Generalized Processing for Pulsed Synthetic Aperture Radar

Evan C. Zaugg - zaugg@ece.byu.edu
Brigham Young University - Department of Electrical and Computer Engineering

Abstract—The Range-Doppler Algorithm (RDA) and the Chirp-Scaling Algorithm (CSA) process Synthetic Aperture Radar (SAR) data with approximations to ideal SAR processing. These approximations are valid for data from systems with wide beamwidths, large bandwidths, and/or low center frequencies. While simple and efficient, these frequency-domain methods are thus limited by the SAR parameters. This paper explores these limits and proposes a generalized chirp-scaling approach for extending the utility of frequency-domain processing.

We demonstrate how different order approximations of the SAR signal in the two-dimensional frequency domain affect image focusing for varying SAR parameters. From these results, a guideline is set forth which suggests the required order of approximation terms for proper focusing. A proposed generalized frequency-domain processing approach is derived. This method is an efficient arbitrary-order chirp-scaling algorithm that processes the data using the appropriate number of approximation terms. The new method is demonstrated using simulated data.

I. INTRODUCTION

New synthetic aperture radar systems operating with wide bandwidths at low frequencies [1]–[4] attract attention due to the potential for improving the data quality of existing applications and investigating new uses [5]–[10]. At low frequencies the approximations made in formulating a number of SAR processing algorithms, such as the Range-Doppler Algorithm (RDA) and the Chirp Scaling Algorithm (CSA), are no longer valid [11], [12]. Some of the errors caused by many of these approximations have been addressed, together with suggested remedies, in previous work [13]–[18]. Also at low frequencies, the wider beamwidth required for high azimuth resolution causes problems with the center beam approximation used in motion compensation [18], [19] and in the chirp scaling process used in the CSA [20].

Processing for low frequency SAR has typically been approached with inversion methods such as the Fourier-Hankel [21] and the wavenumber domain Omega-K (ω-k) [22]–[24] algorithm or time-domain processing methods [25]–[27]. These methods avoid the approximations that make RDA and CSA problematic at low frequencies and wide beamwidths, but unfortunately, they are more complex and computationally burdensome. The ω-k processing requires a costly interpolation to perform the Stolt mapping, and the algorithm makes it difficult to implement range-dependent motion compensation. Time-domain methods can be very precise for all SAR configurations, but are even more inefficient. Specialized hardware, such as graphics processing units (GPUs), has been shown to accelerate time-domain SAR and tomographic SAR processing [28]. While efforts have been made to modify the CSA to efficiently handle the effects of wide aperture [18], to extend the ω-k algorithm to handle range-dependent motion compensation [22], [29], [30], and to streamline the time-domain methods [26], [27], the common frequency-domain methods (RDA and CSA) are still widely used, despite their limitations, because of their simplicity and processing efficiency. This paper explores the limits of valid processing for these frequency-domain methods and proposes a generalized chirp-scaling SAR processing algorithm that efficiently extends the utility of frequency-domain processing for SAR systems with wide beamwidths, large bandwidths, and low frequencies.

In Section II, the general SAR signal in the two-dimensional frequency domain is derived. In Section III, the approximations made to this signal are analyzed. For approximations of an arbitrary number of terms, an expression is derived for the phase error at any point in the frequency support band. Simulated data is used to analyze the effects that these phase errors have on image focusing with different order approximations and varying SAR parameters. Section IV provides a guideline for determining the number of terms in the approximation required for properly focusing the SAR image. Finally, a generalized chirp-scaling SAR processing algorithm is derived that includes the appropriate number of terms.

II. THE GENERAL SAR SIGNAL

For our analysis, we consider only the phase functions of the SAR signal, ignoring the initial phase. As in the development presented in [31], we can describe the phase of the demodulated baseband SAR signal as

$$
\Phi_0 = -4\pi f_0 R(\eta)/c + \pi K_r (\tau - 2R(\eta)/c)^2
$$

(1)

where f_0 is the carrier frequency, $R(\eta)$ is the range to a given target at slow time η. K_r is the range, or fast time, chirp rate and τ is fast time.

The first term describes the azimuth modulation: it consists of the phase left over after demodulation. It is purely a function of the carrier frequency and the changing range to a target. The second term in Eq. (1) is the transmit chirp delayed by the two-way travel time to the target. If we were to reduce the bandwidth to a single frequency, the second term would go to zero, but we would still have the same azimuth modulation.

