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ABSTRACT

Exploring Optimal Design of Experiments for Random Effects Models

by

Ryan C. Bushman, Master of Science

Utah State University, 2024

Major Professor: Dr. Stephen J. Walsh
Department: Mathematics and Statistics

The majority of research in the field of optimal design of experiments has focused on a fixed

effects model. The purpose of this thesis is to explore how the optimal design framework applies to a

nested random effects model. Given the covariance matrix of the maximum likelihood estimators for

a model is the inverse of the model’s information matrix, the optimal design framework operates by

simultaneously maximizing the information obtained in an experiment and minimizing the variance

of the model’s maximum likelihood estimators. Unlike the typical fixed effects experiment, the

optimization of the information matrix for a random effects model is non-linear as the information

matrix is a function of the experiment’s sample sizes and the values—often hypothesized—of the true

variance components. The calculation of the information matrix for a random effects experiment is

much more difficult than for a fixed effects experiment. Very little research has been done in this

field by a few researchers from several decades ago; some of this research exists in only a single print

copy. To the best of our knowledge, tools do not exist that leverage this research for the common

statistical coding languages used today. The purpose of this thesis is to revive the research that

has been done in this field and build a free open-source R package, ODVC (Optimal Design for

Variance Components), that enables users to do optimal design of experiments for one-way and two-
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way random effects models. To demonstrate the use of the ODVC package, we explore interesting

problems in both the one-way and two-way nested experiment settings.

(73 pages)
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PUBLIC ABSTRACT

Exploring Optimal Design of Experiments for Random Effects Models

Ryan C. Bushman

The majority of research in the field of optimal design of experiments has focused on producing

designs for fixed effects models. The purpose of this thesis is to explore how the optimal design

framework applies to nested random effects models. The object that is being optimized is the

model information matrix. We explore the full derivation of the random effects information matrix

to highlight the complexity of the problem and show how the optimization is a function of the

model’s parameters. In conjunction with this research, the ODVC (Optimal Design for Variance

Components) package was built to provide tools that allow researchers to explore interesting optimal

design problems for both one-way and two-way nested random effects models. The tools within this

package were used to explore how the choice of an optimal design for a random effects model is

influenced by the values of the hypothesized variance components, the sample sizes, and the choice

of optimality criteria.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1

Introduction

In 2018, an article by Willis Jensen outlined six open problems in the field of optimal design

of experiments. One of the problems he outlined was optimal design for the estimation of variance

components—i.e., random effects models. The majority of professionals that practice optimal design

of experiments focus primarily on fixed effects models. Those who do academic research in optimal

design of experiments often focus on algorithm development and generating new designs. For several

examples, see [1, 2, 3, 4, 5].

However, in industry there are many situations in which an experiment may be conducted

to determine how random effects influence a process or procedure [6]. Estimating variances as an

uncertainty quantification tool is commonly applied in metrological and analytical (e.g., chemistry)

settings. See [7, 8] for two examples where estimated variances are used to support development

and validation of analytical methods. An example of improving estimation of a single population

variance by a small number of replicates is provided in [8]. A detailed example of a two-staged

nested random-effects ANOVA used as an experimental design to conduct a material heterogeneity

study can be found in [9]. Accredited analytical laboratories are required to follow the international

standard guidelines for conducting material heterogeneity studies under variance component designs.

In these settings, the default procedure is often to use a balanced design [10].

If one will conduct the F-tests for whether a specific variance component is 0, then there are

compelling arguments for implementing balanced multi-stage nested variance component designs, see

[11]. If the variance component design is unbalanced, the typical F-tests may only be approximate

or completely broken by specific data [11] and it can be difficult to determine when the F-tests

can be trusted. However, chemical metrologists typically don’t need these significance tests, but

only require the variance estimates to be used in a larger uncertainty quantification calculation. In
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this case, there is a compelling argument to implement a non-balanced design as a balanced design

will inflate the degrees-of-freedom to a large number for the residual error variance. The residual

error variance is typically already well known as it usually represents the short-term measurement

repeatability in such experiments. Therefore, it would be better to use the optimal design framework

to ensure the precise estimation of each variance component. The purpose of this work is to build

a set of tools that allows practitioners to explore candidate optimal experiment designs for nested

one-way and two-way variance component models. Mixed effects models fall outside of the scope of

this research, but are an area of future research under consideration.

1.2

Background

There are many reasons why the literature for such problems is scarce. Optimal design of

experiments uses the information matrix of the model in question as the object to be optimized. In

the standard case in which the model only has fixed effects, the information matrix is easily derived.

When working with models that only have random effects, the calculation for the information matrix

is not as commonly known and more complex. Using maximum likelihood estimation theory, we

know that the information matrix is the Hessian of negative log-likelihood function of our model

[12]. The computation of the Hessian for a model that only contains random effects is very difficult

as it requires the use of many uncommon matrix derivative identities (e.g., the derivative of the log

determinant of a matrix with respect to a scalar) and strategic use of the trace function to simplify

the end result. An additional barrier to conducting research in this area is that for a model that only

contains random effects, the information matrix will be a function of the sample sizes and the values

of the variance components — the parameters — which results in a non-linear optimization problem.

Given the variance components are often unknown prior to an experiment, hypothesized values for

these parameters must be used instead in order to explore quality of differing candidate designs.

Intuition may also lead one to incorrectly assume that if the information matrix is a function of the

sample sizes, the optimal design is simply the one with the largest number of experimental runs.

Given these barriers, there has been little research conducted on optimal design for random effects

models. However, there is a need for research in this area of optimal design of experiments. Any

profession that relies on uncertainty quantification, such as chemists, benefits from nested random

effects experiments. Given these experiments can be expensive, the optimal design framework is

useful as it focuses on maximizing information and minimizing variance for the fixed number of
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experimental runs that are deemed affordable.

1.3

Literature Review

One of the foremost researchers on the subject of variance component models is Dr. Shayle

R. Searle. In 1970 he published an article that focused on using maximum likelihood estimation

as a route to calculating large sample variance-covariance matrices for unbalanced data. He begins

with an eloquent description of the process: “Estimation of variance components from data that

are unbalanced . . . has been referred to by Hartley . . . as involving ’algebraic heroics.’ Obtaining

sampling variances can be described similarly.” He mentions that approaching this problem from

the perspective of maximum likelihood estimation is uncommon because of its inherent complexity

[13]. However, using a well-suited vector/matrix notation, he derives a generalized element-wise

expression for the Hessian of a nested random effects model. He then goes on to demonstrate

its functionality in the one-way and two-way nested model setting. This information is not easily

usable for the average practitioner as it requires a strong background in statistics and use of a unique

matrix/vector notation.

Searle went on to write a book on the subject of variance components alongside George Casella

and Charles McCulloch. In the third Chapter they go through the one-way classification. They

revisit the vector/matrix notation that makes working the problem significantly easier. After going

through the maximum likelihood estimation, they demonstrate the calculation of the asymptotic

covariance matrix for the maximum likelihood estimators for both balanced and unbalanced data

[14]. They establish that these asymptotic covariance matrices can also be calculated using the

generalized element-wise expression for the Hessian of nested random models published in Searle

1970 [13].

Another example of research done in this area of optimal design of experiments is a Doctoral

Dissertation by Dr. Jaime Delgado at Colorado State University (CSU) in 1997. His research,

largely inspired by the work of Goldsmith and Gaylor [15], focused on optimal design of experiments

for one, two, and three-way nested variance component models. He was particularly interested in

finding unbalanced optimal designs that allow for each variance component to be estimated with

approximately equal precision. A common problem in nested models is the majority of the degrees

of freedom are allocated to the bottom level of an experiment. This allows σ2 to be estimated with

very high precision. However, if the focus of the experiment is to study the effects of a different
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variance component, σ2
A, then it would be desirable to allocate degrees of freedom such that it is

estimated with high precision as well. Delgado calculated the information matrix for the models in

question by using method of moment estimators. The criteria by which he scored designs were the

determinant, trace, and scaled trace criteria. Delgado was preferential to the scaled trace criteria

as it emphasized taking into account the values of the variance components when scoring a design

[16]. Delgado went on to write a paper with Hari Iyer on optimal designs for three stage nested

random models. Similar to his dissertation he explores using the scaled trace criteria. Using a

parameterization that emphasizes the ratios of the variance components they are able to conduct

numerical optimization and find designs that are more efficient that previously published designs

[17].

1.4

Conclusion

A major motivation in conducting research in optimal design of experiments for variance

component models is the fact that despite that it would be a useful tool in domains that use variance

components models as an uncertainty quantification tool, there are very few researchers who have

worked on this problem. Some of the work that was reviewed in this section is only available to the

public in the form a single printed copy.

In this thesis, we will add to the literature by showing a complete annotated derivation

of the information matrix for nested random effects models. This is an important exercise to

truly understand how optimal design for such models fundamentally changes as the object be-

ing optimized is a function of the model’s parameters. Once we have illustrated this deriva-

tion, we will go on to demonstrate how tools within the ODVC package—accessed at https:

//github.com/ryancbushman/ODVC—use the aforementioned information matrix derivation to allow

researchers to do optimal design of experiments for nested random effects models. While inspired by

those referenced in the literature review, these tools allow one to explore designs of greater size with

more complex nesting structures. Additionally, this package has been written in a contemporary

statistics coding language and made available on an open-source and free platform. The goal of

this work is to build on the knowledge established past researchers and create tools that will allow

practitioners to easily find experiment designs that offer optimal or near optimal performance and

are tailored to be cost effective according to the restraints put on the practitioner.
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CHAPTER 2

DERIVING THE INFORMATION MATRIX FOR THE ONE-WAY ANOVA MODEL

Although the knowledge to derive the information matrix for the one-way ANOVA model

exists in the literature, we did not encounter a complete annotated derivation in any one source.

