
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Fall
2023 to Present Graduate Studies

5-2024

Achieving Responsible Anomaly Detection Achieving Responsible Anomaly Detection

Xiao Han
Utah State University, xiao.han@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/etd2023

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Han, Xiao, "Achieving Responsible Anomaly Detection" (2024). All Graduate Theses and Dissertations, Fall
2023 to Present. 126.
https://digitalcommons.usu.edu/etd2023/126

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations, Fall
2023 to Present by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd2023?utm_source=digitalcommons.usu.edu%2Fetd2023%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd2023%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd2023/126?utm_source=digitalcommons.usu.edu%2Fetd2023%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ACHIEVING RESPONSIBLE ANOMALY DETECTION

by

Xiao Han

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Shuhan Yuan, Ph.D. Soukaina Filali Boubrahimi, Ph.D.
Major Professor Committee Member

Curtis Dyreson, Ph.D. John Edwards, Ph.D.
Committee Member Committee Member

Luis Gordillo, Ph.D. D. Richard Cutler, Ph.D.
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2024

ii

Copyright © Xiao Han 2024

All Rights Reserved

iii

ABSTRACT

Achieving Responsible Anomaly Detection

by

Xiao Han, Doctor of Philosophy

Utah State University, 2024

Major Professor: Shuhan Yuan, Ph.D.
Department: Computer Science

This dissertation presents a comprehensive approach to achieving responsible anomaly

detection, focusing on enhancing performance and ensuring explainability and fairness. The

initial phase of the dissertation focuses on performance enhancement, where cutting-edge

machine learning techniques are harnessed to improve the precision of anomaly detection

systems. Through the development and implementation of LogGPT, LogTAD, FADS, and

FADScr, this research demonstrates how few-shot learning, reinforcement learning, transfer

learning, and the application of generative pre-trained transformer models can significantly

bolster anomaly detection in diverse and challenging environments. These methodologies

are not just theoretical contributions; they are practical innovations that address real-world

limitations, such as sparse data availability and the need for cross-domain adaptability.

Moving beyond performance, the dissertation delves into the critical area of explainabil-

ity, merging it with root cause analysis and mitigation. Here, the dissertation explores the

imperative of making anomaly detection systems not only effective but also understandable

and accountable. InterpretableSAD, RecAD, AERCA, and RootCLAM stand out as key

contributions in this area, offering novel methodologies for dissecting and understanding the

complexities behind detected anomalies. These frameworks enable users to not only identify

iv

but also understand the causal factors of anomalies, facilitating more informed and effective

mitigation strategies.

Additionally, the dissertation addresses the critical aspect of fairness through the intro-

duction of the CFAD framework, which pioneers the incorporation of counterfactual fairness

into anomaly detection. This dimension ensures that the developed systems operate without

bias, offering equitable and ethical anomaly detection across diverse scenarios.

In summary, this body of work represents a significant leap forward in the field of

anomaly detection. It not only advances the technical capabilities of detection systems

through innovative machine learning techniques but also addresses the ethical implications

of their deployment. By integrating performance enhancement with explainability, root

cause analysis, mitigation strategies, and fairness considerations, this dissertation sets a new

standard for the development and application of anomaly detection technologies, ensuring

that they serve the broader goal of promoting a more secure, understandable, and equitable

digital world.

(234 pages)

v

PUBLIC ABSTRACT

Achieving Responsible Anomaly Detection

Xiao Han

In the digital transformation era, safeguarding online systems against anomalies – un-

usual patterns indicating potential threats or malfunctions – has become crucial. This

dissertation embarks on enhancing the accuracy, explainability, and ethical integrity of

anomaly detection systems. By integrating advanced machine learning techniques, it im-

proves anomaly detection performance and incorporates fairness and explainability at its

core.

The research tackles performance enhancement in anomaly detection by leveraging few-

shot learning, demonstrating how systems can effectively identify anomalies with minimal

training data. This approach overcomes data scarcity challenges. Reinforcement learning

is employed to iteratively refine models, enhancing decision-making processes. Transfer

learning enables the application of insights across domains, improving system versatility.

The integration of Generative Pre-trained Transformer (GPT) models marks a significant

advancement, offering enhanced precision in anomaly identification through sophisticated

language modeling techniques.

Exploring explainability and root cause analysis, the dissertation introduces advanced

frameworks that shed light on the mechanisms behind anomaly detections across different

data types. InterpretableSAD enhances sequential log data analysis, pinpointing specific

anomalous events to clarify detection processes. RootCLAM addresses tabular data anoma-

lies through causal inference, identifying root causes and suggesting actionable mitigation

strategies. The narrative extends to time series data with RecAD and AERCA; RecAD of-

fers algorithmic recourse by proposing minimal-cost actions for correcting anomalies, while

AERCA utilizes an autoencoder-based framework to unravel Granger causality, illuminating

vi

causative factors behind anomalies. These frameworks empower users with the knowledge

and tools to understand and act upon findings, facilitating the identification of irregularities

across diverse data landscapes.

Ethical integrity remains paramount, addressed through the CFAD framework, which

ensures counterfactual fairness by embedding ethical principles directly into anomaly de-

tection processes. This guarantees equitable treatment across scenarios, advocating for

technologies that serve all users equitably and challenge inherent biases.

Extensive evaluations on various datasets demonstrate the proposed models’ effective-

ness in addressing anomaly detection challenges. This dissertation contributes to advancing

techniques that are not only accurate but also interpretable and fair, promoting the re-

sponsible use of anomaly detection in real-world applications. This dissertation lays a solid

foundation for further exploration into advanced anomaly detection techniques, promising

to guide the development of even more robust, transparent, and equitable systems in the

digital age.

vii

To my family and parents, whose love and support have been my constant guide and
strength.

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to all those who have supported me through-

out the journey of completing this dissertation. The completion of this work would not have

been possible without their invaluable assistance, encouragement, and guidance.

First and foremost, I extend my sincere thanks to my advisor, Dr. Shuhan Yuan, for

his unwavering support, insightful feedback, and constant encouragement. His expertise

and guidance have been indispensable in shaping both the direction and substance of my

research.

I am also grateful to all my dissertation committee members, Dr. Soukaina Filali

Boubrahimi, Dr. Curtis Dyreson, Dr. John Edwards and Dr. Luis Gordillo, for their

constructive critiques and valuable suggestions that greatly improved this dissertation.

Special thanks to He Cheng and Xingyi Zhao, whose companionship and intellectual

exchanges have enriched my graduate experience. Their perspectives and camaraderie have

been a source of motivation and joy throughout this process.

My appreciation also goes to the staff and faculty in the Department of Computer

Science for providing a stimulating and supportive research environment. Their expertise

and assistance have been invaluable.

To my friends and family, who have provided me with endless love and encouragement,

thank you. Your belief in me has been a constant source of strength. A special mention

goes to my family, whose sacrifices and unwavering belief in my abilities have made all of

this possible.

This dissertation stands as a testament to the collaborative effort and spirit of all those

mentioned and many unmentioned. Thank you.

This work was supported in part by the Utah State University Presidential Doctoral

Research Fellowship program and the National Science Foundation through Grant 2103829.

Xiao Han

ix

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . viii

LIST OF TABLES . xiii

LIST OF FIGURES . xv

1 INTRODUCTION . 1
1.1 Motivation . 2

1.1.1 Why Is Anomaly Detection Important? 2
1.1.2 Why Is Responsible Anomaly Detection Important? 4
1.1.3 Challenges in Responsible Anomaly Detection 5

1.2 Contributions and Findings . 6
1.3 Organization of the Dissertation . 10

2 LOGGPT: LOG ANOMALY DETECTION VIA GPT . 12
2.1 Introduction . 12
2.2 Related Work . 14
2.3 Preliminary . 16

2.3.1 Log Sequence Preprocessing . 16
2.3.2 Log Language Model . 17

2.4 LogGPT . 18
2.4.1 Generative Log Language Model . 19
2.4.2 Reinforcement Learning for Log Anomaly Detection 20
2.4.3 Policy Update . 22
2.4.4 Anomaly Detection . 22

2.5 Experiments . 22
2.5.1 Experimental Setup . 23
2.5.2 Experimental Results . 26

2.6 Summary . 30

3 UNSUPERVISED CROSS-SYSTEM LOG ANOMALY DETECTION VIA DOMAIN
ADAPTATION . 31

3.1 Introduction . 31
3.2 LogTAD . 33

3.2.1 Log Sequence Representation . 33
3.2.2 Log Sequence Centralization . 35
3.2.3 System-agnostic Representation via Domain Adversarial Training . . . 35

3.3 Experiments . 36

x

3.3.1 Experimental Setup . 36
3.3.2 Experimental Results . 38

3.4 Summary . 41

4 FEW-SHOT ANOMALY DETECTION AND CLASSIFICATION THROUGH RE-
INFORCED DATA SELECTION AND FEW-SHOT ANOMALY DETECTION AND
CLASSIFICATION THROUGH REINFORCED DATA SELECTION WITH A COM-
BINATORIAL REWARD . 43

4.1 Introduction . 44
4.2 Related Work . 46
4.3 FADS . 47

4.3.1 Problem Definition . 47
4.3.2 Framework Overview . 48
4.3.3 Prototypical Network . 49
4.3.4 Reinforced Data Selection . 50
4.3.5 Training Details . 53
4.3.6 Experimental Setup . 55
4.3.7 Implementation Details . 59
4.3.8 Experimental Results . 59

4.4 FADScr . 66
4.4.1 Framework Overview . 67
4.4.2 Reinforced Data Selection . 67
4.4.3 Training Details . 72
4.4.4 Implementation Details . 73
4.4.5 Experimental Results . 74

4.5 Summary . 81

5 INTERPRETABLESAD: INTERPRETABLE ANOMALY DETECTION IN SEQUEN-
TIAL LOG DATA . 83

5.1 Introduction . 83
5.2 Related Work . 86
5.3 InterpretableSAD . 88

5.3.1 Data Augmentation via Negative Sampling 89
5.3.2 Training a Classification Model . 90
5.3.3 Anomalous Event Detection via Integrated Gradients 91

5.4 Experiments . 94
5.4.1 Experimental Setup . 94
5.4.2 Experimental Results on Anomalous Log Sequence Detection 98
5.4.3 Experimental Results on Anomalous Event Detection 101

5.5 Summary . 105

6 ALGORITHMIC RECOURSE FOR ANOMALY DETECTION IN MULTIVARI-
ATE TIME SERIES . 106

6.1 Introduction . 106
6.2 Related Work . 108

6.2.1 Time Series Anomaly Detection . 108
6.2.2 Algorithmic Recourse . 109

xi

6.3 Preliminary . 109
6.3.1 Granger Causality . 109
6.3.2 Generalised Vector Autoregression (GVAR) 110

6.4 RecAD . 110
6.4.1 Problem Formulation . 112
6.4.2 Anomaly Detection for Time Series . 113
6.4.3 Algorithmic Recourse . 113

6.5 Experiments . 118
6.5.1 Experimental Setups . 118
6.5.2 Experimental Results . 124

6.6 Summary . 130

7 ROOT CAUSE ANALYSIS OF ANOMALIES IN MULTIVARIATE TIME SERIES
THROUGH GRANGER CAUSAL DISCOVERY . 131

7.1 Introduction . 131
7.2 Related Work . 134
7.3 Preliminary . 135

7.3.1 Structural Causal Model (SCM) . 135
7.3.2 Granger Causality . 136

7.4 Problem Formulation . 137
7.5 AERCA . 138

7.5.1 Granger Causal Discovery . 138
7.5.2 Root Cause Localization . 142

7.6 Experiments . 142
7.6.1 Experimental Setup . 143
7.6.2 Experimental Results . 148

7.7 Summary . 152

8 ON ROOT CAUSE LOCALIZATION AND ANOMALY MITIGATION THROUGH
CAUSAL INFERENCE . 154

8.1 Introduction . 154
8.2 Preliminary . 156

8.2.1 Structural Causal Model (SCM) . 156
8.2.2 Counterfactuals . 156
8.2.3 Causal Graph Autoencoder . 157

8.3 RootCLAM . 158
8.3.1 Problem Formulation . 158
8.3.2 Root Cause Localization . 161
8.3.3 Causal Graph Autoencoder-based Anomaly Mitigation 162

8.4 Experiments . 164
8.4.1 Experimental Setup . 164
8.4.2 Experimental Results . 168

8.5 Summary . 177

xii

9 ACHIEVING COUNTERFACTUAL FAIRNESS FOR ANOMALY DETECTION . 178
9.1 Introduction . 178
9.2 Preliminary . 180
9.3 CFAD . 181

9.3.1 Counterfactual Fairness . 181
9.3.2 Overview of Counterfactually Fair Anomaly Detection (CFAD) 182
9.3.3 Phase One: Counterfactual Data Generation 182
9.3.4 Phase Two: Fair Anomaly Detection 186

9.4 Experiments . 188
9.4.1 Experimental Setup . 188
9.4.2 Experimental Results . 191

9.5 Summary . 193

10 CONCLUSIONS AND FUTURE WORK . 194
10.1 Conclusions . 194
10.2 Future Work . 197

REFERENCES . 198

CURRICULUM VITAE . 216

xiii

LIST OF TABLES

Table Page

2.1 Statistics of the Datasets. The number in the parentheses indicates the unique
log keys in the training set. 23

2.2 Experimental Results on HDFS, BGL, and Thunderbird Datasets. 25

2.3 Performance of LogGPT with or without reinforcement learning. 25

3.1 Statistics of the Datasets . 36

3.2 Statistics of Shared Words . 37

3.3 Anomaly Detection on Source and Target Systems 38

4.1 Statistics of datasets in experiments . 56

4.2 Results on anomaly detection (mean ± std.). ↑ indicates larger value is better;
↓ indicates lower value is better. 60

4.3 Results on anomaly classification (mean ± std.) 60

4.4 Performance of FADS with or without reinforced data selection (mean ± std.) 61

4.5 Impact of each reward component . 65

4.6 Results on anomaly detection (mean ± std.). ↑ indicates larger value is better;
↓ indicates lower value is better. 75

4.7 Results on anomaly classification (mean ± std.) 75

4.8 Performance of FADScr with or without reinforced data selection (mean ±
std.) . 76

4.9 Impact of each reward component . 80

5.1 Statistics of Test Datasets . 96

5.2 Results on Anomalous Log Sequence Detection 96

5.3 Results on Anomalous Event Detection . 101

6.1 Statistics of three datasets for anomaly detection. 122

xiv

6.2 Anomaly detection on synthetic datasets. 124

6.3 The performance of recourse prediction on non-causal anomaly. 125

6.4 The performance of recourse prediction on causal anomaly. 125

6.5 The performance of recourse prediction in MSDS. 126

6.6 The performance of recourse prediction using different components of RecAD. 127

7.1 Statistics of Datasets . 143

7.2 Overall performance (mean±std.) of causal discovery. 148

7.3 Overall performance (mean±std.) of root cause analysis. 148

8.1 Statistics of three datasets. 166

8.2 Anomaly detection on the unlabeled datasets. 169

8.3 Root cause localization on the unlabeled datasets. 169

8.4 The performance of anomaly mitigation in terms of the flipping ratio and
norm of action values. 169

8.5 Case study on the Loan dataset, where “loan amount” (L) and “loan duration”
(D) are root cause features. 175

8.6 Case study on the Adult dataset, where “hours worked per week” (H) is the
root cause feature . 175

8.7 Case study on the Donors dataset . 176

9.1 Statistics of datasets. 188

9.2 Anomaly detection on synthetic and real datasets with threshold τ = 0.95.
For AUC-PR, AUC-ROC, and Macro-F1, the higher the value the better the
effectiveness; for Changing Ratio, the lower the value the better the fairness. . 191

xv

LIST OF FIGURES

Figure Page

2.1 Log key extraction from HDFS dataset messages via Log Parser. The message
with a red/blue underscore indicates the detailed computational event for each
log key separately. 16

2.2 Framework of LogGPT. 19

2.3 Impact of the ratio of Top-K log keys. 27

2.4 Impact of the training size. 27

3.1 Framework of LogTAD . 34

3.2 Log Sequence Visualization (BGL → Thunderbird) 40

3.3 LogTAD performance with different training sizes from the target system.
(x-axis is in log-scale) . 41

4.1 The training framework of FADS . 48

4.2 The performance of FADS with different numbers of initially labeled anoma-
lies in one class. (a),(b) for anomaly detection and (c) for anomaly classification 63

4.3 The performance gains of FADS over ProtoNet with different numbers of
initially labeled anomalies. 63

4.4 Performance of FADS with various anomaly ratios in the unlabeled set. 64

4.5 Accuracy of the data selection agent . 65

4.6 The training framework of FADScr . 66

4.7 The performance of FADScr with different numbers of initially labeled anoma-
lies in one class. (a),(b) for anomaly detection and (c) for anomaly classification 77

4.8 The performance gains of FADScr over ProtoNet with different numbers of
initially labeled anomalies. 78

4.9 Performance of FADScr with various anomaly ratios in the unlabeled set. . . 79

4.10 Accuracy of the data selection agent . 80

xvi

5.1 Framework of InterpretableSAD . 88

5.2 Log messages and corresponding log keys . 95

5.3 Impact of the negative sampling ratio on the anomalous sequence detection . 99

5.4 Visualization of the normal, anomalous, and generated anomalous sequences. 100

5.5 The correlation between the performance of anomalous event detection and
the distances from sequences to corresponding baselines. Low error indicates
given an anomalous sequence, InterpretableSAD correctly detect at least 80%
of anomalous events. 103

5.6 An anomalous sequence in the HDFS dataset and the corresponding anoma-
lous scores . 104

6.1 Recourse recommendations for flipping an abnormal status of a distribution
system to a normal status. 107

6.2 Algorithmic Recourse on Multivariate Time Series 111

6.3 Effects of the hyperparameter λ in Eq. (6.12). 128

6.4 Recourse recommendations for intervening in an imbalanced ecosystem to
restore balance. 128

6.5 Recourse recommendations for restoring the abnormal CPU and RAM usages
in MSDS. 129

7.1 Root cause analysis through Granger causality. 133

7.2 The overview of the proposed AERCA. 136

7.3 Visualization of multivariate time series, exogenous variables, and predicted
root cause scores on the Nonlinear dataset (6 dimensions) with the ground
truth and predicted root cause. 150

7.4 Performance of root cause identification with various numbers of continuous
exogenous interventions. 151

7.5 Impact of the independent constraint on exogenous variables (defined in Eq.
7.7) for causal discovery. 152

8.1 The pipeline to achieve root cause identification and anomaly mitigation. . . . 158

8.2 Learned causal graph on Donors. 166

8.3 Trade-off between flipping ratio and action value. 171

xvii

8.4 Sensitivity analysis by setting various α. 173

8.5 Sensitivity analysis by setting various π. 174

9.1 Framework of CFAD . 183

9.2 Adjacency matrix A . 189

9.3 Results on data generation. 189

9.4 Learned causal graphs. 189

9.5 Trade-off between effectiveness and fairness. 192

CHAPTER 1

INTRODUCTION

Anomaly detection is a pivotal task in data analysis that has garnered increasing atten-

tion in recent years, driven by the exponential growth of big data and the escalating need to

automatically identify unusual patterns or behaviors across various domains. An anomaly

signifies an event or pattern deviating from the norm or expected behavior within a dataset.

These deviations can arise from diverse factors, including errors, fraud, cyber-attacks, or

outliers, and manifest in various data types, such as numerical and categorical, as well as in

different data formats, including tabular and sequential. The detection of anomalies is cru-

cial, given their potential significant implications across multiple sectors, including finance,

healthcare, and cybersecurity. However, anomaly identification poses challenges due to their

rarity, subtlety, and the inherent difficulty in distinguishing them from normal behavior.

Responsible anomaly detection involves multiple facets: performance, explainability,

and fairness, all vital for developing trustworthy and efficient systems. Performance pertains

to the accuracy of anomaly detection methods, while explainability relates to the methods’

transparency and the interpretability of results. Fairness ensures unbiased and equitable

treatment of all individuals or groups impacted by anomaly detection.

Despite its importance, responsible anomaly detection faces several challenges. A pri-

mary challenge is enhancing performance across various scenarios, including cold-start situa-

tions and few-shot anomaly detection and classification. Increasing explainability, especially

for deep learning models, which often lack transparency, remains another hurdle. Traditional

explainable anomaly detection approaches utilize attention mechanisms to provide explana-

tions based on attention scores. However, these scores tend to explain "Why was the sample

detected as an anomaly?" rather than "Why is the sample an anomaly?" Additionally, main-

taining fairness to prevent bias and ensure equitable treatment across all cases is a critical

challenge.

2

This dissertation addresses these challenges by proposing novel methods focusing on

performance, explainability, and fairness. We investigate transfer learning and unsupervised

learning techniques to develop adaptable anomaly detection methods suitable for cold-start

scenarios with enhanced accuracy. We also explore reinforcement learning techniques [1–4] to

improve anomaly detection and classification performance in few-shot and semi-supervised

settings. Furthermore, we aim to develop deep learning models and other interpretable tech-

niques to offer more transparent and understandable results. Our research also delves into

ensuring fairness in anomaly detection, contributing to the development of more reliable

and equitable methods. These methods lay a foundation for future research in anomaly

detection, applicable across various domains, including finance, healthcare, and cybersecu-

rity. By tackling these challenges, we aspire to facilitate better decision-making and improve

outcomes, contributing significantly to society’s ability to detect and prevent fraudulent or

malicious activities.