The approximations made in many SAR processing algorithms are calculated in the wavenumber, or two-dimensional frequency domain. The derivation of the general SAR signal
in the wavenumber domain, as found in Appendix A, results in

\[\Phi_{1RA} = -\frac{4\pi R_0 f_0}{c} \sqrt{D^2(f_d) + \frac{2f_d}{f_0} + \frac{f_d^2}{f_0^2} - \frac{\pi f_d^2}{K_r}} \quad (2) \]

where

\[D(f_d) = \sqrt{1 - \frac{c^2 f_d^2}{4v^2 f_0^2}} \quad (3) \]

is the chirp modulation corrected in the range compression step. Range-cell migration (RCM) correction is an interpolation that makes up for the neglected first-order RCM term while the secondary range compression potentially compensates for neglected higher order terms.

The CSA keeps up to the second order term [31], [32]

\[\Phi_{CSA} \approx -\pi f_d^2/K_r - 4\pi R_0 f_0/c \cdot D(f_d) + \frac{f_d}{f_0 D(f_d)} - \frac{2f_d^2}{f_0 D^3(f_d)} \quad (7) \]

as shown inside the square brackets; the first term is the azimuth modulation, the second term is the range-cell migration, and the third term is cross-coupling between the range and azimuth frequencies. Important variations of the CSA have been introduced to address the limitations of this approximation. In the extended CSA of [13], a third-order chirp-scaling term is introduced for high squint with integrated motion compensation. Then in [14], the non-linear chirp-scaling algorithm is derived which includes a third-order SAR signal model, phase filter, and chirp-scaling parameter. The latter two are carefully chosen such that the range-dependence of the range-cell-migration (RCM) and secondary-range-compression (SRC) is eliminated. Another modification to the extended CSA in [15] is the inclusion of a range-scaling term which controls the bandwidth increase associated with chirp-scaling. Finally the quartic-phase algorithm [16] extends these concepts including a fourth-order phase filter and chirp-scaling parameter, a range-scaling term, and an improved model of range-dependence for SRC.

These algorithms are based on specific order approximations, but more generally, we can expand Eq. (5) to an arbitrary number of terms:

\[\Upsilon(f_d) \approx D(f_d) + \frac{f_d}{f_0 D(f_d)} + \frac{D^2(f_d) - 1}{2f_0^2 D^3(f_d)} f_d^2 + \frac{D^3(f_d) - 3D^4(f_d) + D^4(f_d) f_d^2}{8f_0^3 D^5(f_d)} f_d^4 + \frac{-21 + 35D^2(f_d) - 15D^4(f_d) + D^6(f_d) f_d^6}{16f_0^6 D^7(f_d)} f_d^7 \ldots \quad (8) \]

The limits of \(f_d \) are determined by the chirp bandwidth. For a chirp centered at zero after demodulation, the maximum and minimum \(f_d \) are plus and minus half the bandwidth. For a chirp starting at zero, the maximum \(f_d \) is the bandwidth. Thus as the bandwidth increases, the maximum \(f_d \) increases. A larger \(f_d \) means a larger approximation phase error in Eq. 9.
The maximum and minimum azimuth frequencies are a function of the beamwidth θ and squint ϑ

$$f_{n,\text{MAX}} = \frac{2f_0}{c}v\sin\left(\frac{\theta}{2} + \vartheta\right)$$

$$f_{n,\text{MIN}} = \frac{2f_0}{c}v\sin\left(-\frac{\theta}{2} + \vartheta\right).$$

f_n is only used in Eq. 9 as part of $D(f_n)$, which can be rewritten at maximum f_n as

$$D(f_{n,\text{MAX}}) = \sqrt{1 - \sin^2\left(\frac{\theta}{2} + \vartheta\right)}.$$ thus the azimuth frequency dependence of the phase error in Eq. 9 is dependent on the beamwidth and independent of velocity and PRF.

Simulated data are used to demonstrate how changing the radar parameters affects the azimuth focusing. A nominal choice of SAR parameters is chosen, with images created with no approximations and with the CSA approximations. The four parameters that affect the phase error are individually varied to demonstrate how the focusing changes with these parameters. The initial radar parameters are a center frequency of 1.75 GHz, a bandwidth of 500 MHz centered at zero, an altitude of 3050 meters, and a beamwidth 19.3° wide. An image of a single point target, ideally processed using Eq. 2 without approximations (ω-k algorithm), is shown in Fig. 1. The same data processed with the CSA (second order approximation) is shown in Fig. 2.

The CSA was used in producing Figs. 3-6, which show the results of changing, respectively, the range to target, the center frequency, the chirp bandwidth, and the antenna beamwidth. The azimuth resolution changes with center frequency and beamwidth, Fig. 7 shows two examples of changing the beamwidth and center frequency to keep the along-track resolution the same. The results from these figures are summarized in Table I.

