
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Physics Capstone Projects Physics Student Research 

5-2024 

Analyzing Atmospheric Gravity Waves Over Antarctica and Analyzing Atmospheric Gravity Waves Over Antarctica and 

Visualizing Machine Learning Data Visualizing Machine Learning Data 

Anastasia N. Brown 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/phys_capstoneproject 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Brown, Anastasia N., "Analyzing Atmospheric Gravity Waves Over Antarctica and Visualizing Machine 
Learning Data" (2024). Physics Capstone Projects. Paper 116. 
https://digitalcommons.usu.edu/phys_capstoneproject/116 

This Article is brought to you for free and open access by 
the Physics Student Research at DigitalCommons@USU. 
It has been accepted for inclusion in Physics Capstone 
Projects by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/phys_capstoneproject
https://digitalcommons.usu.edu/physics_sr
https://digitalcommons.usu.edu/phys_capstoneproject?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/phys_capstoneproject/116?utm_source=digitalcommons.usu.edu%2Fphys_capstoneproject%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Analyzing Atmospheric Gravity Waves Over Antarctica and 

Visualizing Machine Learning Data 

 

Anastasia N. Brown 

 

Abstract 

In an effort to streamline the identification of “clean” windows of airglow images in all sky imager 

data for the ANGWIN experiment, we have developed a Light Gradient Boosted Machine (LightGBM) 

learning algorithm that sorts “clean” (marked as 0) wave images from “obscured” (marked as 1) images. 

These “clean” windows are then processed and undergo FFT-spectrum analysis. We have already 

successfully created LightGBM models that accurately sort through images taken at the Davis, McMurdo, 

and Halley research stations in Antarctica. Imager data from the Davis and McMurdo station has been 

fully processed from the years 2012 to 2022 with clean windows identified by using their respective 

LightGBM Models. The LightGBM model for the Halley station was recently verified and already several 

years’ worth of data have been processed. To gauge the effectiveness of the three models, phase velocity 

spectrums from a season’s worth of data from each station were compared against each other as well as 

previous findings from each station. 

 

Introduction 

The ANtartic Gravity Wave Instrument Network (ANGWIN) is an international collaboration dedicated 

to investigate the upper atmosphere dynamics over a continent-size region, using a network of all-sky 

imagers. Before the operation reached full capacity in 2012, it was feasible to manually sort and clean the 

imager data “by hand”, but that is no longer possible due to the quantity of data (Table 1).  

 

 

 

 

Table 1: Timeline leading up to and during the ANGWIN experiment to show when the data was collected at each station. 

For context, each station in use is capable of producing between 1 and 2 million images per winter 

season (usually lasting from March to September). Days with identified “clean” windows are flat-fielded, 

calibrated, rotated, and stretched to remove the fish-eye effect caused by the lens, in preparation for FFT-

spectral analysis. We use two requirements to define “clear” windows, which are largely determined by 

the software used to perform FFT-spectral analysis: “clear” windows are defined as windows of 2 hours 

(usually equating to 720 frames) or longer containing at least one “clear” frame every 3 minutes (Fig. 1). 

For FFT-spectral analysis, we then average 6 frames together to represent 1 minute of data and perform 



analysis using an algorithm based off of Matsuda et al., 2014 (Zia, 2022). Before the 2020 pandemic, Utah 

State University’s Atmospheric Imaging Lab had a large workforce dedicated to processing and identifying 

“clean” imager windows to use in FFT-spectral analysis.  Unfortunately, as a result of the lock down, the 

workforce dedicated to processing “Clean” windows shrank. 
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Figure 1: “Clean” windows are defined as free of excessive cloud, aurora, moon, or twilight contamination.  

To streamline the sorting process, the lab now uses a machine learning algorithm to sort “clean” 

(marked as 0) images from “obscured” (marked as 1) images (Zia, 2022). The machine learning algorithm 

was inspired by one used to sort THEMIS (Time History of Events and Macroscale Interactions during 

Substorms) aurora all-sky imager data (Clausen et al., 2018). Generated using Convolutional Neural 

Network, Clausen et al.’s algorithm used a training set of 5,824 labeled images and reported 96% accuracy 

detecting images that contained aurora using binary classification. They initially used a 6-label ridge 

classifier system — labels being cloudy, moon, clear/no aurora, arc, discrete, and diffuse — that reported 

an accuracy of 82% when considering its ability to identify phenomena in each label.  