1.1 Motivation

1.1.1 Why Is Anomaly Detection Important?

Anomaly detection stands as a pivotal area of research within a multitude of fields,

including computer science, engineering, finance, and security. Its paramount importance

is underscored by its capability to uncover unusual patterns or events that deviate from

established norms or expected behaviors [5–7]. These deviations, if unnoticed, can inflict

considerable damage on organizations or systems by undermining their integrity, efficiency,

and security. By leveraging anomaly detection techniques, stakeholders can significantly

enhance decision-making processes, improve system accuracy and efficiency, and unearth

anomalous events within vast datasets.

In finance, anomaly detection plays a crucial role in safeguarding economic integrity

and operational stability [8–11]. It empowers financial institutions to pinpoint fraudulent

transactions and irregular financial patterns swiftly, thereby mitigating potential financial

losses and preserving trust in financial systems. Techniques developed for anomaly detection

3

enable early identification of fraud, insider trading, or credit risk anomalies, which are

essential for preempting financial misconduct and ensuring regulatory compliance.

In security, the deployment of anomaly detection methodologies is vital for maintaining

the robustness of cybersecurity defenses [10, 12–16]. These techniques facilitate the early

detection of cyber-attacks, including malware infiltration, unauthorized access attempts,

and other security breaches, by analyzing deviations from normal network or system behav-

iors. By identifying these threats early, organizations can prevent potential data breaches,

safeguard sensitive information, and maintain the continuity of their operations.

In the manufacturing industry, anomaly detection contributes to enhancing product

quality and operational efficiency [17–21]. It enables the early identification of equipment

malfunctions, process deviations, or quality defects, facilitating timely interventions that

can prevent costly downtimes and ensure the reliability of manufacturing processes. This

not only helps in reducing operational costs but also in maintaining competitive advantage

through consistent product quality.

In healthcare, the application of anomaly detection is transforming patient care and

disease management [22–24]. By analyzing medical data, such as patient records, imaging

data, or genetic information, anomaly detection algorithms can reveal atypical patterns

indicative of diseases or health conditions. This assists healthcare professionals in diagnosing

conditions early, personalizing treatment plans, and ultimately improving patient outcomes.

Moreover, in public health, anomaly detection can track the spread of infectious diseases by

identifying outbreaks, enabling timely and effective responses to health crises.

As the amount of data generated by various systems continues to increase, anomaly

detection is becoming increasingly crucial in many domains. As such, research in anomaly

detection is critical in developing effective and efficient algorithms and techniques for iden-

tifying anomalous events in large datasets. With the potential to improve decision-making

processes, enhance system accuracy and efficiency, and detect anomalous events in large

datasets, doing research in anomaly detection is essential for organizations across various

fields.

4

1.1.2 Why Is Responsible Anomaly Detection Important?

Responsible anomaly detection emerges as a critical frontier in the field, emphasizing

the integration of social responsibility principles into the development of anomaly detection

algorithms [25, 26]. These principles – performance, explainability, and fairness – are not

just technical metrics but are foundational to ensuring that anomaly detection systems

contribute positively to society.

The paramount importance of performance in anomaly detection systems is underscored

by their need for accuracy and reliability. High-performing models are characterized by their

ability to minimize false positives and negatives while maintaining superior accuracy. A

substantial volume of research is dedicated to enhancing this accuracy [27–31], reflecting the

field’s recognition of its critical role. Additionally, it is essential for these models to adapt to

new data and changing environments, thereby preserving their effectiveness over time. The

primary challenge in this context arises from the dynamic nature of real-world data, which

can fluctuate unpredictably and potentially compromise the accuracy of these models [32]. In

response, the development and application of transferable anomaly detection methods have

become crucial. These methods significantly improve the robustness and adaptability of the

models, ensuring they deliver consistent performance across a variety of scenarios [33–37].

Explainable anomaly detection [38–45] refers to the ability to understand and interpret

the reasons behind the detected anomalies. In some cases, black-box anomaly detection

models may be effective at identifying anomalies, but the lack of transparency and inter-

pretability can be problematic, particularly when trying to diagnose and resolve issues. By

developing explainable anomaly detection methods, researchers can provide insights into the

underlying causes of anomalies, leading to more informed decision-making.

Fairness in anomaly detection [46,47] is an emerging area of research that seeks to ensure

that the detection of anomalies does not result in unjust or discriminatory outcomes. For

example, if an anomaly detection model is used to identify fraudulent transactions, it may

inadvertently target certain groups unfairly, resulting in higher false-positive rates or biased

decision-making. By developing fairness-aware anomaly detection methods, researchers can

5

mitigate these risks and ensure that the detection of anomalies is done in a fair and equitable

manner.

The significance of focusing on performance, explainability, and fairness extends be-

yond mere technical achievements; it’s about fostering trust, accountability, and equity in

the application of anomaly detection technologies. By navigating these challenges, the devel-

opment of anomaly detection models can be steered towards ensuring not only technological

efficacy but also social responsibility. These efforts are instrumental in crafting robust, re-

liable anomaly detection systems that offer valuable insights and bolster decision-making

processes, all while upholding ethical standards and promoting fairness. As such, the explo-

ration and advancement in these areas are not just beneficial but essential for the responsible

application of anomaly detection in real-world settings.

1.1.3 Challenges in Responsible Anomaly Detection

Responsible anomaly detection is confronted with a set of multifaceted challenges that

span technical, ethical, and operational dimensions. Addressing these challenges is crucial

for developing systems that are not only effective in identifying anomalies but also adhere

to principles of fairness, transparency, and accountability. The key challenges identified in

this dissertation include:

• Performance Enhancement in Diverse Conditions: Achieving high accuracy and adapt-

ability in anomaly detection across varying scenarios, especially in the face of sparse

data and dynamically changing environments, remains a significant challenge. This

issue underscores the need for advanced methodologies capable of maintaining robust

performance over time.

• Explainability: Enhancing the transparency of anomaly detection models, particularly

those employing complex algorithms, poses a challenge. It is essential to develop

techniques that allow users to understand the rationale behind detected anomalies

and to perform root cause analysis for deeper insights.

6

• Fairness in Anomaly Detection Processes: Ensuring that anomaly detection systems

operate without bias and provide equitable outcomes across all users is a critical chal-

lenge. Developing fairness-aware approaches is necessary to prevent discriminatory

practices and ensure ethical application.

1.2 Contributions and Findings

The main contributions and findings of this dissertation are the following:

Performance. Performance is a crucial aspect of responsible anomaly detection since

poor performance could have negative consequences such as false alarms, missed anomalies,

or unnecessary investigations. Our goal is to improve the performance of anomaly detection

in various scenarios.

• We introduce LogGPT, a novel framework that employs the Generative Pre-trained

Transformer (GPT) model for log anomaly detection, improving the performance of

anomaly detection in log data. This task is crucial for maintaining system security and

reliability but is complicated by the large volume and complex structure of log data.

LogGPT leverages the power of generative log language models to predict the next

log entry based on the preceding sequence, and enhances its performance with a rein-

forcement learning strategy specifically designed for anomaly detection. Experimental

results on three datasets demonstrate that LogGPT significantly outperforms existing

state-of-the-art approaches, showcasing its effectiveness in identifying anomalies in log

data.

• We present LogTAD, a framework aimed at addressing the challenge of unsupervised

log anomaly detection across different systems. The task focuses on detecting anoma-

lous log records to ensure the stability of systems, which is complicated by the scarcity

of anomalous samples and the impracticality of gathering extensive training data for

newly deployed systems. Our method leverages a domain adversarial adaptation tech-

nique to transfer knowledge of log data from various systems, enabling the model to

identify anomalies across multiple platforms effectively. By mapping log sequences

7

into a shared hypersphere and establishing a system-agnostic center, LogTAD can de-

tect anomalies by their distance from this center. Experimental results demonstrate

LogTAD’s ability to achieve high accuracy in cross-system anomaly detection with

a minimal set of logs from new systems, highlighting its efficacy and potential for

practical applications.

• We develop the Few-shot Anomaly Detection and Classification model through Re-

inforced Data Selection (FADS), a novel framework that addresses the challenge of

anomaly detection and classification with limited labeled samples and a large number

of unlabeled samples. FADS iteratively improves anomaly detection and classifica-

tion performance by exploring unlabeled datasets to augment the training set. By

employing a reinforcement learning-based data selection strategy, FADS selects high-

quality weakly-labeled samples from the unlabeled dataset, enhancing the training

process. Experimental results demonstrate that FADS significantly outperforms tra-

ditional methods, achieving state-of-the-art performance in anomaly detection and

classification with only a few labeled samples initially. We then present FADScr, an

extension of the FADS, which further improves the performance in anomaly detection

and classification by iteratively enhancing performance with a combinatorial reward

system. Experimental results show the improvement by extending FADS to FADScr

and FADScr achieves state-of-the-art performance in anomaly detection and classifi-

cation tasks.

Explainability. Explainability is an essential aspect of responsible anomaly detection

since the lack of transparency or interpretability can undermine the credibility of anomaly

detection models.

• We introduce InterpretableSAD, an interpretable framework for anomaly detection

in sequential log data, focusing on the identification of anomalous sequences and the

fine-grained detection of anomalous events within those sequences. Anomaly detection

in sequential log data presents a significant challenge due to the rarity of anomalies

8

and the difficulty of identifying anomalous events within sequences. InterpretableSAD

addresses this challenge by employing a novel data augmentation strategy, generating

anomalous sequences through negative sampling to train a binary classification model

effectively. Post-training, we apply the interpretable machine learning technique of

Integrated Gradients to identify and explain the contribution of individual events

to the detection of anomalies. This approach allows for both high-level sequence

anomaly detection and detailed event-level analysis. Experimental results on multiple

log datasets demonstrate the effectiveness of InterpretableSAD.

• We present RecAD, an algorithmic recourse framework designed for anomaly detec-

tion in multivariate time series. This framework aims to recommend minimal-cost

actions for correcting abnormal time series to facilitate domain experts in effectively

understanding and rectifying abnormal behaviors. Utilizing UnSupervised Anomaly

Detection (USAD) for identifying abnormal steps, RecAD innovatively predicts re-

course actions that can reverse these abnormalities, ensuring a return to normalcy for

subsequent time steps. It notably considers the downstream impact of interventions by

generating counterfactual time series for the following steps. Experimental evaluations

on two synthetic and one real-world dataset have demonstrated RecAD’s efficacy in

suggesting actionable recourses for anomaly detection, validating its practical utility

and effectiveness.

• We develop AERCA, a novel autoencoder-based framework for root cause analysis of

anomalies in multivariate time series. This work addresses the challenge of identifying

the root cause of anomalies due to complex dependencies between time series. AERCA

utilizes an encoder-decoder structure to capture the Granger causality and models the

distributions of exogenous variables in normal conditions. By defining anomalies as

interventions on exogenous variables, it highlights those significantly deviated from

normal status. Experiments on various datasets show AERCA’s effectiveness in cap-

turing causal relationships and identifying anomaly root causes.

9

• We introduce RootCLAM, a framework designed to tackle the challenge of locating the

root causes of anomalies and mitigating them effectively. This task focuses on identify-

ing abnormal features caused by external interventions and mitigating such anomalies

to restore normalcy. RootCLAM operates in two phases: initially, it localizes the

root cause of an anomaly by identifying features affected by external interventions.

Subsequently, it proposes mitigation actions targeted at these root causes, aiming to

revert the affected features and outcomes to their normal states. The methodology

leverages a Structural Causal Model (SCM) to understand the causal relationships

and applies soft interventions for mitigation, using a continuous optimization-based

algorithm to compute these actions. Experimental results on multiple datasets demon-

strate RootCLAM’s effectiveness in not only accurately localizing root causes but also

in successfully mitigating anomalies with minimal perturbations compared to baseline

methods.

Fairness. Fairness is another important factor in responsible anomaly detection as

biased or unfair models can have significant negative impacts on certain individuals.

• We develop CFAD, which aims to ensure counterfactual fairness in anomaly detection

models by maintaining consistent detection outcomes across factual and counterfactual

worlds. The CFAD framework tackles the challenge of generating counterfactual data

and ensuring fair anomaly detection through a two-phase process: firstly, by gener-

ating counterfactual examples that represent counterfactual scenarios where sensitive

attributes are modified, thereby providing a basis for fairness comparison. Secondly,

it leverages an adversarial training methodology that forces the model to minimize

differences in detection outcomes between actual and counterfactual examples, thus

promoting fairness. Experimental results on both synthetic and real datasets demon-

strate that CFAD effectively detects anomalies while ensuring counterfactual fairness,

outperforming several baseline methods in balancing effectiveness and fairness.

10

1.3 Organization of the Dissertation

The dissertation unfolds through eleven chapters, methodically covering performance,

explainability, and fairness in anomaly detection. The first four chapters (2-4) delve into en-

hancing detection performance, showcasing LogGPT, LogTAD, FADS, and FADScr. Chap-

ters 5-8 pivot to explainability, introducing InterpretableSAD, RecAD, AERCA, and Root-

CLAM for clearer anomaly detection insights. Chapter 9 focuses on fairness with the CFAD

framework, ensuring unbiased detection. Chapter 10, the final section, outlines future re-

search directions, acknowledging current limitations and envisioning the next steps in ad-

vancing anomaly detection.

• Chapter 2 (LogGPT: Log Anomaly Detection via GPT) focuses on the devel-

opment and application of LogGPT for log data analysis, emphasizing its impact on

improving anomaly detection accuracy.

• Chapter 3 (LogTAD: Unsupervised cross-system log anomaly detection via

domain adaptation) details the innovative approach of LogTAD to overcome the

cold-start problem in anomaly detection, utilizing domain adaptation techniques.

• Chapter 4 (FADS: Few-shot anomaly detection and classification through

reinforced data selection & FADScr: Few-shot Anomaly Detection and

Classification Through Reinforced Data Selection with a Combinatorial Re-

ward) presents the FADS and FADScr frameworks, showcasing their contributions to

the domain of few-shot learning in anomaly detection. FADS distinguishes itself by uti-

lizing a reinforced data selection process, thereby improving the efficiency of anomaly

detection with limited data. FADScr, on the other hand, advances this approach by

introducing a combinatorial reward mechanism. This mechanism further refines the

data selection process, leading to enhanced performance in few-shot anomaly detection

scenarios.

• Chapter 5 (InterpretableSAD: Interpretable anomaly detection in sequen-

tial log data) discusses the InterpretableSAD framework, showcasing its approach to

11

making anomaly detection in log data interpretable.

• Chapter 6 (RecAD: Algorithmic Recourse for Anomaly Detection in Mul-

tivariate Time Series) delves into RecAD’s development, emphasizing its novel

framework for algorithmic recourse in anomaly detection that recommends minimal-

cost actions to mitigate detected anomalies.

• Chapter 7 (AERCA: Root Cause Analysis of Anomalies in Multivariate

Time Series through Granger Causal Discovery) focuses on AERCA’s method-

ology for identifying causal relationships and root causes in time series anomalies,

enhancing the interpretability of anomaly detection systems.

• Chapter 8 (RootCLAM: On Root Cause Localization and Anomaly Mit-

igation through Causal Inference) details RootCLAM’s approach to employing

causal inference for effective root cause analysis and anomaly mitigation in tabular

data, complementing the time series focus of AERCA and RecAD.

• Chapter 9 (CFAD: Achieving counterfactual fairness for anomaly detec-

tion) introduces the CFAD framework, addressing fairness in anomaly detection by

ensuring counterfactual fairness through the generation of counterfactual samples and

adversarial training.

• Chapter 10 (Conclusions and Future Work) discusses the limitations of current

works and outlines potential future research directions, aiming to further the field of

anomaly detection.

12

CHAPTER 2

LOGGPT: LOG ANOMALY DETECTION VIA GPT

In this chapter, we present LogGPT, an innovative framework that employs the Gener-

ative Pre-trained Transformer (GPT) for log anomaly detection. By modeling log sequences

as natural language, LogGPT leverages deep learning to predict the next log entry based

on the preceding sequence, enhancing anomaly detection accuracy. A unique reinforce-

ment learning strategy is introduced to fine-tune the model, focusing on anomaly detection

tasks. This approach significantly outperforms existing models, as evidenced by extensive

experimental validation across multiple datasets, marking a significant advancement in log

anomaly detection methodologies.

2.1 Introduction

Effectively detecting abnormal events in online computer systems is critical to main-

taining the security and reliability of the systems. Logs, which are a fundamental component

of modern computer systems, serve as a critical source of information for system monitor-

ing, debugging, and security auditing as they record the system status, offering valuable

insights into system performance and potential issues. Anomalies in log data often signify

system faults, security breaches, or operational failures, making their detection a crucial

task [33,48–52].

However, the task of anomaly detection in log data is challenging due to the nature of

high dimensionality, large volume, and complex structure. Machine learning models have

been extensively employed for anomaly detection in log data. Traditional models, such

as Principal Component Analysis (PCA) [53], Isolation forest [54], and one-class Support

Vector Machines (OCSVM) [55] have been widely used. However, these models often require

manual feature engineering or assume linear relationships among log entries, which makes

them less effective in handling the dynamic nature of log data.

13

Recently, deep learning models have emerged for log anomaly detection, such as LSTM-

based models like DeepLog [48], LogAnomaly [56], and OC4Seq [57], and BERT-based mod-

els like LogBERT [49]. One commonly used strategy is to borrow the idea of language

modeling in the natural language processing field to capture the sequential pattern of log

data. In this work, we call this group of log anomaly detection models log language

model-based approaches. Particularly, the log language model is first trained to predict the

next or masked log entries given the normal sequences. Then, the anomalies can be detected

if the observed log entry is not in the top-K list predicted by the log language model. The

rationale is that if a log sequence follows normal patterns, the log language model should

be able to predict the next or masked log entries. Therefore, when an observed log entry is

not in the top-K list predicted by the log language model, it means that the log entry has

a low ratio to be in this specific position given the context, indicating the abnormality.

Although empirical studies have demonstrated the effectiveness of leveraging language

models for log anomaly detection, the current models still face some limitations. The tra-

ditional LSTM-based log language models [58], such as DeepLog, often fail to fully capture

long-term dependencies in log sequences. Therefore, the recently developed models usually

adopt the Transformer structure [59] to model the long log sequences, such as LogBERT [49].

However, the masked log language model adopted in LogBERT may not be able to capture

the natural flow in log sequences. More importantly, there is a gap between log language

modeling and anomaly detection. Technically, the log language model is usually trained to

correctly predict the next log entry, while the current log anomaly detection models label

the anomalies if the observed log entry is not in the Top-K list predicted by the log language

model. In other words, there is a gap in the objective between the training phase and the

testing phase for log anomaly detection.

Inspired by the training strategy for large language models, to fill up the gap, we intro-

duce LogGPT, a novel framework for log anomaly detection that leverages the Generative

Pre-trained Transformer (GPT) model. LogGPT still harnesses the power of generative log

language models to capture the intricate patterns and dependencies in log data. Specifically,

14

LogGPT is pre-trained to predict the next log entry given the preceding sequence (prompt).

More importantly, we further fine-tune LogGPT via reinforcement learning. Specifically,

LogGPT employs a novel reward mechanism based on whether the observed log entry is

within the Top-K predicted log entries from the log language model. If the observed log

entry is found within the Top-K predictions, LogGPT will receive a positive reward; other-

wise, it will receive a negative reward. Reinforced by this reward signal, we expect that for

the normal sequences, LogGPT can ensure the log entry is within the Top-K predictions.

The contributions of this work are threefold. First, we propose LogGPT, a novel frame-

work for anomaly detection in log data, which utilizes the generative log language model

to capture the patterns of normal log sequences by training to predict the next log key

given the previous sequence. This novel approach effectively addresses the limitations of

both traditional machine learning models and deep learning models like DeepLog [48] and

LogBERT [49], providing a more robust and effective solution for log anomaly detection.

Second, we introduce a Top-K reward metric specifically designed for fine-tuning the log lan-

guage model for anomaly detection. This reward metric gives a positive reward if the actual

log key is in the Top-K predictions, and a negative reward otherwise, thereby guiding the

model to focus on the most relevant parts of the log sequence and enhancing the accuracy

of anomaly detection. Third, we conduct extensive experiments to validate the effectiveness

of LogGPT in detecting anomalies in log data. Experimental results demonstrate that Log-

GPT outperforms state-of-the-art methods, underscoring its potential as a powerful tool for

anomaly detection in log data.

2.2 Related Work

Log anomaly detection, a critical task for ensuring system security and reliability, has

received extensive research. The methods for log anomaly detection can be broadly catego-

rized into two phases: traditional machine learning models and deep learning models.

In the early phase, traditional machine-learning models were the primary tools for log

anomaly detection. Models such as Principal Component Analysis (PCA) [53], Isolation

forest [54], and one-class Support Vector Machines (OCSVM) [55] were commonly used.

15

Although these models are capable of identifying outliers in the log data, these models have

several limitations. First, the traditional machine learning models usually require manual

feature engineering, which is labor-intensive and might not capture the complex patterns

in log data. Furthermore, these models struggle with capturing complex patterns in log

sequences.

The advanced deep learning models have significantly improved the performance of log

anomaly detection. In particular, Long Short-Term Memory Networks (LSTMs), known for

their ability to model sequential data, have proven to be effective for log anomaly detection,

such as DeepLog [48] and LogAnomaly [56]. DeepLog functions by predicting the next log

key based on the preceding sequence, identifying anomalies when the actual next log key

significantly deviates from the prediction. On the other hand, LogAnomaly models a log

stream as a natural language sequence and develops template2vec to extract the semantic

information hidden in log templates. Therefore, LogAnomaly can detect both sequential

and quantitative log anomalies simultaneously. However, these models come with their own

set of limitations. A primary challenge with LSTM is that this type of recurrent architecture

struggles to encode very long or complex sequences due to its relatively simple structure.

This issue is particularly pronounced in log anomaly detection, where the sequences can be

quite long and complex.