This chapter contains a clear and complete explanation of how to derive the information matrix for

a random effects model and highlights how the understanding gained from this derivation influences

how one would do optimal design of experiments for such models. The final result of this derivation

can be found in reference [13].

When attempting to conduct optimal design of experiments for models that only have random

effects, the simplest version of this problem uses the one-way ANOVA model. The balanced model

is as follows:

yij = µ+ αi + εij

i = 1, . . . , g j = 1, . . . , n N = n · g

αi
iid∼ N (0, σ2

A) εij
iid∼ N (0, σ2)

where g is the number of groups, n is the number of replicates per group, and N is the total number

of replicates in the experiment. In the case of the unbalanced model, each group can have a different

number of replicates ni and the total number of replicates is N =
g∑

i=1

ni.

Vector/matrix notation significantly facilitates the math that follows. This notation makes

use of the direct sum denoted ⊕. The one-way ANOVA model can be represented in the following

vector/matrix notation where bold lowercase characters represent vectors and bold uppercase char-

acters represent matrices. The model has been written to allow the user to consider both balanced

and unbalanced experiment designs.

y = µ1N + Za+ e

where Z =
g
⊕
i=1

1ni
, a =

[
α1 . . . αg

]′
and e is an N × 1 vector of the model errors. a ∼
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Ng

(
0, σ2

A

g
⊕
i=1

Jni

)
where J is a matrix of 1s of specified dimension and e ∼ NN

(
0, σ2IN

)
. The

distributions of a and e are independent.

By summing the variance of the distributions of a and e, we get the probability model’s

variance matrix V. If the structure of V is known, the model can be succinctly stated as y ∼

NN (µ1N ,V) [18]. The methods demonstrated in this chapter depend on knowing the exact structure

of V therefore we will show its derivation. This will be done to allow for both balanced and

unbalanced designs.

V = var(y) = var(µ1N + Za+ e) (2.1)

= var(Za) + var(e)

= Zvar(a)Z′ + σ2IN

=

(
g
⊕
i=1

1ni

)
σ2
A

(
g
⊕
i=1

1ni

)′

+ σ2IN

= σ2
A

(
g
⊕
i=1

1ni

)(
g
⊕
i=1

1ni

)′

+ σ2IN

= σ2
A

(
g
⊕
i=1

1ni

)(
g
⊕
i=1

1′
ni

)
+ σ2IN

= σ2
A

(
g
⊕
i=1

1ni
1′
ni

)
+ σ2IN

= σ2
A

(
g
⊕
i=1

Jni

)
+ σ2IN

When dealing with a balanced experiment design, all ni are equal such that ni = n. In this

case, the Kronecker product, written ⊗, can be used instead of the direct sum and Equation 2.1

simplifies to the following:

V = σ2
A(Ig ⊗ Jn) + σ2IN (2.2)

In order to conduct optimal design of experiments, it is necessary to derive the information

matrix as that is the object that undergoes optimization. To derive the information matrix, we note

that maximum likelihood estimators converge in distribution to a normal distribution with mean

equal to the true parameter and variance equal to the inverse information matrix [19].

θ̂MLE
d→ N (θ,I−1)
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The information matrix can be derived by solving for the Hessian of the negative log-likelihood

function of the model in question. The probability density and likelihood function for the one-way

ANOVA model is

L(µ,V | y) = f(y | µ,V) =
1

2π
N
2 |V| 12

e(y−µ1N )′V−1(y−µ1N ) (2.3)

By taking the natural logarithm and multiplying by negative one, we get the negative log-

likelihood function.

−l(L) =
N

2
log(π) +

1

2
log(|V|) + 1

2
(y − µ1N )′V−1(y − µ1N ) (2.4)

The information matrix, the Hessian of the model’s negative log-likelihood function, will take

the following form:

H =

−(l(L))σ2σ2 −(l(L))σ2σ2
A

−(l(L))σ2
Aσ2 −(l(L))σ2

Aσ2
A


Where our vector of parameters is θ =

[
σ2 σ2

A

]′
the following notation will be used for

derivatives: (X)σ2,σ2
A

= ∂2X
∂σ2∂σ2

A
. Using this notation, the second derivative of the negative log-

likelihood function is:

(−l(L))θiθj =
1

2
(log |V|)θiθj +

1

2
(y − µ1N )′(V−1)θiθj (y − µ1N ) (2.5)

Given this expression outputs a one-dimensional scalar, we can take the trace of its terms

without changing the expression. Taking the trace allows the term to be reorganized cyclically. We

will take the expectation as well to further simplify the expression.

(−l(L))θiθj =
1

2
(log |V|)θiθj +

1

2
tr[E(y − µ1N )(y − µ1N )′(V−1)θiθj ] (2.6)

We recognize E(y − µ1N )(y − µ1N )′ to be the definition of model variance V which yields:
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(−l(L))θiθj =
1

2
(log |V|)θiθj +

1

2
tr[V(V−1)θiθj ] (2.7)

Matrix calculus will be used to simplify the first and second terms of Equation 2.7.

2.1

Evaluating the first term of Equation 2.7: (log |V|)θiθj

The following results will be required in order to evaluate this term [20]:

log(|X|)y = tr(X−1(X)y) (2.8)

(XY)z = (X)zY +X(Y)z (2.9)

(X−1)y = −X−1(X)yX
−1 (2.10)

First, we must evaluate (log(|V|)θi . Using Equation 2.8 we get:

(log |V|)θi = tr(V−1(V)θi) (2.11)

Now we must take the derivative of Equation 2.11 with respect to θj . This requires the use

of the Equations 2.9 and 2.10.

(log |V|)θiθj = (tr(V−1(V)θi))θj = tr[−V−1(V)θjV
−1(V)θi +V−1(V)θiθj ] (2.12)

2.2

Evaluating the second term of Equation 2.7: tr[V(V−1)θiθj ]

In order to evaluate (V−1)θiθj we must first know what (V−1)θi is. We can solve for it using

the Equation 2.10.
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(V−1)θi = −V−1(V)θiV
−1 (2.13)

Now using Equation 2.9 we can evaluate (V−1)θiθj .

(V−1)θiθj = (−V−1)θj (V)θiV
−1 −V−1(V)θiθjV

−1 −V−1(V)θi(V
−1)θj (2.14)

Analogous to Equation 2.13, substitute (V−1)θj = −V−1(V)θjV
−1

(V−1)θiθj = V−1(V)θjV
−1(V)θiV

−1 −V−1(V)θiθjV
−1 +V−1(V)θiV

−1(V)θjV
−1 (2.15)

Remember that the term we are evaluating is tr[V(V−1)θiθj ]. Now we will multiply V by

(V−1)θiθj :

(V)θjV
−1(V)θiV

−1 − (V)θiθjV
−1 + (V)θiV

−1(V)θjV
−1 (2.16)

The trace can be applied linearly over addition and subtraction. Additionally, given the sum

of each part will result in a one-dimensional object, the products within each trace can be rearranged

cyclically.

tr[V(V−1)θiθj ] = tr[(V)θjV
−1(V)θiV

−1]− tr[(V)θiθjV
−1] + tr[(V)θiV

−1(V)θjV
−1] (2.17)

= tr[V−1(V)θiV
−1(V)θj ]− tr[V−1(V)θiθj ] + tr[V−1(V)θiV

−1(V)θj ]

= tr[2V−1(V)θiV
−1(V)θj ]− tr[V−1(V)θiθj ]

= tr[2V−1(V)θiV
−1(V)θj −V−1(V)θiθj ]

2.3

Simplifying the Hessian

Using the results from (2.12) and (2.17), we can simplify the Hessian found in Equation 2.7
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−(l(L))θiθj =
1

2
tr[−V−1(V)θjV

−1(V)θi +V−1(V)θiθj ] +
1

2
tr[2V−1(V)θiV

−1(V)θj −V−1(V)θiθj ]

=
1

2
{tr[−V−1(V)θjV

−1(V)θi +V−1(V)θiθj + 2V−1(V)θiV
−1(V)θj −V−1(V)θiθj}

=
1

2
tr[V−1(V)θiV

−1(V)θj ] (2.18)

Equation 2.18 is a generating equation for the elements of the Hessian of a nested variance

component model. We will now use this equation to solve for those elements:

H =

−(l(L))σ2σ2 −(l(L))σ2σ2
A

−(l(L))σ2
Aσ2 −(l(L))σ2

Aσ2
A



2.4

Solving for the elements of the one-way ANOVA Hessian

To solve for the elements of the Hessian, we require expressions for the variance and inverse

variance of the model. We use an explicit expression for the variance and use software to solve for

the inverse of that expression

V = σ2
A

(
g
⊕
i=1

Jni

)
+ σ2IN (2.19)

V−1 =

[
σ2
A

(
g
⊕
i=1

Jni

)
+ σ2IN

]−1

(2.20)

where J is a matrix of 1s with specified dimension. If the model in question is a balanced design, then

(2.19) simplifies to (2.2) and like in (2.20), its inverse is calculated using software. Given we have

an explicit expression for the model variance matrix, we can calculate its derivatives with respect to

the variance components.

