone platforms operating simultaneously to complete missions and tasks.

While safety and security is crucial to improve adoption in future smart cities, operating

quality and stability of drone deployments in urban areas has often slowed their use.

2.1.1 UAV Deployment Challenges

While UAVs have the potential to significantly improve future smart cities, there are

implementation challenges. Some are policy-based, such as UAV flight regulation; others

are technical (software and hardware) limitations such as battery, payload, and intelligent

autonomy.

While developments in rotor-type UAV technology constantly push the envelope of

capabilities, significant hurdles remain in exploring faster, longer-ranged systems. In par-

ticular, typical rotor-type UAV systems operate at a range and speed, often directly tied to

battery capacity, that is generally only 30-45 minutes; thus limiting UAV-based ITS opera-

tions. Conversely, fixed-wing UAV systems have larger payloads and longer operation times

and ranges. However, due to holonomic constraints that limit sudden changes in direction,

fixed-wing UAV systems are not well suited for road network monitoring.

Full roadway coverage at city-scale within reasonable times requires a drone asset with

high velocity and maneuverability. Many current applications of municipal UAV surveil-

lance, such as the Flying Police Eye [41], struggle to perform as the operating velocity of
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a UAV is unable to keep up with moving vehicles. Other drone surveillance approaches,

such as high-velocity UAVs at high altitudes, benefit from a wide field of view and lack of

building obstruction in flight, but cannot capture detailed information to support a high

degree of Intelligent Transportation Systems (ITS) observability. These systems are also

challenging to maintain and deploy, thus difficult to justify their high operating costs.

An ideal solution to rapid city full-roadway observation is to simultaneously deploy

many UAVs to operate in different parts of the city. Current approaches require a human

supervisor, per policy in many countries, to determine boundaries for individual or swarms

of UAVs. Human direct supervision is still essentially required to guide, control, and patrol

using UAVs as they add to existing ITS burdens. Thus, autonomously determining the

number of agents, their deployment positions, and assigning routes/tasks that lie within

agent capabilities is crucial.

2.1.2 Voronoi Methods for Multi-Drone Coverage

Many of the modern approaches regarding the area division problem in multi-drone

context [42,43] rely upon Lloyd’s algorithm [44] or the Voronoi partitioning [45]. Although

these approaches are suitable to apply to the two-dimensional euclidean distance plane,

dividing the city streets as euclidean spaces does not give an optimum solution for multi-

drone deployment as roadways are rarely evenly distributed homogeneously, a requirement

for many voronoi relaxation techniques [46]. While applying a Voronoi space partitioning

onto a city network gives equally divided areas, the street lengths in these areas would vary

significantly.

2.2 Method

2.2.1 City Graph Representation and Postman Problem

We created a simulation environment that demonstrates multi-drone systems coverage

for city map with various network structures. During the creation of this environment,

we accessed city networks using OpenStreetMap and NetworkX (OSMnx), a Python pack-
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age that leverages geospatial data from OpenStreetMap [47] to analyze street networks.

OpenStreetMap encodes information valuable for drone-based city street coverage such as

intersection positions, road segment lengths, and geographic and locally projected coordi-

nate systems. Street network analysis using NetworkX (a tool designed for complex graph

structures) was also leveraged.

Fig. 2.1: The Postman algorithm demonstrated in a sub-region of North Logan, Utah, USA.
This route contains 116 total road traversals. Although the total length of all roads in this
sub-region is 17.76km, the postman route requires a minimum of 24.1km due to inevitable
backtracking. Red arrows illustrates this from step 93 to 97, two inevitable returns happened
during steps 95 and 97.

After accessing the street data through OSMnx, we investigated how an agent (e.g.

drone) would cover a road map with minimized cost, in distance or energy during its traver-

sal. We choose to employ Postman Coverage (also known as Chinese Postman Problem,

Postman Tour, or Route Inspection Problem) created specifically to determine the shortest

path through an undirected graph. The objective of the Postman Coverage algorithm we

employ is to optimize a route starting and stopping at a deployment point with the fewest
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number of ”re-visits” of road segments. Streets were further limited to only those drivable.

The optimized route that a drone would follow (shown in Figure 2.1) demonstrates how a

typical route would be computed.

Calculating a postman coverage route for a network, such as small city neighborhood

can be easily computed, however, as the network structure becomes more complex, more

time to calculate the postman route is required. This is because the complexity of the

Postman algorithm for undirected graphs is O(n3) [48]. Optimization then quickly becomes

computationally expensive due to the algorithm’s innate complexity.

When considering hardware limitations (as of the time of writing) of rotor-type drones,

maximum flight times (30-45 minutes) and flight speeds (16-21 meters per second) are

common. With these range and speed limitations, covering a street network with a single

drone is beyond the capability’s of any one platform. Multi-agent systems are then needed

to resolve limitations, this however depends on an algorithm that can intelligently assign

sub-regions and optimal routes from the full road-graph which honors platform capabilities.

2.2.2 Divide and Relax the City Network into Sub-Regions

To use multiple drones for a given city, each drone’s coverage task should be indepen-

dent of another to eliminate unnecessary overlap and collision risks. Additionally, the cov-

erage distances (based on a postman algorithm) of each sub-area is constrained at roughly

the same size based on the number of drones.

The standard postman algorithm is not well suited for application in dense and large

cities, due to the computational burdens stemming from searching through many roads,

and required development of an algorithm that divides the city into manageable sub-regions

that an agent can realistically cover. The developed algorithm called PMVC, is shown in

Algorithm 1.

These sub-regions are generated using the Voronoi graph method [46], having initial

centroids placed on the vertices of the road graph. Initial placement distributes the centroids

uniformly as this leads to a better initial seeding. All nodes and the edges (street and their

start/end points) on the graph are assigned to the closest centroid. Streets are often divided
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Algorithm 1: PMVC Algorithm

Input: OSM Map Object, Coordinate Values of Drones
Output: Divided Voronoi Map for Similar Traversal Time on Drones
Data: Following OSM City Maps: Logan, Tallahassee,Madrid

1 C ← number of drones
2 G← city graph
3 g ← sub-region of a city
4 C(l)← Selection of Drone Coordinates(G,C)
5 C(g)← sub-region for a drone,∀g ∈ G
6 for 10 ≤ C ≤ 50 do
7 List[C(g)] = CalcPostmanDistances(G,C(l))
8 M ← average(List[C(g)])
9 L = 0.3 ∗M

10 while C(g) < M − L or C(g) > M + L do
11 if C(g) < M − L then
12 if C(g) < L then

/* random placement in the biggest sub-region */

13 C(l)← MoveInBiggestSubregion

14 C(l)← Move Towards Neighbor

15 else if C(g) > M + L then
16 C(l)← Move Away Neighbor

17 else
18 C(l)← Keep Stable

19 CalcPostmanDistances(G,C(l))
20 CheckPotentialLoops(C(l), C(l prev))

into segments allowing a single road to partially belong to one voronoi region, improving

overall completion times.

After creating the initial Voronoi sub-regions of a city, we calculate the postman route

and the coverage distances for each sub-region similarly as applied in [49]. PMVC finds

the shortest closed path (or circuit) for a given graph (e.g. city neighborhood) such that it

visits every edge (e.g. street) on that graph.

Uniform initial seeding of voronoi centroids often produces postman coverage distances

that are significantly varied such that each agent is not guaranteed to have the same road-

way length. Initial regions are often too large for a drone to be able to cover within flight

times. PMVC algorithm reduces the difference between the largest and smallest route
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Fig. 2.2: Voronoi relaxation in 3 cities (Logan, Tallahassee, and Madrid). The first column
shows the base city network with driveable roads. The second column shows initial sub-
regions for twenty agents. The third column is the final sub-region placement after applying
PMVC, all route distances of sub-regions are now similar in length.

lengths of each sub-region to ensure all agents are able to cover their areas (shown in

Figure 2.2). It is computationally challenging to ensure identical route distances for all

drone regions, thus, a tolerance threshold was added based on the average route length of

sub-regions.

The Voronoi relaxation operates on a principle of attraction or repulsion from the most

or least valuable neighbor respectively, and each decision is based upon a calculation of a

weight factor. The sub-regions, which have a smaller postman coverage area than average

- tolerance (shown in Line 11 of Algorithm 1), move towards the most valuable neighbor

by calculating a weight factor as shown in equation 2.1. While the area of the neighbor is

positively correlated with the weight factor, the distance has the opposite effect. Due to the

city network complexity, in certain situations, some of the sub-regions’ postman distances

are even smaller than the tolerance value. In these circumstances, the centroid is re-located

under the sub-region that has the biggest postman distance.
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Fig. 2.3: Total postman coverage distances in relation to the number of agents. As additional
agents are deployed, total length of traversed roadway increases linearly. Dense cities (such
as Madrid) are not as impacted as sparse cities with longer average road segments.

weighti =
NeighborAreai

NeighborDistancei
(2.1)

Conversely, the sub-regions, which have a larger postman coverage area than average

+ tolerance (shown in Line 15 of Algorithm 1), move away from the least valuable neighbor.

To locate the least valuable neighbor, the algorithm calculates weight factors with each of

its neighbors using the equation 2.2. Both area and distance of a neighbor have a negative

correlation with calculated weight factors. In other words, having a small area as well as

proximity would lead to calculating a high weight factor, which means the least valuable

neighbor to move away.

weighti =
1

NeighborAreai ∗NeighborDistancei
(2.2)

Finally, the sub-regions, which their postman distances are already in the range of

(average - tolerance) and (average + tolerance) kept stable. Once every sub-regions’ total

postman distance is within tolerance, the algorithm outputs the finalized sub-regions as

shown in the right column of Figure 2.2.
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2.2.3 City and Drone Selection

We selected three different cities to test our simulation environment and observe general

performance. The cities were limited to having the same summed road lengths (250 km) to

observe the Voronoi relaxation in different road structure scenarios.