To address the limitations of LSTM-based models, researchers have turned to the use of

Transformer [60], which is a more powerful model to capture the long-term dependencies in

the sequences, such as LogBERT [49] or CAT [61]. LogBERT is a self-supervised framework

that learns the patterns of normal log sequences based on BERT [60]. Specifically, LogBERT

takes normal log sequences with random masks as inputs and is trained to predict the

randomly masked log entries. After training, LogBERT can encode the patterns of normal

log sequences. One limitation is that the masked log language model may not always capture

the natural flow of log sequences in some contexts. Moreover, the performance of LogBERT

is sensitive to the mask ratio, a hyperparameter controlling how many tokens will be replaced

with MASK tokens during both the training and testing phases. In this work, we propose

16

Fig. 2.1: Log key extraction from HDFS dataset messages via Log Parser. The message with
a red/blue underscore indicates the detailed computational event for each log key separately.

LogGPT, which leverages the GPT model to learn patterns in normal log sequences by

predicting the next log entries in a sequence, and further proposes a novel reinforcement

learning mechanism to enhance the performance for anomaly detection.

2.3 Preliminary

In this section, we provide a detailed overview of two key components for log anomaly

detection, log sequence preprocessing and log language model.

2.3.1 Log Sequence Preprocessing

The first step of log anomaly detection is to preprocess the log messages because it is

hard to capture the sequential pattern from the raw text-based log messages. The major

line of research in log anomaly detection is to first adopt a log parser, such as Drain [62], to

extract the template from the log messages, as shown in Figure 2.1. Each template usually

indicates one type of log message, called a log key.

17

After getting the log keys, the sequence of raw log messages can be transformed into

a sequence of log keys. In this case, the log keys are similar to the vocabulary in natural

language, while the sequence is like a sentence consisting of a sequence of log keys. Therefore,

a language model can be leveraged to model the log sequences.

Formally, after preprocessing, the log messages with the same template are represented

by a log key k ∈ K, where K indicates the set of log keys extracted from the log messages.

Then, a log sequence is organized as ordered log keys, denoted as S = {k1, ..., kt, ..., kT },

where T indicates the length of the log sequence.

2.3.2 Log Language Model

We use DeepLog [48] to illustrate the concept of the log language model. DeepLog

leverages Long Short-Term Memory networks (LSTMs) for log language modeling. The

primary objective of DeepLog is to learn a probabilistic model of normal execution from log

data and then detect anomalies as significant deviations from normal patterns.

DeepLog is trained on D = {Si}Ni=1 consisting of normal log sequences. The LSTM

network in DeepLog is trained to predict the next log key in a sequence based on the

preceding sequence. Formally, given a sequence of log keys S1:T = {k1, ..., kt, ..., kT }, where kt

indicates the log key at the t-th position. DeepLog trains an LSTM to model the conditional

probability p(kt+m+1|St:t+m) for t = 1, 2, ..., T −m− 1, where m indicates the window size.

Particularly, DeepLog adopts a sliding window with size m to split the sequences into a set

of small windows and predict the next log key given the previous m log keys. The LSTM is

trained to maximize the likelihood of the next log key given the preceding sequence, which

can be formulated as the following objective function:

L(θ) = − 1

N

N∑
i=1

T−m−1∑
t=1

log p(kit+m+1|Sit:t+m), (2.1)

where θ denotes the parameters of LSTM.

During the anomaly detection phase, given a new sequence, DeepLog still splits the

sequences into small windows and employs the trained LSTM model to predict the next log

18

key. The LSTM model predicts a probability distribution over all possible log keys in K,

ranking them based on their likelihood of being the next key in the sequence. Then, an

abnormal sequence will be labeled as abnormal if the observed log key does not appear in

the Top-K prediction list multiple times across all sliding windows in that sequence.

The concept of Top-K predictions is introduced to account for the inherent uncertainty

and variability in log sequences. Even in normal operations, there can be multiple valid

“next” log keys as the systems usually have multiple normal patterns. Therefore, during the

anomaly detection phase, instead of predicting a single ‘most likely’ next log key, the model

identifies the Top-K most probable next log keys. As long as the observed log key is in the

Top-K list, we could consider the sequence normal.

The value of K, a tunable hyperparameter, determines the strictness of the model for

anomaly detection. A smaller K results in a stricter model that allows fewer possibilities for

the next log key, usually leading to high recall and low precision, while a larger K results in

a more flexible model that considers a broader range of log keys as normal, usually resulting

in high precision and low recall.

2.4 LogGPT

In this section, we introduce LogGPT, a novel log anomaly detection model based

on GPT. Similar to DeepLog, LogGPT detects the log anomaly by examining whether

the observed log key is in the Top-K prediction list. Because GPT is a more powerful

structure compared to LSTM used by DeepLog, LogGPT does not need to further split the

sequence into multiple small windows. Instead, LogGPT is trained to predict the next log

key given the previous sequence, which intrinsically can capture the long-term dependence

of log sequences. Moreover, besides leveraging the powerful GPT structure, we also propose

a novel reinforcement learning strategy to further improve the performance of log anomaly

detection.

The design of LogGPT is inspired by the training process of large language models,

where the training process consists of two primary stages: pre-training and fine-tuning, as

shown in Figure 2.2.

19

(a) Pre-training (b) Fine-tuning

Fig. 2.2: Framework of LogGPT.

In the pre-training stage (Figure 2.2a), a generative log language model fθ(·) is trained

on a corpus of normal log sequences D, which allows the model to learn the underlying

patterns and structures of normal system behavior. After pre-training, LogGPT is capable

of generating log sequences based on a given part of the log sequences.

The fine-tuning stage (Figure 2.2b) is designed to further refine the model’s ability to

distinguish between normal and abnormal log sequences. In this stage, we employ reinforce-

ment learning techniques to finetune the pre-trained LogGPT. Borrowing the terminology

from the large language model, we define a set of prompts P = {Si1:t}Ni=1, where Si1:t ⊆ Si1:T

and Si1:T ∈ D. These prompts are fed into the LogGPT to generate the following sequence

Ŝit:T step by step. We propose a novel reward, called the Top-K metric, to fine-tune LogGPT

for anomaly detection.

2.4.1 Generative Log Language Model

LogGPT utilizes GPT-2 [63] for modeling the log sequences, which is based on Trans-

former decoder [59] that utilizes a self-attention mechanism to capture dependencies between

log keys in the log sequence. LogGPT is trained to predict the next log key given the pre-

ceding log keys. The objective function for pretraining the LogGPT is defined as follows:

L(θ) = − 1

N

N∑
i=1

T−1∑
t=1

log p(kit+1|Si1:t), (2.2)

20

where θ denotes the parameters of LogGPT, N is the number of log sequences and T is

the length of each sequence, p(kit+1|Si1:t) indicates the probability of log key at the t+ 1-th

position predicted by LogGPT given the sequence Si1:t.

Specifically, to derive p(kit+1|Si1:t), the structure of LogGPT can be defined as:

hit = Transformer_Decoder(Si1:t) (2.3a)

p(kit+1|Si1:t) = Softmax(hitW), (2.3b)

where hit ∈ Rd indicates the hidden representation derived from the Transformer decoder

[59,63], and W ∈ Rd×|K| is the parameter of the language model head that maps the hidden

representation to a probability distribution of all log keys in K.

By training the model to predict the next log key in normal log sequences, LogGPT

encodes the normal system behavior. After pre-training, GPT-2 is capable of generating a

log sequence Ŝit+1:T = {k̂it+1, ..., k̂
i
T } based on a given part of the log sequence Si1:t. This

capability is crucial for the subsequent fine-tuning stage, where the model is further refined

to distinguish between normal and anomalous log sequences.

2.4.2 Reinforcement Learning for Log Anomaly Detection

In the context of LogGPT, we employ reinforcement learning to fine-tune the pre-trained

GPT-2 model for the task of log anomaly detection. The reinforcement learning paradigm

is particularly suitable for our task as it allows the model to learn from its predictions and

adjust its behavior based on the feedback received, thereby enhancing its ability to detect

anomalies. In the context of our framework, we define the following elements.

State: The state, denoted as S̃i1:t = Si1:t, is initially defined as the given part of a log

sequence. As the model generates the log sequence Ŝit+1:T based on the given part, the state

evolves dynamically. Specifically, for each step j where t + 1 ≤ j ≤ T − 1, the state S̃i1:j

becomes the concatenation of the given part of the log sequence Si1:t and the generated part

of the log sequence Ŝit+1:j , denoted as S̃i1:j = {Si1:t, Ŝit+1:j}. The sequence S̃i1:j is further

21

transformed to a hidden representation h̃ij by the Transformer decoder shown in Equation

2.3a.

Action: An action is defined as sampling a log key from the K log keys with the highest

probabilities predicted by LogGPT, denoted as aij+1 ∼ Top-K(p(k̂ij+1|S̃i1:j)).

Policy: A policy takes the form of LogGPT and is defined by its parameters. Specifically,

given the current part of the sequence until the j-th position, the policy outputs a proba-

bility distribution over the action space, represented as πθ(aij+1|h̃ij), where θ indicates the

parameters of LogGPT.

Reward: The reward function provides feedback to the policy based on the quality of its

actions. We propose a novel reward function to evaluate the predicted log key for anomaly

detection, called the Top-K metric.

At each step, the Top-K metric checks whether the observed next log key is within the

Top-K predicted log keys. If this is the case, the model receives a reward of 1; otherwise,

it receives a reward of -1. Given a part of log sequence Si1:t, after an action is taken, the

reward function is formulated as:

rj+1 =

1, if kij+1 ∈ Top-K(p(k̂ij+1|S̃i1:j))

−1, if kij+1 /∈ Top-K(p(k̂ij+1|S̃i1:j))
. (2.4)

Here, kij+1 refers to the actual next log key, and p(k̂ij+1|S̃i1:j) denotes the probability distri-

bution predicted by LogGPT over the action space given the current state.

The Top-K metric promotes better generalization and robustness of LogGPT in anomaly

detection. By encouraging the model to predict a set of likely next log keys rather than a

single most likely log key, the Top-K metric helps LogGPT learn a more nuanced repre-

sentation of the normal log patterns. This approach recognizes that log data may contain

inherent variability even for the normal log sequences, and a broader range of acceptable

candidates can still reflect normal system behavior. The Top-K metric, therefore, enhances

the precision of anomaly detection by aligning the model’s predictions with the complex

nature of log data.

22

2.4.3 Policy Update

We adopt Proximal Policy Optimization (PPO) [64] for the policy update. PPO is a

type of policy gradient method that optimizes the policy directly by maximizing the expected

reward and can further maintain the stability of the learning process and prevent harmful

updates. The objective function of PPO is defined as follows:

J(θ) = Eπθ

 N∑
i=1

T−1∑
j=t

πθ(a
i
j+1|hij)

πθold(a
i
j+1|hij)

rj+1

 , (2.5)

where πθ is the new policy, πθold is the old policy, and rj+1 is the reward for an action.

The policy πθ is updated by performing gradient ascent on the objective function J(θ):

θ ← θ + α∇θJ(θ), (2.6)

where α is the learning rate.

The policy update process is repeated for a number of iterations until the policy con-

verges or a maximum number of iterations is reached. The Top-K metric encourages the

model to recognize the inherent variability in normal log data by rewarding predictions that

include the actual next log key within a broader set.

2.4.4 Anomaly Detection

After fine-tuning, LogGPT is deployed to detect abnormal log sequences. Given a new

log sequence S1:T , LogGPT iteratively predicts the next log key kt+1 given the preceding

subsequence S1:t for 1 ≤ t ≤ T − 1.

For each predicted log key, the model generates a set of Top-K predicted log keys. This

set represents the K most likely log keys at the current position. The actual next log key is

then compared to this set. As long as one actual log key is not in the set of Top-K predicted

log keys, the whole log sequence will be flagged as anomalous.

2.5 Experiments

23

Table 2.1: Statistics of the Datasets. The number in the parentheses indicates the unique
log keys in the training set.

Dataset # of Unique
Log Keys

of Log
Sequences

Avg. Seq.
Length

Training
Data

Testing Data
Normal Anomalous

HDFS 48 (15) 575,061 19 5,000 553,223 16,838
BGL 396 (160) 36,927 58 5,000 28,631 3,296

Thunderbird 7,703 (904) 112,959 166 5,000 67,039 40,920

2.5.1 Experimental Setup

Datasets. We evaluate LogGPT on three log datasets, namely HDFS, BGL, and Thun-

derbird. Table 2.1 shows the statistics of three datasets. For all the datasets, we randomly

select 5000 normal log sequences as the training dataset.

• HDFS (Hadoop Distributed File System) [53]: This dataset is derived from Hadoop-

based map-reduce jobs that were run on Amazon EC2 nodes. The anomalies within

this dataset are identified through a manual labeling process based on a set of prede-

fined rules. The log sequences are constructed based on the session ID present in each

log message, resulting in an average sequence length of 19. The HDFS dataset consists

of 575,061 log sequences, out of which 16,838 have been labeled as anomalous.

• BGL (BlueGene/L Supercomputer System) [65]: The BGL dataset originates from

a BlueGene/L supercomputer system, located at the Lawrence Livermore National

Labs (LLNL). It includes both alert and non-alert messages, with the alert messages

being treated as anomalies. Log sequences are formed using a time sliding window of

1 minute, yielding an average sequence length of 58. The BGL dataset contains 36,927

log sequences, with 3,296 of them classified as anomalous.

• Thunderbird [65]: This dataset is collected from another supercomputer system. The

dataset used in this study comprises the first 20,000,000 log messages from the original

Thunderbird dataset that compose 112,959 log sequences, with 40,920 of them marked

as anomalous. Log sequences are created using a time sliding window of 1 minute,

leading to an average sequence length of 166.

24

Baselines. We compare LogGPT with a variety of baseline methods, consisting of both

traditional machine learning models and deep learning models:

• PCA (Principal Component Analysis) [66]: This technique constructs a counting ma-

trix based on the frequency of log key sequences. It then reduces this matrix into a

lower-dimensional space to identify anomalies.

• iForest (Isolation Forest) [54]: iForest is an unsupervised learning algorithm, which also

adopts a counting matrix as input. It isolates anomalies instead of profiling normal

data points. It represents features as tree structures and anomalies are detected as

instances with short average path lengths on the constructed isolation trees.

• OCSVM (One-Class Support Vector Machine) [67]: OCSVM is a variant of the Support

Vector Machine algorithm that is designed for anomaly detection tasks [55, 68]. The

model is trained on normal data and finds the maximum margin hyperplane that

separates the normal data from the origin.

• LogCluster [69]: LogCluster is a density-based log clustering approach that groups

similar log messages together. Anomalies are detected as log messages that do not

belong to any cluster or belong to small clusters.

• DeepLog [48]: DeepLog is a deep learning-based approach for anomaly detection in log

data. It uses a long short-term memory (LSTM) network to model the log sequences

and detect anomalies based on the prediction errors.

• LogAnomaly [56]: LogAnomaly models a log stream as a natural language sequence,

which can detect both sequential and quantitative log anomalies simultaneously.

• OC4Seq (Multi-Scale One-Class Recurrent Neural Networks) [57]: OC4Seq is designed

to detect anomalies in discrete event sequences. Recognizing that an anomalous se-

quence could be caused by individual events, subsequences of events, or the entire

sequence, OC4Seq employs a multi-scale RNN framework to capture different levels of

sequential patterns simultaneously.

25

Table 2.2: Experimental Results on HDFS, BGL, and Thunderbird Datasets.

Method HDFS BGL Thunderbird
Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

PCA 0.166±0.008 0.059±0.003 0.087±0.002 0.117±0.023 0.035±0.007 0.054±0.010 0.953±0.004 0.980±0.005 0.966±0.003

iForest 0.043±0.010 0.422±0.224 0.078±0.021 0.491±0.364 0.037±0.052 0.063±0.090 0.338±0.128 0.015±0.011 0.028±0.020

OCSVM 0.058±0.012 0.910±0.089 0.108±0.021 0.073±0.003 0.345±0.010 0.121±0.004 0.550±0.004 0.998±0.000 0.709±0.003

LogCluster 0.996±0.003 0.368±0.001 0.538±0.001 0.941±0.015 0.641±0.033 0.762±0.021 0.977±0.005 0.291±0.063 0.445±0.067

DeepLog 0.793±0.092 0.863±0.031 0.824±0.060 0.792±0.048 0.946±0.012 0.861±0.028 0.864±0.005 0.997±0.000 0.926±0.003

LogAnomaly 0.907±0.017 0.369±0.014 0.524±0.017 0.884±0.002 0.850±0.009 0.867±0.003 0.873±0.005 0.996±0.000 0.931±0.003

OC4Seq 0.922±0.059 0.758±0.227 0.808±0.157 0.441±0.045 0.352±0.044 0.391±0.041 0.901±0.046 0.823±0.232 0.845±0.177

LogBERT 0.754±0.142 0.749±0.037 0.745±0.082 0.917±0.006 0.892±0.006 0.905±0.005 0.962±0.019 0.965±0.008 0.963±0.007

CAT 0.102±0.022 0.422±0.082 0.164±0.034 0.177±0.122 0.210±0.184 0.190±0.148 0.751±0.072 0.516±0.124 0.607±0.120

LogGPT 0.884±0.030 0.921±0.066 0.901∗±0.036 0.940±0.010 0.977±0.018 0.958∗±0.011 0.973±0.004 1.000±0.000 0.986∗±0.002

The asterisk indicates that LogGPT significantly outperforms the best baseline at the 0.05 level, according
to the paired t-test.

Table 2.3: Performance of LogGPT with or without reinforcement learning.

Metric Approach HDFS BGL Thunderbird

Precision LogGPT w/o RL 0.932±0.015 0.936±0.011 0.971±0.004

LogGPT 0.884±0.030 0.940±0.010 0.973±0.004

Recall LogGPT w/o RL 0.790±0.101 0.975±0.018 1.000±0.000

LogGPT 0.921±0.066 0.977±0.018 1.000±0.000

F-1 score LogGPT w/o RL 0.853±0.065 0.955±0.010 0.985±0.002

LogGPT 0.901∗±0.036 0.958±0.011 0.986∗±0.002

Significantly outperforms LogGPT w/o RL at the 0.05 level (paired t-test).

• LogBERT [49]: LogBERT is a BERT-based architecture to capture the patterns of

normal log sequences via a log language model. LogBERT is trained to predict the

masked log keys on normal log sequences and detects the abnormal log sequences based

on the prediction errors.

• CAT (Content-Aware Transformer) [61]: CAT is a self-attentive encoder-decoder trans-

former framework designed for anomaly detection in event sequences. It incorporates

the semantic information of event content by using a content-awareness layer to gener-

ate representations of each event. The encoder learns preamble event sequence repre-

sentations with content awareness, and the decoder embeds sequences under detection

into a latent space where anomalies are distinguishable.

Implementation Details. We first employ Drain [62] to parse raw log messages into

log keys. For the baseline models, we utilize the Loglizer [70] package to evaluate PCA,

OCSVM, iForest, and LogCluster for anomaly detection. DeepLog and LogAnomaly are

26

evaluated using the Deep-loglizer [71] package. For OC4Seq1, LogBERT2, and CAT3, we

use the open-source code provided by the authors separately.

As for LogGPT, we use a GPT model with 6 layers and 6 heads. The dimensions of

the embeddings and hidden states are set to 60. The learning rate is set to 1e-4 for the

pre-training phase and 1e-6 for the fine-tuning phase. To accommodate different datasets,

we set the K in Top-K to 50% of the training log keys. It means during the test phase if an

observed log key is not in the top 50% of the prediction list from the GPT, the sequence will

be labeled as an anomaly. This allows us to maintain a high level of flexibility when dealing

with datasets of varying sizes and characteristics. The batch size for the pre-training phase

is set to 16, and we train the model for 100 epochs. The episode is set to 20 with early stop

criteria to prevent overfitting and ensure efficient training. The code for LogGPT is publicly

available4.

2.5.2 Experimental Results

Performance on Log Anomaly Detection. Table 2.2 illustrates the results and standard

deviation of LogGPT and various baselines over 10 runs on the HDFS, BGL, and Thunder-

bird datasets. The asterisk in the table indicates that LogGPT significantly outperforms

the best baseline for each dataset at the 0.05 level, according to the paired t-test.

First, we can observe that PCA, iForest, and OCSVM perform poorly on the HDFS

and BGL datasets, as indicated by their low F-1 scores. However, PCA’s performance is

notably better on the Thunderbird dataset, achieving a high F-1 score. This inconsistency

in performance across datasets highlights the sensitivity of PCA to datasets.

LogCluster, specifically designed for log anomaly detection, shows improved perfor-

mance over other traditional machine learning models, i.e., PCA, iForest, and OCSVM, on

the HDFS and BGL datasets but is outperformed by PCA on the Thunderbird dataset. This
1https://github.com/KnowledgeDiscovery/OC4Seq
2https://github.com/HelenGuohx/logbert
3https://github.com/mmichaelzhang/CAT
4https://github.com/nokia/LogGPT

https://github.com/KnowledgeDiscovery/OC4Seq
https://github.com/HelenGuohx/logbert
https://github.com/mmichaelzhang/CAT
https://github.com/nokia/LogGPT

27

pattern further emphasizes the importance of dataset-specific characteristics in determining

the effectiveness of different methods.

Deep learning-based approaches, such as DeepLog, LogAnomaly, OC4seq, LogBERT,

and CAT, outperform traditional methods across all three datasets, which shows the advan-

tages of utilizing deep learning to capture complex patterns in log sequences.

Our proposed model, LogGPT, stands out by consistently achieving the highest F-1

scores across all three datasets, with significant margins over all baselines.