(V)σ2 =

(
σ2
A

(
g
⊕
i=1

Jni

)
+ σ2IN

)
σ2

(2.21)

= IN
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(V)σ2
A
=

(
σ2
A

(
g
⊕
i=1

Jni

)
+ σ2IN

)
σ2
A

(2.22)

=

(
g
⊕
i=1

Jni

)

2.4.1

Solving for −(l(L))σ2σ2

Using the derivative from (2.21) and noting that V is an N ×N matrix, we get the following

result:

−(l(L))σ2σ2 =
1

2
tr[V−1(V)σ2V−1(V)σ2 ] (2.23)

=
1

2
tr[V−1INV−1IN ]

=
1

2
tr[V−1V−1]

2.4.2

Solving for −(l(L))σ2σ2
A

Using the derivatives from (2.21) and (2.22) and noting that V is an N ×N matrix, we get

the following result:

−(l(L))σ2σ2
A
=

1

2
tr[V−1(V)σ2V−1(V)σ2

A
] (2.24)

=
1

2
tr

[
V−1INV−1

(
g
⊕
i=1

Jni

)]
=

1

2
tr

[
V−1V−1

(
g
⊕
i=1

Jni

)]

2.4.3

Solving for −(l(L))σ2
Aσ2

Using the derivatives from (2.21) and (2.22) and noting that V is an N ×N matrix, we get

the following result:
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−(l(L))σ2
Aσ2 =

1

2
tr[V−1(V)σ2

A
V−1(V)σ2 ] (2.25)

=
1

2
tr

[
V−1

(
g
⊕
i=1

Jni

)
V−1IN

]
=

1

2
tr

[
V−1

(
g
⊕
i=1

Jni

)
V−1

]

2.4.4

Solving for −(l(L))σ2
Aσ2

A

Using the derivatives from (2.21) and (2.22) and noting that V is an N ×N matrix, we get

the following result:

−(l(L))σ2
Aσ2

A
=

1

2
tr[V−1(V)σ2

A
V−1(V)σ2

A
] (2.26)

=
1

2
tr

[
V−1

(
g
⊕
i=1

Jni

)
V−1

(
g
⊕
i=1

Jni

)]

2.5

The information matrix for the one-way ANOVA model

By calculating the Hessian of the negative log likelihood function for the one-way ANOVA

model, we have successfully derived the information matrix which can now be used to conduct

optimal designs of experiments.

H

(
σ2, σ2

A, g, ni

∣∣∣∣ g

Σ
i=1

ni = N

)
=

 1
2 tr[V

−1V−1] 1
2 tr

[
V−1V−1

(
g
⊕
i=1

Jni

)]
1
2 tr

[
V−1

(
g
⊕
i=1

Jni

)
V−1

]
1
2 tr

[
V−1

(
g
⊕
i=1

Jni

)
V−1

(
g
⊕
i=1

Jni

)]
 (2.27)

In the following Chapter we will walk through the open-source tools within the ODVC package

that allow practitioners to generate and compare the quality of experiment designs for one-way nested

random effects models.
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CHAPTER 3

R UTILITIES FOR ONE-WAY RANDOM EFFECTS MODELS

In this chapter we will explore certain scenarios involving the one-way nested random effects

model and how tools in the ODVC R package can be used in an optimal design framework. Unlike

a fixed effects model, this is a non-linear optimal design problem. That being the case, the optimal

design depends on the parameters. This results in many dimensions that require exploration unlike

the linear optimal design problem. We will explore how factors such as optimality criteria, sample

sizes, and hypothesized variance component values, affect the optimal design choice in both balanced

and unbalanced designs.

We use a random effect model rather than a fixed effect model when we have a large population

of factor levels and will select a sample of them to study. Deciding on the number of factor levels

from the population to sample—the number of groups—is the design exercise for random effects.

An example of this type of scenario would be a heterogeneity study. If a lab wanted to measure

the amount of a single element in a large bucket of mother material, they could do an experiment

with a one-way random effect model. An analyst would homogenize the material and divide it into

a large number of vials (e.g., 300). The large number of vials would be the population for the

heterogeneity study. The number of vials selected for the experiment from the population of vials

is a random sample and therefore the vials would contribute a random effect. The design exercise

would be choosing the number of vials of material to include in the experiment. This would represent

the number of groups. The number of measurements taken on each vial would be the number of

replicates per group. Tools in the ODVC package can be used to determine whether it is more

advantageous to take many measurements on a few vials or take a few measurements on many vials.

This will largely depend on the hypothesized value of the variance components associated with the

random sample of vials and the measurements on the vials.
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Scenario 1

A statistician has been brought in to consult on the design of an experiment. They haven’t

spoken with the client in person yet and over the phone they have only provided a few details

about the constraints of the experiment. However, the details they have provided have informed

the statistician that the experiment will be a one-way random effects model and the variance com-

ponent for the experimental factor is assumed to be about twice as big as the variance component

for the random error. Using what information is available, the statistician loads the ODVC pack-

age to start exploring options. They begin a general exploration of one-way designs by using the

generate designs B function which takes all combinations of number of groups, number of reps,

and hypothesized values of the variance components expressed as the ratio τ =
σ2
A

σ2 to compute the

D and A scores and relative efficiencies for this entire set of designs.

var_A = 2

candidates <- generate_designs_B(ngroups = c(2, 3, 4, 5, 6, 7, 8, 9, 10),

nreps = c(2, 3, 4, 5, 6, 7, 8, 9, 10),

taus = var_A)

head(candidates)

N a n tau A_Score D_Score Relative.A.Efficiency Relative.D.Efficiency

1 4 2 2 2 7.500000 6.2500000 12.05926 0.313600

2 6 2 3 2 6.000000 2.7222222 15.07407 0.720000

3 8 2 4 2 5.416667 1.6875000 16.69744 1.161481

4 10 2 5 2 5.100000 1.2100000 17.73420 1.619835

5 12 2 6 2 4.900000 0.9388889 18.45805 2.087574

6 14 2 7 2 4.761905 0.7653061 18.99333 2.561067

When the statistician has the opportunity to meet with the client in person, they are able

to view the options the statistician has generated so far. After deciding on using the D criteria,

the statistician builds a contour plot using the contour designs B function. This function builds

two plots per combination of provided arguments. These plots show how the optimality score and

relative efficiency changes as a function of the sample sizes. The very last contour plot generated

from the function, see Figure 3.1, shows relative efficiency across the largest of the user selected

parameter settings.

contours <- contour_designs_B(ngroups = c(2, 10),

nreps = c(2, 10),

taus = var_A, criteria = "D")

contours[[2]][[4]]
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#[[2]] Returns a relative efficiency plot rather than the D score plot.

#[[4]] Returns the plot that crosses the last value of ngroups with the last value of nreps.

Figure 3.1: A contour plot that shows relative efficiency of designs up to N = 100 for τ = 2.

The statistician explains that where the object we are optimizing, the information matrix,

is a function of the design parameters — number of groups, number of replicates per group, and

values of the variance components — logically it follows that larger experiments yield better designs.

Within each band of the contour plot are designs that perform comparably well. The client explains

that they would likely only be able to afford an experiment in the (10, 20] band. The statistician

subsets these experiments and recalculates their relative efficiency to be based on just the designs

within the subset. While looking at this set of experiments, the statistician and client note that

the largest experiment is not necessarily the most efficient based on their specific number of groups,

replicates per group, and value of τ .

candidates <- candidates[candidates$releff_D > 10 & candidates$releff_D <= 20, ]

OD_D <- min(candidates$D_Score)

OD_A <- min(candidates$A_Score)

candidates$releff_D <- 100 * OD_D / candidates$D_Score

candidates$releff_A <- 100 * OD_A / candidates$A_Score

candidates

N a n tau A_Score D_Score Relative.A.Efficiency Relative.D.Efficiency

24 28 4 7 2 2.380952 0.19132653 50.40000 51.62667

25 32 4 8 2 2.330357 0.16127232 51.49425 61.24765

26 36 4 9 2 2.291667 0.13927469 52.36364 70.92136

27 40 4 10 2 2.261111 0.12250000 53.07125 80.63307

31 25 5 5 2 2.040000 0.19360000 58.82353 51.02041

32 30 5 6 2 1.960000 0.15022222 61.22449 65.75293

33 35 5 7 2 1.904762 0.12244898 63.00000 80.66667
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34 40 5 8 2 1.864286 0.10321429 64.36782 95.69946