Cities were specifically selected based on specific road characteristics such as various

geometric shapes, highways in cities, the density of the streets, and the population of the city.

The first city (Logan, UT), is a comparatively small town with sparse roads and a simple

road system (measured by average road-to-road connections). A second city (Tallahassee,

FL) was chosen for its’ mix of multiple highway roads and densely populated areas. The

third city (Madrid, Spain) was picked being one of the most populated cities in Europe.

Table 2.1: Comparison of current modern drone types

Drone
Type

Transmission
Range (km)

Operational
Range (km)

Flight
Time
(min)

Max
Speed
(m/s)

Price
($)

A 9.0 48.0 40 20 2500
B 15.0 57.9 46 21 2049
C 12.0 35.3 31 19 999
D 12.0 32.6 34 16 759
E 10.0 29.7 31 16 449

To cover the 250 kilometers of roadway, we considered a range of 10 to 50 drones for

all three cities. Within this range, it is possible to find drones can cover potential sub-

regions. As stated earlier, each computed coverage route is inevitably significantly larger

than the theoretical minimum (25km each for 10 drones) due to necessary revisits. As the

Voronoi relaxation is a time-consuming process, the step size difference between the number

of drones picked was 5.

In each of the three cities, increasing the number of drones enhances the overall postman

distance covered by all drones (see Figure 2.3). Using 10 drones to cover Madrid’s 250km

portion will result in a total route distance of 300km, which is unavoidable as revisiting

streets becomes increasingly required. However, covering the same region with 50 drones
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will result in a total distance of roughly 320km, implying that increasing the number of

drones will increase re-visits, affecting the overall length of the full coverage route.

Several drones were chosen (Table 2.1) based on commercial availability in similar

application spaces. Their costs, flight speed, flight time, and operation range are listed.

Rather than mentioning the specific company or product names, we focus on the drone

characteristics. Any drones with those characteristics (flight time, speed, cost) could be

used to reproduce the results we listed here. We note the price difference among the selected

drones is affected by the hardware, sensors, and software associated as well. All considered

drones can be used for city coverage as they are equipped with long-range transmission and

can cover large amounts of area in terms of flight time and flight speeds.

2.2.4 Convergence Time of Regions

Fig. 2.4: Convergence completion time for PMVC technique for Voronoi relaxation in three
cities with respect to the number of drones. As the number of agents is increased the
computation time increases, and the dispersion of the convergence times also increases.

Finding the converged graph using PMVC algorithm takes time to compute because

of the Voronoi relaxation. This is due to the postman problem must be solved in each

iteration of the Voronoi relaxation. In addition, using different sizes of drone setups also

brings another burden to the algorithm. The relation of using various numbers of drones

and its effect over time to complete relaxation of the Voronoi sub-regions in three cities is
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demonstrated in Figure 2.4.

Increasing the number of agents has a direct correlation with the convergence time

to relax Voronoi regions. The regression line illustrates that the convergence time has an

increasing trend overall for all cities. When there are 20 or fewer drones on the map, the

algorithm converges and outputs the final sub-regions much faster compared to having more

drones. Even though there are highs and lows for a certain number of drones, starting from

using 25 or more drones, the convergence time is getting doubled for all three cities.

2.3 Simulation Results

Using the PMVC algorithm, 45 experiments were run. Various numbers of drone agents

were virtually deployed (from 10 to 50) for each city, average data is plotted from these

experiments Figure 2.5.

2.3.1 Coverage Time Across Cities

To assess the capabilities of the various drone types, road coverage completion time

is calculated based on the traversal area of each sub-graph for each individual drone. The

velocity and total length of roadway in the sub-graph is utilized to compute coverage time

as shown in Equation 2.3 where Nagents is the number of unique drones deployed, Gareai is

the PMVC determined road-length for sub-region i, and v ∗ 0.7 is the tolerance weighted

velocity.

timec =
( 1
Nagents

∑
Gareai)

(v ∗ 0.7)
(2.3)

The completion time of city-wide road coverage with different characteristic drones is

illustrated in Figure 2.5. While most maps, having a 250 km total road length, can be

covered with 10 drones within 40 minutes, the same map can be covered with 50 drones in

less than 10 minutes. Although all chosen drone platforms are capable of covering a given

city area with 50 units, a significant time difference in complete coverage exists. This is

largely due to the top-speed difference between systems. This time difference may be crucial
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Fig. 2.5: Completion time for city coverage using various numbers of drones. Due to
operating capacity of some drones, map coverage is only possible after deploying more
agents. To ensure mission completion and battery stability, drones operate under 70% of
their total manufacture stated capacity.

in some circumstances and should be weighed by adopters.

Not all drones are capable of covering the sub-regions if the drone count is too low,

causing PMVC to fail to find suitable full-coverage solutions. The drones that are less

capable (less flight time, slower speed) require more agents. Table 2.2 demonstrates this

relationship by stating the required minimum number of drones of each type to cover the

selected three cities. Further, this table denotes changes in coverage time as agent count is

increased.

Table 2.2: Comparison of city and drone types

Madrid Tallahassee Logan

Drone
Type

Min
Agents

Time
(min)

Cost
($)

Min
Agents

Time
(min)

Cost
($)

Min
Agents

Time
(min)

Cost
($)

A 10 38.11 25000 10 39.13 25000 11 39.10 27500
B 8 42.04 16392 8 44.03 16392 9 44.73 18441
C 13 30.60 12987 14 30.37 13986 15 30.04 14985
D 14 33.40 10626 15 33.27 11385 16 33.73 12144
E 15 30.70 6735 17 29.99 7633 18 30.51 8082

2.3.2 Cost Analysis and Recommendations

It was observed that deploying more inexpensive drones(e.g. D, E) might be more

cost-efficient than deploying fewer expensive drones(e.g. A, B). In the case of Tallahassee,



15

potentially deploying ten relatively expensive Type A drones results in more than three

times as much expense. The cost of running 20 type E drones is substantially lower while

getting better coverage. Costs per kilometer of coverage (shown in Figure 2.6) similarly

shows that less expensive drones (C, D, and E) is likely a superior option over A or B

drones. We note that these costs do not include installation of deployment platforms.

Deployment of Type-A drones is rarely in the interest of the city as they cover areas slower,

and cost significantly more.

Fig. 2.6: Coverage completion time and cost per agent for the five different drones consid-
ered. As drone count is increased, full city coverage time decreases as total cost per km
covered increases.

While results favor the use of many lower capacity systems, drones such as A and B

are capable of higher payloads which may be more suitable for smart city applications.

Some of these payloads may include sensitive cameras, additional thermal sensors, and

communication relay devices rendering these platforms more suitable than the affordable

drones. This work does not assess the applicability of these additional sensors, rather,

PMVC provides potential for cities to test their own drone platforms and unique road

systems in our environment.
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2.4 Conclusions

In this chapter, we highlighted pivotal insights for optimizing drone deployments in

urban environments. Deploying multiple, cost-effective drones is essential for efficient city-

wide coverage, significantly impacting coverage time and costs. However, we mainly focused

optimizing roadway coverage in well-defined urban environments with known travel condi-

tions.

It’s important to acknowledge that there are scenarios where the benefits of the PMVC

algorithm may not apply as seamlessly. In situations where observations are occluded or

domains are unknown, such as in interior building environments, much of the traditional

road network-based advantages of PMVC might be lost.

Interior exploration presents a distinct set of challenges and opportunities. When nav-

igating in the bounded interior space such as a building or facility, robots face complexities

like communication constraints, unpredictable objects/structures, and the need to make

real-time decisions about next potential region to travel. Addressing these challenges and

leveraging the capabilities of using multiple robots for interior exploration is a promising

area for future research. While PMVC has proven effective for outdoor roadway coverage,

developing new methods that account for uncertainty in unknown indoor environments is

essential.



CHAPTER 3

UNKNOWN BUILDING EXPLORATION

3.1 Partitioning of Unknown Environments

Building on the foundations established in the first chapter on urban roadway cover-

age optimization using Voronoi Relaxation, our research endeavors expand into uncharted

territories: interior building explorations. While our prior work shed light on the intri-

cacies of optimizing multiple agent deployments in well-defined urban environments, the

focus now shifts to the complexities of unknown and occluded spaces within buildings. This

paradigm shift introduces a new set of challenges and opportunities, demanding innovative

approaches that can navigate dynamic obstacles, adapt to unpredictable environments, and

make real-time decisions within confined spaces.

In this second chapter, we explore the utilization of Voronoi partitioning, a technique

we previously employed for outdoor roadway coverage, into interior building exploration

strategies. Our aim is to pioneer methods that seamlessly integrate Voronoi divisioning into

unknown area explorations, bridging the gap between structured outdoor environments and

intricate indoor spaces. By adapting and enhancing Voronoi-based algorithms, we pave the

way for more efficient, adaptive, and versatile robot explorations within diverse, complex

indoor settings.