(a) HDFS (b) BGL (c) Thunderbird

Fig. 2.3: Impact of the ratio of Top-K log keys.

(a) HDFS (b) BGL (c) Thunderbird

Fig. 2.4: Impact of the training size.

Ablation Studies. To investigate the contribution of reinforcement learning (RL) to the

performance of LogGPT, we conducted an ablation study, comparing the performance of

LogGPT with and without the RL component. The results are summarized in Table 2.3.

28

First, we can notice that on both HDFS and Thunderbird datasets, LogGPT signifi-

cantly outperforms LogGPT without the RL component, which demonstrates that the RL

component enhances the overall performance of LogGPT for log anomaly detection. Es-

pecially, on the HDFS dataset, by finetuning the GPT model with RL reward, the recall

achieved by LogGPT is improved with a large margin with a little sacrifice on precision,

leading to extensive improvement in the F-1 score. It also shows that fine-tuning the log lan-

guage model with Top-K reward can identify more log anomalies. Meanwhile, on the BGL

dataset, we can also notice a slight improvement in F-1 of LogGPT compared to the one

without the RL component. Another interesting finding is that even the LogGPT without

the RL component already outperforms all baselines (shown in Table 2.2) in three datasets,

which also shows the advantage of leveraging the GPT model to capture the patterns of log

sequences.

Parameter Analysis: Ratio of Top-K. LogGPT detects the anomalies by examining

whether the observed log key is in the Top-K list predicted by GPT. Therefore, K is an

important parameter to determine the anomalies. We first analyze the difference in the

performance by tuning K for anomaly detection. By default, K is set as 50% of unique log

keys. It means if the next log key falls into the top 50% of unique log keys predicted by

GPT, the sequence is normal.

The impact of different top-K ratios on the precision, recall, and F-1 score for the

HDFS, BGL, and Thunderbird datasets is illustrated in Figure 2.3. On both HDFS and

BGL datasets, we have similar observations. With the increasing of ratios as normal log

keys, the recall keeps decreasing when the ratio is greater than a threshold, such as 40% in

HDFS and BGL. This happens because when we have a large ratio, most of the keys are

considered normal. In this case, the recall will be low. On the other hand, if the observed

log key is predicted with an extremely low probability at a specific position, with a high

chance, this log key is abnormal. Therefore, we can observe the increase in precision along

with the increase in ratios.

For the Thunderbird dataset, the precision increases as the top-K ratio increases, while

29

the recall remains almost constant, with a slight decrease at higher top-K ratios. The F-

1 score increases steadily, reaching a peak at a specific top-K ratio. The reason for this

behavior can be attributed to the inherent characteristics of the Thunderbird dataset. It is

likely that the normal data within the Thunderbird dataset has high variability, which needs

a broader range of acceptable continuations in the log sequences to reduce the false positive.

As the top-K ratio increases, LogGPT becomes more selective in flagging anomalies, thereby

increasing precision by reducing false positives.

Overall, a low top-K ratio tends to lead to high recall but low precision, while a high

top-K ratio leads to high precision but potentially lower recall. The optimal top-K ratio

varies across datasets, reflecting the unique characteristics of each dataset.

Scalability Analysis: Training Size. It is well known that deep learning models usually

require a sufficient number of training samples. The impact of training size on the perfor-

mance of log anomaly detection models is critical. By analyzing the F-1 scores of various

models across different training sizes, we can gain insights into their effectiveness and effi-

ciency. In this experiment, we compare LogGPT with other deep learning-based baselines,

across three datasets by varying the training size. Figure 2.4 shows the experimental results.

The effect of the training size on the HDFS dataset reveals distinct patterns across dif-

ferent models (shown in Figure 2.4a). LogGPT demonstrates consistent performance across

various training sizes, highlighting its robustness and ability to generalize well. OC4Seq

shows a consistent increase in performance with the training size, indicating that it bene-

fits from more extensive training data. DeepLog and LogAnomaly exhibit fluctuations in

performance, which may be attributed to the sensitivity to training size. The decline in

performance for LogBERT and stability for CAT may reflect limitations in their ability to

leverage additional training data without changing other hyper-parameters. The varying

behaviors of these models underscore the importance of carefully selecting the training size

based on the model’s characteristics.

We have similar observations on BGL and Thunderbird datasets. First, with larger

training sizes, the performance of LogGPT, DeepLog, LogAnomaly, and LogBERT keep

30

improving, which shows that these models can benefit from additional training data. Mean-

while, LogGPT can outperform those baselines in most cases. However, the sharp decline

for OC4Seq and overall downward trend for CAT may indicate overfitting or challenges in

generalizing from larger training sets.

Overall, LogGPT can achieve very good performance in three datasets. More training

samples can further boost the performance of LogGPT.

2.6 Summary

In this chapter, we introduced LogGPT, a novel approach to log anomaly detection

that builds upon GPT models, further enhanced by a reinforcement learning strategy.

Through modeling log sequences as natural language, LogGPT innovatively adapts GPT

for log anomaly detection. More importantly, recognizing the existing gap between lan-

guage modeling and anomaly detection, LogGPT integrates a fine-tuning process guided by

a novel Top-K reward metric for anomaly detection. Extensive experiments conducted across

various datasets demonstrated the effectiveness of LogGPT, showcasing significant improve-

ments over existing state-of-the-art methods. The early version of this work is published at

BigData 2023 [72].

31

CHAPTER 3

UNSUPERVISED CROSS-SYSTEM LOG ANOMALY DETECTION VIA DOMAIN

ADAPTATION

In this chapter, we introduce a transferable log anomaly detection approach, called

LogTAD, to improve performance and address the cold-start problem of anomaly detection

in online systems. Existing transfer learning-based approaches for cross-system log anomaly

detection require labeled anomalous data from both source and target systems to build a

classifier, which is often infeasible to collect effectively. In contrast, LogTAD only uses

the normal samples from both systems and does not require any labeled anomalous data

from the target system. The core idea of LogTAD is to derive a system invariant center

representation based on the normal data in both source and target systems using the domain

adversarial technique. By mapping both source and target log sequences into the same

hypersphere with a similar distribution, LogTAD derives a shared center for both systems.

Anomalous sequences from both systems can then be detected by having large distances to

the center. LogTAD addresses the cold-start problem by requiring only a small number of

normal samples from the target system. Experimental results on two log datasets show that

LogTAD can achieve good performance on both source and target systems.

3.1 Introduction

Online services, e.g. cloud computing, web platforms, and remote databases, have

become essential in our daily life. How to maintain reliability and stability is a major

challenge of operating successful online services, since a small glitch would cause a crash of

the whole system that affects users’ experience or even leads to financial loss. Therefore,

effectively detecting anomalous status is critical to building reliable online systems.

In practice, system logs, which are extensively adopted for recording states of online

systems, take a critical part in detecting the anomalous status of online systems. In recent

32

years, many machine learning-based log anomaly detection approaches are proposed to detect

anomalous log sequences [48, 53, 56, 65, 70, 73–78]. Especially, due to limited anomalies,

many unsupervised machine learning approaches are proposed to identify the anomalous log

sequences, such as Principal Component Analysis (PCA) [53], DeepLog [48], and LogBERT

[49]. The key idea of these models is to capture normal patterns from a large number of

normal logs. Then, the models can detect anomalous log sequences based on the obtained

normal patterns. However, online systems are deployed constantly. Given a newly deployed

system, it takes some time to collect enough logs to train an unsupervised anomaly detection

model. On the other hand, a newly deployed system usually has an urgent requirement to

automatically identify the abnormal status.

To tackle this cold-start problem, several transfer learning-based approaches are pro-

posed to detect anomalies in different systems, such as LogTransfer [79]. The basic assump-

tion of these approaches is that the anomalous log sequences in different online systems

usually share similar patterns. For example, the words in log messages from different sys-

tems usually have some overlaps. Meanwhile, the normal workflows of different systems also

have some similarities. The idea is to build a cross-system classifier to detect anomalies in

both source and target systems. The major disadvantage of existing models is that they

usually require both normal and abnormal log data from both source and target systems to

build the classifier. However, in practice, it is often infeasible to collect sufficient anomalous

data from the target system effectively.

To address the limitation of current transfer learning approaches for cross-system log

anomaly detection, in this work, we propose a transferable log anomaly detection approach,

called LogTAD, which does not require the labeled anomalous data from both source and

target systems. Inspired by the DeepSVDD approach [80], which makes the normal data

close to a center of a hypersphere, the core idea of our approach is to derive a system

invariant center representation based on the normal data in both source and target systems.

Specifically, we leverage the domain adversarial technique to map both source and target log

sequences into the same hypersphere with a similar distribution and derive a shared center

33

for both systems. Then, the anomalous sequences from both systems can be detected by

having large distances to the center.

The main contributions of this work are as follows. First, we develop a cross-system

anomaly detection model that only using the normal samples. Second, the proposed model

only requires a small number of samples from the target system so that it can address the

cold-start problem of anomaly detection. Third, the experimental results on two log datasets

show that LogTAD can achieve good performance on both source and target systems.

3.2 LogTAD

In this work, we assume the existence of one source system S and one target system

T . A log sequence generated by a system is denoted as X = {xn}Nn=1, where xn indicates

the n-th log message. Given a dataset D consisting of normal log sequences from the source

system DS = {X Si }
MS
i=1 and a small number of normal log sequences from the target system

DT = {X Ti }
MT
i=1 (MT << MS), we aim to build an unsupervised and transferable log anomaly

detection model (LogTAD), which is able to detect the anomalous log sequences from both

source and target systems. Our framework consists of two parts. One is an encoder to map

log sequences from both systems into a low dimensional space, while another part is to map

the representations of log sequences from both systems into one hypersphere with a shared

center. Specifically, we leverage the idea of DeepSVDD [80] to map normal sequences close

to a center of a hypersphere. Meanwhile, a domain adversarial framework is proposed to

ensure the representations of sequences from both systems are close to one center. Then,

we can detect the anomalies in both systems that have large distances to the center. Figure

3.1 shows the framework of LogTAD.

3.2.1 Log Sequence Representation

Log messages generated by the online systems are descriptive texts. Many existing log

anomaly approaches adopt tools to generate templates from log messages and transfer raw log

sequences into sequences of templates. However, under the setting of cross-system anomaly

detection, the templates from source and target systems can be totally different. Then,

34

Fig. 3.1: Framework of LogTAD

it is infeasible to use the knowledge from the source system to improve the performance

of anomaly detection in the target system. Hence, in this work, we propose to use the

information from the raw messages. The intuition is that the descriptive words from different

systems should share some similarities, i.e., there are some overlaps in terms of words from

source and target systems. Then, we are able to transfer the knowledge from the source

system to the target system. Specifically, we first use word2vec to represent words in each log

message as embedding vectors and then adopt the mean operation over the word embeddings

in a log message to derive the representation of one message. Formally, we now represent a

log sequence as X = {xn}Nn=1 where xn ∈ Rd is the feature vector of n-th message.

Then, an encoder encodes the log messages in a sequence to a sequence representation

with an LSTM model:

hn = LSTM(xn,hn−1), (3.1)

where xn is the feature vector of the n-th message; hn indicates the n-th hidden vector of

LSTM. The last hidden vector hN captures the information of an entire sequence and is

considered as the log sequence representation v = hN . Here, we use a shared LSTM model

to get the sequence representations from both source and target systems. Specifically, we

denote the representation of the i-th sequence from the source system as vSi , while the

representation of i-th sequence from the target system as vTi . One advantage of using one

shared LSTM model is that using one LSTM to model the sequences from both systems

35

can reduce the requirement on the samples from the target system that has limited samples

available.

3.2.2 Log Sequence Centralization

Inspired by the DeepSVDD that the normal log sequences should be in a hypersphere

and close to the center in the embedding space, we first derive the center of all the log

sequences from both source and target systems as the mean over all log sequences in both

datasets, i.e., c = Mean(vϵi), where ϵ ∈ {S, T} indicates the source or target dataset.

To make the representation of normal log sequences close to the center c, we develop the

objective function as

Len =
∑

ϵ∈{S,T}

Mϵ∑
i=1

∥vϵi − c∥2. (3.2)

By minimizing the Equation 3.2, we expect all normal log sequences are close to the center.

3.2.3 System-agnostic Representation via Domain Adversarial Training

Although we adopt one shared LSTM model to map log sequences into a hypersphere,

the representations of log sequences from different systems can be still located in different

regions of the hypersphere instead of clustering around the center c. Hence, we propose

an adversarial training method for cross-system (domain adaptation) data mapping, which

encourages the representations of log sequences from different systems close to each other.

We formulate the adversarial training as follows. A discriminator D is used to distin-

guish whether the representations of log sequences are from the source or target system. We

adopt the logistic function to make the prediction, i.e., D(vϵ) = σ(wTvϵ + b), where σ(·)

indicates the logistic function, w and b are the trainable parameters. The shared LSTM

as a generator, i.e., vϵ = G(X ϵ), is trained to make representations of log sequences from

different systems have similar distributions so that the discriminator is unable to distinguish

the source samples from the target samples. Specifically, the objective function is

36

Ladv = min
G

max
D

(
EXS∼Psource [logD(G(X S))]+

EXT∼Ptarget [log(1−D(G(X T)))]
)
,

(3.3)

where X S and X T indicate the source and target log sequences. By training through the

minmax optimization, the representations of log sequences generated by the shared LSTM

model are able to mislead the discriminator, which means the distributions of source and

target log sequences are mixed. Finally, we train our framework by the following objective

function:

L = Len + λLadv, (3.4)

where λ is a hyperparameter to balance the two parts. After the training phase, the encoder

gains the ability to embed both source and target samples close to the center c so that the

abnormal samples from both systems should have large distances to the center.

Log Anomaly detection. To detect the anomalies, we need to set a radius γ as

a decision boundary that separates normal and anomalous sequences. The samples with

distances to the center greater than γ will be labeled as anomalous sequences. We adopt a

validation set in the source and target systems respectively to find the best radius γS and

γT . In our experiments, we randomly select one-day log sequences from each system as the

validation set.

3.3 Experiments

3.3.1 Experimental Setup

Table 3.1: Statistics of the Datasets

Dataset # of Logs # of Log Sequences
Normal Anomalous

BGL 1,212,150 265,583 37,450
TB 3,737,209 565,817 368,481

37

Datasets. We adopt the following two datasets: (1) BlueGene/L supercomputer sys-

tem (BGL) dataset [65], which is collected from a BlueGene/L supercomputer system at

Lawrence Livermore National Labs; (2) Thunderbird (TB) dataset [65], which is collected

from a Thunderbird supercomputer system at Sandia National Labs. The statistics of the

two datasets are shown in Table 3.1. Table 3.2 further shows the numbers of shared words

across different datasets. The normal log sequences in the BGL and Thunderbird datasets

have 664 and 1753 unique words, respectively, while the number of shared words is 254.

The anomalous log sequences in the BGL and Thunderbird datasets have 195 and 54 unique

words, respectively, while the number of shared words is 16.

Table 3.2: Statistics of Shared Words

BGL Normal BGL Anomalous TB Normal TB Anomalous
BGL Normal 664 133 254 25

BGL Anomalous 133 195 99 16
TB Normal 254 99 1753 49

TB Anomalous 25 16 49 54

Baselines. We compare our framework with the following anomaly detection methods

to evaluate the performance of LogTAD: (1) Principal Component Analysis (PCA), which

is a dimensional reduction based anomaly detection approach; (2) LogCluster [74], which

is a clustering-based log anomaly detection approach; (3) DeepLog [48], which is a deep

learning based log anomaly detection method; (4) Deep Support Vector Data Description

(DeepSVDD) [80], which is a deep learning based one-class classification model; (5) Log-

Transfer [79], which can achieve cross-system anomaly detection but requires labeled data

from both systems to train a classifier.

Implementation Details. We adopt a sliding window with size 20 to cut log files

into short sequences and leverage the Drain package [62] to extract templates from raw log

messages. The LSTM encoder consists of two hidden layers with 128 dimensions. For the

domain discriminator, we use a two-layer fully connected neural network with 64 hidden

dimensions. We use 100,000 normal sequences from the source system and 1,000 normal

38

Table 3.3: Anomaly Detection on Source and Target Systems

Method Source Target
F1 AUC F1 AUC

BGL
→
TB

PCA w/ TB 0.322 0.587 0.731 0.776
PCA w/o TB 0.642 0.816 0.558 0.504

LogCluster w/ TB 0.530 0.746 0.677 0.716
LogCluster w/o TB 0.713 0.829 0.559 0.504

DeepLog w/ TB 0.662 0.854 0.590 0.619
DeepLog w/o TB 0.678 0.867 0.556 0.500

DeepSVDD w/ TB 0.499 0.725 0.567 0.616
DeepSVDD w/o TB 0.566 0.789 0.577 0.646

LogTransfer 0.971 0.972 0.792 0.828
LogTAD 0.926 0.964 0.758 0.804

TB
→

BGL

PCA w/ BGL 0.789 0.798 0.577 0.773
PCA w/o BGL 0.760 0.779 0.229 0.658

LogCluster w/ BGL 0.708 0.688 0.697 0.886
LogCluster w/o BGL 0.724 0.716 0.223 0.500

DeepLog w/ BGL 0.687 0.701 0.527 0.843
DeepLog w/o BGL 0.660 0.677 0.223 0.500

DeepSVDD w/ BGL 0.660 0.699 0.196 0.537
DeepSVDD w/o BGL 0.794 0.808 0.195 0.497

LogTransfer 0.995 0.995 0.788 0.833
LogTAD 0.788 0.797 0.845 0.909

sequences from the target system in the training stage. The λ defined in Equation 3.4 is

0.1. Our code is available online 1.

3.3.2 Experimental Results

We evaluate the cross-system log anomaly detection on two scenarios, i.e., BGL→ TB,

where BGL is the source system while Thunderbird is the target system, and TB → BGL,

where Thunderbird is the source system while BGL is the target system. We evaluate the

performance in terms of F1 score and AUC. Table 3.3 shows the performance of LogTAD

as well as baselines.

LogTAD v.s. Unsupervised Anomaly Detection Approaches. As PCA, Log-

Cluster, and DeepLog are unsupervised models and not designed for domain adaptation,

we evaluate these models in two scenarios, i.e., training with or without using the log se-

quences from the target system. First, for both BGL → TB and TB → BGL scenarios,
1https://github.com/hanxiao0607/LogTAD

https://github.com/hanxiao0607/LogTAD

39

PCA, LogCluster, and DeepLog can achieve reasonable F1 scores and AUC values in the

source system with no training samples from the target system. However, when given log

sequences from the target system in the training dataset, PCA, LogCluster, and DeepLog

gain better F1 scores and AUC values in the target system with worse results in the source

system. It indicates that the existing state-of-the-art unsupervised log anomaly detection

models do not have the capability for cross-system adaptation. Using the log sequences

from both source and target systems can only make the detection models confused about

the distribution of normal samples, which leads to poor performance. On the other hand,

LogTAD achieves better performance on both source and target systems under BGL → TB

and TB → BGL scenarios compared with PCA, LogCluster, and DeepLog.

LogTAD v.s. DeepSVDD. DeepSVDD gets a lower F1 score in both source and

target systems when given target sequences in the training dataset. This is because mixed

training data lead to diverse data distribution. The center derived from such distribution

is not useful for detecting anomalies in the target system since we only use a small number

of samples from the target system. On the other hand, without domain adaptation, the

samples from the target systems are more like outliers to the source system. As a result, the

performance of DeepSVDD is also not good on the source system. Hence, using adversarial

domain adaptation to make samples have similar distribution is key to achieve cross-system

anomaly detection. Another observation is that when only using data from the source

system, the performance of DeepSVDD is still not as good as LogTAD. This could be

because LogTAD derives the center by using more samples with the same distribution.

LogTAD v.s. LogTransfer. LogTransfer is a supervised transfer learning method

that adopts normal and anomalous data from the source and target systems to train a

cross-system anomaly detection classifier. LogTransfer can achieve promising performance

when sufficient labeled data are available. In this experiment, we aim to identify how

many labeled anomalous samples are required to train the LogTransfer so that it can have

a similar performance as LogTAD. Especially, we use 100 anomalous sequences from the

source system and 10 anomalous sequences from the target system to train LogTransfer.

40

(a) Without domain adaptation (b) With domain adaptation

Fig. 3.2: Log Sequence Visualization (BGL → Thunderbird)

LogTransfer can achieve the best performance in the source system. For the scenario BGL

→ TB, LogTransfer also achieves slightly better performance than LogTAD, while for the

scenario TB → BGL, using 10 anomalous sequences from the target system is not sufficient

to outperform LogTAD. Therefore, in the cases where labeled anomalous samples are hard

to obtain, LogTAD can still provide good performance by only using normal data.

Visualization. We show the effectiveness of our cross-system adaptation approach by

visualizing sequence representations v. We adopt the t-SNE algorithm to map the sequence

representations into a two-dimensional space. For each dataset, we randomly select 300 nor-

mal and anomalous sequences, respectively, and consider the scenario BGL→ TB. Figure 3.2

compares the sequence representations derived with and without domain adversarial train-

ing in the latent space. As shown in Figure 3.2a, for the model without domain adversarial

training, normal sequences from the source and target systems and anomalous sequences

from the target system are highly mixed. Meanwhile, these three types of sequences keep

a small distance from the center in the latent space. Only anomalous sequences from the

source system keep away from the center region. On the other hand, as shown in Figure

3.2b, with domain adversarial training, normal sequences from both source and target sys-

41

(a) BGL → Thunderbird (b) Thunderbird → BGL

Fig. 3.3: LogTAD performance with different training sizes from the target system. (x-axis
is in log-scale)

tems are close to the center, while anomalous sequences from both systems are out of the

center region. Hence, LogTAD can detect anomalous sequences from both source and target

systems.