39 24 6 4 2 1.805556 0.18750000 66.46154 52.68027

40 30 6 5 2 1.700000 0.13444444 70.58824 73.46939

41 36 6 6 2 1.633333 0.10432099 73.46939 94.68422

48 28 7 4 2 1.547619 0.13775510 77.53846 71.70370

49 35 7 5 2 1.457143 0.09877551 82.35294 100.00000

56 24 8 3 2 1.500000 0.17013889 80.00000 58.05581

57 32 8 4 2 1.354167 0.10546875 88.61538 93.65382

65 27 9 3 2 1.333333 0.13443073 90.00000 73.47688

74 30 10 3 2 1.200000 0.10888889 100.00000 90.71220

Upon looking at the designs within this band, the client says they would feel comfortable

paying for an experiment of N=30. Knowing this the statistician can now narrow down their

options. By calling the subset designs B function the statistician can show all candidate designs

of size N=30 and recalculate relative efficiency based solely on this subset of designs.

candidates2 <- subset_designs_B(data = candidates, N = 30)

candidates2

N a n tau A_Score D_Score Relative.A.Efficiency Relative.D.Efficiency

32 30 5 6 2 1.96 0.1502222 61.22449 72.48521

40 30 6 5 2 1.70 0.1344444 70.58824 80.99174

74 30 10 3 2 1.20 0.1088889 100.00000 100.00000

The client observes that although all the candidate designs are balanced designs of size 30,

clearly the design with the most groups, 10, and least reps per group, 3, is the best performing

design. The statistician uses the plot design function to provide a visualization of the experiment

design (see Figure 3.2). The tree diagrams returned by this function identify the different groups in

the top layer of the diagram, and the replicates nested within those groups in the bottom layer of the

diagram. To facilitate identifying groups, replicates nested within the same group are highlighted

in the same color. The client takes this design to their supervisors.

plot_design(n = rep(3, 10), a = 10, sig_a = var_A, error = 1, criteria = "D")

When the client speaks with their supervisor, the supervisor says that this design looks great,

but they could actually afford 31 experimental runs. The supervisor wants to know if there is a
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Figure 3.2: A tree diagram representing a balanced experiment with 10 groups, 3 replicates per
group, τ = 2, and scored on the D criteria.

significant increase in performance if one more replicate is added to the experiment. The client

approaches the statistician and poses the question. The statistician points out that 31 runs will

result in an unbalanced design, however, it is possible that it could perform better than the bal-

anced design. They begin exploring options for a 31-run experiment. The statistician uses the

generate_designs_U function to generate all unbalanced designs of size N = 31 with 10 groups.

candidates_u <- generate_designs_U(N = 31, a = 10, sig_a = var_A, error = 1)

By modifying the dataset to include relative efficiency with respect to the balanced N = 30

design, they can evaluate whether an N = 31 design would be worth considering.

tail(candidates_u[, c(1:6,9,10)])

N a n_i sig_a_sq A_Score D_Score releff_A_balanced releff_D_balanced

648 31 10 4 4 4 4 3 3 3 3 2 1 2 1.220422 0.1057647 98.32667 102.9539

649 31 10 4 4 4 4 3 3 3 2 2 2 2 1.204436 0.1044984 99.63172 104.2015

650 31 10 4 4 4 3 3 3 3 3 3 1 2 1.214013 0.1052171 98.84573 103.4897

651 31 10 4 4 4 3 3 3 3 3 2 2 2 1.198215 0.1039664 100.14895 104.7347

652 31 10 4 4 3 3 3 3 3 3 3 2 2 1.192068 0.1034407 100.66542 105.2669

653 31 10 4 3 3 3 3 3 3 3 3 3 2 1.185992 0.1029212 101.18113 105.7984

To get a better understanding of the options available to them, the statistician generates

a scatter plot of dataset index against relative efficiency compared with the balanced design (see

Figure 3.3). The dataset is structured such that in this design scenario, as index increases, the

replicates become more balanced between groups. These plots are useful as they show how relative

efficiency changes as the design approaches balance.

The statistician points out that the last design with 10 groups, 9 of which had 3 replicates

and one with 4 replicates, is the best performing design. To see how this design performs compared

to the previously selected N=30 design, the statistician calculates relative efficiency.
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Figure 3.3: A scatter plot comparing relative efficiency against dataset index for unbalanced designs
of size N = 31 with 10 groups to a balanced design of N = 30 with 10 groups. For this scenario
τ = 2 and designs are scored on the D criteria.

100 * candidates$D_Score[candidates$a == 10] / candidates_u$D_Score[66]

105.7984

The client observes about 5.8% increase in efficiency using the unbalanced design. They decide

that is a justifiable increase and decide to go with the unbalanced design as seen in Figure 3.4.

plot_design(n = c(rep(3, 9), 4), a = 10, sig_a = var_A, error = 1, criteria = "D")

Figure 3.4: A tree diagram representing an unbalanced experiment with 10 groups such that 9 groups
have 3 replicates and one group has 4 replicates. This design is for the scenario where τ = 2 and is
scored on the D criteria.
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Scenario 2

An academic statistician wants to know how changing the value of τ =
σ2
A

σ2 affects the optimal

design process for one-way nested random effects models. This is an important question as this is

a non-linear design problem that is dependent on the value of the parameters: number of groups,

number of replicates per group, and the values of the variance components. Before an experiment

is done, the value of the variance components is unknown and hypothesized values must be used in

their place. A proper understanding on how the true value of the variance components affects design

choices is necessary when a researcher proposes a hypothesized value for that parameter. The statis-

tician decides to begin with balanced designs of size N=24 and values of τ ∈ {0.1, 0.5, 1, 2, 10}. They

load the ODVC library in R, generate a dataset of candidate designs, and use the compare designs B

function to create a dashboard visualization for both the D and A criteria.

var_A = c(0.1, 0.5, 1, 2, 10)

candidates <- generate_designs_B(ngroups = c(2, 3, 4, 6, 8, 12),

nreps = c(2, 3, 4, 6, 8, 12),

taus = var_A)

candidates <- subset_designs_B(data = candidates, N = 24)

compare_designs_B(designs = candidates, criteria = "D")

compare_designs_B(designs = candidates, criteria = "A")
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Figure 3.5: Comparing the relative efficiency of designs of size N=24 scored on the D criteria across
various values of τ
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Figure 3.6: Comparing the relative efficiency of designs of size N=24 scored on the A criteria across
various values of τ
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N = 24

τ
# of Groups in
Optimal D Design

# of Groups in
Optimal A Design

0.1 2 2
0.5 6 6
1 8 8 or 12
2 8 12
10 12 12

Table 3.1: The number of groups in the optimal design of size N = 24 given the value of variance
components and optimality criteria.

The statistician observes the optimal design depends heavily on the value of τ and the criteria

selected. Reference Table 3.1 to view a summary of the results.

The statistician now wants to know, in the case that and individual cannot do a balanced de-

sign, are there unbalanced designs of comparable quality? The statistician uses the generate designs U

function to generate all designs of size N=24 with a specified number of groups. They then use the

compare designs U function to view how many comparably well performing designs are available.

This function facilitates identifying high performing designs by including a red reference line at 90%

efficiency. They decide to explore the extreme values of τ ∈ {0.1, 10} for both the A and D criteria.

The choice for the number of groups is made based on what the number of groups was in the optimal

design for the balanced case. Design quality for the first case in which τ = 0.1 and the design is

scored on the D criteria is summarized in Figure 3.7.

candidates_u_1_D <- generate_designs_U(N = 24, a = 2, sig_a_sq = 0.1, error_sq = 1)

compare_designs_U(data = candidates_u_1_D, criteria = "D")

Figure 3.7: A scatter plot comparing relative efficiency against dataset index for designs of size
N = 24 with 2 groups, τ = 0.1, and scored on the D criteria.
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The statistician sees in Figure 3.7 that the highest scoring design is the last one in the

dataset with index 12. This so happens to be the balanced design. They observe that as the design

approaches balance, the relative efficiency improves. Additionally, they note that there are various

unbalanced designs that perform comparably well should the scenario occur that a balanced design

is not possible. In Figure 3.8 we see the statistician’s visualization of the top 6 performing designs.

Figure 3.8: Top six performing designs of size N = 24 such that there are 2 groups, τ = 0.1, and
designs are scored on the D criteria.

They move on to the next case of designs with N = 24, where there are 12 groups, τ = 10,

and designs are scored on the D criteria. In Figure 3.9, the statistician takes advantage of the

top_5 = TRUE argument for the compare_designs_U function to highlight the top 5 performing

designs. Similar to previous cases, the optimal design is the last one in the dataset with index 77.

This is the balanced design. The statistician observes that there are many unbalanced designs of

comparable quality for circumstances that may prevent the use of a balanced design. The statistician

visualizes the top 6 designs in Figure 3.10.

candidates_u_5_D <- generate_designs_U(N = 24, a = 12, sig_a_sq = 10, error_sq = 1)

compare_designs_U(data = candidates_u_5_D, criteria = "D", top_5 = TRUE)
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Figure 3.9: A scatter plot comparing relative efficiency against dataset index for designs of size
N = 24 with 12 groups, τ = 10, and designs are scored on the D criteria.

Figure 3.10: Top six performing designs of size N = 24 such that there are 12 groups, τ = 10, and
designs are scored on the D criteria.

The statistician now looks at the same cases but for the A criteria. In the case that N = 24,

there are 2 groups, τ = 0.1, and designs are scored on the A criteria we observe a similar pattern. In

Figure 3.11, we see the best design is still the last one in the dataset which is the balanced design.