IV. SAR Processing Generalization

For any given set of SAR system parameters, a generalized frequency-domain SAR processor must:

1) Determine the number of terms (order) from Eq. (8) that is required for proper focusing
2) Efficiently process the data taking into account those terms.

A. Required Order Determination

One approach to accomplishing the first step is by considering the phase error from Eq. (9). This error can be viewed and analyzed by computing the error for every point in the support band in the two-dimensional frequency domain. Phase errors greater than a few tenths of a radian indicate that a portion of the data is being processed incorrectly. We choose a threshold of $\pi/10$ to be excess error. The portion of the support band with phase errors greater than $\pi/10$ can be used to predict the focusing accuracy of a target. This percentage is calculated for each example in Table I and the results are shown in Fig. 8. From this graph we devise on a guideline: if less than 30% of the support band has a phase error greater than $\pi/10$, then one can predict less than a 20% loss in azimuth resolution defocusing. Depending on error tolerances of a given application, 20% loss of focus could be inadequate. In that case, processing the data with more of the higher order terms from Eq. (8) is advised.

If the third-order terms are included in processing the data from Fig. 2, the percentage of phase errors greater than $\pi/10$ drops to 10.6% and the focusing is indistinguishable from the the ideal (1.9% defocus), as shown in Fig. 9. Dropping the frequency to 1.25 GHz and increasing the beamwidth to 27.1° maintains the theoretic azimuth resolution of 22.6 cm, but the percentage of phase errors greater than $\pi/10$ increases to 31.2%, and Fig. 10 shows that the focusing decreases by 16.7%, which is expected based on the guidelines of Fig. 8.

As another example, data is simulated with a center frequency of 800 MHz, a bandwidth of 500 MHz, a beamwidth of 40.3°, and range to target 1755.6 m. The data is repeatedly processed with terms of increasing order. The results are shown in Fig. 13 and summarized in Table II. Again we find that the defocusing is reduced to about 20% as the percent of phase error greater than $\pi/10$ drops to about 30%.

The above guidelines suggest the order of the terms required for proper focusing. Efforts have been made to develop algorithms for efficiently processing data while keeping the higher order terms. As an example, from the algorithms mentioned in Section III, the non-linear CSA algorithm of [14] keeps up to the 3rd order term of Eq. (8). Compared to the CSA, this method requires two additional range FFT’s and a phase multiply. If terms higher than the 3rd order are needed for proper focusing, something more involved than the non-linear CSA is required. Such a method is derived below.

There is an upper bound for the number of approximation terms that can be used. An extreme situation is simulated with a center frequency of 350 MHz, a bandwidth of 500 MHz, an antenna beamwidth of 80°, and a range to target 3003 m. Fig. 11 shows that the highest order approximation that yields the best results is the 6th order. Using terms higher than this are actually detrimental to the overall focusing. As seen in Fig. 12 and in Eq. (8), the higher order terms become increasingly important at the edges of the support band. The terms come in alternating positive and negative pairs which largely cancel each other out, and above the 6th order the terms are too unstable for practical use. With this particular set of parameters, however, even when using the 6th order approximation, 61.6% of the support band has a phase error greater than $\pi/10$. Thus a frequency domain processing method is inadequate for focusing this data. This result suggests that there is a definite point at which SAR processing requires an ω-k or time-domain approach, in such cases, a frequency-domain approach should not be used.

B. Generalized SAR Processing Algorithm

The goal is to develop a new general processing scheme which efficiently accounts for as many higher order terms as dictated by the SAR parameters and the desired precision. Ideally, each additional term from Eq. (8) should add minimally
to the computational burden. The algorithm derived below is summarized in Table III. For order \(n \), the high-order phase and chirp-scaling terms up to the \(n \)th order are chosen such that the range dependence of the range-cell migration and range-frequency rate is removed.

We start with the approximation of the phase of our signal in the two-dimensional frequency domain, Eq. (2), which we express as \(\Phi_{SS} \) in row 4 of Table III, where \(Y_i \) is the \(i \)th derivative of \(Y(f_r) \) evaluated at \(f_r = 0 \), as in Eq. (5).

This signal is multiplied by a higher-order phase filter, \(H_{HOPF} \) in row 5 of Table III. The \(X_i \) terms are solved later in the derivation to remove the range-dependence of the higher order terms.