Unfortunately, it was not possible to directly replicate Clausen et al.’s algorithm due to a large update 

to the Machine Learning platform they used, TensorFlow, that took place in 2019. Instead of a Neural 

Network, the lab’s machine learning algorithm uses a Light Gradient Boosted Machine (LightGBM) to 

generate its machine learning models (Ke et al., 2017). Despite generating our machine learning algorithm 

using a different method, we were able to mimic closely Clausen et al.’s results using their training set 

(Zia, 2022). Using the code Dr. Kenneth Zia wrote, and a training set of 6,526 images for the Davis station, 

we were able to achieve 98.5% accuracy detecting images that contained clear sky characteristics (Zia, 

2022). The main drawback to LightGBM is that a model generated for one station does not transfer well 

to others. We found it necessary to develop a unique model for each station that we have data left to 

process, Davis, Halley, McMurdo, and Rothera. Dr. Zia completed the training set and model for McMurdo. 

The Davis station was completed back in 2022, which left the Halley and Rothera stations, both of which 

I have been in charge of developing. I am in the late stages of testing Rothera model, and this report will 

focus on the development and completion of Halley model.  

 

 



Background 

In model testing, I have found that the usefulness of the machine’s reported frame identification 

accuracy is often misleading, and not overly beneficial for our lab. For reference, we considered a study 

similar to Clausen et al.’s that used a larger training set (240,000 images), a Neural Network, and a trinary 

classification system (cloudy, clear, and dynamic) (Sedlak et al., 2023).  Sedlak et al. reported a mean 

average precision of 82% with individual average precision values being 90% for cloudy, 85% for calm, and 

63% for dynamic. A major similarity between the Clausen and Sedlak’s machine learning models is that 

they exhibit 82% accuracy when judging their model’s ability to identify all features, and both gained 

greater accuracy when choosing just one feature to report. In our lab, the ability to correctly identify 

multiple features is more desirable than correctly identifying waves and chunks of clear sky in a picture. 

The perceived accuracy of our models dropped when considering the machine’s ability to accurately 

identify windows that fit the criteria for our FFT spectral analysis (Table 2).  

Table 2: 2013-2017 Accuracy of ML. The machine reported the frame accuracy and found the windows. Students reported the 
validated accuracy. Training set size and labeled image steps are in units of frames. 

Recalling the sheer number of frames required to analyze one window, it is easy to see that the 

reported frame accuracy is only partially reflective of the model’s effectiveness. As such, the goal for the 

Halley model was to achieve verified window identification rates and accuracy within a range comparable 

to the Davis and McMurdo stations.  

The second part of my work was to compare the results of the FFT analysis to the results obtained by 

Matsuda et al., 2017. They found that over Antarctica for the period April-May 2013, the directionality of 

atmospheric gravity waves (AGW) vary greatly in space and time. With that said, they found that AWG over 

Davis often transport 5-6 times more energy than those reported over McMurdo. They suggested that the 

AGW energy observed at stations near Davis latitude could be significantly higher than AGW observed 

near Halley and McMurdo latitudes. Compared to Halley and McMurdo, Davis has most uniform 

directionality. For McMurdo and Halley, averaged phase velocity showed westward propagation 

preference. The fewest eastward waves were reported over McMurdo and fewest northeastward AGW 

were reported at Halley. Matsuda et al. speculated that these differences were possibly caused by critical 

level filtering by background winds. Imagers at all three stations imaged OH (0.9-1.7µm) airglow at a 

sampling interval of 10s, exposure time of 3s, and a detector size of 320×256 pixels (Matsuda et al., 2017). 

 

Table 3: Station's latitude, longitude and magnetic latitude (Matsuda et al 2017). 

 

 

Station “Clean” 
Nights 

Percent 
Validated 

Frame 
Accuracy 

Training 
Set Size 

Labeled Image 
Steps 

Davis 169 89% 98.5% 6526 5 

McMurdo 271 79% 99.8% 6757 5 and 10 

McMurdo Halley Davis 

78°S 167°E 81°S 76°S 27°W 67°S 69°S 78°E 77°S 



Procedure 

During the development of the Davis and McMurdo models, our goal was to track the contents of our 

training sets by replicating the documentation styles of past students. Students who were not involved 

with machine learning. More precisely, the original model development method was as follows: 

1. Label images and manually add the index, label, and classification of each frame to the training 

set csv file, and write a brief description detailing the window.  