One notable difference is that nearly all the designs are at least 97% efficient. This indicates that

perhaps it is easier to find a high performing unbalanced design when the A criteria is used. The
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statistician compares the top 6 designs in Figure 3.12.

candidates_u_1_A <- generate_designs_U(N = 24, a = 2, sig_a_sq = 0.1, error_sq = 1)

compare_designs_U(data = candidates_u_1_A, criteria = "A")

Figure 3.11: A scatter plot comparing relative efficiency against dataset index for design of size
N = 24 with 2 groups, τ = 0.1, and designs are scored on the A criteria.

Figure 3.12: Top six performing designs of size N = 24 such that there are 2 groups, τ = 0.1, and
designs are scored on the A criteria.
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The statistician now wants to check the last case when N = 24 with 12 groups, τ = 10,

and the designs are scored on the A criteria. In Figure 3.13, they note that like in previous cases,

there are many comparably well performing unbalanced designs. They visualize the top 6 designs

in Figure 3.14 to show that a well performing unbalanced design can easily be chosen should the

occasion arise that a balanced design is not possible.

candidates_u_6_A <- generate_designs_U(N = 24, a = 12, sig_a_sq = 10, error_sq = 1)

compare_designs_U(data = candidates_u_6_A, criteria = "A", top_5 = TRUE)

Figure 3.13: A scatter plot comparing relative efficiency against dataset index for designs of size
N = 24 with 12 groups, τ = 10, and designs are scored on the A criteria.

Figure 3.14: Top six performing designs of size N = 24 such that there are 12 groups, τ = 10, and
designs are scored on the A criteria.
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As the statistician concludes this exploration, they are pleased to have made some valuable

observations:

1. When planning for a balanced design, the optimal number of groups is highly dependent on

the value of τ .

2. Occasionally there are balanced designs that perform equally as well. For example, when

N=24, τ = 1, and the A criteria is used, then either a design with 8 or 12 groups will perform

equally well.

3. When planning for an unbalanced design, there are many potential unbalanced designs that

perform comparably well to the optimal balanced design.

Conclusion

The tools available in the ODVC R package assist statisticians in both academic and applied

scenarios to perform optimal design of experiments for one-way nested random effects models. We

have highlighted how the contour designs B function can be used to explore how relative efficiency

and optimality scores change based on the sample sizes of the experiment. By making use of Equa-

tion 2.18, the generate designs B and generate designs U functions can be used to generate all

balanced or unbalanced designs, respectively, of a specified size and with respect to the users hypoth-

esized variance component values. These tools score every design on two commonly used optimality

criteria. This allows researchers to easily identify an optimal or high performing design based on the

limitations of the setting in which they are conducting an experiment. The compare designs B and

compare designs U functions return visualizations that allow researchers to compare the quality of

competing designs for balanced and unbalanced designs respectively. Once a design has been chosen,

it can be visualized using the plot design function. In the next Chapter we will show how Equation

2.18 can be used to generate the information matrix for two-way nested random effects models.
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CHAPTER 4

DERIVING THE INFORMATION MATRIX FOR THE TWO-WAY ANOVA MODEL

We will now take the findings of Chapter 2 and apply them to the two-way nested random

effects model. The scalar version of this model is written as follows:

yijk = µ+ αi + βij + εijk

i = 1, . . . , g j = 1, . . . , bi k = 1, . . . , nij

where g is the number of groups at the α level, bi is the number of sub-groups per level of α, and

nij is the number of reps per level of β nested in α. In vector/matrix notation, the model is:

y = µ1N + Z1a+ Z2b+ e

= µ1N +

(
g
⊕
i=1

1ni·

)
a1
...

ag

+

(
g
⊕
i=1

bi
⊕
j=1

1nij

)
b11
...

bij

+


e111
...

eijk



a ∼ Ng

(
0, σ2

A

g
⊕
i=1

Jni·

)
where J is a matrix of 1s of specified dimension, b ∼ N∑g

i=1 bi(
0, σ2

B

g
⊕
i=1

bi
⊕
j=1

Jnij

)
where J is a matrix of 1s of specified dimension and e ∼ NN

(
0, σ2IN

)
. The

distributions of a, b, and e are independent.

By summing the variance of the distributions of a, b and e, we get the probability model’s

variance matrix V. If the structure of V is known, the model can be succinctly stated as y ∼

NN (µ1N ,V) [18]. The methods demonstrated in this chapter depend on knowing the exact structure

of V therefore we will show its derivation. This will be done to allow for both balanced and

unbalanced designs.
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V = var(y) = var(µ1N + Z1a+ Z2b+ e) (4.1)

= var(Z1a) + var(Z2b) + var(e)

= Z1var(a)Z
′
1 + Z2var(b)Z

′
2 + σ2IN

=

(
g
⊕
i=1

1ni·

)
σ2
A

(
g
⊕
i=1

1ni·

)′

+

(
g
⊕
i=1

bi
⊕
j=1

1nij

)
σ2
B

(
g
⊕
i=1

bi
⊕
j=1

1nij

)′

+ σ2IN

= σ2
A

(
g
⊕
i=1

1ni·

)(
g
⊕
i=1

1ni·

)′

+ σ2
B

(
g
⊕
i=1

bi
⊕
j=1

1nij

)(
g
⊕
i=1

bi
⊕
j=1

1nij

)′

+ σ2IN

= σ2
A

(
g
⊕
i=1

1ni·

)(
g
⊕
i=1

1′
ni·

)
+ σ2

B

(
g
⊕
i=1

bi
⊕
j=1

1nij

)(
g
⊕
i=1

bi
⊕
j=1

1′
nij

)
+ σ2IN

= σ2
A

(
g
⊕
i=1

1ni·1
′
ni·

)
+ σ2

B

(
g
⊕
i=1

bi
⊕
j=1

1nij1
′
nij

)
+ σ2IN

= σ2
A

(
g
⊕
i=1

Jni·

)
+ σ2

B

(
g
⊕
i=1

bi
⊕
j=1

Jnij

)
+ σ2IN

When dealing with a balanced experiment design, all ni· are equal such that ni· = b. Addi-

tionally all nij are equal such that nij = n. In this case, the Kronecker product, written ⊗, can be

used instead of the direct sum and (4.1) simplifies to the following [14]:

V = (Ig ⊗ Jb ⊗ Jn)σ
2
A + (Ig ⊗ Ib ⊗ Jn)σ

2
B + (Ig ⊗ Ib ⊗ In)σ

2

Given we have an explicit expression for our model variance, we can use the same generating

function from (2.18) to solve for the elements of our Hessian taking into account that our vector of

parameters is now Θ =

[
σ2
A σ2

B σ2

]′
.

H =


−(l(L))σ2

Aσ2
A

symmetric

−(l(L))σ2
Aσ2

B
−(l(L))σ2

Bσ2
B

−(l(L))σ2
Aσ2 −(l(L))σ2

Bσ2 −(l(L))σ2σ2



Substituting the elements of our Hessian with Equation 2.18 yields:
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H =


1
2 tr[V

−1(V)σ2
A
V−1(V)σ2

A
] symmetric

1
2 tr[V

−1(V)σ2
A
V−1(V)σ2

B
] 1

2 tr[V
−1(V)σ2

B
V−1(V)σ2

B
]

1
2 tr[V

−1(V)σ2
A
V−1(V)σ2 ] 1

2 tr[V
−1(V)σ2

B
V−1(V)σ2 ] 1

2 tr[V
−1(V)σ2V−1(V)σ2 ]

 (4.2)

All that remains is to solve for the derivatives (V)σ2
A
, (V)σ2

B
, and (V)σ2

(V)σ2
A
=

(
σ2
A

(
g
⊕
i=1

Jni·

)
+ σ2

B

(
g
⊕
i=1

bi
⊕
j=1

Jnij

)
+ σ2IN

)
σ2
A

(4.3)

=

(
g
⊕
i=1

Jni·

)

(V)σ2
B
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(
σ2
A

(
g
⊕
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)
+ σ2

B

(
g
⊕
i=1
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⊕
j=1

Jnij

)
+ σ2IN

)
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(4.4)

=

(
g
⊕
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)
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(
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)
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B

(
g
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)
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(4.5)

= IN

If we now plug these derivatives into (4.2), we have the explicit expression for the two-way

nested random effects model’s information matrix.

H(σ2, σ2
A, σ

2
B , g, bi, nij |

g

Σ
i=1

bi
Σ
j=1

nij = N) =


1
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(
g
⊕
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)
V−1

(
g
⊕
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)]
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1
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)
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1
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1
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[
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1
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⊕
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)
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]
1
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[
V−1INV−1IN

]


(4.6)
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4.1

Validating coded implementation of the information matrix generating function

Given the purpose of the previously mentioned ODVC package is to allow users to do optimal

design of experiments for nested random effects models, it is important to validate that the coded

implementation of the information matrix generating function is accurate. Fortunately, there are

computational checks for both the balanced and unbalanced case of the two-way nested model.

4.1.1

Validation for the balanced two-way nested model

To ensure that the coded implementation of Equation 2.18 in the ODVC package accurately

calculates the information matrix for one-way and two-way nested random effects models, four

different computational validations are tested. These validations can be found in the tests folder of

the ODVC package. They check that the output of ODVC functions matches the expected output

in the one-way and two-way settings for both balanced and unbalanced scenarios [13] [14].