The inverse range Fourier transform is approximated by the principle of stationary phase (POSP). Assuming the higher-order terms are small, as in [14], [16], [33], the signal in the range-Doppler domain can be shown to be \(\Phi_{sSm} \) in row 6 of Table III, where, as in [14], [31],

\[
K_m = \frac{Kr}{1 - \frac{Ko R_0 f_d^2}{2 \pi^2 f_r^2 D^2(f_r)}}
\]

(13)

and \(\tau_d = (2R_0)/(cD(f_r)) \). \(\tau_d \) is the trajectory of a target with

<table>
<thead>
<tr>
<th>Range to Target (m)</th>
<th>Center Frequency (GHz)</th>
<th>ChirpBandwidth (MHz)</th>
<th>Antenna Beamwidth (°)</th>
<th>Theoretical Azimuth Resolution (m)</th>
<th>Measured Azimuth Resolution (m)</th>
<th>Defocus Factor (%)</th>
<th>Percent of Phase Error Greater Than (\pi/10)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1</td>
<td>3053.2</td>
<td>1.75</td>
<td>500</td>
<td>19.3</td>
<td>22.6</td>
<td>22.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>3053.2</td>
<td>1.75</td>
<td>500</td>
<td>19.3</td>
<td>22.6</td>
<td>29.0</td>
<td>28.1</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>1531.4</td>
<td>1.75</td>
<td>6101.6</td>
<td>17.5</td>
<td>22.6</td>
<td>24.5</td>
<td>8.3</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>3053.2</td>
<td>1.5</td>
<td>500</td>
<td>19.3</td>
<td>26.4</td>
<td>33.9</td>
<td>28.5</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>3053.2</td>
<td>2</td>
<td>500</td>
<td>19.3</td>
<td>19.8</td>
<td>31.9</td>
<td>41.1</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>3053.2</td>
<td>1.75</td>
<td>500</td>
<td>9.6</td>
<td>45.5</td>
<td>47.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>3053.2</td>
<td>1.75</td>
<td>500</td>
<td>29.0</td>
<td>15.1</td>
<td>25.1469</td>
<td>66.4</td>
</tr>
</tbody>
</table>

Fig. 1. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 500 MHz and an antenna beamwidth of 19.3°, ideally processed without approximations (\(\omega-k \), Eq. (4)). The left-most plot is a magnitude image of the focused target. The next figure is a contour plot with contours spaced 3dB apart. The next plot is a range slice through the center of the target, plotted in dB, the azimuth resolution is measured at the 3 dB point of this figure. The right-most image shows the phase error over the support band due as in Eq. (9). The parameters and results for this data are summarized in Table I.

Fig. 2. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 500 MHz and an antenna beamwidth of 19.3°, processed using the CSA (2nd order approximation). The plots are arranged as in Fig. 1. Parameters and results are summarized in Table I.

Table I

| Summary of the Simulation Processing Parameters and Results for Figs. 1–7. The “Defocus Factor” is the percent increase in measured azimuth resolution over the theoretical azimuth resolution. The theoretical azimuth resolution for an unweighted aperture is \((0.89 \cdot c/(4f_0 \sin(\theta/2))) \). |
range of closest approach R_0.

The chirp-scaling is performed by a phase multiply of orders up through n. The chirp-scaling phase is H_{CS} in row 7 of Table III, where the g_i’s are the scaling coefficients, which we will solve for, and $\tau_{ref} = (2R_{ref})/(cD(f_\eta))$, which is the trajectory for a target at reference range R_{ref}.

After chirp-scaling the signal phase is Φ_{sS} in row 8 of Table III, where the first term is the along-track modulation, which will ignore for the moment. The remaining terms, shown as the sum of C_i, are formed by making the substitutions

$$\tau_{ref} = \tau_s - \alpha \Delta \tau$$
$$\tau_d = \tau_s - (\alpha - 1) \Delta \tau$$

where $\Delta \tau = (2(R_0 - R_{ref}))/cD(f_\eta)$, the difference between τ_d and τ_{ref}, and α is a scaling term determined by the Doppler centroid, f_{dc},

$$\alpha(f_\eta) = \frac{\sqrt{1 - \frac{c^2 f_{dc}^2}{4v^2 f_\eta^2}}}{\sqrt{1 - \frac{c^2 f_{dc}^2}{4v^2 f_\eta^2}}}$$

which simplifies to $D(f_\eta)$ when there is no squint. Carefully expanding the result, and reordering the terms as a series of $(\tau - \tau_s)$ yields

$$C_0 + C_1 (\tau - \tau_s) + C_2 (\tau - \tau_s)^2 \ldots C_n (\tau - \tau_s)^n$$
Fig. 5. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 250 MHz centered at zero (top) and 500 MHz centered at 250 MHz (bottom), and an antenna beamwidth of 19.3°, processed using the CSA. The plots are arranged as in Fig. 1. Compared to Fig. 2, the top figure shows an improvement in azimuth focusing with a loss in range resolution while the bottom image shows degraded azimuth focusing.