3.2 Current Approaches in Autonomous Building Exploration

Unknown area exploration, which mainly focuses on generating maps of unknown envi-

ronments using single or multiple robots, has been studied over the years due to its applica-

bility in critical applications. One of the earlier and commonly used techniques in the field

is frontier-based explorations, first presented in [30]. The frontier method has been exten-

sively evaluated in the field [50–52] due to its ease of implementation and functionality in
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most situations. Later, frontier detections started to be adapted into 3D environments [53],

and used with aerial systems [54,55]. Further studies investigated frontiers that considered

information gain [56] or goal selection techniques from a set of frontiers [57]. While frontier-

based approaches are considered simple as they choose the closest available frontier, they

carry potential drawbacks that might lead to oscillatory behavior, where robots repeat-

edly navigate between advantageous frontiers. Additionally, when applied in multi-agent

scenarios, the strategy can induce leader-follower dynamics [58].

Sampling-based approaches overcome this issue since they randomly or strategically

produce multiple goal locations and assess the anticipated information gain that could

result in exploring each of those goals. Due to its nature of assessing the potential gain of

multiple goal locations, it is accepted as a more suitable approach for complex structures

[59] compared to frontier-based approaches. However, this approach is computationally

expensive due to the calculation of multiple locations’ information gain [60].

Later efforts studied the exploration of unknown areas taking advantage of either

frontier-based, sampling-based, or hybrid approaches. These include random walk [61],

greedy-based frontier explorations [32, 62], auction-based approaches [58, 63, 64], and seg-

mentation of unknown areas [65–67]. Among those studies, current multi-robot unknown

environment exploration approaches aim to minimize repeated coverage while improving

coordination and increasing exploration speed [31, 68, 69]. Few methods are wholly dedi-

cated to supporting unknown area exploration for complex interior structures and are more

suitable in general applications [70,71].

Both types of exploration algorithms (frontier and sampling-based) are commonly de-

signed to be greedy in nature. These methods choose from the closest frontiers [30,53,72,73]

or the sample that gives the highest information gain [74–76] is picked to reduce the travel

distance but increase exploration efficiency for robots. However, the field has been lacking

in illustrating how computationally efficient strategies based on FC will perform in com-

plex environments, and how they are affected by the initial distribution of robots in the

environment. Partitioning the search space to each agent is also critically important [37,77].
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Even though it has potential drawbacks, frontier-based exploration is still commonly

used in the field not only because of its simplicity [55] but also its theoretical understandabil-

ity and applicability. This chapter focuses on the importance of various factors in designing

a modified frontier-based exploration strategy (UC) with minimal computational require-

ments that perform well in complex environments. Investigating the impact of the initial

distribution of robots in the environment and how the environment’s segmentation could

affect the strategies’ performance were also tested in our experiments. While testing their

performance differences, robustness is also tested in each variant of exploration strategy to

assess impact in unknown and potentially hazardous environments.

3.3 Method

3.3.1 Simulation Design

Simulated buildings are represented as occupancy maps with a size of 100m x 100m.

The maps have a bounded area, and full exploration is always guaranteed to be possible in

randomly generated building maps by ensuring each room has at least one entrance.

Unknown exploration environments could be hostile, and two scenarios were bench-

marked to reflect this situation. In the first scenario (disrepair), a robot is entrapped or

entangled and can be recovered with the assistance of another robot. The scenario improves

the robustness of exploration strategies in situations requiring closer teaming and assesses

adaptability in complex, unpredictable circumstances.

In the second variation (Unrecoverable), robots receive irreparable damage (such as an

explosive mine). They cannot be rescued by others removing them from the scenario.

The simulation includes many parameters that alter the scenarios. These include the

number of robots, exploration strategies, starting scenarios, goal targets, robot failure, and

room density within the generated building.

The initialization of building search experiments is based on previously established

parameters, as illustrated in Figure 3.1 and 3.2. Within the simulation, robots are denoted

by red numerals accompanied by blue dots, while targets are marked by white numerals
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with black dots. Each robot employs a modified A* planner. The robot adjusts its planned

path upon detecting obstacles, like walls, or if another robot completed the exploration of

that target cell.

Fig. 3.1: Three phases of building exploration. Agents start from the top left and are
assigned initial search goals at the edge of the map to aid in dispersion. After reaching the
initial goals, the next goal is assigned based on the strategy in use.

Fig. 3.2: Segmentation of a map among 8 agents. The unknown area is allocated based on
Voronoi segments from the initial goal locations (Left - Edge of Map, Center - Center Map,
and Right - Equal Spread).

To evaluate the performance of exploration strategies in environments with varying

obstacle densities, we generated building layouts with three different minimum room sizes

(10, 20, and 30). Figure 3.1 shows an example of a room with a size of 10, where the walls

are represented by light-blue colored cells. Smaller room sizes (10) result in a higher density
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of rooms.

As the starting position of the robots can impact exploration, five initial configurations

are used to test performance: Edges of Map, Equal Spread, Random Location, Center of

Map, and Top Left Corner (3.2). Initial dispersion of the robot agents also follows, with

the same five locations used as initial navigation targets. These scenarios help understand

the effect of dispersion and starting location on exploration efficiency.

Simulated robots are equipped with a sensor range of 25 meters and can travel in any

of the eight adjacent cells. Travel speeds are adjustable but are set to 1m/s for simulation

experiments, enabling rapid traversal.

3.3.2 Exploration Strategies

Twelve exploration strategies are employed, and simplified acronyms will be used to

describe them (Table 3.1). A companion publication outlines each method and provides the

source code [73]. Exploration strategies access the shared map, where each cell is marked

as unknown, empty, or an obstacle. Frontiers, obstacles, and unknown areas (illustrated in

Figure 3.3) are sufficient to test the exploration strategies.

Frontier vs Unknown Navigation Strategies

Frontier-based strategies (FC, FR) inform robot navigation targets by only considering

available frontiers in the shared map (see Figure 3.3). The FC strategy picks the closest

unexplored frontier cell, while the FR strategy randomly chooses from any frontier. If both

robots use FC, they potentially select the same frontier cell. This is less common in FR

where the random selection encourages wider dispersion. The robots continuously update

their targets until the exploration is complete.

In addition to frontier strategies, Figure 3.3 also illustrates goal selection examples in

unknown spaces (UC, UR, VUHC, Voronoi Unknown Help Random (VUHR)). Unknown

exploration area strategy involves selecting navigation targets from the set of unknown areas

and often results in longer navigation, leading to higher dispersion and faster exploration.

The wider dispersion also results in mitigating leader-follower situations common to FC
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Table 3.1: Exploration Strategies and Descriptions

Acronym Strategy and Description

FR Frontier Random: Randomly selects a point from the detected frontiers.
FC Frontier Closest: Selects the closest frontier point from the detected fron-

tiers.
UR Unknown Random: Randomly selects a point from the unexplored section

of the map.
UC Unknown Closest: Selects the closest point from the unexplored section of

the map.
VFHR Voronoi Frontier Help Random: Uses the frontier random method paired

with Voronoi partitioning task allocation strategy.
VFHC Voronoi Frontier Help Closest: Uses the frontier closest method paired

with Voronoi partitioning task allocation strategy.
VUHR Voronoi Unknown Help Random: The map is split up into various sec-

tions and then the unknown random method is used in tandem with the paired
searching strategy.

VUHC Voronoi Unknown Help Closest: The map is split up into various sections
and then the unknown closest method is used in tandem with the paired
searching strategy.

DFC Decision Frontier Closest: Sharing intended goal position with other
robots. A goal is assigned to the closest agent.

DEGU Decay Epsilon Greedy Unknown: Assigns random or closest exploration
of a frontier based on an epsilon value that decays over time.

DEGF Decay Epsilon Greedy Frontier: Assigns random or closest exploration
of an unknown area based on an epsilon value that decays over time.

AM Anti-Majority: Chooses the anti-majority of exploration methods (random
or closest) used by other agents.

approaches. However, UC approaches may not be guaranteed to work without ensuring

that all areas within the bounded domain are accessible.

Voronoi Strategies

The addition of Voronoi partitioning is used to allocate map regions based on initial

goal locations [36]. Three examples of Voronoi partitioning are shown in Figure 3.2. The

Voronoi segmentation methods (Voronoi Frontier Help Closest (VFHC), Voronoi Frontier

Help Random (VFHR), VUHC, VUHR) differ in search approach.

When each agent is responsible for their specific voronoi-defined section, agents thor-

oughly explore assigned areas, allowing for more efficient planning and reducing time spent
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Fig. 3.3: Choices in goal locations as determined by method. Frontier approaches (FC
and FR) only consider the yellow frontier cells in determining candidate navigation targets.
Unknown approaches (UC and UR) typically have larger areas of consideration as any
unexplored, non-frontier region is considered.

recalibrating or adjusting to other agents’ movements. By designating assignments, agents

are effectively moved where they are most needed. Time and energy traversing large dis-

tances between exploration targets are rare, as they will likely be nearby within their as-

signed zones.

Decision Frontier Closest

Decision Frontier Closest (DFC) aims to optimize the performance of FC by preventing

robots from choosing adjacent goals, which minimizes overlap. Each robot updates a cen-

tralized database with its new goal locations and plans. If a shorter plan is available for a

goal within the Light Detection and Ranging (LiDAR) scan area, the robot with the longer

plan has its plan invalidated and triggers a replan to maintain efficiency in the exploration

process.
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Decay Epsilon Strategies

There are two Decay Epsilon approaches that gradually reduce randomness over time,

becoming a greedy search favoring unknown (Decay Epsilon Greedy Unknown (DEGU)) or

frontier (Decay Epsilon Greedy Frontier (DEGF)) cells. This approach alters performance

through exploration and exploitation by progressively shifting from random goal selection

to greedy selection as the known areas increase.