4.2

Conclusion

In the following Chapter we will walk through the open-source tools built to allow practitioners

to generate and compare the quality of experiment designs for the two-way nested random effects

model. These tools will make use of the information matrix generating function that this chapter

validates.
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CHAPTER 5

R UTILITIES FOR TWO-WAY RANDOM EFFECTS MODELS

5.1

Introduction

In this chapter we will walk through three analyses of two-way nested random effect designs

in which we search for optimal designs over 25 combinations of values of ρ1 =
σ2
A

σ2 and ρ2 =
σ2
B

σ2 .

Note that in each scenario, σ2 = 1 to facilitate comparing the ratios.

Figure 5.1: A 25-point grid of values on the log scale of ρ1 and ρ2 over which we will search for
optimal designs.
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These analyses are conducted using two different classes of experiment designs called C3,2

and C3,3. The first subscript denotes the number of variance components and the second subscript

denotes the maximum number of subgroups and replicates per subgroup. Within each class exists

a finite number of unique structures called atoms. The C3,2 and C3,3 classes have 5 and 19 atoms

respectively. A collection of atoms is an experiment [16]. See Figures 5.2 and 5.3 for all atoms within

both classes.

Figure 5.2: All 5 atoms from C3,2

Figure 5.3: All 19 atoms from C3,3

We conduct our search for optimal designs over the 25 combinations of values of ρ1 and ρ2

within the following scenarios: (C3,2, N = 12), (C3,2, N = 24), and (C3,3, N = 12). For each analysis,

we generate all designs of size N from the selected class, then return only the designs that include
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adequate degrees of freedom to estimate all variance components. The designs are then scored on

the D and A criteria. Relative efficiency to the optimal design is then calculated for both criteria.

To build the datasets of designs for each experiment, the following function can be used from the

ODVC package:

generate_two_way_designs(N = 24, s = 3, sig_a_sq = 0.1, sig_b_sq = 0.1, error_sq = 1)

where s refers to which class of experiments to build designs from. A value of s = 2 indicates to

build experiments from C3,2 while s = 3 indicates to build experiments from C3,3.

Optimal design of experiments for random effects models is a combinatorial problem by na-

ture. Given that the information matrix is a function of sample sizes within the experiment, the

optimization routine involves generating all experiments of size N from a certain class. The number

of experiments possible is a function of both the number of atoms within the class and the total

number of replicates. As both numbers increase, the quantity of possible experiments grows excep-

tionally fast. That being said, researchers exploring this problem are limited by the computational

resources available to them.

5.2

Analyses for designs of size N=12 generated from C3,2

The dataset of designs of size N=12 built from the class C3,2 has 76 designs in total. Experi-

ments from this dataset will be referred to by their row index. The results of this 25-point analysis

are summarized in Table 5.1. Some key findings include that for the D criteria, the balanced design

with index 1 is the optimal design in all cases except for those which σ2
B is much greater than the

other two variance components. In that case, design 3 is the optimal design. However, for the A

criteria there is much more variety in optimal designs. Where only two designs were found to be

optimal for the D criteria with this set of parameters, 8 designs were found to be optimal for the A

criteria. See Figure 5.4 to reference the optimal designs from this analysis.
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Figure 5.4: Designs of size N = 12 from C3,2 that were found to be optimal for at least one combi-
nation of the prespecified values of ρ1 and ρ2.
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D Criteria A Criteria

ρ1 ρ2

Optimal
Design
Index

#
≥ 90%
Efficient

ρ1 ρ2

Optimal
Design
Index

#
≥ 90%
Efficient

0.1 0.1 1 1 0.1 0.1 1 1
0.1 0.5 1 1 0.1 0.5 1 1
0.1 1 1 1 0.1 1 1 5
0.1 2 1 1 0.1 2 3 11
0.1 10 3 4 0.1 10 15 4

0.5 0.1 1 1 0.5 0.1 1 1
0.5 0.5 1 1 0.5 0.5 1 2
0.5 1 1 1 0.5 1 1 5
0.5 2 1 1 0.5 2 3 10
0.5 10 3 4 0.5 10 15 4

1 0.1 1 1 1 0.1 1 9
1 0.5 1 1 1 0.5 1 7
1 1 1 1 1 1 3 7
1 2 1 4 1 2 3 10
1 10 3 4 1 10 15 4

2 0.1 1 1 2 0.1 26 29
2 0.5 1 1 2 0.5 3 25
2 1 1 1 2 1 3 18
2 2 1 5 2 2 15 9
2 10 3 4 2 10 15 4

10 0.1 1 2 10 0.1 70 10
10 0.5 1 2 10 0.5 70 12
10 1 1 4 10 1 71 21
10 2 1 7 10 2 64 20
10 10 3 3 10 10 37 4

Table 5.1: Results from a search for optimal designs of size N = 12 from the C3,2 class over a 25-point
grid of values for ρ1 and ρ2. This search was conducted for both the D and A criteria. The number
of designs with relative efficiency greater or equal to 90% is also reported for each combination of
ρ1 and ρ2.

5.3

Analyses for designs of size N=24 generated from C3,2

The dataset of designs of size N=24 built from the class C3,2 has 672 designs in total. The

results of this 25-point analysis are summarized in Table 5.2. Similar to the previous case, we see

that under the D criteria, the only time the balanced design is not optimal is when σ2
B is much

greater than the other two variance components. We also see that under the A criteria, there is

much more variation in which design is optimal. Where only three designs are optimal under the D

criteria for this set of design parameters, 10 are optimal under the A criteria. The visualization of

these designs, Figure 6.2, can be found in appendix A for reference.
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D Criteria A Criteria

ρ1 ρ2

Optimal
Design
Index

#
≥ 90%
Efficient

ρ1 ρ2

Optimal
Design
Index

#
≥ 90%
Efficient

0.1 0.1 1 1 0.1 0.1 1 5
0.1 0.5 1 1 0.1 0.5 1 8
0.1 1 1 2 0.1 1 1 20
0.1 2 1 7 0.1 2 15 65
0.1 10 15 28 0.1 10 216 15

0.5 0.1 1 1 0.5 0.1 1 9
0.5 0.5 1 1 0.5 0.5 1 32
0.5 1 1 5 0.5 1 1 5
0.5 2 1 7 0.5 2 49 55
0.5 10 15 28 0.5 10 216 15

1 0.1 1 1 1 0.1 1 53
1 0.5 1 3 1 0.5 1 42
1 1 1 6 1 1 3 55
1 2 1 15 1 2 49 54
1 10 15 28 1 10 216 15

2 0.1 1 4 2 0.1 257 286
2 0.5 1 5 2 0.5 15 218
2 1 1 7 2 1 49 120
2 2 1 21 2 2 49 65
2 10 15 28 2 10 216 15

10 0.1 1 9 10 0.1 666 54
10 0.5 1 17 10 0.5 643 103
10 1 1 29 10 1 625 149
10 2 3 37 10 2 564 180
10 10 15 32 10 10 216 22

Table 5.2: Results from a search for optimal designs of size N = 24 from the C3,2 class over a 25-point
grid of values for ρ1 and ρ2. This search was conducted for both the D and A criteria. The number
of designs with relative efficiency greater or equal to 90% is also reported for each combination of
ρ1 and ρ2.

5.4

Analyses for designs of size N=12 generated from C3,3

The dataset of designs of size N=12 built from the class C3,3 has 709 designs in total. The

results of this 25-point analysis are summarized in Table 5.3. Unlike the previous two analyses using

C3,2, there is much more variation under the D criteria of optimal designs for this set of parameters.

Under the D criteria in the previous two analyses, we’ve seen that the optimal design is the balanced

design except for the case in which σ2
B is much greater than the other two variance components.

It seems that under the D criteria, the choice of optimal design is more sensitive to the value of

σ2 than the other two variance components. Where a balanced design allocates the most degrees

of freedom to the estimation of σ2, it makes sense that it is often optimal under the D criteria.

However, within the C3,3 class, there are several ways to make a balanced experiment of size N=12.

Additionally, there are various unbalanced designs that still allocate more degrees of freedom for the
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the estimation of σ2. Which one is optimal depends on the values of ρ1 and ρ2.

Again, we see that under the A criteria, there is much more variation in which design is

optimal. Where 9 designs are optimal under the D criteria for this set of design parameters, 14 are

optimal under the A criteria. The visualization of these designs, Figures 6.3 and 6.4, can be found

in appendix A for reference.

D Criteria A Criteria

ρ1 ρ2

Optimal
Design
Index

#
≥ 90%
Efficient

ρ1 ρ2

Optimal
Design
Index

#
≥ 90%
Efficient

0.1 0.1 3 4 0.1 0.1 3 12
0.1 0.5 16 10 0.1 0.5 16 19
0.1 1 16 3 0.1 1 16 10
0.1 2 16 5 0.1 2 80 45
0.1 10 16 45 0.1 10 233 14

0.5 0.1 18 10 0.5 0.1 18 36
0.5 0.5 16 12 0.5 0.5 16 21
0.5 1 16 5 0.5 1 16 22
0.5 2 16 7 0.5 2 80 27
0.5 10 80 45 0.5 10 233 14

1 0.1 18 8 1 0.1 138 176
1 0.5 16 13 1 0.5 86 158
1 1 16 7 1 1 78 92
1 2 16 7 1 2 80 27
1 10 80 45 1 10 233 14

2 0.1 20 9 2 0.1 574 178
2 0.5 16 37 2 0.5 333 237
2 1 16 18 2 1 49 120
2 2 16 22 2 2 80 76
2 10 80 47 2 10 233 14

10 0.1 139 2 10 0.1 702 18
10 0.5 139 9 10 0.5 702 24
10 1 195 61 10 1 703 53
10 2 86 93 10 2 690 63
10 10 78 57 10 10 233 30

Table 5.3: Results from a search for optimal designs of size N = 12 from the C3,3 class over a 25-point
grid of values for ρ1 and ρ2. This search was conducted for both the D and A criteria. The number
of designs with relative efficiency greater or equal to 90% is also reported for each combination of
ρ1 and ρ2.