Fig. 6. Simulated SAR data of a single point target at a range of 3053.2 m, a center frequency of 1.75 GHz, a chirp bandwidth of 500 MHz and an antenna beamwidth of 9.6° (top) and 29.0° (bottom), processed using the CSA. The plots are arranged as in Fig. 1. Compared to Fig. 2, the changing beamwidths cause a change in the theoretical azimuth resolution.

where C_i is defined as

$$
C_i = \begin{cases}
C_{x0} & \text{if } i = 0 \\
C_{x1} + 2\pi K_m (\alpha - 1) \Delta \tau & \text{if } i = 1 \\
C_{x2} + \pi K_m & \text{if } i = 2 \\
C_{xi} & \text{for } i > 2
\end{cases}
$$

with

$$
C_{xi} = \sum_{h=1}^{n} \left(\frac{h!}{(n-h)!} \pi (\alpha \Delta \tau)^{h-i} q_h \right).
$$

The range-dependent range frequency rate K_m is approximately expressed as the sum of K_f, which is K_m at a reference range, and $\Delta \tau$. We first define

$$
K_s = -\frac{c^2 f_n^2}{4v^2f_n^2D^2(f_n)}
$$

where $X_i = 0$ and $\Upsilon_i = 0$ for $i < 3$ and $q_i = 0$ for $i < 2$. The range-dependent range frequency rate K_m is approximately expressed as the sum of K_f, which is K_m at a reference range, and $\Delta \tau$. We first define

$$
K_s = -\frac{c^2 f_n^2}{4v^2f_n^2D^2(f_n)}
$$

where $X_i = 0$ and $\Upsilon_i = 0$ for $i < 3$ and $q_i = 0$ for $i < 2$. The range-dependent range frequency rate K_m is approximately expressed as the sum of K_f, which is K_m at a reference range, and $\Delta \tau$. We first define

$$
K_s = -\frac{c^2 f_n^2}{4v^2f_n^2D^2(f_n)}
$$
Fig. 7. Simulated SAR data of a single point target at a range of 3053.2 m, and a chirp bandwidth of 500 MHz, processed using the CSA. The plots are arranged as in Fig. 1. To maintain the same theoretical azimuth resolution as Fig. 2, the center frequency and antenna beamwidth are both changed in these figures. The top row has a lower frequency (1.5 GHz) and larger beamwidth (22.5°) while the bottom row has a higher frequency (2.0 GHz) and smaller beamwidth (16.9°), with results in Table I.

![Images](image-url)

Fig. 8. From the data in Table I, the amount of defocusing is plotted versus the percentage of phase errors greater than $\pi/10$ in the support band. The general trend is emphasized with a fitted curve. From this we decide that in order to have less than a 20% loss in azimuth focus, the percentage of phase errors in the support band greater than $\pi/10$ should be less than 30%.

![Images](image-url)

Fig. 9. Simulated SAR data of a single point target identical to Fig. 2, processed including third order approximation terms. The measured azimuth resolution is 23.0 cm, essentially equivalent to the theoretic value of 22.6 cm.

![Images](image-url)

Fig. 10. Simulated SAR data of a single point target with a center frequency of 1.25 GHz, a beamwidth of 27.1°, and a 500 MHz bandwidth, processed with third-order approximations. The percent of the support band with a phase error greater than $\pi/10$ is 31.2%, this results in a measured azimuth resolution of 26.8 cm, a 16.7% loss of focus.
Fig. 11. In an extreme SAR situation, with a center frequency of 350 MHz, a 500 MHz bandwidth, a 80° beamwidth, and a 3003 m range to target, the top plot shows the approximation order closest to ideal over the support band, or the approximation order with the smallest error at each point over the support band. Interestingly enough, the sixth-order approximation is the best over the usable area of the support band with higher-order approximations performing worse. The SAR data is processed using the 6th order approximation, but even so, 61.6% of the support band has a phase error greater than $\frac{\pi}{10}$, and the measured azimuth resolution is 59.6 cm, a 101.5% defocus from the theoretic resolution of 29.6 cm.