2. Feed the training set into the Python machine learning algorithm, MachineLearning.py.  

3. Use the generated model to clean a year’s worth of data using the ML based cleaning software, 

ASICleaning.py.  

4. Use a window flagging software, MLShellrunner.pro, to identify “clean” window picked out by the 

model. The same program is used to perform FFT-spectral analysis on the windows found after 

they have been processed.  

5. Judge the results of the first model and feed image types it misidentified back into the training 

set, and repeat until the model correctly identifies a majority of “clean” windows correctly. 

In-depth documentation used in early development was lacking. Because of this, the results from the 

Davis and McMurdo models were not easily replicable. Early attempts at generating the Halley model, 

following a documentation style similar to the Davis and McMurdo models, only yielded a 62.3% validated 

“clean” window accuracy. As such, a major goal for developing the Halley model was to simultaneously 

develop documentation methods that improved our ability to summarize the contents of the training set 

and output of the models. The production of the Halley Model can be broken down by improvements to 

the ASI Imager data documentation processes, planned improvements to the computational tools 

associated with the Machine Learning algorithm, and unplanned improvements to the computational 

tools associated with the Machine Learning algorithm.  

For the training set, one of the planned improvements was to rework the documentation of labeled 

images used in this set. The issue with tracking labels in training set was that it was difficult to manage a 

.csv file with 5000+ entries without additional documentation. Even with using a “reference sheet” to 

manually track changes to the training set, it was often difficult to accurately confirm that the changes 

made to the training set accurately reflected changes made to the “reference sheet”. The solution that 

worked best was to computationally generate a formatted “reference sheet”, and to use it to 

computationally generate the training sets. Changes made to the training set are easy to track, it takes 

less time to generate new models, and the formatted structure of the “reference sheet” makes it easy to 

graphically represent the contents of the training set. However, relying on code to generate the training 

set allows for less flexibility in labeling mixed data. For example, instead of labeling mixed data as “Moon 

and Cloudy” the program I wrote is only equipped to handle one label. It is not impossible to change the 

code to allow for greater flexibility, but such changes would take time, and the formatted “reference 

sheet” already has a “notes” section which allows for additional information. 



   
Figure 2: Three frames taken within a span of roughly 1.25 hours.  

Representing the images and windows in training set using text also presented itself as a limiting 

factor when it came to model development. As familiarity with ASI images increased, the definition of 

“clear” and “obscured” images evolved. Each time the quality of a window was manually verified, it was 

necessary to open the images on an image viewing program (named “Norway.exe”) which is time 

intensive to use. The first solution was to take screenshots of frames within the window. Individual images 

were quick and easy to acquire and described obscuring factors more efficiently than words could (Fig. 1). 

However, each image only describes a 10s blip within the training set. This method does not capture the 

quality of the entire window. Still frames effectively document if there are obscuring features in a frame, 

but they do not best document the variance of a window (Fig. 2). To combat the still frame’s inability to 

correctly describe long periods of observation, it was attempted to use Excel files to create a weather log 

that describes weather features in 30-minute periods (Fig. 3). 

 
Figure 3: An example of a weather log made for tracking weather conditions. 

Weather logs allowed for days, months, and potentially seasons to be documented in detail. 

Additionally, it allows for cross comparison between models and by counting the number of 30-minute 

periods exhibiting a given weather feature. One thing to note is that weather logs describe windows with 

less detail and less flexibility than using descriptive text. However, a detailed weather log paired with still 

frames allows for both the general weather conditions and time variability of a given window to be shown. 

Using these methods leads to Halley Model 4, which reported 73% accuracy predicting “clean” windows 

and 90% accuracy predicting “clean” nights in testing. However, when Halley Model 4 was used to clean 

an entire season, it only flagged 9 nights as being clean for the Halley station in 2013. Halley Model 4’s 

ability to correctly point to a “clean” window is reasonable, but most of the actual “clean” windows in the 

data set were missed.  