5.5

The Allocation of Degrees of Freedom

What becomes apparent when exploring optimal design for the two-way nested random effects

model is that the allocation of degrees of freedom is incredibly important. In a classical design

scenario, it is common to default to a balanced design. However, when random effects are included,

a balanced design allocates the majority of degrees of freedom to the estimation of the residual error

variance component. Hence, the suggestion of staggered nested designs has been put forth to better
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balance degrees of freedom for the precise estimation of all variance components [21]. However, when

it is hypothesized that one variance component is significantly larger than the others, it would be

advantageous to allocate more degrees of freedom for the estimation of that variance component.

The benefit of the ODVC package is that it allows for easy exploration of experiment designs based

on the sample sizes and hypothesized values of the variance components.

Consider the design scenario in which a researcher can afford 12 experiment runs, the D

criterion is preferred, they hypothesize that σ2
A is about half the value of σ2, and they hypothesize

that σ2
B is about ten times the value of σ2. Using the ODVC package, they run the following code:

N12_0.5.10_D <- generate_two_way_designs(N = 12, s = 2,

sig_a_sq = 0.5, sig_b_sq = 10, error_sq = 1)

compare_designs_U(data = N12_0.5_10, criteria = "D")

Figure 5.5: A scatter plot comparing the D relative efficiency of designs of size N=12 from C3,2
against dataset index with σ2

A = 0.5, σ2
B = 10, and σ2 = 1.

We see that under these specific design parameters, designs 3, 6, and 8 perform nearly equally

as well. Upon visualizing these designs, see Figure 5.6, we see that the allocation of degrees of

freedom is almost equal between variance components. If a researcher used the balanced design,
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design 1 in Figure 5.4, there would be 2, 3, and 6 degrees of freedom for the estimation of σ2
A, σ

2
B ,

and σ2 respectively. This would result in less precise estimation of the variance components under

these specific design parameters. In Figure 5.6 we can see how designs 3, 6, and 8 more allocate

3, 4, and 4 degrees of freedom for the estimation of σ2
A, σ

2
B , and σ2 respectively. Where σ2

B is the

largest source of variance, these designs are about 8% more efficient than the balanced design.

Figure 5.6: Top 3 performing designs of size N = 12 from C3,2 with σ2
A = 0.5, σ2

B = 10, and σ2 = 1

5.6

Conditions in which staggered nested designs are highly efficient

Given that optimal design for random effects models is dependent on the allocation of degrees

of freedom, a useful heuristic to know is when is a staggered nested design—a design in which

the degrees of freedom are approximately equally distributed—is highly efficient. A design will be

considered highly efficient if its relative efficiency is greater than or equal to 95%. For the sake of



41

this exploration, we will consider a staggered nested design a design built entirely of the atom in

Figure 5.7:

Figure 5.7: Atom from C3,2 that builds a staggered nested design

When evaluating designs of size N = 12 from the C3,2 class, we see that under the D criteria,

staggered nested designs in which ρ2 is larger than ρ1 are often highly efficient. Under the A criteria

for the same parameters, we see a lot more variation in when the staggered nested design is highly

efficient. There are cases in which it is highly efficient when ρ2 is larger than ρ1 and vice versa. See

Figure 5.8 to see specific cases in which the staggered nested design is highly efficient under these

parameters.

Figure 5.8: Given N=12 and designs are built from the C3,2 class, parameters that result in highly
efficient staggered nested designs are highlighted in blue

We see a similar pattern emerge for designs of size N = 24 built from the class C3,2. One

variation is that under the D criteria, the staggered nested design is only highly efficient when ρ2
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is much greater than ρ1. See Figure 5.9 to see specific cases in which the staggered nested design is

highly efficient under these parameters.

Figure 5.9: Given N=24 and designs are built from the C3,2 class, parameters that result in highly
efficient staggered nested designs are highlighted in blue

When designs are built from the C3,3 class and N = 12, the staggered nested design is only

highly efficient in two cases, both of which are under the A criteria: (ρ1 = 2, ρ2 = 0.5) and (ρ1 = 2,

ρ2 = 1). The reason for this is that there are atoms within the C3,3 class that are not in C3,2 that

more appropriately distribute degrees of freedom for this set of parameters. For example, the design

built entirely from the atom in Figure 5.10, found within C3,3 and not C3,2, results in highly efficient

designs for this set of parameters much more often than the atom represented in Figure 5.7.

Figure 5.10: An atom from C3,3
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5.7

Conclusion

The ODVC package has the necessary tools to explore interesting questions and design sce-

narios in the optimal design of experiments field for two-way nested random effects models. The

generate two way designs function returns a dataset of all designs of a specified size and class.

Using Equation 2.18, these designs are scored on two optimality criteria. The dataset returned by

this function makes identifying the optimal and other high performing designs simple. To visualize

competing candidate designs, the user can call the compare designs U function. Once a design has

been chosen, it can be visualized using the plot design 2 function. This allows the user to easily

identify the structure of replicates nested within sub-groups nested within groups. These tools go

beyond academic exploration of hypothetical scenarios and can be used for planning real life nested

random effects experiments. See the vignettes included in Appendix B and the documentation for

the ODVC package for more information. In the next Chapter, the research covered within this

thesis will be summarized and further areas of research identified.
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CHAPTER 6

REVIEW AND FURTHER RESEARCH

Although research had been done in optimal design of experiments for random effects models,

the most important results of this research go back decades to a time when the computational

resources to explore this problem were far fewer. The purpose of this thesis was to revive the

exceptional work that had been done in this field and build an open-source R package that allows

researchers to easily explore this problem. The ODVC package—accessed at https://github.com/

ryancbushman/ODVC—allows researchers to do optimal design of experiments for both one-way and

two-way nested random effects models. It includes tools that build comprehensive sets of experiments

under certain design parameters as well as tools to score custom experiments based on whatever real-

life limitations may exist for the experiment. The package also includes valuable visualization tools

that aid in the analysis of competing experiment designs and the planning of the actual experiment.

A natural next step in the research is to expand the capability of the ODVC package to do

optimal design for mixed effects models. In this setting, the information matrix would be a block

diagonal matrix with two rows and two columns. One diagonal element would be the information

matrix for the fixed effects while the second diagonal element would be the information matrix for

the random effects [13]. It is supposed that the optimization of each information matrix could be

done separately as the fixed effects matrix involves only the experiment settings of the fixed effects

while the random effects matrix involves the allocation of replicates. For the fixed effects information

matrix, one could look into using the classic Coordinate Exchange optimization algorithm or a less

greedy algorithm such as Particle swarm or Differential Evolution. The optimization of the random

effects information matrix would not involve an algorithm, but generating all experiments based on

the design parameters, scoring them under a criterion, and selecting the best performing design based

on the real-life experiment limitations. Although the expansion of this package is well envisioned,

there are many interesting questions that can be explored once the tools exist.
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APPENDIX A: OPTIMAL DESIGNS FROM CHAPTER 5 ANALYSES

This appendix contains Figures of designs that were optimal for at least one set of parameters
explored in the analyses contained in Chapter 5. Using the Tables in Chapter 5 and the Figures in
this appendix, one can identify the optimal design for the parameters in question.

Figure 6.1: Designs of size N = 12 from C3,2 that were found to be optimal for at least one combi-
nation of the prespecified values of ρ1 and ρ2.
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Figure 6.2: Designs of size N = 24 from C3,2 that were found to be optimal for at least one combi-
nation of the prespecified values of ρ1 and ρ2.
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Figure 6.3: Designs of size N = 12 from C3,3 that were found to be optimal for at least one combi-
nation of the prespecified values of ρ1 and ρ2.: Part 1
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Figure 6.4: Designs of size N = 12 from C3,3 that were found to be optimal for at least one combi-
nation of the prespecified values of ρ1 and ρ2.: Part 2
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APPENDIX B: ODVC VIGNETTES

This appendix contains the two rendered R Markdown vignettes that are included in the
ODVC package. These vignettes demonstrate for the user how the tools in the ODVC package can
be used to do optimal design of experiments for both one-way and two-way random effects models.