Anti-Majority

The Anti-Majority strategy disperses robots by assigning agents a majority greedy

approach (FC), with a minority of agents choosing the next cells through a random approach

(FR).

3.4 Results

3.4.1 Comparison of Exploration Strategies

To evaluate the success of exploration strategies, we utilize a quality ratio 3.1, which

provides a quantitative measure for comparing the exploration strategies [58]. This is useful

as a benchmark to show an exploration algorithm’s effectiveness. While the quality ratio

positively correlates with the total amount of explored area, it negatively correlates with

the total distance traveled.

Q =
A∑n
i=1 di

(3.1)

Table 3.2 shows the overall results of each tested exploration strategy. The values listed

in this table are the average of 81,000 experiments in the standard multi-robot exploration

on randomly generated buildings.

Among the strategies that do not consider Voronoi partitioning of a given map, UC

performs the best on average by exploring 8.06m2. Similarly, FC performed well with

an average of 7.31m2. We note that both high-performance strategies favor greedy goal
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Table 3.2: Comparison of strategies with the average quality ratio for a map area of 100x100

Strategy Distance(m) Q(m2/m)

VUHC 1104.86 9.05
VFHC 1150.45 8.69
UC 1239.18 8.06
DEGU 1278.00 7.82
VUHR 1318.58 7.58
FC 1366.80 7.31
VFHR 1374.42 7.27
DFC 1400.95 7.13
DEGF 1442.11 6.93
AM 1661.93 6.01
UR 2047.65 4.88
FR 2854.85 3.50

selection. Random strategies, such as UR and FR performed badly in comparison, having

4.88m2 and 3.50m2 ratio values, respectively.

Random algorithms (FR, UR, VFHR, VUHR) regularly exhibit significantly lower

performance than their counterparts for full exploration, contradicting earlier findings [58].

Robots with randomized strategies explore faster initially due to high dispersion but quickly

degrade in performance as significant time is spent in long-distance traversal between target

cells.

3.4.2 Voronoi Search Time Improvement

Using Voronoi partitioning to create sub-areas results in better allocation of robot

agents and significantly reduced large-area traversals between exploration cells. Even for

the worst-performing FR algorithm, its counterpart strategy (VFHR) outperformed many

peer algorithms. This finding shows that allocating sub-areas gives all strategies a clear

speed advantage. After completing their individual sub-areas, agents with simpler room

layouts quickly transitioned to assisting nearby areas, sharing the workload more evenly

and contributing to quicker overall exploration.

While the quality ratio conveniently demonstrates performance, the completion time

of exploration is another commonly used success indicator. Table 3.3 lists the average
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Table 3.3: Exploration Time and Replan Count Metrics

Time (Seconds) Replan Count
mean std minmax mean std minmax

VUHC 140.5 72.9 3 536 270.6 150.1 52 1370
VFHC 147.5 78.1 3 763 308.4 170.9 55 1352
UC 157.0 93.6 3 1002 300.1 183.8 51 1976
DEGU 165.5 93.7 3 729 226.2 111.3 47 934
VUHR 174.1 108.1 3 966 168.4 81.6 46 739
FC 175.2 117.3 3 1463 399.9 268.0 49 3024
VFHR 183.2 118.9 3 905 166.2 81.0 44 745
DFC 186.4 113.8 3 854 333.8 193.5 53 1621
DEGF 189.7 118.4 3 1228 319.3 194.6 49 1494
AM 220.1 138.5 3 1193 274.6 169.0 46 1317
UR 270.8 162.3 3 1099 176.4 83.5 50 720
FR 390.7 282.7 3 2278 245.3 148.2 47 1227

completion time for explorations and replanning count. Time for completion also benefited

significantly from the Voronoi partitioning, even in the worst scenarios (i.e. max completion

time).

In addition to the time spent on exploration, another important metric is the number

of times agents must replan their routes during exploration. Among the different strategies

we’ve analyzed, those based on random choices (VFHR, FR, VUHR, UR) tend to require

fewer replans than greedy frontier algorithms (VFHC, FC, VUHC, UC, DFC).

3.4.3 Unknown Strategies Performance

Both VUHC and UC allow robots to reach full exploration faster than their VFHC

and FC frontier counterparts. The superior performance arises mainly from two factors.

First, the randomness inherent in selecting unknown cells ensures a better distribution

of robots across the search area. Second, this approach retains the advantage of greedy

selection for the closest points, much like frontier strategies. Additionally, unknown-cell

targeting algorithms are more effective in mitigating leader-follower issues, a problem often

encountered in frontier-based methods.
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Fig. 3.4: Comparing the impacts of area allocation and distribution (initial navigation
targets) over the exploration speed. Initial distribution scenarios do not greatly impact the
speed of full exploration. The strategies that allocate sub-areas have a clear improvement
in exploration time compared to their counterparts without segmentation.

3.4.4 Distribution Effect For Timing

To explore an environment more quickly, tests were conducted on the impact of the

initial starting position of robots across the map (e.g., edges, center, or evenly spread).

Figure 3.4 shows that initial robot distribution in a building does not significantly impact

exploration speed. While a slight advantage exists when widely dispersing the start point

to the ”Edges of the Map”, performance was minimally impacted.

3.4.5 Exploration Speed in Relation to Robot Team Size

Regardless of the exploration strategy, increasing the number of robots improves ex-

ploration speed. Figure 3.5 shows the average exploration performances of different robot

group sizes. The linear increase in the number of robots ( increasing by four) shows a

marginal decrease in performance gain. Increases in team size when teams are small have a

larger impact on the exploration speed, as observed by the time decreases more significantly

when the team size increases from 4 to 8 compared to the increase from 8 to 12.

When the system has fewer robots, the choice of exploration strategy is more critical
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Fig. 3.5: Average exploration time related to robot count. As the number of robots in-
creases, the exploration time reduces.

than large team sizes. Most strategies converge to similar performance when the robot count

increases. This finding can be observed in Figure 3.5; when using four robots to explore an

area, the average completion time difference between the best algorithm (VUHC) and the

worst algorithm (FR) is around 475 seconds. However, if the robot count increases to 12,

the performance difference between the two is only 100.

3.4.6 Resilience to Density of the Environment

Figure 3.6 illustrates that segmented strategies perform well across a range of room

densities. Additionally, it can be observed that segmented algorithms are more resilient to

wall density compared to their unsegmented counterparts.

When the room sizes are small (i.e. high density of rooms in the building), the range for

completion time between strategies is quite significant. However, as rooms become larger

(i.e. sparse populated map), the performance of all strategies becomes similar, blurring the

benefits of exploration strategies. The performance difference between VFHC and FC is

significant when the room size is 10, but this significance is largely unnoticeable when larger

room sizes are used.

Figure 3.7 illustrates the replanning count change for strategies over time. Once the
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Fig. 3.6: Exploration completion time of the strategies against three different room sizes.
A small number (10.0) represents many small rooms, resulting in a densely populated area
with many walls. When the room sizes increase, the area between walls becomes more
sparse.

area started to become explored around 200 seconds, the replan count slowed down with

a curve and became almost straight, shown with points on the upper side of the plot.

This stabilization reaches a point shown with a small circle indicating the replanning count

becomes so minimal, correlated with the area percentage close to 100 percent exploration.

3.4.7 Resilience to Robot Failure Scenarios

We tested our exploration algorithms for mapping under the Agent scenario, which

assumes that robots can continue functioning throughout the exploration task. We built

robot failure scenarios (Disrepair and Unrecoverable), each running 81,000 times with the

same set of parameters as the standard scenario, to assess the effectiveness of our techniques

and other metrics under robot failures. The Disrepair condition allows other team members

to come and rescue broken or non-functioning robots, while the Unrecoverable condition

assumes that robots cannot be rescued or contacted once they stop functioning.

Out of 81,000 experiments, robots in Disrepair conditions completed the exploration in

most cases. Only 130 experiments failed to be completed in the Disrepair condition (robots
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Fig. 3.7: Illustration of replan count over time on various exploration strategies. Each point
in the upper plot represents the time when replan counts stabilize.

were all disabled before exploration was completed).

Robots in the Unrecoverable scenario experienced much higher failure to complete

exploration. Of 81,000 experiments, only 27,341 experiments successfully completed. The

overall success rate for the Unrecoverable scenario is significantly lower (33.7%) as compared

to the Disrepair scenario (98.4%).

Figure 3.8a shows these failed experiments’ distribution among exploration strategies.

While randomized strategies are the worst, with high failure rates (78% and 82%), the best

performers only fail 55% of the time.

Since there were many failed attempts for the unrecoverable failure scenario, it is worth

investigating how robot counts and exploration strategies affect the percentage of explored

areas, even when missions fail. Figure 3.8b shows the impact of robot count over the percent-

age of area exploration, despite all 53,659 experiments failing to reach 100% exploration.

The y-axis ranges from 0.5 to 1.0, representing 50% to 100% of exploration. Increasing

the robot count significantly increases the potential of known explored areas. Even using

4 robots allowed robots to explore more than 70% of the map in most experiments. All
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(a) Failure ratios for strategies
(b) Explored percentage of area for failed experi-
ments

Fig. 3.8: (a) - The failure ratio of experiments based on strategies. While the random
strategies failed more often, VUHC performed better than others. (b) - The explored area
percentage for the failed experiments for the Unrecoverable failure scenario. Using 4 robots
allows exploring more than 70% of the area in most experiments before all robots stop
functioning. The failed experiments that used 12 robots even reached more than 95% of
the area.

strategies except the FR strategy using 12 robots reach more than 95% exploration.