Around the same time, the MLShellrunner.pro’s window flagging algorithm was separated from the 

FFT-spectral analysis algorithm. The result of this endeavor was two additional window flagging 

algorithms, in addition to the original, and a separate FFT-spectral analysis algorithm, 

MLShellrunnertest.pro, that reads in already found “clean” windows. The window flagging algorithms 

have their various strengths. In short, the first two window identification algorithms, MLShellrunner 

Version 1 and Version 2, were written in IDL programing language. They enforced the “clean” window 

requirements for FFT spectral analysis by assuming each frame was precisely 10 seconds apart from the 

last and counting both the number of “clean” frames that separate “obscured” along with ensuring the 

total number of “clean” frames in a window added up to a minimum of two hours. The third, MLShellpy, 

was written in Python. Comparing the MLShellrunner Version 1, MLShellrunner version 2 and MLShellpy 

results provides more checks to increase the number of “clean” windows found. Transferring the window 

flagging algorithm to Python also allowed for the FFT-spectral analysis requirements for the clean 

windows to be met by examining the timestamps associated with the imager data. This allowed for more 

precise window identification at the cost of including windows with a lower minimum count of “clean” 

frames in the window. The differences of the window identification algorithms will be discussed more in 

depth later, but because most of the data processing was done with the window identification algorithm 

associated with MLShellrunner Version 1, the station comparison was done using MLShellrunner Version 

1 data. 

  

  
Figure 4: Phase velocity spectrums from the Halley Model 4 training set, comprised of 2012 data. Top left: Aug09-10 2500-5000, 
originally labeled as "clear", kept as clear. Top right: Sep09-10 1600-2600, originally labeled "obscured" but changed to "clear". 
Bottom left: Aug16-17 1900-2600 originally labeled as “Aurora”, removed from the training set. Bottom right: Jul05-06 2250-3175 
originally marked as ”moon”, window length extended to 1000-3175. 



What is interesting about MLShellrunnertest.pro is that it allows me to test the phase velocity 

spectrums of the specific training set windows and not just the output produced by the model. For model 

development, what this accomplished was testing how similar windows classified as “clean” were to 

windows classified as “obscured” (Fig. 4).  This helped to find mislabeled data and ambiguous windows in 

the training set. Mislabeled data was relabeled and kept in the training set, and the ambiguous data was 

re-evaluated. 

Relatively few pixels distinguish moon glare with waves from clear sky with waves. The aurora flickers 

on and off the frame quickly. Furthermore, after reviewing the spreadsheet made to log the weather 

conditions of July Halley 2012 for this experiment, 23 nights were reported as having stars visible (clear 

sky), 18 of those nights were logged as having potential wave activity, 10 of the nights with stars visible 

were reported to have aurora activity, as well, 8 of the nights that had aurora activity were also reported 

to have exhibited potential wave activity. Upon examining the “Basic Cloud Diary 2012” that another 

student made in years past, it appears they recorded 116 nights with possible wave activity for the entire 

2012 season at Halley (but when it was done manually, <2 hours periods of clear sky where still considered 

good and processed). Of the nights that included reports of auroral activity, 45 out of 48 nights (93%) also 

included reports of wave activity (meaning that 38% of nights with reports of wave activity also included 

reports of auroral activity). These numbers could be biased as the student who made the cloud diary might 

have not been focusing on reporting aurora activity, but the correlation appears to be impressive. Given 

the possible correlation between waves and aurora, it was decided to develop Halley Model 8 by not 

including obscuring examples of aurora in the training set and leaving it to the data cleaners to decide 

which of those windows should or should not be processed.  

  
Figure 5: Improved techniques for developing ML model. (Left) Image from Halley 2012 Aug16-17 1900-2600 training set window. 
Although there are clear instances of geomagnetic activity, the majority of the frame features strong wave activity. Training 
against the aurora also inadvertently trains against clear sky phenomena. (Right) A graph of ASICleaning scores from Halley Model 
8, 2013.  

With the FFT algorithm now able to read in “clean” windows, the criteria for a window being validated 

and processed has softened. It became less necessary to have a machine learning model that precisely 

determine the start and end of each window, as it is now possible to manually adjust the length of the 

windows. By filtering out only the most extreme obscuring phenomena, the chances of missing clear sky 

and wave phenomena decrease. With this in mind, the subtlety of the Halley training set decreased until 

the model correctly identified frequently missed clean windows in March of 2013. Once that was 



achieved, efforts were shifted validating Halley Model 8’s ability to correctly identify and catch clean 

windows in the Halley 2013 dataset.  

For consistency during this experiment, the length of the windows flagged by the machine learning 

model were not adjusted. However, using graphs of the ASICleaning scores, the model’s capacity to 

evaluate Halley 2013 data was tracked and notes of the model’s ability to correctly judge clear and 

obscured windows with anything noteworthy. To validate Halley Model 8 across a greater range of data, 

instead of making a weather log for Halley 2013 data, a comparison was done between the ASICleaning 

score graphs from each day to the imager data associated with the graphs. When the imager data and 

ASICleaning scores disagreed, a video comprised of the frames in the window was made for comparison. 