Tools For One-Way Models

library(ODVC)
library(ggplot2)

If a user would like to explore a wide variety of balanced one-way nested random effects designs with many
different parameter settings, they can use contour_designs_B function.

contour_plots <- contour_designs_B(ngroups = c(2, 10), nreps = c(2, 10),
taus = 2)

contour_plots[[1]][[4]]
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contour_plots[[2]][[4]]
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Once the user narrows down what parameter settings they would like to explore, they can use the 
generate_designs_B to generate balanced designs.

candidates_B <- generate_designs_B(ngroups = c(2, 3, 4, 6, 8, 12),
nreps = c(2, 3, 4, 6, 8, 12),
taus = c(0.5, 1))

head(candidates_B)
#> N a n tau A_Score D_Score Relative.A.Efficiency Relative.D.Efficiency
#> 1 4 2 2 0.5 2.2500000 1.0000000 3.198653 0.08592873
#> 2 4 2 2 1 3.5000000 2.2500000 2.056277 0.03819055
#> 3 6 2 3 0.5 1.2500000 0.3472222 5.757576 0.24747475
#> 4 6 2 3 1 2.3333333 0.8888889 3.084416 0.09666982
#> 5 8 2 4 0.5 0.9166667 0.1875000 7.851240 0.45828657
#> 6 8 2 4 1 1.9166667 0.5208333 3.754941 0.16498316

The subset_designs_B function can be used to select only the designs of a particular size.

candidates_B_N24 <- subset_designs_B(data = candidates_B, N = 24)
head(candidates_B_N24)
#> N a n tau A_Score D_Score Relative.A.Efficiency Relative.D.Efficiency
#> 11 24 2 12 0.5 0.4318182 0.03093434 70.76023 67.34694
#> 12 24 2 12 1 1.2651515 0.10669192 46.10778 52.07101
#> 21 24 3 8 0.5 0.3571429 0.02480159 85.55556 84.00000
#> 22 24 3 8 1 0.9404762 0.08035714 62.02532 69.13580
#> 31 24 4 6 0.5 0.3250000 0.02222222 94.01709 93.75000
#> 32 24 4 6 1 0.7833333 0.06805556 74.46809 81.63265

2



The user can then use the compare_designs_B function to create a dashboard that will help them to choose
the optimal design.

compare_designs_B(designs = candidates_B_N24, criteria = "A")
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From the dashboard, the user can see that when σ2
A = 0.5, the best design when N=24 under the A criteria

is the one that has 6 groups. The user can now use the plot_design function to visualize the design.

plot_design(n = rep(4, 6), a = 6, sig_a_sq = 0.5, error_sq = 1, criteria = "A")

Balanced experiment with 6 groups and 4 reps per group

A Score: 0.305556
If the user would like to explore unbalanced designs, they can use the generate_designs_U function.
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options(width = 60)
candidates_U <- generate_designs_U(N = 23, a = 8, sig_a_sq = 0.5, error_sq = 1)

head(candidates_U)
#> N a n_i sig_a_sq A_Score D_Score
#> 1 23 8 16 1 1 1 1 1 1 1 0.5 0.4750000 0.03894231
#> 2 23 8 15 2 1 1 1 1 1 1 0.5 0.4484886 0.03629817
#> 3 23 8 14 3 1 1 1 1 1 1 0.5 0.4290559 0.03430875
#> 4 23 8 13 4 1 1 1 1 1 1 0.5 0.4159344 0.03295255
#> 5 23 8 12 5 1 1 1 1 1 1 0.5 0.4071491 0.03204010
#> 6 23 8 11 6 1 1 1 1 1 1 0.5 0.4013934 0.03144064
#> Relative.A.Efficiency Relative.D.Efficiency
#> 1 69.42512 61.69873
#> 2 73.52903 66.19317
#> 3 76.85929 70.03144
#> 4 79.28398 72.91366
#> 5 80.99474 74.99011
#> 6 82.15615 76.41991

To compare the performance of these designs they can use the compare_designs_U function. This generates
a scatter plot of relative efficiency and index within the design dataframe. The user can also set the top_5
argument equal to TRUE to label only the top 5 performing designs.

compare_designs_U(data = candidates_U, criteria = "A", top_5 = TRUE)

146145131 144130

70

80

90

100

0 50 100 150
Dataset Index

A
 R

el
at

iv
e 

E
ffi

ci
en

cy

Comparing Relative Efficiency Across Unbalanced Designs of size 23

4



From the plot, it is evident that the best design is the one with index 146 from the dataframe. By referencing
this row in the dataframe, the user can use the plot_design function to visualize this optimal design.

plot_design(n = c(rep(3, 7), 2), a = 8, sig_a_sq = 0.5, error_sq = 1,
criteria = "A")

Unbalanced experiment with 8 groups

A Score: 0.329769
In the optimal design of experiments framework, the goal is to optimize the model information matrix.
The inverse of the information matrix is the covariance matrix for the maximum likelihood estimators. By
maximizing the information of an experiment on some optimality criteria, one simultaneously minimizes
the variance of the maximum likelihood estimators. The information matrix can be scored using optimality
criteria such as the D criteria (the determinant) or the A criteria (the trace). The tools of the ODVC
package define the optimal design as the design the minimizes the optimality criteria. In a random-effects
model, the information matrix is a function of the experiment’s sample sizes and the values of the variance
components. The user can use the general_variance_2VC function to generate the covariance matrix of the
maximum likelihood estimators (the object being optimized) for a particular experiment.

optimal_design_inv_info_matrix <- general_variance_2VC(N = 23, n = c(rep(3, 7), 2),
a = 8, sig_a_sq = 0.5,
error_sq = 1)

optimal_design_inv_info_matrix
#> [,1] [,2]
#> [1,] 0.13310908 -0.04637194
#> [2,] -0.04637194 0.19666026

The user can then use either the A_crit or D_crit function to report a score.

A_crit(optimal_design_inv_info_matrix)
#> [1] 0.3297693
D_crit(optimal_design_inv_info_matrix)
#> [1] 0.02402691
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Tools For Two-Way Models

library(ODVC)

Optimal design of experiments for a random-effects model is a combinatorial problem in nature. The reason
being is that the object being optimized, the inverse information matrix, is a function of the sample sizes of
the experiment and the values of the variance components. When searching the space of possible designs,
one must generate all designs of size N and score the inverse information matrix of each design on some
optimality criteria. When exploring two-way nested models, the amount of possible designs of size N grows
exceptionally fast as N increases. Two mitigate this, the ODVC generates all designs of a chosen N from one
of two classes, C3,2 and C3,3. The first subscript indicates the number of variance components. The second
subscript indicates the maximum number of subgroups per group and the maximum number of replicates
per subgroup.

The user can use the generate_two_way_designs function to generate all designs of size N from class s,
with variance components σ2

A, σ2
B , and σ2.

candidates <- generate_two_way_designs(N = 12, s = 2, sig_a_sq = 10,
sig_b_sq = 2, error_sq = 1)

Once the dataframe of designs is generated, the user can call the compare_designs_U function to compare
design performance.

compare_designs_U(data = candidates, criteria = "A")

1
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The plot indicates that design 64 from the dataframe is the optimal design. By referencing the dataframe,
the user can call the plot_design_2 function to visualize the design.

plot_design_2(a = 8,
b_i = c(2, 2, 2, 1, 1, 1, 1, 1),
n_ij = c(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
n_i_dot = c(3, 2, 2, 1, 1, 1, 1, 1),
sig_a_sq = 10,
sig_b_sq = 2,
error_sq = 1,
balanced = FALSE,
criteria = "A")

Unbalanced experiment with 8 groups

A Score: 50.7604

We will now walk through a different design scenario and but generate designs from C3,3 rather than C3,2.

2



Note that this takes much longer to do because the number of possible designs is much greater.

candidates2 <- generate_two_way_designs(N = 12, s = 3, sig_a_sq = 10,
sig_b_sq = 10, error_sq = 1)

Once the dataframe of designs is generated, the user can call the compare_designs_U function to compare
design performance. They can also set the top_5 argument equal to TRUE to label only the top 5 performing
designs.

design_performance <- compare_designs_U(data = candidates2, criteria = "A",
top_5 = TRUE)

design_performance + ggplot2::ylim(90, 100)
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The plot indicates that design 233 from the dataframe is the optimal design. By referencing the dataframe,
the user can provide the necessary information to call the plot_design_2 function and visualize the design.

plot_design_2(a = 4,
b_i = c(3, 3, 3, 2),
n_ij = c(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
n_i_dot = c(4, 3, 3, 2),
sig_a_sq = 10,
sig_b_sq = 10,
error_sq = 1,
balanced = FALSE,
criteria = "A")
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Unbalanced experiment with 4 groups

A Score: 141.298

The tools in the ODVC package score the designs for the user. If the user would like to generate the actual
matrix that is being optimized themselves, they can call the general_variance_3VC function.

optimal_design_inv_info_matrix <- general_variance_3VC(N = 12,
n_i_dot = c(4, 3, 3, 2),
n_ij = c(2, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1),
sig_a_sq = 10,
sig_b_sq = 10, error_sq = 1)

optimal_design_inv_info_matrix
#> [,1] [,2] [,3]
#> [1,] 103.293304049 -12.568802 -0.005530026
#> [2,] -12.568801683 36.007330 -1.897203980
#> [3,] -0.005530026 -1.897204 1.997775399

They can then score the design using either the A_crit or D_crit function.

A_crit(optimal_design_inv_info_matrix)
#> [1] 141.2984
D_crit(optimal_design_inv_info_matrix)
#> [1] 6742.703

4


	Exploring Optimal Design of Experiments for Random Effects Models
	Recommended Citation

	tmp.1710971667.pdf.bR4ic