Fig. 12. The maximum magnitude of the phase error for different order approximations, as given by Eq. (9) for a 500 MHz bandwidth at 1.75 GHz (left) and 800 MHz (right). The top row shows the errors out to the maximum beamwidth of 180° while the bottom row focuses on beamwidths up to 60°. As the center frequency decreases, higher order approximations are required, even at small beamwidths, to get small phase errors. In addition, at lower frequencies a much larger beamwidth is required to maintain the same azimuth resolution, making it doubly important to account for the higher order terms. At extreme values, the higher order terms become dominate, marking the boundary of utility for frequency domain SAR processing.

then equivalent to Eq. (13)

$$K_m = -\frac{K_f}{1 + K_s \Delta \tau K_f}$$

We Taylor expand K_m in terms of $\Delta \tau$, and keep up to the second order,

$$K_m \approx K_f + K_s K_f^2 \Delta \tau + K_s^2 K_f^3 \Delta \tau^2$$

Each C_i for $i > 0$ is expressed as a series of $\Delta \tau$, for example

$$C_1 = 2\pi (\alpha K_f + q_2 \alpha - K_f) \Delta \tau$$
and range to target 1755.6 m. Approximation orders two through six and ideal processing are used with results summarized in Table II. The top row shows ideal processing. Approximation orders two through six are shown in rows two through six respectively.

\[+ \left(\frac{\pi K_3^2 (\alpha - 1)^2}{c} \left(2 f_0 K_4 R_{ref} - 3 X_3 \right) + 2 \pi K_2 K_3^2 (\alpha - 1) + 3 \pi q_3 \alpha^2 \right) \Delta \tau^2 + \ldots \]

When the coefficients of \(\Delta \tau \) are zero, the range variations are eliminated. For the linear and quadratic terms of \(\Delta \tau \), setting them equal to zero results in \(2n - 3 \) equations for \(2n - 3 \) unknowns, for example

\[2 \pi (\alpha K_f + q_3 \alpha - K_f) = 0 \]
A range inverse Fourier transform is then calculated, resulting in a signal with a phase that is compensated by an azimuth compression and residual phase compensation $H_{\alpha x}$ in Table III. An inverse azimuth Fourier transform results in the focused image.

This generalized method was applied in processing the data shown in Fig. 13 and Fig. 14. Significant improvements in focusing are seen, as detailed in Table II.

Of note is the relationship of this algorithm with those previously developed. When $n = 2$, this algorithm simplifies to the CSA. When $n = 3$, it simplifies to the non-linear CSA [14], without the extra orbital geometry term. If the α term is coupled with a β term that scales the range bandwidth, so that everywhere there is an α it becomes $\alpha\beta$, then when $n = 2$
TABLE III