3.5 Conclusions

In this chapter, we delve into the complexities of exploring unknown and occluded

spaces within buildings. The integration of Voronoi partitioning techniques, especially when

combined with segmentation methods, proves instrumental in enhancing exploration effi-

ciency, enabling faster coverage and optimized agent allocation. Randomized strategies,

although providing initial dispersion faster, are not suitable for sustained, efficient explo-

ration due to extensive long-distance traversals.

The research also highlights the importance of initial robot distribution, team size, and

choice of exploration strategy. Smaller teams benefit significantly from appropriate strategy

selection, emphasizing the need for tailored approaches based on team size. Furthermore,

segmented strategies exhibit resilience across varying complexity of building plans, ensuring

efficient exploration in diverse indoor environments.
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We did not highlight the multiple agents’ exploration performance under different com-

munication constraints. In future work, the focus will shift towards robot coordination un-

der different communication constraints. Exploring the impact of limited communication

between agents only in a visibility scenario and even full communication loss (no communi-

cation) on multi-robot coordination strategies could provide valuable insights for the system

behavior under complex and communication restricted environments.



CHAPTER 4

AGENT COORDINATION IN COMMUNICATION RESTRICTED DOMAINS

In the realm of autonomous robotics, the exploration of unknown and intricate spaces

within buildings has been a subject of intense research focus. Previous studies have pre-

dominantly relied on techniques like frontier-based exploration, necessitating constant data

sharing among robots to construct a global map. However, this approach becomes chal-

lenging, especially in indoor environments, due to the inherent communication overhead.

The existing solutions, such as market-based strategies and decentralized approaches, al-

though promising, often come with their own set of limitations. Coordinating multiple

agents efficiently while managing communication restrictions poses a substantial challenge.

Furthermore, real-world scenarios demand exploration strategies that can adapt to varying

levels of communication allowances and account for scenarios where no communication is

possible.

In light of these challenges, we investigate the multiple agent coordination behaviors

under diverse communication constraints. Our approach leverages limited communication

ranges, enabling robots to share crucial map data within their immediate vicinity. To nav-

igate toward valuable frontiers, robots utilize an onboard agent position detection system,

ensuring localized decision-making while optimizing exploration paths. Crucially, we mainly

explore the intricate dynamics of multiple robot exploration in communication-restricted

environments. We employ a range of communication scenarios, from complete visibility to

no communication, to understand the impact on exploration strategies and agent coordi-

nation. Additionally, our investigation delves into the significance of area segmentation,

where sub-regions are assigned to robots before exploration, providing a comprehensive

understanding of its effects on exploration efficiency.
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4.1 Earlier Coordination of Multiple Robots in Unknown Environments

Exploring unknown areas using multiple robots has received substantial attention

within the research community [78–80]. One widely studied technique in this domain

is frontier-based exploration [31, 81, 82], which was initially introduced by Yamauchi for

single-agent scenarios [83] and later extended to accommodate multiple agents [30]. This

approach necessitates each agent to share its local perception data, enabling the creation of

a global map. However, this continuous data sharing results in a significant communication

overhead, which can impact performance, particularly in indoor environments.

To alleviate the challenge of excessive map exchanges among agents, Zlot et al. pro-

posed a market-based strategy that coordinates agents with minimal information trans-

fers [84]. While this strategy improves agent distribution [85, 86], it requires knowledge of

other agents’ positions in the building, which may not always be practical. Additionally, the

computation of multiple combinations of pathways for bid exchanges introduces additional

computation overhead.

Some of this computational overhead is relieved using loop closures to account for

completed regions. However, due to the difficulty of finding mutual points for the perfect

loop closures in unknown environments, this can be difficult even for two robots [87]. Other

decentralized approaches focused on assigning independent regions to each robot to reduce

the knowledge difficulty [36,37]. However, these segmentation approaches still require agents

to know others’ locations to partition the area [77], limiting their practicality in real-world

situations. Instead, dividing the area based on the initial goal locations in the unknown

environment overcomes this drawback since robots do not need to know others’ coordinates

and only need to be informed about their respective allocated regions.

While various techniques have been developed to enhance frontier selections [31,70,88],

their investigation has often been confined to specific communication scenarios [34] or partic-

ular building structures [32], resulting in findings that lack generalizability. Coordinating

multiple agents to select optimal frontiers necessitates coordination and communication,

which becomes challenging in areas with restricted outside communication infrastructure.
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Agents in such environments often rely on localized communication devices [89], which as-

sist decision-making systems for continuing exploration or meeting with others to share

information [90]. Several decentralized studies have explored scenarios where agents share

data only within their line of sight [91] or within limited communication bandwidth [92] as

many buildings do not have readily accessible communication networks available to robots.

However, these devices cannot be used in scenarios where the environment prevents all

types of in-between communications [93], or any data should not be released in wireless

communication.

In response to these challenges, we investigated unknown area exploration using mul-

tiple agents under varying communication allowances. Simulated robots operate under a

limited communication range, share collected map data, and detect other agents internally

to navigate toward valuable frontiers. Additionally, we explore the significance of area seg-

mentation, where sub-regions are assigned to robots before the exploration. Various team

sizes of robots in varying complexity of building maps has been used, which aims to shed

light on the intricate dynamics of multiple robot exploration in communication-restricted

environments.

4.2 Method

4.2.1 Communication Scenarios

We leverage the Unknown Building Exploration Simulator (UBES) simulation soft-

ware [73] to observe the importance and effects of frontier-based exploration, next-frontier

selection (incentivized via agent-detected agent positions), and area partitioning under dif-

ferent levels of communication restrictions. UBES was modified by adding limited and fully

denied communication capabilities to the simulator. Simulations were conducted to assess

the effectiveness of tested strategies in three levels of building layout complexity.

Oracle-Based Scenario

This communication scenario assumes an oracle (central entity) overseeing all agent
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exploration activities. Agents communicate with the oracle, which, in turn, aggregates

their information (explored map) and determines the exploration’s completion status. This

communication scenario is developed to imitate the behavior of a ”broadcasting map” shared

between agents [30].

Let A denote the area explored by an agent, M is the total map area that is being

explored, and Eoracle represents the exploration status decided by an oracle. If the total

explored area by all agents is equal to the total unknown map area, then exploration is

terminated with the oracle.

Eoracle =


1, if

∑n
i=1Ai == M

0, otherwise

Non-Line of Sight (NLOS) Scenario

In the NLOS scenario, agents operate fully decentralized without coordination or mon-

itoring. Agents cannot communicate with an outside network provider or with each other

during exploration, relying solely on their local sensor data to explore the map individually.

This communication scenario tests how agents explore a building when it is not desired to

wirelessly release any information, such as the map or location, during the operation. Wire-

less communication restrictions arise due to security concerns or environmental limitations.

Unlike the oracle scenario, NLOS transfers the ”terminating experiment decision mech-

anism” to the individual robots. Every agent explores the area individually without receiv-

ing information from others and determines the exploration status, Enlos. Once an agent

determines that sufficient exploration is conducted, it will terminate its own exploration

independent of any other potential agent, as it assumes that the exploration task has been

completed.

Enlos =


1, if ∀i ∈ {1, 2, . . . , n}, Ai == M

0, otherwise
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Line of Sight (LOS) Scenario

In the LOS scenario, agents can only communicate within their line of sight, simulating

real-world constraints where communication is possible if no obstacles obstruct the line of

sight between agents. To decide if another agent is visually detected, agents scan their

surroundings, covering a 360-degree radius within a 10-meter range. Information exchange

occurs only when agents can identify each other within their visibility zones.

The exploration status, Elos, is determined similarly to Eoracle. However, a key distinc-

tion in the LOS scenario is that agents cannot broadcast their map to an oracle. Instead,

they share their local observations through pairwise communication when one agent detects

another within its visibility range.

These scenarios facilitate a systematic analysis of communication mechanisms in un-

known building exploration, illuminating the nuanced strategies employed by agents under

various communication constraints.

4.2.2 Frontier Incentivization Algorithm

To enhance exploration efficiency within unknown buildings, we utilized the closest

frontier-based exploration as presented in [73] and retained it as our baseline strategy for

comparison. Furthermore, we designed a frontier incentivization mechanism to direct agents

toward frontiers to minimize unnecessary travel over already explored regions. It achieves

this by an agent position detection system and uses those coordinates to assign values to

the frontiers so that the potential encounter with another agent can be minimized. This

reduces cases where leader-follower dynamics occur and more readily disperses agents.

Underlying this frontier incentivization mechanism contains two fundamental factors:

the distance to a frontier and the angle between the frontier vector to the agent’s dispersion

vector. These factors are instrumental in shaping the robot’s decision-making process,

allowing it to explore the unknown terrain effectively.