Then a summary file was used (the format of which and supporting code was designed by a fellow student, 

Connor Waite) to track the clean windows. The following was tracked: windows found by each flagging 

algorithm, windows found by examining the ASICleaning score graphs, and unique windows found by 

manually examining the imager data that were entirely missed by the other window identification 

methods. Fellow undergraduate students, Connor Waite, Dallin Tucker, and Max Haehnel helped to 

prepare the 2013 data for the Davis and McMurdo stations for comparison. 

 

Analysis 

Below are the window length and average power of every clear sky window found for Halley 2013 

(Figure 6). For both the computationally identified windows and the visually identified windows, their 

average power tends to be below 0.0020. Additionally, MLShellpy tends to find slightly longer windows 

than the IDL based window flagging algorithms. The number of windows found via each method and the 

percentage of those windows validated as correct can be seen in table 4. 

 Unique Manually Identified 
windows* 

All Graph Estimates Unique Graph Estimates* 

Window 22 111 29 

Validated 95% 82% 48% 

Night 22 84 25 

Validated 95% 92% 52% 

 MLShellrunner Version 1 MLShellrunner Version 2 MLShellpy 

Window 31 65 76 

Validated 80% 80% 79% 

Night 27 57 66 

Validated 85% 84% 83% 
Table 4: Windows identified compared to the percent of windows correctly identified using various window identification methods. 
*Windows identified in addition to what was found by other means. The nights are not necessarily unique. 

 

 

 

 
   



  
Figure 6: Left: Windows found by one of the MLShellrunner window flagging algorithms. Right: unique windows found by either 
examining graphs of ASICleaning scores or manually sifting through the data. Top: spectrum power, bottom: windows duration. 

Even though the percent of validated “clean” windows is consistent across all three computational 

window flagging algorithms, the phase velocity spectrums vary noticeably, even after manually removing 

obvious ‘obscured’ windows the algorithm erroneously flagged (Figure 7). 
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Figure 7: The number of windows found by various window flagging algorithms affect the perceived physical properties of the 
monthly phase velocity spectrums. 

 

The obvious differences between the phase velocity spectrums of the MLShellrunner version 1 generated 

windows and the MLShellpy windows is concerning. To test the severity of the physical differences 

reported, the phase velocity spectrum produced by the IDL MLshellrunner code was subtracted from the 

phase velocity spectrum produced by the Python MLShellpy code. The results can be seen in Figure 8.  

McMurdo Davis Halley 

   
Figure 8: The differences between July 2013 average phase velocity spectrums generated using windows found from MLShellPy 
and MLShellrunner Version 1, for McMurdo (left), Davis (center), and Halley (right) stations. 

For the McMurdo station, there is not much difference between the phase velocity spectrums 

generated by MLshellrunner Version 1 and MLShellPy, but for Halley and Davis the difference between 

the phase velocity found by the two window flagging algorithms varies by as much as an order of 

magnitude. To test the cause of this, the “Filtered” and “Unfiltered” windows from Halley July 2013 that 

were found by the two window flagging algorithms were compared to gauge which flagging algorithm 

most closely matched reality. This was done by generating an averaged phase velocity spectrum of each 

data set and subtracting them. “Filtered” refers to windows identified by the flagging algorithm and 

manually verified as “clear”. “Unfiltered” refers to the entire set of windows identified by a given window 

flagging algorithm. As can be seen in Figure 9, the data that was filtered out of the MLShellpy windows 

left less of an imprint than the data that was filtered out of the MLShellrunner version 1 windows. What 

this means is that, even though MLShellrunner version 1 has a somewhat higher percentage of “verified 

clean” windows it identifies, the obscuring data in the “unfiltered” set of windows found by MLShellpy 

had less of an impact on the phase velocity spectrums. 

 

 



MLShellrunner Version 1 MLShellpy 

  
Figure 9: The difference between the phase velocity spectrums made using filtered and unfiltered windows identified by IDL’s 
MLShellrunner and Python’s MLShellpy.  

To verify that the windows were correctly filtered, videos were made for reference. It should also be 

noted that to save time, windows with a long period of both obscured and clean data were filtered out. 