Sample Size. We further evaluate the performance of LogTAD with various amounts

of sequences from the target system. Figure 3.3 shows the experimental results. In general,

we can notice that LogTAD can achieve a relatively high anomaly detection performance

on the target system by using a small number of normal sequences from the target sys-

tem. Especially, for the scenario BGL → TB, only using 10 normal log sequences from

the Thunderbird dataset is sufficient to achieve good performance. When considering the

scenario TB → BGL, using around 100 samples can achieve reasonable performance, and

the performance can keep improving when more samples are available. In general, even the

novel online system is deployed for a short term, a handful of sequences from the target

system can be easily obtained, so LogTAD has strong feasibility and accuracy in detecting

anomalies in the novel system.

3.4 Summary

In this work, we present a cross-system log anomaly detection framework, LogTAD.

42

It makes the normal log data in a hypersphere close to a center and utilizes the domain

adversarial adaptation to make the log data from different systems follow similar distri-

butions. Then, we can detect anomalies in different systems with large distances to the

center. The experiment results show the effectiveness of our framework. One limitation of

this work is that we assume the source and target systems should share similar patterns in

terms of descriptive words. In the future, we plan to alleviate this assumption to improve

the generalization of the approach. The early version of this work is published at CIKM

2021 [81].

43

CHAPTER 4

FEW-SHOT ANOMALY DETECTION AND CLASSIFICATION THROUGH

REINFORCED DATA SELECTION AND FEW-SHOT ANOMALY DETECTION AND

CLASSIFICATION THROUGH REINFORCED DATA SELECTION WITH A

COMBINATORIAL REWARD

In this chapter, we introduce a novel framework called Few-shot Anomaly Detection

and Classification model through Reinforced Data Selection (FADS). FADS is designed to

tackle the challenge of detecting and classifying fine-grained anomalies in situations where

there are many labeled normal samples but only a few labeled abnormal samples in each

anomaly class, along with a large number of unlabeled samples. The core idea of FADS is to

use a small set of labeled anomalies to train a few-shot learning model and then progressively

improve this model by adding more potential anomalies from the unlabeled dataset. This is

done through a reinforcement learning-based strategy that picks out the best samples from

the unlabeled samples to add to the training set. These selected samples are high-quality,

meaning they’re likely to be anomalies with correct pseudo-labels, which helps the model

get better over time. Our experiments show that FADS achieves top-notch performance in

anomaly detection and classification.

Building on FADS, we then introduce an enhancement called FADScr. FADScr takes

everything good about FADS and adds a novel combinatorial reward system to choose which

samples to add from the unlabeled dataset. This new system makes FADScr even better

at finding the right samples to improve the model’s learning, making it more effective at

detecting and classifying anomalies. This means FADScr not only overcomes the limitations

of FADS but also sets a new standard in few-shot anomaly detection and classification,

showing significant improvements in our tests.

44

4.1 Introduction

Anomaly detection indicates the detection of data samples that significantly deviate

from the majority of data [51, 82]. Because of the extensive demand in a wide spectrum

of applications, such as external and internal threats in cyberspace, anomaly detection has

become an increasingly important research task.

Due to the small number of anomalies, classical supervised learning algorithms can-

not be employed. Currently, the majority of approaches are trained in the unsupervised or

semi-supervised learning manner [51,82,83]. However, one limitation of existing anomaly de-

tection approaches is that existing approaches cannot further classify anomalies into specific

anomaly categories. In many real-world scenarios, understanding the types of anomalies is

critical. For example, for the malicious insider threat detection task, the malicious insider

conducts a variety of malicious activities, such as using a thumb drive to steal data before

leaving the company, logging into another user’s machine and searching for interesting files,

or uploading documents to Dropbox for personal gain. Anomaly detection aims to label

all malicious activities as anomalies, which is good. Meanwhile, anomaly classification fur-

ther predicts the malicious activities into corresponding categories, which can provide more

insight to the domain experts so that defense strategies can be designed precisely.

However, due to the scarcity of anomalies, the number of anomalies in each class is even

smaller. Hence, it is extremely hard to train a multiclass classifier in a traditional supervised

manner. Recently, to learn from a limited number of labeled samples, few-shot learning as

a special type of machine learning has become an emerging research topic, which aims to

learn classifiers given only a few labeled samples of each class [84]. One common strategy of

few-shot learning is to project limited samples into a smaller embedding space so that similar

samples are grouped together while dissimilar samples are separated [84–87]. However, in

the anomaly detection scenario, such cluster assumption only holds for normal samples since

normal data are similar. For anomalies, by only having a few samples, it is hard to build

a cluster to represent a class of anomalies, especially considering that anomalies are much

more diverse. As a result, current few-shot anomaly detection approaches only work on

45

distinguishing anomalies from normal samples and cannot further divide the anomalies into

fine-grained classes [88–91]. Hence, how to leverage the powerful few-shot learning models

for anomaly detection and classification is still under-exploited.

In this work, we address the challenge of fine-grained anomaly detection and classifica-

tion within real-world scenarios, characterized by an abundance of labeled normal samples, a

scarcity of labeled abnormal samples across anomaly classes, and a vast amount of unlabeled

data. To navigate these conditions, we initially introduced the Few-shot Anomaly Detection

and Classification model with Reinforced Data Selection (FADS). FADS leverages the exten-

sive unlabeled dataset to progressively refine the few-shot learner’s capability for anomaly

detection and classification by assuming that the unlabeled dataset mirrors the real-world

distribution of a large number of normal samples interspersed with a few anomalies.

The core methodology of FADS involves a two-step iterative process of data selection

and model retraining. Initially, a few-shot learning model is trained on a limited set of

labeled anomalies. This model is then applied to the unlabeled dataset to predict anomalies,

generating weakly-labeled samples. These predictions serve as a preliminary filter, after

which our proposed reinforcement learning-based data selection strategy identifies high-

quality samples. These samples, deemed likely to be correctly labeled, augment the existing

labeled training set, creating a new, enhanced dataset for retraining the model. This cycle

is expected to continuously improve the model’s performance.

Building on the foundational principles of FADS, we further develop this concept into

the Few-shot Anomaly Detection and Classification model through Reinforced Data Selec-

tion with a Combinatorial Reward (FADScr). FADScr enhances the original framework by

incorporating a novel reinforcement learning strategy for data selection, which evaluates po-

tential training samples not only for their ability to improve anomaly detection performance

but also for their capacity to reduce uncertainty in model predictions. This dual-criteria

evaluation is encapsulated in a combinatorial reward function, a key innovation of FADScr

that distinguishes it from its predecessor.

The primary contributions of FADS and its extension, FADScr, can be summarized

46

as follows: First, we offer a novel framework that uses reinforced data selection from an

unlabeled dataset to progressively enhance the few-shot learner for more accurate anomaly

detection and classification, even with a minimal number of labeled anomalies per class. Sec-

ond, the introduction of a reinforcement learning-based data selection strategy that includes

a combinatorial reward mechanism for selecting high-quality samples represents a significant

advancement in this domain. This strategy improves the model’s performance by ensuring

that selected samples contribute positively to both detection accuracy and prediction confi-

dence. Lastly, experimental results validate that both FADS and FADScr achieve state-of-

the-art performance in anomaly detection and few-shot anomaly classification, demonstrat-

ing their effectiveness in leveraging large-scale unlabeled datasets for fine-grained anomaly

detection.

In essence, while FADS achieves better performance by enhancing few-shot learning

models for anomaly detection and classification through reinforced data selection, FADScr

builds upon and extends this foundation by introducing a more sophisticated approach to

sample selection. This approach, characterized by its combinatorial reward function, further

refines the model’s ability to accurately identify and classify anomalies, thereby advancing

the field of few-shot learning in complex, real-world scenarios.

4.2 Related Work

Anomaly detection. The tasks of anomaly detection have been studied for decades. In re-

cent years, various learning-based anomaly detection approaches are proposed [51,82,83]. As

anomalies are scarce, unsupervised and semi-supervised approaches are widely used to detect

anomalies because manually labeling a large number of abnormal samples is time-consuming

and labor-intensive [48,56,92–95]. The unsupervised anomaly detection approaches usually

assume the availability of normal samples. The basic idea is to capture the normal patterns,

and the anomalies can then be detected with highly deviant patterns. However, only ob-

serving the normal samples for training could lead to a high false-positive rate due to a lack

of prior knowledge of true anomalies [40,96]. In many real-world scenarios, a small number

of labeled abnormal samples, e.g., from domain experts are also available. Hence, semi-

47

supervised anomaly detection approaches, which assume the availability of labeled samples

as well as large-scale unlabeled samples, are commonly used to boost the performance of

anomaly detection by leveraging the limited anomalies [94,95,97,98].

In literature, a few studies also leverage the reinforcement learning technique for anomaly

detection [40,93,96,99,100]. Research in [96] considers anomaly detection in a data stream

setting as a sequential decision process. The agent aims to select true anomalies from data

streams for human judgment within a budget limit. Research in [93] proposes an inverse

reinforcement learning model for sequential anomaly detection in an unsupervised setting

by learning an implicit reward function to guide the agent. Research in [40] proposes a

reinforcement learning framework to identify unknown anomalies by training an anomaly

detection agent based on a few classes of known anomalies. In this work, we propose a

reinforcement learning framework to augment the training dataset by exploring large-scale

unlabeled samples. The agent in our approach is trained to select anomalies that can improve

the performance of the few-shot learning model for anomaly detection and classification.

Few-shot learning. Few-shot classification models, which usually learn classifiers given

only a few labeled samples of each class, have demonstrated great performance in computer

vision and natural language processing [84, 101–104]. Few-shot learning is able to learn

models for rare cases and can reduce data-collecting efforts. Hence, applying the few-shot

learning techniques for anomaly detection is a natural fit. Recently, several few-shot learning

approaches for anomaly detection have been proposed [88,91,105,106]. However, these works

can only detect anomalies but cannot achieve fine-grained classification. In this work, we

propose a reinforced data selection technique to progressively improve the few-shot learner

for anomaly detection and classification.

4.3 FADS

4.3.1 Problem Definition

Let L = {(xi, yi)}NL
i=1 be a labeled dataset, where xi indicates the i-th sample, while

yi ∈ {0, 1, ...,K} indicates the corresponding label. Particularly, yi = 0 indicates a normal

48

Fig. 4.1: The training framework of FADS

sample while yi ∈ {1, ...,K} denotes a class of anomalies. Consider that it is usually feasible

to have a large number of normal samples in the anomaly detection scenario, the labeled

dataset can be decomposed as L = LN
⋃
LA with |LN | > |LA|, where LN only consists of

normal samples and LA includes few samples in each anomaly class.

With such a small amount of abnormal samples, it is hard to train an accurate anomaly

detection and classification model. To tackle this challenge, in this work, besides a labeled

dataset L, we further leverage an unlabeled dataset U = {xj}NU
j=1. The goal is to learn

a few-shot anomaly detection and classification model that can leverage the knowledge of

the unlabeled dataset U , especially the potential anomalies in U , to maximally improve the

performance of the model on anomaly detection and classification.

4.3.2 Framework Overview

In this work, we propose a few-shot anomaly detection and classification model through

49

reinforced data selection (FADS), which is able to gradually enhance the performance of the

few-shot learning model by exploiting the unlabeled dataset U .

In particular, FADS first trains a few-shot learning model on an initial training dataset

with only labeled samples D = L. Then, FADS iteratively improves the model by selecting

samples from unlabeled dataset U to augment the training dataset. We employ the rein-

forcement learning technique for data selection. In each training iteration, we first use the

current few-shot model to predict the label ŷj for each sample xj in U , thus producing a

weakly-labeled dataset W = {(xj , ŷj)}NU
j=1. Then, we train a reinforcement learning agent

to select the weakly-labeled samples that have high chances to be accurate into an augmen-

tation set A = {(xj , ŷj)|aj = 1}NU
j=1, where aj ∈ {0, 1} indicates whether the sample (xj , ŷj)

is selected by the agent or not. We combine the augmentation dataset A with the existing

training dataset to compose the new training dataset, i.e., D = D∪A, and then re-train the

few-shot model on the new training dataset. We expect that the performance of the few-shot

model will be improved with those augmented samples. Therefore, as the training iteration

moves forward, the few-shot anomaly detection model can be improved progressively. The

overview of FADS is shown in Figure 4.1.

4.3.3 Prototypical Network

In this work, we adopt the prototypical network [85] as our base few-shot learning

model. Following the typical process for training the few-shot learning model, we first

randomly select NS and NQ samples from the training dataset D to compose the support

set S and query set Q, respectively.

The prototypical network learns an embedding function g(·) to map each sample xi

to an embedding space, denoted as xi = g(xi). Based on the support set, the prototype

representation for each class can be derived by a mean operation:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

g(xi), (4.1)

where Sk indicates the subset of samples in the support set S with the class k. Then, given

50

a distance function d(·), the prototypical network predicts the distribution of classes for a

query point x ∈ Q based on a softmax over distances to the prototypes:

p(y = k|x) = exp(−d(g(x), ck))∑
k′ exp(−d(g(x), ck′))

. (4.2)

The objective function of the prototypical network is the negative log-probability L =

− log p(y = k|x) of the true class k. The training objective is to make the samples from

the same class have small distances to the class prototype ck. A test sample can be labeled

based on the label of its nearest prototype in the embedding space.

4.3.4 Reinforced Data Selection

As the labeled dataset L only has a very small number of anomalies, the performance of

the initial prototypical network trained on L still has room for improvement if more training

samples can be incorporated. To this end, we propose to exploit the unlabeled dataset U .

We first use the current prototypical network to predict the labels of samples in U and get a

weakly-labeled dataset W, which consists of both correctly and incorrectly labeled samples.

If we simply adopt W to augment the training set, due to the noisy supervised signals, the

performance of the prototypical network could be worse. Hence, we propose a reinforcement

learning-based data selection method to select samples from W based on their reliability

to compose an augmentation set A. Once the reinforced data selection agent is capable

of selecting the correctly labeled samples to augment the training set, the performance of

the few-shot learner can be improved. Therefore, the reward to the data selection agent is

designed based on the performance of the few-shot learner on an unobserved validation set.

The key components of the reinforcement learning framework are described as below.

State. For each state sj with weakly-labeled sample (xj , ŷj) ∈ W, its state representation

sj is defined as the concatenation of the embedding vector xj = g(xj) and the distance value

dj to the closest prototype, i.e., sj = [xj , dj].

Action. The data selection agent then needs to take an action whether to select this sample

(xj , ŷj) into the augmentation set A based on the state representation sj . In specific, aj = 0

51

means the sample (xj , ŷj) will be rejected, while aj = 1 indicates the sample will be selected

and added to the augmentation set A.

Policy Network. The data selection agent makes decisions about whether to select a

weakly-labeled sample based on a policy network πθ(·). We adopt a neural network to

parameterize the policy network that takes the state representation as input and outputs

the probability of the action, p(aj |sj) = πθ(sj). The action aj is then sampled based on

p(aj |sj).

Rewards. The policy network is trained with guidance from the reward function. We

define the reward based on the performance of the few-shot learning model on an unseen

validation set. As in our task, we aim to detect anomalies as well as classify abnormal samples

into different classes. Therefore we design the reward function based on the performance of

anomaly detection and classification, i.e., an anomaly detection reward rd and a classification

reward rc. Specifically, we adopt the F1 score as the metric to evaluate the performance of

anomaly detection and the macro F1 score over all classes to evaluate the performance of

classification.

In our scenario, if wrongly-labeled samples are selected to compose the training dataset,

we can expect that the performance of the few-shot learning model will be damaged. On

the other hand, if the samples with correct labels are selected, the performance of the model

can be improved. Hence, the reward is designed based on the performance change after the

model is trained on an augmentation set.

Specifically, in each episode, we first calculate the F1 and macro F1 scores of the

current prototypical network. We denote the prototypical network at the beginning of each

episode as g0(·) and the corresponding F1 and macro F1 scores achieved by g0(·) as F10

and MarcoF10. Then, we work on improving g0(·) by composing an augmentation set. To

this end, first, we randomly sample a set of batches B = {Bl}Ll=1 from W, where each batch

Bl consists of a number of samples. Given a batch Bl, for each sample in Bl, we sample an

action aj (select to the augmentation set or not) based on the policy p(a|sj) = πθ(sj). Then,

we can compose the augmentation set Al from the batch Bl. After combining Al with D, we

52

update the prototypical network, denoted as gl(·), and further evaluate gl(·) on a validation

set to derive F1 and macro F1 scores, denoted as F1l and MacroF1l. Finally, the reward

for the agent in a batch can be calculated as the difference of F1 scores, rdl = F1l−F10 and

rcl =MacroF1l −MacroF10. The overall reward function in a batch is formulated as:

rl = rdl + α · rcl , (4.3)

where α is a hyperparameter to balance anomaly detection and classification tasks. In the

experiments, we set α = 1.

Optimization. The data selection agent is trained based on the actor-critic algorithm [2].

The output of the actor is the probability of two actions (select or not), while the output

of the critic is the predicted reward value based on the current state. Both actor and critic

are parameterized by feed-forward neural networks. The goal of the agent is to maximize

the rewards, which is defined as:

J (θ) = Eπθ [rl]. (4.4)

The parameter θ in policy network πθ is trained based on policy gradient [107]:

θ ← θ + η▽θ J (θ), (4.5)

where η indicates the learning rate. The gradient for a batch of weakly-labeled samples can

be approximated by [2]

▽θJ (θ) =
1

|Bl|

|Bl|∑
j=1

▽θlogπθ(sj)(rl − Vφ(sj)), (4.6)

where |Bl| indicates the number of samples in a batch Bl; Vφ(sj) is the expected reward from

a critic network Vφ(·) parameterized by φ. The structure of the critic network is similar

to the policy network with the last layer as a regression function. The critic network is

designed to estimate the expected reward and hence updated according to the cumulative

53

difference between the real reward rl and the predicted value Vφ(sj),

L(φ) = 1

|Bl|

|Bl|∑
j=1

|rl − Vφ(sj)|. (4.7)

The parameters φ in Vφ(sj) can be optimized by:

φ = φ− η′ ▽φ L(φ), (4.8)

where η′ indicates the learning rate for updating the critic network.

4.3.5 Training Details

General Training Process. Algorithm 1 shows the pseudo-code of the training process.

Given a small labeled dataset L and an unlabeled dataset U , we first initialize an augmen-

tation dataset A as an empty set (Line 1) and a training dataset D as the small labeled

dataset L (Line 2). In each episode, we split D into two parts, Dtr as the real training set

and Dval as the unobserved validation set (Line 4), and use Dtr to train the prototypical

network g(·) (Line 5). We deploy the prototypical network to predict labels of samples in

U and get a weakly labeled data set W (Line 6). We then apply a reinforced data selection

algorithm to generate a batch of samples as the augmentation set A fromW (Line 7). After

obtaining A, we remove A from the unlabeled dataset U (Line 8) and add A to D to form

a new training data for next iteration (Line 9).

With the increasing of training episodes, the size of the training dataset Dtr keeps

increasing and the performance of the prototypical network becomes better. After finishing

all the training iterations, we further tune the prototypical network based on the whole

dataset D (Line 10) and deploy it for anomaly detection and classification.

Reinforced Data Selection. The key step for improving the performance of the proto-

typical network is the reinforced data selection algorithm (Lines 13 – 29), which is to select

the reliable weakly-labeled samples from W to augment the training set. We first apply the

current prototypical network g0(·) on the validation set Dval to get F1 and macro F1 scores

54

Algorithm 1: The training process of FADS
Input : Labeled set L, unlabeled set U
Output: Prototypical network g(·)

1 Initialize an augmentation set A ← ∅
2 Initialize a training dataset D ← L
3 for t = 0 to T do
4 Split D to Dtr and Dval
5 Train prototypical network g(·) on Dtr
6 Predict labels on U and get W based on g(·)
7 A ← Data_Selection (g(·), W, Dtr, Dval)
8 Remove selected samples U ← U/A
9 Augmentation dataset D ← D ∪A

10 Train prototypical network g(·) on D
11 return prototypical network g(·)
12

13 Function Data_Selection(g0(·),W,Dtr,Dval):
14 Apply g0(·) on Dval to derive (F10,MacroF10)
15 Generate subsets B = {Bl}Ll=1 from W
16 R = ∅, A = ∅
17 foreach Bl ∈ B do
18 Agent selects samples from Bl to generate Al
19 Dtrl ← Dtr ∪ Al
20 Train prototypical network gl(·) on Dtrl
21 Apply gl(·) on Dval to derive (F1l,MacroF1l)
22 Compute the reward rl based on Eq. (4.3)
23 R = R∪ {rl}
24 Update the policy network πθ based on Eq. (4.5)
25 Update the critic network Vφ based on Eq. (4.8)
26 l← argmaxR
27 if F1l > F10 and MacroF1l > MacroF10 then
28 A ← Al
29 return A

55

(F10,MacroF10) as the baseline performance (Line 14). We then derive a set of sample

batches B = {Bl}Ll=1 from W. Then, for each batch Bl, we select samples based on the

prediction of the policy network p(aj |sj) = πθ(sj) and generate Al with selected samples.

After getting the augmented training set Dtrl by combining Dtr with Al (Line 19), we train

the prototypical network gl(·) on Dtrl again (Line 20) and apply gl(·) on Dval to derive F1

and macro F1 scores, (F1l,MacroF1l), (Line 21). The reward is then calculate based on the

difference between (F1l,MacroF1l) and (F10,MacroF10). We further update the policy

network πθ and the critic network Vφ (Lines 24 – 25).