NTH-ORDER GENERALIZED CHIRP-SCALING PROCESSING FLOW

<table>
<thead>
<tr>
<th>Action</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Digitize SAR Signal → (e^{j\Phi_0})</td>
<td>(\Phi_0 = -4\pi f_0 R(\theta)/c + \pi K_r (\tau - 2R(\theta)/c)^2)</td>
</tr>
<tr>
<td>2. Azimuth FFT → (e^{j\Phi_{1RA}})</td>
<td>(\Phi_{1RA} = -4\pi R_0 f_0 c \sqrt{D_1^2 f_0 + \frac{\nu_0^2}{\nu_0^2}} + \frac{j f_0^2}{\nu_0^2})</td>
</tr>
<tr>
<td>3. Range FFT → (e^{j\Phi_{1RA}})</td>
<td>(\Phi_{SS} = -\pi f_0^2/K_r - 4\pi R_0 f_0/c \cdot \frac{D_1 f_0 + \frac{f_0}{\nu_0^2} D_2 (f_0^2 + \frac{f_0^2}{\nu_0^2}) f_0^2 - 4\pi R_0 f_0 c}{\nu_0^2} \sum_{i=1}^{n} \frac{f_0^2}{\nu_0^2} f_i^2)</td>
</tr>
<tr>
<td>4. Approximate (\Phi_{1RA}) as (\Phi_{SS})</td>
<td>(H_{HOPF} = \pi \cdot \sum_{i=3}^{n} \frac{X_i f_i^2}{\nu_0^2})</td>
</tr>
<tr>
<td>5. (e^{j\Phi_{SS}} \times e^{j\Phi_{HOPF}})</td>
<td>(H_{CS} = \pi q_2 (\tau - \tau_{ref})^2 + \pi \sum_{i=3}^{n} q_i (\tau - \tau_{ref})^4)</td>
</tr>
<tr>
<td>6. Range IFFT → (e^{j\Phi_{Ss}})</td>
<td>(\Phi_{Ss} = -\frac{4\pi R_0 D(f_n) f_0}{c} + \pi \sum_{i=3}^{n} \frac{C_i (\tau - \tau_s)^4}{\nu_0^2} + \pi \frac{K_m (\tau - \tau_s)^2}{\nu_0^2} + \frac{\sum_{i=3}^{n} (q_i - X_i K_i^2 + 4f_0 Y_i R_{ref} K_i^2)}{\nu_0^2} (\tau - \tau_s)^4)</td>
</tr>
<tr>
<td>7. (e^{j\Phi_{Ss}} \times e^{j\Phi_{HCS}})</td>
<td>(\Phi_{SS} = -\frac{4\pi R_0 D(f_n) f_0}{c} - \left(\frac{4\pi R_0 D(f_n) f_0}{c} \right) f_0 - \frac{\pi \sum_{i=3}^{n} \frac{(q_i - X_i K_i^2 + 4f_0 Y_i R_{ref} K_i^2)}{\nu_0^2} (\tau - \tau_s)^4}{\nu_0^2})</td>
</tr>
<tr>
<td>8. Rearrange Terms → (e^{j\Phi_{SS}})</td>
<td>(H_{R} = \frac{4\pi R_0 D(f_n) f_0}{c} + \frac{\pi \sum_{i=3}^{n} \frac{X_i K_i^2 + 4f_0 Y_i R_{ref} K_i^2}{\nu_0^2} f_0^2}{\nu_0^2})</td>
</tr>
<tr>
<td>9. Range FFT → (e^{j\Phi_{SS}})</td>
<td>(\Phi_{Ss} = -\frac{4\pi R_0 D(f_n) f_0}{c} + \frac{\pi \sum_{i=3}^{n} \frac{X_i K_i^2 + 4f_0 Y_i R_{ref} K_i^2}{\nu_0^2} f_0^2}{\nu_0^2})</td>
</tr>
<tr>
<td>10. (e^{j\Phi_{SS}} \times e^{j\Phi_{HOPF}})</td>
<td>(H_{R} = \frac{4\pi R_0 D(f_n) f_0}{c} + \frac{\pi \sum_{i=3}^{n} \frac{X_i K_i^2 + 4f_0 Y_i R_{ref} K_i^2}{\nu_0^2} f_0^2}{\nu_0^2})</td>
</tr>
<tr>
<td>11. Range IFFT → (e^{j\Phi_{Ss}})</td>
<td>(\Phi_{Ss} = -\frac{4\pi R_0 D(f_n) f_0}{c} + \frac{\pi \sum_{i=3}^{n} \frac{X_i K_i^2 + 4f_0 Y_i R_{ref} K_i^2}{\nu_0^2} f_0^2}{\nu_0^2})</td>
</tr>
<tr>
<td>12. (e^{j\Phi_{Ss}} \times e^{j\Phi_{HCS}})</td>
<td>(H_{R} = \frac{4\pi R_0 D(f_n) f_0}{c} + \frac{\pi \sum_{i=3}^{n} \frac{X_i K_i^2 + 4f_0 Y_i R_{ref} K_i^2}{\nu_0^2} f_0^2}{\nu_0^2})</td>
</tr>
<tr>
<td>13. Azimuth IFFT</td>
<td></td>
</tr>
</tbody>
</table>

the algorithm simplifies to the extended CSA of [15]. Also, when \(n = 4\) it simplifies to the QPA [16] with a note that our algorithm includes a 4th order signal model. The extended CSA, non-linear CSA and QPA were all specifically developed for squint mode processing, but it is not only squinting that can cause the low-order approximations to break down. The approximation error has been dealt with more generally in this paper, but the method developed is well suited for squint-mode processing.

An approximation to the generalized algorithm that eliminates the extra range FFT and IFFT is obtained by, in Table III, eliminating rows 3-6 and combining row 5 with row 10. An example is shown in Fig. 15, where it is plain to see that the focusing is similar, but the sidelobes are larger.

V. CONCLUSION

With new SAR systems pushing center frequencies lower, bandwidths larger, and beamwidths wider, the approximations used in common frequency-domain SAR processing algorithms are inadequate. By developing an expression for the phase error term and visualizing it over the two-dimensional frequency support band, analysis of the effects of varying the SAR parameters for a given approximation is enhanced. RDA and CSA are low-order approximations of ideal frequency domain processing. A generalized algorithm is herein developed. A set of guidelines is proposed to determine the required approximation order for proper image processing, for a given set of SAR parameters. An efficient frequency-domain algorithm, built upon the CSA framework, which accounts for higher order terms is used to increase the precision over existing algorithms. Together, these tools provide an attractive alternative to the \(\omega\)-k and time-domain methods for processing wide-beamwidth, low-frequency, large-bandwidth SAR data.