The incentivization technique we developed is encapsulated in Algorithm 2 and is

illustrated in Figure 4.1. When a robot reaches a previous frontier goal and detects one

or multiple agents, it calculates new frontier values with this incentivization mechanism.
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Algorithm 2: Frontier Incentivization Algorithm

1 Input: Frontiers detected F for an agent i, list of detected agents Ai within
radius r

2 Output: List of frontiers with incentivized values Fu

3 Define function DispersionVector(Ai, di)
4 If Ai == 1:
5 Return (coord x Ai, coord y Ai)
6 Elif Ai > 1:
7 For each detected agent a in Ai >:
8 ix, iy + = [axdist, aydist]
9 End For

10 Return (ix, iy)
11 Initialize empty list Fu

12 For each agent i do:
13 Initialize: n← 0, D ← DispersionVector(i), f ← 0
14 For each frontier f in F do:
15 n← n+ 1
16 d← frontier vector(fx, fj)
17 θ ← angleToDispersionVector(D, d)

18 f ← (1

/
distf ) ∗ cos(θ)

19 Fu.append(f)
20 End For
21 If n = 1 then:
22 f ← (fx, fy)
23 End For
24 Return Fu

Based on the detected locations of other agents, a dispersion vector is calculated by adding

each calculated vector to each other. For a single known agent, this would be a vector

pointing 180 degrees away from that agent. The impact of a detected agent’s proximity is

inversely correlated with its distance, meaning that closer agents exert a more significant

influence on the selection of the next explored frontier.

Each frontier is assigned a value when an agent is detected, and the incentivization

algorithm takes advantage of the dispersion vector by checking the angle between the frontier

vector (the vector between a robot and a frontier) and the dispersion vector of the robot.

Next, a cosine function is applied to assign higher values to angles closer to the dispersion

vector. The weighted angle and distances to the frontier are combined to generate a frontier
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Fig. 4.1: A portion of the simulation interface shows four agents exploring an unknown
building. The area gets explored while agents scan their environments with 360-degree
LiDAR. We propose a frontier incentivization technique, illustrated in a simple example
that two agents cannot see each other, and R3 uses R2’s location data to incentivize its
frontiers accordingly.

exploration value for each frontier. The agent chooses to move toward the frontier with the

highest exploration value. This design choice empowers agents to prioritize frontiers with

smaller angles relative to their optimal direction, improving the exploration process.

4.2.3 Simulation Setup

To implement our exploration strategies effectively, we established a simulation setup

characterized by homogeneous robots, each possessing identical capabilities such as sensors,

communication mechanisms, speed, and size. Each robot was equipped with a simulated

LiDAR sensor for obstacle detection and exploration, and the agents’ local maps were

iteratively updated with these LiDAR scans, forming the foundation of our exploration

framework.

Robots started their exploration from a designated entrance on the map (top left corner)

in every experiment performed, and no initial goals were given. However, only in scenarios

where Voronoi partitioning was employed were robots allocated initial goal locations due to

the necessity of partitioning the environment based on the goal locations. This approach

ensured a systematic division of the unknown map among the participating agents and
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(a) (b) (c) (d)

Fig. 4.2: Illustration of the four techniques evaluated in simulation. While robots in (a)
and (c) do not utilize frontier incentivization via agent detection, (a) and (b) do not con-
sider using voronoi sub-partitioning. Robots in technique (d) uses both agent detection
and voronoi partitioning and (a) only uses frontier-based exploration without any upper
parameters.

significantly contributed to the optimization of completion times.

Frontier Incentivization and Voronoi Partitioning

To comprehensively explore the interplay between communication scenarios and coor-

dination techniques (frontier incentivization and Voronoi partitioning), we introduced two

boolean arguments that allow certain experiment benefits using these techniques or not.

These arguments are ”agent detection” and ”Voronoi partitioning”. By toggling these pa-

rameters on and off, we systematically measured each of these techniques’ importance under

the listed communication scenarios.

Figure 4.2 demonstrates the usage of these techniques from one agent’s perspective.

Whenever an agent reaches a selected destination over the map, it chooses the next destina-

tion (a frontier) using one of these techniques illustrated in the subfigures. Subfigure 4.2a

shows the baseline frontier-based exploration that does not use agent detection and Voronoi

partitioning. An agent is shown to have reached its goal and picks the next frontier based

on the distances of frontiers, and the closest one is chosen. This serves as a benchmark

for our assessment of the effectiveness of frontier incentivization and Voronoi partitioning

under different communication constraints.

Subfigure 4.2b shows the usage of frontier incentivization when an agent detects two

other agents within its limited sensor range (shown in green). The dispersion vector has
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been illustrated with a blue arrow, and the agent decides its next frontier destination by

calculating the values of its known frontiers as explained in Algorithm 2. Similar to subfigure

4.2a, subfigure 4.2c also picks the next frontier similarly using frontier-based exploration.

However, the picked frontier needs to be in its assigned sub-region. Last, subfigure 4.2d

shows the usage of both frontier incentivization and Voronoi partitioning, which is the

combination of both techniques. The agent remains restricted to picking the next goal in

its assigned subregion but it can also incentivize itself towards frontiers when it detects

others.

Robot Numbers and Room Density of Buildings

The synergy between these strategies and their performance under different team sizes

(4, 6, 8) allowed us to explore the nuanced influence of agent numbers on exploration

outcomes.

Fig. 4.3: Three examples of building floor plans were generated using minimum room sizes
of 10, 20, and 30, from left to right, respectively.

Each unknown map, spanning 100 by 100 meters, was designed to encapsulate different

complexities, as illustrated in Figure 4.3. These complexities were derived from automatic

floor plan generation based on minimum room sizes, ensuring a diverse array of environments

for our experiments. We generated three distinct maps for each complexity to provide

generalizable findings, ensuring consistent experimental conditions while exploring various

scenarios, strategies, and team sizes.
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4.3 Results

It is logical to evaluate the impacts of agent detection and Voronoi segmentation tech-

niques individually within each scenario. This approach allows for a comprehensive under-

standing of the effectiveness of these strategies in varying communication contexts. In the

subsequent subsections, we delve into the effects of these techniques under each communi-

cation scenario.

4.3.1 Oracle Based Monitoring Scenario

Table 4.1 provides a detailed overview of the average completion times, including stan-

dard deviations and minimum-maximum completion times, for experiments conducted with

an oracle-based communication scenario. The oracle monitored each experiment, which

sent termination signals to the agents once it determined that the area was fully explored.

We note that the agents cannot access the oracle’s map.

Table 4.1: Exploration performance in Oracle Scenario

Agent
Detection

Voronoi
Partitioning

Mean Std Min Max

False False 266.59 115.72 110.0 506.0
True False 189.93 87.21 92.0 345.0
False True 136.96 34.14 90.0 217.0
True True 133.44 35.80 87.0 234.0

Our observations revealed a key trend: incentivizing frontier exploration based on de-

tected locations led to a dispersion effect among the robots. This dispersion effect is because

the robots were motivated to maintain distance from each other during exploration, thus

ensuring the exploration of diverse areas. The experiments in this communication scenario

significantly benefited from this incentivization technique as each agent was motivated to

explore a different part of the map, and the oracle monitored these individual experiments

to send a termination signal once it decided the area was fully explored. Our findings

strongly support the efficacy of frontier incentivization, showcasing significant improvement

compared to experiments that do not use it.
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Fig. 4.4: Average area exploration percentage over time in the Oracle communication sce-
nario. This compares the effects of agent detection and Voronoi partitioning in an unknown
area. Once the map is fully explored, the oracle terminates the exploration.

Frontier algorithms perform significantly faster when agents explore independent sub-

areas generated by Voronoi partitioning. Allowing agents to operate within these Voronoi

subregions led to an average completion time of 136.96 seconds. While combining Voronoi

partitioning and agent detection enhanced the completion times, the impact was not sub-

stantial. This lack of significant effect can be attributed to the conflicting nature of the

behaviors exhibited by these techniques, both of which aim to disperse robots across un-

known areas. Although assigning individual subsections of an unknown map resulted in

faster completion times on average, adding the agent detection mechanism did not yield

substantial benefits when an Oracle was present.

The impact of frontier incentivization on regular Frontier-Based exploration becomes

apparent when examining Figure 4.4. Similarities in the experiments persisted until approx-

imately 60 percent of the total area was explored. After this point, frontier incentivization

came into play, motivating agents toward frontiers that facilitated their dispersion. Voronoi

strategies exhibited similarities regardless of the use of agent detection. This can be at-

tributed to Voronoi partitioning’s ability to distribute agents effectively, rendering agent
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detection less influential in encouraging their dispersion.

4.3.2 NLOS (Non-Line of Sight) Scenario

This subsection delves into the results obtained under the NLOS scenario. Table 4.2

provides a comprehensive overview of the average completion times for experiments con-

ducted in NLOS scenarios. These experiments were conducted without communication,

requiring agents to rely solely on local decision systems based on their locally collected

information to terminate exploration.

Table 4.2: Exploration performance in NLOS

Agent
Detection

Voronoi
Partitioning

Mean Std Min Max

False False 499.93 188.92 263.0 791.0
True False 861.19 540.43 320.0 2239.0
False True 256.07 137.39 92.0 557.0
True True 224.52 104.47 89.0 443.0

Without an oracle or any communication mechanism, agents operated within a local

decision framework, necessitating independent exploration of the entire area. Surprisingly,

introducing an agent detection system in this scenario had a detrimental effect, leading to a

72% decrease in performance compared to regular frontier-based exploration. This negative

impact can be attributed to the conflicting goals of frontier incentivization and experiment

termination requirements in NLOS.

However, experiments employing Voronoi partitioning still demonstrated significant

improvement in completion times, even in NLOS scenarios, as detailed in Table 4.2. The

noteworthy performance achieved in these experiments was mainly due to each agent being

assigned specific subregions to explore independently. Combining Voronoi partitioning with

agent detection yielded the best completion times in the NLOS scenario.