After going through all batches, we get a set of rewards R = {rl}Ll=0. We only select

Al leading to the maximum reward rl in R (Line 26) and also ensure that the prototypical

network gl(·) trained on Dtrl can get better performance in terms of F1 and Macro F1

scores compared with the original one g0(·) (Lines 27-28). Then, we consider Al as the

augmentation set A at the current episode (Line 29).

Warm-up Phase. In the early stage of training, the data selection agent takes actions

based on randomly initialized parameters. The selected samples could include misclassified

instances due to the uncertainty of the policy network. Then, both Dtr and Dval could

contain mislabeled samples, which could damage the performance of FADS in the long turn.

Hence, we set up a warm-up phase for the training. After the warm-up phase, all the samples

selected during the warm-up phase will be removed from D and added back to U . The agent

will select samples from scratch again. We expect the performance of the data selection

agent will become stable with the convergence of parameters during the warm-up phase

and can select reliable weakly-labeled samples after that. In our experiments, the warm-up

phase is 10 episodes.

4.3.6 Experimental Setup

Datasets. We apply FADS to detect and classify anomalies on the following three datasets.

• UNSW-NB15 [108]. The UNSW-NB15 dataset was generated by the IXIA Per-

fectStorm tool in the Cyber Range Lab of UNSW Canberra. It consists of normal and five

synthetic attacks including suspension caused by feeding random data (Fuzzers), denial-of-

56

Table 4.1: Statistics of datasets in experiments

Dataset Class Training TestingL U

UNSW-NB15
(293 features)

Normal 100 30,000 20,000
Fuzzers 10 3,000 2,000

DoS 10 3,000 2,000
Exploits 10 3,000 2,000
Generic 10 3,000 2,000

Reconnaissance 10 3,000 2,000

IDS2018
(77 features)

Normal 100 30,000 20,000
Bot 10 3,000 2,000
DoS 10 3,000 2,000

Bruteforce 10 3,000 2,000

CERT
(various length)

Normal 100 2,000 2,000
DataUploading 10 27 28
DataStealing 10 201 201
MassEmail 10 10 10

UnauthdLogin 10 21 21

services by overloading the server or network (DoS), attacks with known security problems

(Exploits), attack block-ciphers without information about the structure (Generic), and

attacks for collecting information (Reconnaissance).

• IDS2018 [109]. IDS2018 contains detailed network traffic and log files of five victim

organizations with 420 PCs and 30 servers. It consists of normal network traffic and three

different types of attacking traffic including automatically synthesized requests of upload,

download, screenshots, and keylogging (Bot), denial-of-service by overloading the server or

network (DoS), and password crack by brute-force (Bruteforce).

• CERT [110]. CERT is an insider threat dataset that contains a collection of synthetic

normal and malicious user activities. We use CERT V5.2, which consists of four types

of insider threats including unauthorized uploading data (DataUploading), using a thumb

drive to steal data (DataStealing), sending out mass emails causing panic (MassEmail),

unauthorized log into other computers (UnauthdLogin). Due to the extremely small number

of insiders, the number of samples for each anomaly class is small.

Data Preprocessing. Both UNSW-NB15 and IDS2018 are multidimensional datasets,

where each instance consists of multiple features to describe the basic information. After

typical preprocessing steps, each sample in UNSW-NB15 consists of 293 features, while

each sample in IDS2018 consists of 77 features. We randomly select 100 normal samples as

57

LN and 10 samples from each anomaly class as LA. To construct an unlabeled dataset U ,

we randomly select 30,000 normal samples and 3,000 abnormal samples from each anomaly

class. The testing dataset contains 20,000 normal samples and 2,000 abnormal samples from

each anomaly class.

CERT is a sequential dataset, where each entry indicates one user activity. For CERT

V5.2, there are 23 different types of activities, such as logon, logoff, web visiting, and file

editing. We group user activities into sessions as data samples, and each session consists

of all user activities between logon and logoff operations on a computer. Similarly, we

randomly select 100 normal samples as LN and 10 samples from each anomaly class as

LA. The unlabeled dataset U is composed of randomly selected 2,000 normal sessions and

half of the remaining abnormal sessions (excluding the 10 sessions used in LA) from each

anomaly class. The testing dataset consists of 2,000 normal sessions and the other half of

the remaining data in each anomalous class. Table 4.1 summarizes the statistics of datasets

used in our experiments.

Baselines. We use two sets of baselines to evaluate the performance of FADS for anomaly

detection and classification, respectively.

Baselines for anomaly detection. We adopt the following six baselines to evaluate the

performance of anomaly detection.

• One-Class SVM (OCSVM) [111] is a one-class classification model that can detect

outliers based on normal samples.

• Isolation Forest (iForest) [54] is a widely used tree-based anomaly detection model.

• Label Random PU Learning (LRPU) [112] is a classical positive-unlabeled learn-

ing approach. It trains a PU learner to predict probabilities that differ by only a constant

factor from the true conditional probabilities of being positive.

• PU learning with a Selection Bias (PUSB) [113] is an advanced positive-

unlabeled learning approach. It tackles the challenge when positive samples include noise.

• Deep Support Vector Data Description (DeepSVDD) [80] is a deep learning-

based one-class anomaly detection method. The method deploys a neural network to map

58

normal data into a hypersphere with minimum volume. Samples that fall outside of the

hypersphere are labeled as anomalies.

•Deep Semi-Supervised Anomaly Detection (Deep SAD) [94] is a semi-supervised

anomaly detection model. Deep SAD utilizes a small number of labeled normal and anoma-

lous samples as well as an unlabeled dataset to define a hypersphere that can efficiently cover

most of the normal samples and further identify the anomalies outside the hypersphere.

OCSVM, iForest, and DeepSVDD as one-class models are trained on the normal set

LN . LRPU and PUSB as positive-unlabeled models are trained on the anomalous set LA

and unlabeled set U . Deep SAD as a semi-supervised model is trained on the labeled set L

and unlabeled set U .

Baselines for anomaly classification. We adopt the following two baselines to evaluate

the performance of anomaly classification.

• Support Vector Machine (SVM) [114] is a classification method. We adopt the

one-vs-rest strategy for multiclass anomaly detection.

• Multilayer Perceptron (MLP) [115] is a classical neural network for multiclass

classification.

We train both baselines on the labeled set L and also adopt the synthetic minority

oversampling technique (SMOTE) [116] for oversampling the data in anomaly classes.

Evaluation Metrics. For anomaly detection, we consider all anomaly classes as one

anomaly class and adopt the Area Under Precision-Recall Curve (AUC-PR), the Area Un-

der Receiver Operating Characteristic Curve (AUC-ROC), and False Positive Rate (FPR)

at 95% True Positive Rate (TPR) to measure the performance of FADS. Especially, FPR

at 95% TPR can be considered as the probability that an anomaly is misclassified as nor-

mal when the true positive rate is 95%. For anomaly classification, Precision, Recall, and

F1 score are used to evaluate the performance of FADS on each abnormal class. We also

derive the Macro-F1 score to evaluate the performance over all classes. In our experiments,

we report the results over 10 runs. The paired t-test is adopted to examine the statistical

significance of the performance of FADS over the best baseline.

59

4.3.7 Implementation Details

For UNSW-NB15 and IDS2018 datasets, because the input samples are multidimen-

sional data, we adopt a feedforward neural network with three fully connected layers as the

implementation of prototypical network g(·), where the dimension of output embedding is

128. For the CERT dataset, because the input samples are sequential data about user activ-

ities in a session, we adopt a GRU neural network [117] to map sequences into an embedding

space with the dimension of 64. For all three datasets, as we only have 10 labeled samples in

each anomaly class in the initial training set LA, we initially assign 6 samples to Dtr to train

the prototypical network with 3 samples as the support set S and 3 samples as the query

set Q and the rest 4 samples to Dval for evaluation. With the training episode increasing,

we assign more samples selected by the policy network to Dtr and Dval with a fixed ratio

as 30% of samples in S, 30% of samples in Q, and 40% of samples in Dval to retrain the

prototypical network.

In the implementation of actor-critic reinforcement learning, both actor and critic are

three-layer feedforward neural networks. In the training stage, we set the number of training

episodes T = 20, while in each episode, we generate a set of sample batches {Bl}Ll=1 with

L = 50. For each batch Bl, we randomly select samples from each predicted class in W and

compose a balanced set for the actor to select. Especially, for UNSW-NB15 and IDS2018

datasets, we randomly select 10 samples from each class, so the sizes of each batch are

|Bl| = 60 for the UNSW-NB15 dataset and |Bl| = 40 for the IDS2018 dataset, respectively.

For the CERT dataset, we select 2 samples from each class with the batch size |Bl| = 10.

The code and datasets used in the experiments are available online 1.

4.3.8 Experimental Results

Anomaly Detection. We first evaluate the performance of FADS for anomaly detection.

In particular, after the prototypical network predicts each anomaly into a specific anomaly

class, we consider all detected samples in anomaly classes as anomalies. We compare FADS

for anomaly detection with two traditional one-class classification models (OCSVM and
1https://github.com/hanxiao0607/FADS

https://github.com/hanxiao0607/FADS

60

]

Table 4.2: Results on anomaly detection (mean ± std.). ↑ indicates larger value is better; ↓
indicates lower value is better.

UNSW-NB15 IDS2018 CERT

AUC-PR
↑

OCSVM 0.5001± 0.0020 0.3026± 0.0137 0.1233± 0.0199
iForest 0.7564± 0.0321 0.2936± 0.0093 0.1331± 0.0218
LRPU 0.6542± 0.0049 0.4393± 0.0689 0.1395± 0.0362
PUSB 0.6108± 0.0372 0.3741± 0.0155 0.1147± 0.0000

DeepSVDD 0.6334± 0.0163 0.3516± 0.0759 0.1149± 0.0087
DeepSAD 0.8203± 0.1976 0.5959± 0.0905 0.1269± 0.0103

FADS 0.9178± 0.0214 0.6791± 0.0279∗ 0.2480± 0.0260∗∗

AUC-ROC
↑

OCSVM 0.7501± 0.0020 0.6447± 0.0202 0.5122± 0.0910
iForest 0.9131± 0.0181 0.5513± 0.0233 0.5751± 0.0827
LRPU 0.7407± 0.0037 0.6828± 0.0894 0.5404± 0.0623
PUSB 0.7081± 0.0279 0.5932± 0.0101 0.5000± 0.0000

DeepSVDD 0.7932± 0.0298 0.6235± 0.0709 0.5032± 0.0409
DeepSAD 0.9042± 0.1219 0.8310± 0.0553 0.5510± 0.0419

FADS 0.9751± 0.0080∗ 0.9249± 0.0134∗∗ 0.7286± 0.0286∗∗

FPR
(95% TPR)

↓

OCSVM 0.9938± 0.0007 0.9819± 0.0031 0.9046± 0.0484
iForest 0.1941± 0.0459 0.9796± 0.0228 0.7732± 0.1477
LRPU 0.4557± 0.1765 0.6235± 0.0776 0.8872± 0.0489
PUSB 0.9923± 0.0041 0.8291± 0.2636 0.9532± 0.0070

DeepSVDD 0.7081± 0.1564 0.8515± 0.1457 0.8694± 0.0572
DeepSAD 0.2884± 0.4027 0.4002± 0.3597 0.7645± 0.1141

FADS 0.0375± 0.0180∗ 0.2380± 0.1108 0.7036± 0.1119
Significantly outperforms DeepSAD at the: * 0.05 and ** 0.01 level, paired t-test.

Table 4.3: Results on anomaly classification (mean ± std.)

Dataset Class Precision Recall F1
SVM MLP FADS SVM MLP FADS SVM MLP FADS

UNSW-NB15

Normal 0.8902± 0.0418 0.9953± 0.0042 0.9960± 0.0034 0.9839± 0.0067 0.9043± 0.0261 0.9581± 0.0112 0.9356± 0.0219 0.9474± 0.0146 0.9766± 0.0070
Fuzzers 0.4120± 0.0374 0.3724± 0.0315 0.3913± 0.0491 0.3098± 0.1452 0.0459± 0.0877 0.3812± 0.0812 0.3369± 0.1012 0.4079± 0.0471 0.3808± 0.0530

DoS 0.4407± 0.1241 0.4758± 0.0814 0.4227± 0.1007 0.5985± 0.2082 0.4995± 0.1538 0.4150± 0.1159 0.4996± 0.1607 0.4797± 0.1040 0.4130± 0.1036
Exploits 0.3517± 0.1029 0.3631± 0.0814 0.3606± 0.0671 0.1026± 0.1465 0.4191± 0.1213 0.3987± 0.1123 0.1174± 0.1338 0.3809± 0.0835 0.3720± 0.0809
Generic 0.9810± 0.0069 0.6091± 0.1201 0.9332± 0.0653 0.9697± 0.0109 0.9732± 0.0022 0.9655± 0.0152 0.9752± 0.0049 0.7428± 0.0841 0.9478± 0.0362

Reconnaissance 0.3713± 0.1090 0.3088± 0.0580 0.2809± 0.0483 0.1991± 0.1215 0.2475± 0.0896 0.3437± 0.0925 0.2236± 0.1037 0.2663± 0.0683 0.3052± 0.0585
macro-average 0.5745± 0.0393 0.5208± 0.0367 0.5641± 0.0313 0.5272± 0.0455 0.5838± 0.0331 0.5770± 0.0367 0.5147± 0.0482 0.5375± 0.0353 0.5659± 0.0348∗

IDS2018

Normal 0.9903± 0.0172 0.9935± 0.0091 0.9954± 0.0087 0.5607± 0.0402 0.7329± 0.0940 0.8635± 0.0186 0.7150± 0.0331 0.8398± 0.0653 0.9246± 0.0102
Bot 0.5910± 0.2390 0.6445± 0.2386 0.4570± 0.0203 0.7960± 0.2489 0.7946± 0.2478 0.9992± 0.0008 0.5972± 0.0373 0.6298± 0.0303 0.6269± 0.0191
DoS 0.2019± 0.0425 0.3792± 0.1892 0.8529± 0.1446 0.7191± 0.0074 0.7186± 0.0078 0.7337± 0.0150 0.3126± 0.0525 0.4693± 0.1540 0.7817± 0.0668

Bruteforce 0.5226± 0.0838 0.5830± 0.1111 0.7583± 0.0235 0.9507± 0.0987 0.9199± 0.1038 0.9392± 0.0939 0.6684± 0.0813 0.7053± 0.0952 0.8371± 0.0465
macro-average 0.5765± 0.0459 0.6501± 0.0345 0.7659± 0.0345 0.7566± 0.0683 0.7915± 0.0819 0.8839± 0.0206 0.5733± 0.0292 0.6610± 0.0628 0.7926± 0.0197∗∗

CERT

Normal 0.8854± 0.0000 0.9681± 0.0147 0.9452± 0.0081 1.0000± 0.0000 0.4819± 0.0739 0.8294± 0.0356 0.9392± 0.0000 0.6397± 0.0653 0.8830± 0.0196
DataUploading 0.0000± 0.0000 0.2030± 0.0878 0.3112± 0.1011 0.0000± 0.0000 0.8630± 0.0739 0.8222± 0.1058 0.0000± 0.0000 0.3196± 0.1032 0.4440± 0.1228
DataStealing 0.0000± 0.0000 0.2746± 0.0310 0.4129± 0.0813 0.0000± 0.0000 0.7657± 0.0859 0.5055± 0.0809 0.0000± 0.0000 0.4023± 0.0382 0.4477± 0.0568
MassEmail 0.0000± 0.0000 0.0221± 0.0045 0.4129± 0.0813 0.0000± 0.0000 0.7100± 0.1375 0.6600± 0.1356 0.0000± 0.0000 0.0428± 0.0083 0.1179± 0.0553

UnauthdLogin 0.0000± 0.0000 0.0784± 0.0134 0.0659± 0.0813 0.0000± 0.0000 0.8238± 0.0604 0.7762± 0.0675 0.0000± 0.0000 0.1428± 0.0229 0.4755± 0.0860
macro-average 0.1771± 0.0000 0.3092± 0.0205 0.4172± 0.0287 0.2000± 0.0000 0.7289± 0.0385 0.7187± 0.0399 0.1787± 0.0000 0.3095± 0.0331 0.4736± 0.0344∗∗

Significantly outperforms MLP in terms of macro-F1 at the: * 0.05 and ** 0.01 level, paired t-test.

iForest), two positive-unlabeled learning models (LRPU and PUSB), and two advanced

deep anomaly detection models (DeepSVDD and DeepSAD). As shown in Table 4.2, FADS

achieves better performance than all baselines with a large margin on all three datasets. Es-

pecially, although DeepSAD as a semi-supervised model also uses both labeled and unlabeled

datasets, FADS significantly outperforms DeepSAD in most cases and has a much smaller

61

standard deviation. It means actively identifying the potential anomalies in the unlabeled

dataset can improve the performance of anomaly detection. Meanwhile, DeepSAD still out-

performs other baselines, which shows the advantage of using a small set of labeled samples

for anomaly detection. LRPU as a PU learner achieve better performance than three one-

class models (OCSVM, iForest, and DeepSVDD) on IDS2018 and CERT datasets, meaning

that in some cases, leveraging the unlabeled set can improve the performance. However, due

to the limited anomalies (positive samples), both LRPU and PUSB underperform FADS.

Anomaly Classification. FADS can achieve fine-grained anomaly classification based

on the prototypical networks, so we further evaluate FADS for the anomaly classification

task. We compare FADS with two classification models, SVM and MLP. Table 4.3 shows

the results on anomaly classification. In short, FADS achieves the highest macro-F1 score

over all classes, meaning that FADS can achieve the best performance for anomaly classi-

fication. Meanwhile, on the UNSW-NB15 and IDS2018 datasets, FADS achieves the best

performance in most classes in terms of F1 score compared with SVM and MLP. CERT is

the most challenging dataset because of extremely limited labeled samples. On the CERT

dataset, SVM predicts all anomalies as normal, while MLP has a low recall in the normal

set indicating a high misclassification rate on normal samples. On the other hand, FADS

achieves a significant improvement compared with baselines on CERT. It indicates for the

challenging anomaly detection task with extremely limited samples, leveraging anomalies in

the unlabeled dataset is critical to boosting the performance.

Table 4.4: Performance of FADS with or without reinforced data selection (mean ± std.)

Dataset Approach Anomaly Detection Anomaly Classification
AUC-PR ↑ AUC-ROC ↑ FPR at 95% TPR ↓ Precision Recall F1

UNSW-NB15

ProtoNet 0.8639± 0.0461 0.9542± 0.0199 0.0781± 0.0411 0.5257± 0.0398 0.5586± 0.0434 0.5307± 0.0388
ProtoNet* 0.7868± 0.0222 0.9299± 0.0099 0.1123± 0.0319 0.4636± 0.0437 0.5374± 0.0486 0.4819± 0.0449

ProtoNet*(10%) 0.7578± 0.0288 0.9132± 0.0168 0.1340± 0.0099 0.4200± 0.0324 0.4838± 0.0423 0.4384± 0.0355
FADS 0.9178± 0.0214 0.9751± 0.0080 0.0375± 0.0180 0.5641± 0.0313 0.5770± 0.0367 0.5659± 0.0348

IDS2018

ProtoNet 0.6086± 0.0643 0.8866± 0.0281 0.4524± 0.2453 0.7026± 0.0561 0.8373± 0.0655 0.7349± 0.0431
ProtoNet* 0.5751± 0.0713 0.8708± 0.0403 0.4321± 0.3258 0.6824± 0.0593 0.8283± 0.0649 0.7138± 0.0523

ProtoNet*(10%) 0.4825± 0.0818 0.8053± 0.0687 0.4438± 0.2178 0.5313± 0.0822 0.6371± 0.1247 0.5474± 0.0880
FADS 0.6791± 0.0279 0.9249± 0.0134 0.2380± 0.1108 0.7659± 0.0345 0.8839± 0.0206 0.7926± 0.0197

CERT

ProtoNet 0.1818± 0.0314 0.6605± 0.0532 0.8839± 0.0631 0.3494± 0.0544 0.5341± 0.0666 0.3595± 0.0606
ProtoNet* 0.1747± 0.0194 0.6695± 0.0392 0.7390± 0.0908 0.3380± 0.0367 0.6184± 0.0574 0.3525± 0.0434

ProtoNet*(10%) 0.1892± 0.0267 0.6880± 0.0400 0.7192± 0.1043 0.3671± 0.0504 0.6953± 0.0438 0.3905± 0.0589
FADS 0.2480± 0.0260 0.7286± 0.0286 0.7036± 0.1119 0.4172± 0.0287 0.7187± 0.0399 0.4736± 0.0344

62

FADS with and without Data Selection. We further evaluate the performance im-

provement of FADS over the simple prototypical networks without reinforced data selection.

We consider three settings as baselines. First, we train a prototypical network on the ini-

tially labeled dataset, denoted as ProtoNet. Second, after we train the prototypical network

on the initial dataset, we apply the network to label the unlabeled dataset U and use the

whole weakly-labeled dataset W as the augmentation set (A ←W) to retrain the prototyp-

ical network. We evaluate the performance of the prototypical network after re-training on

the test set, denoted as ProtoNet*. The third one is similar to ProtoNet*, but we retrain

the prototypical network based on samples in W having top 10% of the highest probabili-

ties in each class, which means high confidence belonging to a class, denoted as ProtoNet*

(10%). We evaluate three models for anomaly detection and classification. For the anomaly

classification, we report the macro precision, recall, and F1 score here.