APPENDIX A

DERIVATION OF GENERAL SAR SIGNAL IN THE WAVENUMBER DOMAIN

For completeness, a summary of the derivation of the SAR signal in the wavenumber domain that is presented by Cummings and Wong in [31] is included in this appendix. The derivation consists of taking the range and azimuth Fourier transforms of Eq. (1). We approximate the Fourier transforms using the principle of stationary phase (POSP), which is valid except in the extreme case of having radar frequencies very close to zero.

An expression for the signal phase after the range Fourier transform is computed by adding the phase term \(-2\pi f_r \tau\) to
Eq. (1), where f_r is range frequency:

$$\Phi_{0r} = -4\pi f_0 R(\eta) \frac{c}{c} + \pi K_r \left[\tau - \frac{2R(\eta)}{c} \right] - 2\pi f_r \tau. \quad (25)$$

Take the derivative of the phase with respect to τ, and solve for τ at the point where the phase is stationary (i.e. where $d\Phi_{0r}/d\tau = 0$).

$$\frac{d\Phi_{0r}}{d\tau} = 2\pi K_r \left[\tau - \frac{2R(\eta)}{c} \right] - 2\pi f_r = 0 \quad (26)$$

$$\tau = \frac{f_r}{K_r} + \frac{2R(\eta)}{c}. \quad (27)$$

Substitute into Eq. (25) and simplify to obtain the signal phase after the range Fourier transform of the signal.

$$\Phi_{1R} = -4\pi f_0 R(\eta) \frac{c}{c} + \pi f_r^2 \left(\frac{2R(\eta)}{c} + \frac{f_r}{K_r} \right)$$

$$= -4\pi f_0 R(\eta) \frac{c}{c} - \pi f_r^2 \left(\frac{f_r}{K_r} + 2\pi f_r \frac{2R(\eta)}{c} \right)$$

$$= -4\pi (f_0 + f_r) R(\eta) \frac{c}{c} - \pi f_r^2 \frac{2R(\eta)}{c}. \quad (28)$$

We now expand the range to the target $R(\eta)$

$$R(\eta) = \sqrt{R_0^2 + v^2 \eta^2} \quad (29)$$

where R_0 is the range of closest approach, and v is the velocity.

$$\Phi_{1R} = -4\pi (f_0 + f_r) \sqrt{R_0^2 + v^2 \eta^2} \frac{c}{c} - \pi f_r^2 \frac{2}{K_r}. \quad (30)$$

In order to evaluate the phase signal after the azimuth Fourier transform, again the POSP is used. Building the azimuth Fourier transform adds the term $-2\pi f_s \eta$ to the signal phase. Then the first derivative with respect to η is set to zero and solved for η.

$$\Phi_{1Ra} = -4\pi (f_0 + f_r) \sqrt{R_0^2 + v^2 \eta^2} \frac{c}{c} - 2\pi f_s \eta \quad (31)$$

and f_s is azimuth frequency.

$$\frac{d\Phi_{1Ra}}{d\eta} = -4\pi f_0 v^2 \eta \frac{c}{c} \sqrt{R_0^2 + v^2 \eta^2} + \pi f_r v^2 \eta \frac{c}{c} \sqrt{R_0^2 + v^2 \eta^2} - 2\pi f_s \eta = 0 \quad (32)$$

$$\eta = -\frac{c f_0 R_0}{v} \sqrt{\frac{f_0}{f_0 + f_r} - \frac{2}{v^2}} + \frac{4 f_r^2 v^2}{c R_0^2 + v^2 \eta^2} \quad (33)$$

Substitute this into Eq. (31) and simplify with some algebraic manipulation to get the phase of the SAR signal in the wavenumber domain.

$$\Phi_{1RA} = \left[\frac{4\pi (f_0 + f_r) \sqrt{R_0^2 + v^2 \eta^2}}{\sqrt{R_0^2 + v^2 \eta^2}} \right] \left[\frac{v^2 + 2R_0 f_0}{(f_0 + f_r) v} \right]^2$$

$$= \frac{2\pi f_r}{K_r} \frac{c}{c} \left(f_0 + f_r \right)^2 \left(1 - \frac{c^2 f_r^2}{4v^2 (f_0 + f_r)^2} \right) \quad (34)$$

where

$$D(f_0) = \sqrt{1 - \frac{c^2 f_r^2}{4v^2 f_0^2}}, \quad (35)$$

and f_s is azimuth frequency.