The exploration progress over time is visually represented in Figure 4.5. The plot re-

veals that agents utilizing agent detection without Voronoi partitioning explored the slow-

est. In contrast, experiments employing Voronoi partitioning achieved full exploration more
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Fig. 4.5: Average area exploration percentage in time for the experiments in NLOS scenar-
ios.

rapidly, even in the early phases. This accelerated exploration can be attributed to the dis-

persion effect facilitated by Voronoi partitioning and the allowance for agents to explore

only specific subregions of the overall map.

4.3.3 LOS (Line of Sight) Scenario

Due to limited information transfer in pairwise communications, the LOS setting allows

agents to achieve expedited exploration times. Our primary focus is to examine the addi-

tional performance gains enabled by significantly limited communication between agents,

specifically in the context of Voronoi partitioning and agent detection techniques.

Table 4.3: Exploration performance in LOS

Agent
Detection

Voronoi
Partitioning

Mean Std Min Max

False False 352.33 133.65 172.0 613.0
True False 307.11 128.27 138.0 560.0
False True 240.37 115.76 93.0 539.0
True True 212.96 90.22 91.0 402.0
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Experiments conducted in LOS scenarios exhibited an average of significantly improved

exploration completion times compared to their NLOS counterparts. Table 4.3 provides a

detailed breakdown of the average completion times for each strategy, presenting associated

standard deviations and minimum-maximum completion times. Notably, agent detection

positively influenced performance by 15% compared to scenarios where agent detection was

not employed. This contrasts with our observations in NLOS scenarios, underlining the piv-

otal role of agent detection in enhancing exploration efficiency when direct communication

channels are available.

Fig. 4.6: Average area exploration percentage in time for the experiments in LOS scenarios.

Figure 4.6 visually represents exploration progress over time. Interestingly, the plot

reveals a striking similarity between the exploration paths of agent detection and no detec-

tion strategies, especially until 75 percent of the area is explored. This suggests that agent

detection mechanisms might inadvertently redirect agents in disparate directions in later

phases of exploration, hindering effective communication among them. In contrast, scenar-

ios without agent detection exhibit superior performance due to the increased likelihood of

inter-agent communication.
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However, the most compelling results emerge from the combined implementation of

Voronoi partitioning and agent detection. Despite Voronoi partitioning being the dom-

inant mechanism, the synergy with agent detection yields the best exploration times in

LOS scenarios. This integrated approach maximizes the benefits of Voronoi partitioning

and mitigates the communication challenges posed by agent detection, resulting in optimal

exploration efficiency.

These findings underscore the balance required in LOS scenarios considering the earlier

context. While communication between agents offers advantages, effective coordination

mechanisms, such as the synergy between Voronoi partitioning and agent detection, are vital

for harnessing its full potential. These insights provide valuable guidance for optimizing

exploration strategies in scenarios with direct inter-agent communication.

4.3.4 Agent Team Size and Map Complexity Impacts

The relationship between agent team size and environmental complexity is a significant

aspect of this chapter. We highlight the impacts of these factors on exploration efficiency.

Room complexity and agent count are critical, mainly when communication constraints

exist, as they necessitate robust, decentralized maps. These maps fundamentally influence

the exploration performance, and the following discussion will treat the number of agents

and room complexity separately.

Impact of Number of Robots

Analyzing the performance across diverse robot team sizes reveals consistent LOS and

Oracle-based scenario improvements. However, in the NLOS scenario, the trend remains

relatively stable across different agent sizes, as depicted in Figure 4.8. The lack of inter-agent

communication, including termination signals, mandates that each agent independently

covers the entire area, leading to a uniform performance irrespective of team size. Notably,

agents assigned to Voronoi partitioned subareas exhibit remarkable success rates even within

the constraints of NLOS scenarios.
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Fig. 4.7: Oracle Scenario: Monitoring agents overall in the background to terminate explo-
ration.

Fig. 4.8: NLOS: No type of communication allowed between agents. Local decisions have
been taken by agents.

Introducing line-of-sight communication within buildings (LOS scenario) offers a no-

table advantage for every agent size compared to NLOS conditions, especially for agents

employing agent detection systems. A comparison of completion times between Figure-

4.8 (no communication) and Figure-4.9 (limited communication) underscores this shift.

In NLOS scenarios, teams relying solely on agent detection systems typically experience

completion times of around 800 seconds for every agent size. However, enabling limited

communication in LOS scenarios significantly enhances exploration performance by reduc-

ing completion times to approximately 300 seconds. Remarkably, the success rates achieved

by agent detection systems under limited communication align closely with those observed

in oracle-based scenarios (Figure 4.7).
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Fig. 4.9: LOS: Limited communication allowed only in line of sight scenarios. Local deci-
sions have been taken by agents.

Impact of Environmental Complexity

Considering environmental complexities, such as varying room sizes and densities, elu-

cidates interesting patterns in exploration efficiency. As expected, environments comprising

numerous small rooms pose challenges due to the limited reach of LiDAR beams, resulting

in prolonged exploration times. This is evident in the plots on the right side of Figure 4.7,

4.8, and 4.9, which illustrate agent performance across three distinct wall densities. In these

scenarios, larger room sizes translate to superior exploration efficiency.

Agents face substantial challenges in scenarios characterized by small rooms, such as

those with dimensions of 10. Particularly in NLOS conditions, the exploration timings are

notably suboptimal, specifically for the frontier incentivization technique. As illustrated in

the right side of Figure 4.8, completion times range from 700 to 1500 seconds when the

room sizes are set to 10 for the strategies that do not employ Voronoi partitioning. These

extended durations highlight agents’ difficulty navigating confined spaces without direct

line-of-sight communication capabilities.

However, it is worth pointing out that experiments employing Voronoi partitioning and

agent detection consistently demonstrate optimal performance across diverse environmental

complexities. Even in densely populated maps, where exploration is inherently challenging,

Voronoi partitioning significantly influences completion times. Introducing limited commu-

nication in LOS scenarios further amplifies this effect, tripling the performance, especially

for agents utilizing agent detection systems.



CHAPTER 5

Conclusion and Discussion

This dissertation demonstrates our core algorithmic contributions to the field of robotics.

We start presenting PMVC, an algorithm designed to achieve full city roadway coverage

using multiple UAV drones concurrently. PMVC operates on known road graphs, identi-

fying equal-sized regions suitable for various drone capacities. Through simulated tests on

three cities, the algorithm demonstrates its scalability for city-wide drone deployment. By

analyzing different drone types and their costs, it has been shown increasing the drone count

significantly reduces road coverage time. PMVC enables city planners to assess trade-offs be-

tween drone numbers, capabilities, and costs, which suggests obtaining more low-capability

drones can be cost-effective for rapid city-wide road coverage, allowing cities to tailor their

drone systems based on specific needs and budget constraints.

Further studies focus on exploring interior but closed-shaped bounded domains (build-

ings) in various complexities when agents are allowed to broadcast information to a cen-

tral communication server, which is responsible for merging maps and sharing those with

agents. Twelve exploration strategies for multi-robot systems in complex, unknown indoor

environments were evaluated, considering variables like robot count, map types, and fail-

ure conditions. While frontier-based strategies showed effectiveness initially, they exhibited

limitations in full exploration scenarios due to oscillatory behaviors. Segmentation-based

approaches speed up exploration and enhance resilience against failures, maintaining utility

throughout the exploration process.

Later, the complexities of robotic exploration were systematically investigated across

various team sizes and communication scenarios using closest frontier-based exploration,

frontier incentivization, and Voronoi partitioning techniques. Frontier incentivization, based

on detecting other agents’ locations, significantly improved exploration effectiveness, espe-

cially in limited communication setups, although it faced challenges in (NLOS - no com-
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munication) situations. On the other hand, Voronoi partitioning consistently demonstrated

substantial performance improvements across communication scenarios by dividing the un-

known area into manageable sub-maps, ensuring robust exploration outcomes even without

inter-agent communication. Voronoi partitioning emerges as a universally effective tool for

autonomous robotic exploration, offering consistent and reliable results, and providing a

foundational approach for the development of more refined and efficient exploration sys-

tems.

The challenge of coordinating decentralized agents in unknown environments with lim-

ited communication capabilities is addressed with a frontier incentivization technique that

provides implicit coordination among agents. Exploring an unknown building optimally is

quite challenging, and frontier incentivization achieves close-to-optimal performance with-

out significant computational overhead. When an oracle is present to act as a central agent

to collect and distribute maps, the incentivization technique could add a significant ben-

efit to regular frontier exploration due to its distribution effect, and it even improves the

VFHC algorithm with a slight edge. However, it shows its true potential when the oracle

is not present, and agents are only allowed to communicate with each other in LOS. In

this case, the proposed method outperforms the other two methods by a significant margin.

This highlights the effectiveness of the proposed approach in addressing the coordination

challenges in both oracle-based and LOS scenarios.

Overall, we developed techniques in this dissertation to better coordinate agents in

uncertain and unknown situations, communication-restricted domains, and fixed/unknown

geometries. Uncertainty in area exploration could occur due to the potential of losing

robots in buildings, potential communication failures, and the possibility of landing agents

in different locations. Both known geometries such as city road networks, and unknown

areas such as building exploration could be used as a baseline to explore or cover with the

strategies we employed. It is worth noting that agents’ decision to terminate exploration is

based on the assumption that the outside boundary is known in advance.

For the simulation experiments, we implemented many software components such as
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a simulation framework for unknown building exploration, created a front-end application,

parallel experiment runs for faster experiment trials, core exploration strategies such as

frontier exploration, random walk, and explorations under voronoi partitioned sub-regions.

We made the code publicly available as open-source [73]. This software could ease the

process of testing new strategies in unknown building exploration since it includes many

core techniques of exploration and automatic map generation in different complexities.