Future investigation may benefit from testing how manually adjusting the length of mixed windows and 

adding them to the “filtered” set affects the phase velocity spectrums.  

Another thing to consider is that by comparing windows found by MLShellPy and MLShellrunner 

Version 1, it becomes apparent that increasing the number of windows analyzed does not greatly affect 

the range of energies observed but can affect what is considered to be an outlier. Below is a comparison 

of average power and window length gathered from filtered MLShellrunner Version 1 and MLShellpy 

windows found for July 2013 (Figure 10). Particularly when considering the power measured from the 

Davis station and the length of windows gathered from the Halley station, data points that appear to be 

outliers in the MLShellrunner Version 1 set of windows appear to be statistically significant in the 

MLShellpy window set. This implies that the small sample size of windows gathered by MLShellrunner 

Version 1 acts to skew the perceived physical properties of the data set. 

MLShellrunner Version 1 MLShellPy 

  



  
Figure 10: Windows found by MLShellrunner Version 1 appear to exhibit several outliers in terms of average power and window 
length found. However, the increased number of windows found by MLShellPy fills in this gap.  

So long as the “clean” windows acquired from MLShellPy are adequately verified, it is fair to suggest 

that MLShellPy yields a closer depiction of reality compared to MLShellrunner version 1. Further 

investigation is necessary to see how the three station’s machine learning models compare when using 

MLShellPy to flag “clean” windows. 

Results 

In terms of the quantity of verified windows found between the three stations, average power found 

from each window, and the total length of each window, a comparison can be seen in Figure 11. Using 

MLShellrunner Version 1 to flag windows found from each model, McMurdo had the greatest number of 

windows and Halley had the longest average windows. The ratio of validated and unfiltered nights found 

at Halley in 2013 was within the range of validated and unfiltered nights found from 2013 to 2017 at the 

Davis and McMurdo stations. Moreover, the ratio of validated and unfiltered nights observed using the 

Halley model stayed consistent across each computational window flagging method.    

Average Power Window Length 

  
Figure 11: Average power and window length for Halley, Davis, and McMurdo stations in 2013. 



Davis had windows with the greatest average power, and the average power found by Halley and 

McMurdo were consistent with each other. Without manually adjusting the mixed windows found by the 

machine learning models, the power observed at Davis was 4.6 times larger than the power observed at 

Halley and 4.8 times larger than the power observed at McMurdo. This is comparable to the findings of 

the 2017 Matsuda et al. study. There is evidence that using a different window flagging algorithm, 

MLShellPy, may impact the average power observed at each station, and further research is needed to 

gauge the effect of manually adjusting the computationally found windows has on the observed average 

power.  

As seen in Figure 12, power increases over the course of the winter for all the stations and 

directionality is very similar for McMurdo and Davis (~SW) during most of the winter. It varies for Halley 

from W to E, which is similar to what was found by Nielsen et al., 2009, who analyzed individual wave 

events instead of power spectrums. Further testing revealed that there is evidence to suggest that “clean” 

windows flagged by MLShellPy more closely reflect phenomena that occurs in the data.  
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Figure 12: Phase velocity spectrums from Halley, Davis, and McMurdo using windows gathered using their respective Machine 
learning models and MLShellrunner Version 1.  

Conclusion 

A machine learning model, Halley Model 8, was developed for the Halley station airglow image dataset 

that sorts “clean” and “obscured” images with an accuracy comparable to how the McMurdo and Davis 

models performed for their respective stations. The accuracy of the clean window identification varies 

with the window flagging algorithm used. Comparing the three stations using MLShellrunner Version 1 

resulted in the Halley model accurately identifying “clean” windows in 85% of the nights it flagged, 

compared to 89% of the nights the Davis model found, and 79% of the nights the McMurdo model found.  

On average, the power observed at Halley and McMurdo are similar, and much smaller than the power 

observed at Davis. All of them were comparable to what was found in the 2017 Matsuda et al. study. In 

the comparison of the phase velocity spectrums, the power increased throughout the winter for each 

station. The McMurdo and Davis stations preformed similarly to the results seen in the 2017 Matsuda et 

al. study, but the Halley station phase velocity spectrums varied from W to E. There is evidence that 

windows obtained using the MLShellpy flagging algorithm yields results closer to what is apparent in the 

physical data. More research is required to test how the phase velocity spectrums and average power 

turn out when the mixed windows are manually adjusted to keep only the “clean” data as opposed to 

being entirely thrown out. 
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