Table 4.4 shows that FADS achieves unanimously better performances over baselines on

three datasets for both anomaly detection and classification tasks. Meanwhile, we can notice

that in general, both ProtoNet* and ProtoNet* (10%) cannot beat regular ProtoNet, which

shows that simply using weakly labeled samples for training will hurt the performance due

to incorrect labels. Furthermore, FADS still has the largest performance gains on the CERT

dataset in terms of macro-F1 for classification, which shows the criticalness of augmenting

the training set with reliable samples in the case of limited samples. Another advantage of

FADS is that it can have a lower standard deviation compared with traditional prototypical

networks that do not have the augmentation dataset from the reinforced data selection.

Performance of FADS with Different Numbers of Initially Labeled Anomalies.

Table 4.4 indicates that the reinforced data selection strategy for training data augmentation

can improve the performance of anomaly detection and classification. We then evaluate the

performance under the settings that different numbers of labeled anomalies are available at

the beginning of the training phase. Figure 4.2 shows the experimental results in terms of

AUC-PR, AUC-ROC (anomaly detection) and Macro-F1 (anomaly classification). We can

notice that on IDS2018 and UNSW-NB15 datasets, with more labeled samples available,

63

(a) AUC-PR (b) AUC-ROC (c) Macro-F1

Fig. 4.2: The performance of FADS with different numbers of initially labeled anomalies in
one class. (a),(b) for anomaly detection and (c) for anomaly classification

the performance of FADS keeps improving. Furthermore, the standard deviations are also

decreasing with more available samples on IDS2018 and UNSW-NB15. It means with more

anomalies available initially, the performance of anomaly detection and classification will

become more stable. The performance of anomaly detection on CERT dataset also basically

follows the similar trend, i.e., more available anomalies leading to better performance. On

the other hand, the macro-f1 scores for anomaly classification keep stable with more samples.

This could be because the fine-grained classification task on CERT requires more anomalies

to further improve the performance due to its difficulty.

(a) AUC-PR (b) AUC-ROC (c) Macro-F1

Fig. 4.3: The performance gains of FADS over ProtoNet with different numbers of initially
labeled anomalies.

64

Performance Gains of FADS over ProtoNet with Different Numbers of Initially

Labeled Anomalies. Figure 4.3 shows that, on IDS2018 and UNSW-NB15 datasets, the

performance gains compared with ProtoNet without reinforced data selection is decreasing

when more labeled samples are available. This indicates that once prototypical networks

have sufficient samples for training, incorporating more samples will not change the results

significantly. However, different from the results on UNSW-NB15 and IDS2018, the per-

formance gains on CERT increase when the number of available anomalies in each class

increases. It could be because three samples are not sufficient to train prototypical networks

for insider threat detection due to its difficulty. As a result, the weakly-labeled samples are

full of noise, and no correctly labeled samples are available for re-training. Meanwhile, we

can observe that FADS always achieves positive gains over ProtoNet.

(a) AUC-PR (b) AUC-ROC (c) Macro F1 score

Fig. 4.4: Performance of FADS with various anomaly ratios in the unlabeled set.

Performance of FADS with Various Anomaly Ratios in the Unlabeled Dataset.

For the UNSW-NB15 and IDS2018 datasets, we set the ratio of anomalies in the unlabeled

dataset U as 0.1 by default. We further tune this ratio to check the performance change of

FADS. Note that because of limited labeled anomalies, we do not conduct this experiment

on CERT. Figure 4.4 shows the results of different ratios of anomalies in U from 0.01 to

0.2. First, we can observe that with more anomalies in U , the performance of FADS on

anomaly detection and classification keeps improving. Especially, for the IDS2018 dataset,

in terms of AUC-PR and macro F1 score, the performance of FADS keeps improving with

65

more anomalies in the unlabeled dataset. For the UNSW-NB15 dataset, the performance of

FADS is improved when the ratios of anomalies increase from 0.01 to 0.1 and keeps stable

even we include more anomalies in the unlabeled dataset. This could be because for the

UNSW-NB15 dataset, the 10% of anomalies already cover the majority of anomaly types,

and adding more anomalies in the unlabeled dataset can only reduce the standard deviation.

Table 4.5: Impact of each reward component

AUC-PR AUC-ROC Macro F1

rd
UNSW-NB15 0.9105± 0.0266 0.9721± 0.0087 0.5591± 0.0333

IDS2018 0.6787± 0.0372 0.9243± 0.0166 0.7867± 0.0328
CERT 0.2554± 0.0265 0.7408± 0.0294 0.4671± 0.0397

rc
UNSW-NB15 0.9030± 0.0345 0.9692± 0.0126 0.5604± 0.0277

IDS2018 0.6787± 0.0360 0.9207± 0.0164 0.7897± 0.0243
CERT 0.2260± 0.0230 0.7033± 0.0233 0.4685± 0.0343

Combine
UNSW-NB15 0.9178± 0.0214 0.9751± 0.0080 0.5659± 0.0348

IDS2018 0.6791± 0.0279 0.9249± 0.0134 0.7926± 0.0197
CERT 0.2480± 0.0260 0.7286± 0.0286 0.4736± 0.0344

Ablation Study on Reward Components. The reward function defined in Equation 4.3

consists of two parts, rewards for anomaly classification and detection. In this experiment,

we check the performance of FADS if we keep only one reward component. Table 4.5

indicates that incorporating the reward for both anomaly detection and classification can

improve the performance slightly compared with the model with only one reward component.

Meanwhile, FADS with one reward component (shown in Table 4.5) already achieves better

performance than ProtoNet (shown in Table 4.4).

(a) UNSW-NB15 (b) IDS2018 (c) CERT

Fig. 4.5: Accuracy of the data selection agent

66

Accuracy of the Reinforced Data Selection Agent. We further evaluate whether the

reinforced data selection agent is able to select the high-quality samples from the weakly-

labeled datasetW. We calculate the accuracy based on all selected samples when the training

procedure for data selection is finished. Figure 4.5 shows the results, where the blue bar

indicates the accuracy of the FADS agent while the orange bar indicates the accuracy of

initial prototypical networks. We can notice that the initial prototypical networks cannot

achieve good performance on anomaly classification, which means the weakly-labeled dataset

W consists of a lot of mislabeled samples. However, the samples selected from the agent

have much higher chances to be correct, indicating that the agent is able to identify high

quality weakly-labeled samples from W. Therefore, using the selected samples to augment

the training dataset can improve the performance of the few-shot anomaly detection model.

4.4 FADScr

Fig. 4.6: The training framework of FADScr

67

4.4.1 Framework Overview

We further extend FADS to a few-shot anomaly detection and classification model

through reinforced data selection with a combinatorial reward (FADScr), which is able

to gradually enhance the performance of the few-shot learning model by exploiting the

unlabeled dataset U .

In particular, FADScr first trains a few-shot learning model on an initial training dataset

with only labeled samples D = L. Then, FADScr iteratively improves the model by select-

ing samples from unlabeled dataset U to augment the training dataset. We employ the

reinforcement learning technique for data selection. In each training iteration, we first use

the current few-shot model to predict the label ŷj for each sample xj in U , thus produc-

ing a weakly-labeled dataset W = {(xj , ŷj)}NU
j=1. Then, we train a reinforcement learning

agent to select the weakly-labeled samples that have high chances to be accurate into an

augmentation set A = {(xj , ŷj)|aj = 1}NU
j=1, where aj ∈ {0, 1} indicates whether the sample

(xj , ŷj) is selected by the agent or not. We combine the augmentation dataset A with the

existing training dataset to compose the new training dataset, i.e., D = D ∪ A, and then

re-train the few-shot model on the new training dataset. We expect that the performance

of the few-shot model will be improved with those augmented samples. Therefore, as the

training iteration moves forward, the few-shot anomaly detection model can be improved

progressively. The overview of FADScr is shown in Figure 4.6.

4.4.2 Reinforced Data Selection

As the labeled dataset L only has a very small number of anomalies, the performance of

the initial prototypical network trained on L still has room for improvement if more training

samples can be incorporated. To this end, we propose to exploit the unlabeled dataset U .

We first use the current prototypical network to predict the labels of samples in U and get a

weakly-labeled dataset W, which consists of both correctly and incorrectly labeled samples.

If we simply adopt W to augment the training set, due to the noisy supervised signals, the

performance of the prototypical network could be worse. Hence, we propose a reinforcement

learning-based data selection method to select samples from W based on their reliability

68

to compose an augmentation set A. Once the reinforced data selection agent is capable

of selecting the correctly labeled samples to augment the training set, the performance of

the few-shot learner can be improved. Therefore, the reward to the data selection agent is

designed based on the performance of the few-shot learner on an unobserved validation set.

The key components of the reinforcement learning framework are described below.

State. For each state sj with weakly-labeled sample (xj , ŷj) ∈ W, its state representation

sj is defined as the concatenation of the embedding vector xj = g(xj) and the distance value

dj to the closest prototype, i.e., sj = [xj , dj].

Action. The data selection agent then needs to take an action whether to select this sample

(xj , ŷj) into the augmentation set A based on the state representation sj . In specific, aj = 0

means the sample (xj , ŷj) will be rejected, while aj = 1 indicates the sample will be selected

and added to the augmentation set A.

Policy Network. The data selection agent makes decisions about whether to select a

weakly-labeled sample based on a policy network πθ(·). We adopt a neural network to

parameterize the policy network that takes the state representation as input and outputs

the probability of the action, p(aj |sj) = πθ(sj). The action aj is then sampled based on

p(aj |sj).

Rewards. The policy network is trained with guidance from the reward function. We

define the reward based on the performance of the few-shot learning model on an unseen

validation set. As in our task, we aim to detect anomalies as well as classify abnormal samples

into different classes. Therefore we design the reward function based on the performance of

anomaly detection and classification, i.e., an anomaly detection reward rd and a classification

reward rc. Specifically, we adopt the F1 score as the metric to evaluate the performance

of anomaly detection and the macro F1 score over all classes to evaluate the performance

of classification. In our scenario, if wrongly-labeled samples are selected to compose the

training dataset, we can expect that the performance of the few-shot learning model will

be damaged. On the other hand, if the samples with the correct labels are selected, the

performance of the model can be improved. Hence, the reward is designed based on the

69

performance change after the model is trained on an augmentation set.

Moreover, inspired by active learning with the strategy of labeling uncertain samples,

we expect the agent can select the samples with high uncertainties to the augmentation set so

that the performance of the few-shot learning model for anomaly detection and classification

can be further improved. Here, the uncertainty of a sample is quantified by its predicted

probabilities p(y = k|x). When the predicted probability of a sample for the true class is less

than a threshold, i.e., p(y = k|x) < τ , we consider the sample as a hard sample. Otherwise,

the samples are easy samples. If the agent only selects easy samples into the augmentation

set, for prototypical networks, the center ck of the class (defined in Eq. ??) cannot be

updated significantly, meaning that the hard samples still have low predicted probabilities.

Therefore, we also design a reward rp based on probability changes on hard samples after

the model is trained on an augmentation set.

Specifically, in each episode, we first calculate the F1, macro F1 scores, and predicted

probabilities p(y = k|x) on validation samples by the current prototypical network. We

denote the prototypical network at the beginning of each episode as g0(·) and the corre-

sponding F1, macro F1 scores achieved by g0(·) as F10 and MarcoF10. Meanwhile, to

evaluate whether the prototypical network can reduce the prediction uncertainties, we also

select hard samples, i.e., p(y = k|x) < τ , from the validation set and use the mean proba-

bilities as the uncertainty score, denoted as Pr0.

Then, we work on improving g0(·) by composing an augmentation set. To this end, first,

we randomly sample a set of batches B = {Bl}Ll=1 from W, where each batch Bl consists

of a number of samples. Given a batch Bl, for each sample in Bl, we sample an action aj

(select to the augmentation set or not) based on the policy p(a|sj) = πθ(sj). Then, we can

compose the augmentation set Al from the batch Bl. After combining Al with D, we update

the prototypical network, denoted as gl(·), and further evaluate gl(·) on a validation set to

derive F1, macro F1 scores, and probabilities, denoted as F1l, MacroF1l, Prl.

Finally, the reward for the agent in a batch can be calculated as the differences of F1

scores and probabilities, rdl = F1l−F10, rcl =MacroF1l−MacroF10, and rpl = Prl−Pr0.

70

The overall reward function in a batch is formulated as:

rl = rdl + α · rcl + β · rpl , (4.9)

where α and β are hyperparameters to balance anomaly detection, classification tasks, and

the reward for reducing uncertain samples.

Optimization. The data selection agent is trained based on the actor-critic algorithm [2].

The output of the actor is the probability of two actions (select or not), while the output

of the critic is the predicted reward value based on the current state. Both actor and critic

are parameterized by feed-forward neural networks. The goal of the agent is to maximize

the rewards, which is defined as:

J (θ) = Eπθ [rl]. (4.10)

The parameter θ in policy network πθ is trained based on policy gradient [107]:

θ ← θ + η▽θ J (θ), (4.11)

where η indicates the learning rate. The gradient for a batch of weakly-labeled samples can

be approximated by [2]

▽θJ (θ) =
1

|Bl|

|Bl|∑
j=1

▽θlogπθ(sj)(rl − Vφ(sj)), (4.12)

where |Bl| indicates the number of samples in a batch Bl; Vφ(sj) is the expected reward from

a critic network Vφ(·) parameterized by φ. The structure of the critic network is similar

to the policy network with the last layer as a regression function. The critic network is

designed to estimate the expected reward and hence updated according to the cumulative

difference between the real reward rl and the predicted value Vφ(sj),

L(φ) = 1

|Bl|

|Bl|∑
j=1

|rl − Vφ(sj)|. (4.13)

71

The parameters φ in Vφ(sj) can be optimized by:

φ = φ− η′ ▽φ L(φ), (4.14)

where η′ indicates the learning rate for updating the critic network.

Algorithm 2: The training process of FADScr
Input : Labeled set L, unlabeled set U
Output: Prototypical network g(·)

1 Initialize an augmentation set A ← ∅
2 Initialize a training dataset D ← L
3 for t = 0 to T do
4 Split D to Dtr and Dval
5 Dtr ← Dtr ∪ A
6 Train prototypical network g(·) on Dtr
7 Predict labels on U and get W based on g(·)
8 Aep ← Data_Selection (g(·), W, Dtr, Dval)
9 Remove selected samples U ← U/Aep

10 Increase the augmentation dataset A ← A∪Aep
11 Train prototypical network g(·) on D ∪A
12 return prototypical network g(·)
13 Function Data_Selection(g0(·),W,Dtr,Dval):
14 Apply g0(·) on Dval to derive (F10,MacroF10, P r0)
15 Generate subsets B = {Bl}Ll=1 from W
16 R = ∅, Aep = ∅
17 foreach Bl ∈ B do
18 Agent selects samples from Bl to generate Al
19 Dtrl ← Dtr ∪ Al
20 Train prototypical network gl(·) on Dtrl
21 Apply gl(·) on Dval to derive (F1l,MacroF1l, P rl)
22 Compute the reward rl based on Eq. (4.9)
23 R = R∪ {rl}
24 Update the policy network πθ based on Eq. (4.11)
25 Update the critic network Vφ based on Eq. (4.14)
26 l← argmaxR
27 if F1l > F10, MacroF1l > MacroF10, and Prl > Pr0 then
28 Aep ← Al
29 return Aep

72

4.4.3 Training Details

General Training Process. Algorithm 2 shows the pseudo-code of the training process.

Given a small labeled dataset L and an unlabeled dataset U , we first initialize an augmen-

tation dataset A as an empty set (Line 1) and a training dataset D as the small labeled

dataset L (Line 2). In each episode, we split D into two parts, Dtr as the real training

set and Dval as the unobserved validation set (Line 4), combine Dtr with A as the new

training set (Line 5), and use it to train the prototypical network g(·) (Line 6). We deploy

the prototypical network to predict labels of samples in U and get a weakly labeled data

set W (Line 7). We then apply a reinforced data selection algorithm to generate a batch of

samples as the augmentation set Aep from W (Line 8). After obtaining A, we remove Aep

from the unlabeled dataset U (Line 9) and add Aep to A to form a new augmentation set

for next iteration (Line 10).

With the increasing of training episodes, the size of the augmentation dataset A keeps

increasing and the performance of the prototypical network becomes better. After finishing

all the training iterations, we further combine labeled dataset D with the augmentation

dataset A, retrain the prototypical network from scratch based on the combined dataset

(Line 11), and deploy it for anomaly detection and classification.

Reinforced Data Selection. The key step for improving the performance of the proto-

typical network is the reinforced data selection algorithm (Lines 13 – 29), which is to select

the reliable weakly-labeled samples from W to augment the training set. We first apply the

current prototypical network g0(·) on the validation set Dval to get F1, macro F1 scores,

and sample prediction probabilities (F10,MacroF10, P r0) as the baseline performance (Line

14). We then derive a set of sample batches B = {Bl}Ll=1 from W.

Then, for each batch Bl, we select samples based on the prediction of the policy net-

work p(aj |sj) = πθ(sj) and generate Al with selected samples. After getting the augmented

training set Dtrl by combining Dtr with Al (Line 19), we train the prototypical network

gl(·) on Dtrl again (Line 20) and apply gl(·) on Dval to derive F1, macro F1 scores, and

sample prediction probabilities (F1l,MacroF1l, P rl), (Line 21). The reward is then calcu-

73

lated based on the difference between (F1l,MacroF1l, P rl) and (F10,MacroF10, P r0). We

further update the policy network πθ and the critic network Vφ (Lines 24 – 25).

After going through all batches, we get a set of rewards R = {rl}Ll=0. We only select

Al leading to the maximum reward rl in R (Line 26) and also ensure that the prototypical

network gl(·) trained on Dtrl can get better performance in terms of F1, Macro F1 scores, and

sample prediction probabilities compared with the original one g0(·) (Lines 27-28). Then,

we consider Al as the augmentation set Aep at the current episode (Line 29).

Warm-up Phase. In the early stage of training, the data selection agent takes actions

based on randomly initialized parameters. The selected samples could include misclassified

instances due to the uncertainty of the policy network. Then, Dtr could contain mislabeled

samples, which could damage the performance of FADScr in the long turn. Hence, we set

up a warm-up phase for the training. After the warm-up phase, all the samples selected

during the warm-up phase will be removed from D and added back to U . The agent will

select samples from scratch again. We expect the performance of the data selection agent

will become stable with the convergence of parameters during the warm-up phase and can

select reliable weakly-labeled samples after that. In our experiments, the warm-up phase is

10 episodes.

4.4.4 Implementation Details

For UNSW-NB15 and IDS2018 datasets, because the input samples are multidimen-

sional data, we adopt a feedforward neural network with three fully connected layers as the

implementation of prototypical network g(·), where the dimension of output embedding is

128. For the CERT dataset, because the input samples are sequential data about user activ-

ities in a session, we adopt a GRU neural network [118] to map sequences into an embedding

space with a dimension of 64. For all three datasets, as we only have 10 labeled samples

in each anomaly class in the initial training set LA, we initially assign 6 samples to Dtr to

train the prototypical network with 3 samples as the support set S and 3 samples as the

query set Q and the rest 4 samples to Dval for evaluation. In the experiments, we set α and

β in Equation 4.9 as α = 1 and β = 0.01.

74

In the implementation of actor-critic reinforcement learning, both actor and critic are

three-layer feedforward neural networks. In the training stage, we set the number of training

episodes T = 30, while in each episode, we generate a set of sample batches {Bl}Ll=1. For

each batch Bl, we select samples from each predicted class in W based on their closeness

to the prototype representations. Especially, for UNSW-NB15 and IDS2018 datasets, in

each batch, we select the top 10 samples that are close to the corresponding prototype

representation from each class as well as 50 samples that are not close to any prototype

representations as hard samples, leading to the sizes of a batch are |Bl| = 110 for UNSW-

NB15 and |Bl| = 90 for IDS2018, respectively. For the CERT dataset, we select the closest

1 sample from each class and 5 hard samples, leading to the batch size |Bl| = 10. The code

and datasets used in the experiments are available online 2.

4.4.5 Experimental Results

Anomaly Detection. We first evaluate the performance of FADScr for anomaly detection.

In particular, after the prototypical network predicts each anomaly into a specific anomaly

class, we consider all detected samples in anomaly classes as anomalies. We compare FAD-

Scr for anomaly detection with two traditional one-class classification models (OCSVM and

iForest), two positive-unlabeled learning models (LRPU and PUSB), and two advanced

deep anomaly detection models (DeepSVDD and DeepSAD). As shown in Table 4.6, FAD-

Scr achieves better performance than all baselines with a large margin on all three datasets.

Especially, although DeepSAD as a semi-supervised model also uses both labeled and unla-

beled datasets, FADScr significantly outperforms DeepSAD in most cases and has a much

smaller standard deviation. It means actively identifying the potential anomalies in the

unlabeled dataset can improve the performance of anomaly detection. Meanwhile, Deep-

SAD still outperforms other baselines, which shows the advantage of using a small set of

labeled samples for anomaly detection. LRPU as a PU learner achieves better performance

than three one-class models (OCSVM, iForest, and DeepSVDD) on IDS2018 and CERT
2https://github.com/hanxiao0607/FADScr

https://github.com/hanxiao0607/FADScr

75

]

Table 4.6: Results on anomaly detection (mean ± std.). ↑ indicates larger value is better; ↓
indicates lower value is better.