Many of the techniques we developed in this dissertation bring valuable pieces into

the field and can be adapted into challenges such as DARPA Subterranean (SubT) Chal-

lenge [94]. Since this challenge focuses on developing new approaches to rapidly map,

navigate, search, and exploit complex underground environments such as human-made tun-

nel systems, urban underground, and natural cave networks; the techniques we developed

specifically for unknown environments could be used as a baseline in the future research to

ease the development process.
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APPENDIX A

Simulators Development

This appendix gives a quick brief that aims to give quick directions to set up the

simulation tools for potential future coding developments. Also, it shares a quick overlook

of the simulators’ major parts, therefore, further developments can easily find and focus on

the interested code pieces.

All the below explanations have been tested on an Arch GNU/Linux operating system.

However, the instructions should be the same, or similar with small command modifications

to use in MAC OSX and Windows operating systems.

A.1 City Coverage Simulator

A.1.1 Dependencies Installation and Quick Run

First, we want to get some useful packages to play around with. We’ll add the conda-forge

channel to our conda package manager so we can have access to their massive repository of

packages. Following commands add the conda-forge channel and then update conda to the

latest version.

$ conda update -n base conda

$ conda config --prepend channels conda-forge

Now, let’s generate a specific conda environment named ”citycoverage” for this simulator,

and activate it to use it. The reason we are generating a specific conda environment for

this simulator is to create an abstraction layer from other projects so that it would not be

affected by having older or newer library dependency issues.

$ conda create --name citycoverage

$ conda activate citycoverage
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In this conda environment, we need to install a couple of new packages into an isolated

conda environment. The first is OSMnx, a package to download, analyze, and visualize

street networks from OpenStreetMap. The second is Jupyterlab, which lets us interact

with Python code in handy Jupyter notebooks.

$ conda install osmnx jupyterlab

Install network library through pip.

$ pip install network

All the dependencies could be ready to start running the simulation tool. The application

can be run with the following command, which will start generating CSV files for later

analysis.

$ python city_coverage_multi.py

A.1.2 Postman Total Distance Calculation

This simulator mainly consists of two parts. The first part is the calculation of a total

postman route distance of a given OSM map object, which uses the algorithm presented

in [49]. This algorithm takes a map object shown in Figure A.1, and calculates the shortest

route that visits all the nodes in the map.

This route calculation can be applied to any OSM map object, however, the compu-

tation has significantly arisen due to the algorithm’s complexity is O(n3), where n is the

number of nodes in the map. Therefore, the algorithm is not suitable for large-scale maps.

At the end of this calculation, the shortest distance to travel to a specific neighborhood

or a city can be calculated. To cover a city with multiple agents such as drones, a city can

be divided into sub-regions that are roughly equal in size so that each agent completes their

missions around the same time.

A.1.3 Voronoi Division of A City

The second part of the simulator aims to divide a city into sub-regions that are roughly

equal in size. To do this, a certain number of coordinates are distributed over the map, and
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Fig. A.1: Left: An OSM map object of a neighborhood in Logan, Utah as an input to
postman route calculation. Right: The output of the postman route is fully calculated, and
an instance of the postman moving along the route is illustrated.

this number can be adjustable based on the agent count. Then, these coordinates are used

as centroids for the Voronoi partitioning of the area. Each node and edge in the Voronoi

diagram is assigned to the nearest centroid, and the resulting partitioning is shown in Figure

A.2. Centroids are manually placed in this figure for demonstration purposes.

The problem with this partitioning is that the sub-regions are not equal in size. To

solve this problem, the centroids are moved closer/away from neighbors depending on their

total distance size, and the partitioning is recalculated iteratively. This process is repeated

until the sub-regions are roughly equal in size.

Using this strategy, cities with different complexities are tested with various numbers

of agents, and the sub-regions are optimized using the above method. This technique can

be implemented in many challenging real-life problems such as placing the bus stations in

optimized centroid locations could allow individuals to walk a short distance to reach the

bus stations. Also, these types of optimized sub-regions can be scanned with drones or

other autonomous moving agents roughly at the same time due to the total route distance

of each region is roughly equal.
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Fig. A.2: Dividing a city into sub-regions using Voronoi partitioning. The centroids are
shown with bigger colored dots, and the resulting partitioning is shown in different colors.

A.2 Unknown Building Exploration Simulator (UBES)

A.2.1 Dependencies Installation and Quick Run

This project is investigating how to explore a building map with decentralized robots in

different communication scenarios. Each agent will be designed to explore independently by

using frontier exploration as well as incentivization techniques to better adjust its frontiers.

$ conda create -y --name multiagent python==3.9.2

$ conda activate multiagent

$ pip install -r requirements.txt

Once all the dependencies are installed, the simulation can be started with the following

command:

$ python main.py

Without any change in the code, the simulation tool is designed to run in headless

mode, which spins many experiments in the processor, and only shows the experiments’

running status. Changing the self. Debug parameter to True in the parameters cfg.py file
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Fig. A.3: Exploration of an unknown building with the size of 50 by 50 meters with four
agents, each working on the Frontier Closest algorithm as an exploration strategy. The
purple-colored segments of the map represent the unknown areas, the green-colored areas
represent the explored known empty areas, and the blue areas represent the explored objects
(i.e., walls). The yellow cells on the map are the frontier areas. The red numbers with blue
square cells represent the agent locations, and the corresponding white numbers are their
goal locations, respectively. The right part of the figure shows the visualization of some
values we record, which might be helpful for preliminary analysis.

can enable the visualization of the experiments, which can generate the main visualization

window like Figure A.3.

A.2.2 Components of the Simulator

This simulator includes the following sub-components. Each component carries signif-

icant importance for unknown area exploration experiments to test various needs.

1. Exploration Strategies: The software offers a wide range of exploration methods to

choose from, including ”Frontier Random”, ”Frontier Closest”, ”Unknown Random”,

”Unknown Closest”, and many more. Users can experiment with these strategies to

observe their effectiveness to achieve full exploration.

2. Initial Start Locations: Users can specify various initial start locations for the

agents, such as ”Manual Start”, ”Random Start”, ”Edge Start”, ”Top Left Start”,
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”Center Start”, ”Distributed Start”, allowing to observe how the initial start condi-

tions can affect the completion times of exploration.

3. Initial Goal Locations: The software enables users to define initial goal locations

for the agents, including options like ”Manual Start”, ”Rand Start”, ”Edge Start”,

”Top Left Start”, ”Center Start”, ”Distributed Start”, helps to make assessments

whether distributing agents over the building has a role over the completion times of

explorations.

4. Agent Loss Scenarios: In addition to the regular unknown exploration with no

threat, UBES also introduces agent loss scenarios to analyze exploration efficiency

in hazardous conditions. Users can simulate scenarios like ”Unrecoverable,” where

robots hit random mines and become not functional, and ”Disrepair,” where robots

can help and fix other robots, enhancing the understanding of exploration strategies

in operation-challenging environments.

5. Visualization and Graphing: The software provides visualizations and graphs

to help users analyze exploration outcomes and compare strategies. Users can gain

valuable insights into exploration efficiencies and the impact of various parameters on

exploration performance.

6. Extensive Parameter Control: Users can control various parameters such as the

number of agents, map size, room complexity, iteration repeat count for experiments,

and exploration algorithms, allowing for a comprehensive exploration of different sce-

narios and settings.

A.2.3 Simulation Tool’s Configuration Settings

This section aims to explain the configuration settings that can be adjusted to run the

simulation tool in different scenarios. The configuration settings are shown in Table A.1.
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Setting Value Expected
Range of Val-
ues

Description

DRAW PYGAME SIM false true/false Enable/disable Pygame simula-
tion visualization

GRAPH LOG PLOTS false true/false Enable/disable graph log plots
USE THREADS false true/false Use multithreading for parallel

processing
CREATE GIF false true/false Generate GIFs of the explo-

ration process
USE PROCESS true true/false Use multiprocessing for parallel

processing
SEED 42 Integer Seed for random number gen-

eration: seed = map length +
experiment iteration

N BOTS 8 Positive Integer Number of robotic agents
MAP NP COLS 50 Positive Integer Number of columns in the map

grid
MAP NP ROWS 50 Positive Integer Number of rows in the map grid
AGENT OBSTACLE 3.0 Positive Float Obstacle value for agents on the

map
MINE 2.0 Positive Float Value for mine areas on the map
EMPTY 1.0 Positive Float Value for empty areas on the

map
OBSTACLE 0.0 Positive Float Value for obstacles on the map
UNKNOWN -1 Integer Value representing unknown ar-

eas on the map
KNOWN WALL 0 Integer Value representing known walls

on the map
KNOWN EMPTY 1 Integer Value representing known

empty areas on the map
FRONTIER 2 Integer Value representing frontier ar-

eas on the map
ROBOT LOSS TYPE Agent Agent, Unrecov-

erable, Disrepair,
Type of robot loss handling

MINE DENSITY 0.01 Float (0-1) Density of mine areas on the
map

GRID CELL THICK 10 Positive Integer Thickness of Pygame grid cells
PYG SCREEN WIDTH 500 Positive Integer Pygame screen width in pixels
PYG SCREEN HEIGHT 500 Positive Integer Pygame screen height in pixels
PYG MIN ROOM SIZE 120 Positive Integer Minimum room size for Pygame

visualization
BACKGROUND COLOR ... RGB Color Value Background color for visualiza-

tion

Table A.1: Configuration Settings
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