UNSW-NB15 IDS2018 CERT

AUC-PR
↑

OCSVM 0.4999± 0.0029 0.3069± 0.0115 0.1161± 0.0170
iForest 0.7337± 0.0537 0.2914± 0.0151 0.1321± 0.0198
LRPU 0.6559± 0.0084 0.4365± 0.0444 0.1380± 0.0520
PUSB 0.6119± 0.0246 0.3774± 0.0158 0.1147± 0.0000

DeepSVDD 0.6088± 0.0359 0.4704± 0.1126 0.1192± 0.0068
DeepSAD 0.8103± 0.1958 0.5945± 0.1064 0.1304± 0.0176
FADScr 0.9249± 0.0206∗ 0.7121± 0.0592∗∗ 0.2531± 0.0397∗∗

AUC-ROC
↑

OCSVM 0.7499± 0.0029 0.6517± 0.0187 0.5671± 0.0436
iForest 0.8991± 0.0315 0.5489± 0.0280 0.5937± 0.0572
LRPU 0.7420± 0.0063 0.6338± 0.0289 0.5432± 0.0482
PUSB 0.7089± 0.0184 0.5953± 0.0103 0.5000± 0.0000

DeepSVDD 0.7436± 0.0316 0.7128± 0.0905 0.5279± 0.0204
DeepSAD 0.9024± 0.1497 0.7840± 0.0896 0.5601± 0.0558
FADScr 0.9783± 0.0066∗ 0.9299± 0.0219∗∗ 0.7406± 0.0357∗∗

FPR
(95% TPR)

↓

OCSVM 0.9941± 0.0007 0.9149± 0.0140 0.9138± 0.0483
iForest 0.2093± 0.0660 0.9549± 0.0452 0.7526± 0.1303
LRPU 0.3738± 0.0675 0.5236± 0.1379 0.8827± 0.0643
PUSB 0.9842± 0.0328 0.8691± 0.1974 0.9522± 0.0107

DeepSVDD 0.6664± 0.1704 0.7159± 0.2406 0.8619± 0.0678
DeepSAD 0.2222± 0.3990 0.4326± 0.3343 0.6997± 0.0938
FADScr 0.0333± 0.0133∗ 0.1659± 0.0986∗∗ 0.6849± 0.0854

Significantly outperforms DeepSAD at the: * 0.05 and ** 0.01 level, paired t-test.

datasets, meaning that in some cases, leveraging the unlabeled set can improve the perfor-

mance. However, due to the limited anomalies (positive samples), both LRPU and PUSB

underperform FADScr.

Table 4.7: Results on anomaly classification (mean ± std.)

Dataset Class Precision Recall F1
SVM MLP FADScr SVM MLP FADScr SVM MLP FADScr

UNSW-NB15

Normal 0.8135± 0.0089 0.8399± 0.0099 0.9979± 0.0038 0.9873± 0.0406 0.9874± 0.0358 0.9607± 0.0129 0.8957± 0.0055 0.9110± 0.0056 0.9789± 0.0066
Fuzzers 0.3858± 0.0791 0.3538± 0.0720 0.3824± 0.0469 0.1121± 0.0790 0.1244± 0.0476 0.4335± 0.0962 0.1502± 0.0268 0.1726± 0.0310 0.4036± 0.0635

DoS 0.5341± 0.0389 0.5002± 0.0525 0.4602± 0.0726 0.3729± 0.1242 0.3335± 0.1077 0.4532± 0.0917 0.4302± 0.0933 0.3884± 0.0839 0.4539± 0.0744
Exploits 0.3946± 0.0936 0.4224± 0.0748 0.3749± 0.0650 0.1862± 0.0849 0.2513± 0.0635 0.3900± 0.0769 0.2336± 0.0432 0.3048± 0.0599 0.3782± 0.0591
Generic 0.9762± 0.0197 0.9579± 0.0247 0.9217± 0.0912 0.9666± 0.0253 0.9662± 0.0161 0.9649± 0.0389 0.9710± 0.0153 0.9618± 0.0148 0.9414± 0.0640

Reconnaissance 0.3561± 0.1102 0.3865± 0.0864 0.3212± 0.0614 0.1392± 0.0976 0.2258± 0.0751 0.3631± 0.0710 0.1740± 0.0404 0.2696± 0.0497 0.3391± 0.0604
macro-average 0.5767± 0.0281 0.5768± 0.0251 0.5764± 0.0290 0.4607± 0.0463 0.4815± 0.0258 0.5942± 0.0303 0.4758± 0.0199 0.5014± 0.0190 0.5825± 0.0288∗∗

IDS2018

Normal 0.9904± 0.0180 0.9945± 0.0098 0.9923± 0.0172 0.5657± 0.1111 0.8392± 0.0363 0.8853± 0.0391 0.6941± 0.0454 0.9019± 0.0293 0.9350± 0.0164
Bot 0.6482± 0.2551 0.5348± 0.1855 0.5134± 0.1452 0.7578± 0.2499 0.9477± 0.1526 0.9711± 0.1110 0.6311± 0.0961 0.6538± 0.0846 0.6513± 0.0635
DoS 0.1934± 0.0456 0.6615± 0.1765 0.8520± 0.1090 0.6914± 0.1263 0.7047± 0.0997 0.8136± 0.0579 0.3201± 0.1082 0.6796± 0.1179 0.8258± 0.0429

Bruteforce 0.4814± 0.0965 0.6722± 0.0773 0.7807± 0.0779 0.9299± 0.1292 0.9629± 0.0886 0.8444± 0.1376 0.6452± 0.1215 0.8018± 0.0797 0.8062± 0.0903
macro-average 0.5784± 0.0517 0.7157± 0.0217 0.7846± 0.0558 0.7362± 0.0759 0.8636± 0.0515 0.8786± 0.0436 0.5726± 0.0659 0.7593± 0.0452 0.8046± 0.0403∗∗

CERT

Normal 0.9599± 0.0188 0.9016± 0.0032 0.9354± 0.0108 0.4883± 0.2146 0.9464± 0.0207 0.8874± 0.0215 0.6205± 0.1991 0.9243± 0.0102 0.9097± 0.0097
DataUploading 0.2076± 0.1397 0.3474± 0.1479 0.4684± 0.1665 0.8722± 0.0911 0.7222± 0.1464 0.8125± 0.1094 0.3161± 0.1713 0.4503± 0.1174 0.5787± 0.1128
DataStealing 0.3283± 0.1198 0.0506± 0.1264 0.4044± 0.0525 0.7124± 0.1206 0.0100± 0.0306 0.4042± 0.1173 0.4374± 0.1264 0.0159± 0.0480 0.3983± 0.0725
MassEmail 0.0223± 0.0108 0.1436± 0.2089 0.1111± 0.0546 0.6450± 0.2417 0.4250± 0.2468 0.6418± 0.1638 0.0428± 0.0202 0.1949± 0.1669 0.1813± 0.0724

UnauthdLogin 0.2152± 0.1901 0.3456± 0.2120 0.5245± 0.1700 0.6929± 0.1758 0.5143± 0.1222 0.7524± 0.0935 0.2987± 0.2198 0.3753± 0.1337 0.6010± 0.1259
macro-average 0.3467± 0.0784 0.3578± 0.0629 0.4888± 0.0419 0.6822± 0.1017 0.5236± 0.0521 0.6997± 0.0550 0.3432± 0.1205 0.3922± 0.0468 0.5338± 0.0388∗∗

Significantly outperforms MLP in terms of macro-F1 at the: * 0.05 and ** 0.01 level, paired t-test.

Anomaly Classification. FADScr can achieve fine-grained anomaly classification based

76

on the prototypical networks, so we further evaluate FADScr for the anomaly classification

task. We compare FADScr with two classification models, SVM and MLP. Table 4.7 shows

the results of anomaly classification. In short, FADScr achieves the highest macro-F1 score

over all classes, meaning that FADScr can achieve the best performance for anomaly classi-

fication. Meanwhile, on the UNSW-NB15 and IDS2018 datasets, FADScr achieves the best

performance in most classes in terms of F1 score compared with SVM and MLP. CERT is

the most challenging dataset because of extremely limited labeled samples. On the CERT

dataset, SVM predicts all anomalies as normal, while MLP has a low recall in the normal

set indicating a high misclassification rate on normal samples. On the other hand, FADScr

achieves a significant improvement compared with baselines on CERT. It indicates for the

challenging anomaly detection task with extremely limited samples, leveraging anomalies in

the unlabeled dataset is critical to boosting the performance.

Table 4.8: Performance of FADScr with or without reinforced data selection (mean ± std.)

Dataset Approach Anomaly Detection Anomaly Classification
AUC-PR ↑ AUC-ROC ↑ FPR at 95% TPR ↓ Precision Recall F1

UNSW-NB15

ProtoNet 0.8522± 0.0424 0.9504± 0.0155 0.0873± 0.0405 0.5180± 0.0301 0.5503± 0.0359 0.5205± 0.0322
ProtoNet* 0.7245± 0.0988 0.8865± 0.0796 0.1821± 0.1649 0.4153± 0.0556 0.4673± 0.0713 0.4262± 0.0634

ProtoNet*(10%) 0.7111± 0.0685 0.8908± 0.0374 0.2153± 0.0862 0.4595± 0.0420 0.5194± 0.0517 0.4645± 0.0467
FADS 0.9050± 0.0232 0.9693± 0.0102 0.0398± 0.0121 0.5357± 0.0841 0.5813± 0.0296 0.5676± 0.0302

FADScr 0.9249± 0.0206∗∗ 0.9783± 0.0066∗∗ 0.0333± 0.0133∗ 0.5764± 0.0290 0.5942± 0.0303∗ 0.5825± 0.0288∗∗

IDS2018

ProtoNet 0.6894± 0.0433 0.9180± 0.0276 0.2758± 0.1406 0.7104± 0.0595 0.8396± 0.0588 0.7388± 0.0415
ProtoNet* 0.5081± 0.0722 0.8208± 0.0669 0.4142± 0.2097 0.5329± 0.0819 0.6317± 0.1166 0.5471± 0.0767

ProtoNet*(10%) 0.5288± 0.0670 0.8555± 0.0386 0.3360± 0.1740 0.6371± 0.0776 0.7620± 0.0808 0.6400± 0.0627
FADS 0.6780± 0.0343 0.9219± 0.0231 0.2835± 0.1209 0.7657± 0.0403 0.8800± 0.0385 0.7902± 0.0275

FADScr 0.7121± 0.0592∗∗ 0.9299± 0.0219∗∗ 0.1659± 0.0986∗∗ 0.7846± 0.0558∗ 0.8786± 0.0436 0.8046± 0.0403

CERT

ProtoNet 0.1784± 0.0569 0.6314± 0.0729 0.9777± 0.0637 0.3474± 0.0499 0.5501± 0.0724 0.3613± 0.0697
ProtoNet* 0.1788± 0.0305 0.6738± 0.0564 0.7316± 0.1062 0.3418± 0.0443 0.6141± 0.1017 0.3551± 0.0632

ProtoNet*(10%) 0.2367± 0.0347 0.7066± 0.0404 0.7651± 0.1248 0.3847± 0.0465 0.7160± 0.0725 0.4353± 0.0627
FADS 0.2397± 0.0383 0.7161± 0.0451 0.7083± 0.1322 0.4119± 0.0379 0.7243± 0.0453 0.4694± 0.0449

FADScr 0.2531± 0.0397 0.7406± 0.0357∗ 0.6849± 0.0854 0.4888± 0.0419∗∗ 0.6997± 0.0550 0.5338± 0.0388∗∗

Significantly outperforms FADS at the: * 0.05 and ** 0.01 level, paired t-test.

FADScr with and without Data Selection. We evaluate the performance improvement

of FADScr over the simple prototypical networks without reinforced data selection. We

consider three settings as baselines. First, we train a prototypical network on the initially

labeled dataset, denoted as ProtoNet. Second, after we train the prototypical network on

the initial dataset, we apply the network to label the unlabeled dataset U and use the whole

weakly-labeled dataset W as the augmentation set (A ← W) to retrain the prototypical

network. We evaluate the performance of the prototypical network after re-training on the

test set, denoted as ProtoNet*. The third one is similar to ProtoNet*, but we retrain the

77

prototypical network based on samples in W having top 10% of the highest probabilities in

each class, which means high confidence belonging to a class, denoted as ProtoNet* (10%).

We also compare FADScr with our previous work FADS [119] which does not have the

reward to choose the hard samples for performance improvement. We compare four models

for anomaly detection and classification. For the anomaly classification, we report the macro

precision, recall, and F1 score here.

Table 4.8 shows that FADScr achieves unanimously better performances over baselines

on three datasets for both anomaly detection and classification tasks. Meanwhile, we can

notice that in general, both ProtoNet* and ProtoNet* (10%) cannot beat regular ProtoNet,

which shows that simply using weakly labeled samples for training will hurt the perfor-

mance due to incorrect labels. Furthermore, FADScr still has the largest performance gains

on the CERT dataset in terms of macro-F1 for classification, which shows the criticalness

of augmenting the training set with reliable samples in the case of limited samples. When

comparing the performance of FADS and FADScr, we can notice FADScr with a combina-

torial reward can further improve the performance in terms of AUC-PR by a large margin,

and also achieve much better F1 scores, especially on the CERT and UNSW-NB15 datasets.

Another advantage of FADScr is that in most cases, it can have a lower standard deviation

compared with all other baselines.

(a) AUC-PR (b) AUC-ROC (c) Macro-F1

Fig. 4.7: The performance of FADScr with different numbers of initially labeled anomalies
in one class. (a),(b) for anomaly detection and (c) for anomaly classification

78

Performance of FADScr with Different Numbers of Initially Labeled Anomalies.

Table 4.8 indicates that the reinforced data selection strategy for training data augmentation

can improve the performance of anomaly detection and classification. We then evaluate the

performance under the settings where different numbers of labeled anomalies are available

at the beginning of the training phase. Figure 4.7 shows the experimental results in terms of

AUC-PR, AUC-ROC (anomaly detection), and Macro-F1 (anomaly classification). We can

notice that on IDS2018 and UNSW-NB15 datasets, with more labeled samples available,

the performance of FADScr keeps improving. Furthermore, the standard deviations are

also decreasing with more available samples on IDS2018 and UNSW-NB15. It means with

more anomalies available initially, the performance of anomaly detection and classification

will become more stable. The performance of anomaly detection on the CERT dataset also

basically follows a similar trend, i.e., more available anomalies leading to better performance.

On the other hand, the Macro-F1 scores for anomaly classification keep stable with more

samples. This could be because the fine-grained classification task on CERT requires more

anomalies to further improve the performance due to its difficulty.

(a) AUC-PR (b) AUC-ROC (c) Macro-F1

Fig. 4.8: The performance gains of FADScr over ProtoNet with different numbers of initially
labeled anomalies.

Performance Gains of FADScr over ProtoNet with Different Numbers of Initially

Labeled Anomalies. Figure 4.8 shows that, on IDS2018 and UNSW-NB15 datasets, the

performance gains compared with ProtoNet without reinforced data selection are decreasing

79

when more labeled samples are available. This indicates that once prototypical networks

have sufficient samples for training, incorporating more samples will not change the results

significantly. However, different from the results on UNSW-NB15 and IDS2018, the per-

formance gains on CERT increase when the number of available anomalies in each class

increases. It could be because three samples are not sufficient to train prototypical networks

for insider threat detection due to its difficulty. As a result, the weakly-labeled samples are

full of noise, and no correctly labeled samples are available for re-training. Meanwhile, we

can observe that FADScr always achieves positive gains over ProtoNet.

(a) AUC-PR (b) AUC-ROC (c) Macro F1 score

Fig. 4.9: Performance of FADScr with various anomaly ratios in the unlabeled set.

Performance of FADScr with Various Anomaly Ratios in the Unlabeled Dataset.

For the UNSW-NB15 and IDS2018 datasets, we set the ratio of anomalies in the unlabeled

dataset U as 0.1 by default. We further tune this ratio to check the performance change of

FADScr. Note that because of limited labeled anomalies, we do not conduct this experiment

on CERT. Figure 4.9 shows the results of different ratios of anomalies in U from 0.01 to

0.2. First, we can observe that with more anomalies in U , the performance of FADScr on

anomaly detection and classification keeps improving. Especially, for the IDS2018 dataset,

in terms of AUC-PR and macro F1 score, the performance of FADScr keeps improving with

more anomalies in the unlabeled dataset. For the UNSW-NB15 dataset, the performance

of FADScr is improved when the ratios of anomalies increase from 0.01 to 0.1 and then

keeps stable even including more anomalies in the unlabeled dataset. This could be because

80

for the UNSW-NB15 dataset, the 10% of anomalies already cover the majority of anomaly

types, and adding more anomalies in the unlabeled dataset can only reduce the standard

deviation.

Table 4.9: Impact of each reward component

AUC-PR AUC-ROC Macro F1

rd
UNSW-NB15 0.9050± 0.0182 0.9585± 0.0053 0.5587± 0.0293

IDS2018 0.6714± 0.0269 0.9237± 0.0140 0.7873± 0.0241
CERT 0.2432± 0.0379 0.7111± 0.0336 0.4685± 0.0540

rc
UNSW-NB15 0.9002± 0.0259 0.9574± 0.0078 0.5622± 0.0235

IDS2018 0.6656± 0.0325 0.9216± 0.0150 0.7901± 0.0282
CERT 0.2382± 0.0338 0.6978± 0.0369 0.4707± 0.0409

rh
UNSW-NB15 0.9025± 0.0169 0.9578± 0.0049 0.5612± 0.0270

IDS2018 0.6651± 0.0355 0.9161± 0.0233 0.7874± 0.0309
CERT 0.2456± 0.0390 0.7042± 0.0446 0.4712± 0.0414

Combine
UNSW-NB15 0.9249± 0.0206 0.9783± 0.0066 0.5825± 0.0288

IDS2018 0.7121± 0.0592 0.9299± 0.0219 0.8046± 0.0403
CERT 0.2531± 0.0397 0.7406± 0.0357 0.5338± 0.0388

Ablation Study on Reward Components. The reward function defined in Equation

4.9 consists of three parts, rewards for anomaly classification and detection as well as the

improvement on hard samples. In this experiment, we check the performance of FADScr

if we keep only one reward component. Table 4.9 indicates that incorporating all three

reward components can improve performance compared with the model with only one reward

component. Meanwhile, FADScr with one reward component (shown in Table 4.9) already

achieves better performance than ProtoNet (shown in Table 4.8).

(a) UNSW-NB15 (b) IDS2018 (c) CERT

Fig. 4.10: Accuracy of the data selection agent

81

Accuracy of the Reinforced Data Selection Agent. We further evaluate whether the

reinforced data selection agent is able to select the high-quality samples from the weakly-

labeled datasetW. We calculate the accuracy based on all selected samples when the training

procedure for data selection is finished. Figure 4.10 shows the results, where the blue bar

indicates the accuracy of the FADScr agent while the orange bar indicates the accuracy of

initial prototypical networks. We can notice that the initial prototypical networks cannot

achieve good performance on anomaly classification, which means the weakly-labeled dataset

W consists of a lot of mislabeled samples. However, the samples selected from the agent

have much higher chances to be correct, indicating that the agent is able to identify high

quality weakly-labeled samples from W. Therefore, using the selected samples to augment

the training dataset can improve the performance of the few-shot anomaly detection model.

4.5 Summary

In this chapter, we detail the progression and enhancement of anomaly detection and

classification methodologies through the development of the Few-shot Anomaly Detection

and Classification model with Reinforced Data Selection (FADS), and its subsequent exten-

sion, the Few-shot Anomaly Detection and Classification model through Reinforced Data

Selection with a Combinatorial Reward (FADScr). Our work initially focuses on the FADS

framework, which pioneers the use of a large-scale unlabeled dataset to iteratively refine

a few-shot learning model’s capability for accurately detecting and classifying anomalies.

FADS employs a reinforcement learning-based strategy to select potential anomalies from

the unlabeled dataset, thereby augmenting the training dataset. This process begins with

the training of a prototypical network on a limited set of labeled anomalies, followed by the

application of this network to generate a weakly-labeled dataset from the unlabeled samples.

A key innovation in FADS is the introduction of a reinforcement learning-based data

selection agent, trained to identify and select the most reliable weakly-labeled samples.

These samples are then used to augment the training set, aiming to progressively enhance the

prototypical network’s performance in anomaly detection and classification. This iterative

enhancement process underscores the core methodology of FADS, setting a foundational

82

approach for anomaly detection and classification through few-shot learning.

Building on the principles established by FADS, FADScr introduces a significant ad-

vancement in the form of a combinatorial reward mechanism within the data selection pro-

cess. This extension refines the selection criteria for weakly-labeled samples by evaluating

their contribution not only to the reliability of the training set but also to the reduction

of uncertainty in the model’s predictions. The incorporation of this combinatorial reward

mechanism allows for a more nuanced and effective augmentation of the training set, which

in turn facilitates a more precise and efficient anomaly detection and classification by the

prototypical network.

Our experimental results demonstrate the effectiveness of both frameworks, highlighting

the superior performance of FADScr as an extension of FADS in the realm of few-shot

anomaly detection and classification. Looking forward, we aim to expand the capabilities

of these models by exploring the reinforcement learning framework’s potential to detect and

classify new, previously unidentified classes of anomalies. This future direction promises to

further enhance the adaptability and precision of few-shot learning models in navigating the

complexities of real-world datasets. The early version of this work is published at ICDM

2022 [119].

83

CHAPTER 5

INTERPRETABLESAD: INTERPRETABLE ANOMALY DETECTION IN

SEQUENTIAL LOG DATA

In this chapter, we propose a novel framework called InterpretableSAD for detecting

anomalous log sequences and identifying anomalous events. The framework employs a neg-

ative sampling algorithm to generate potential anomalous sequences, which enables training

a binary classifier for anomaly detection. Additionally, we introduce Integrated Gradients,

a model interpretation approach, for identifying the events in a sequence that significantly

contribute to the anomalous result, thereby marking them as anomalous events. Most ex-

isting anomaly detection models only achieve the detection of anomalous sequences, but

InterpretableSAD goes further to identify the anomalous events within the anomalous se-

quences. To achieve high performance in anomalous event detection, a novel baseline gener-

ation algorithm is proposed to ensure an appropriate baseline input for feature attributions.

Experimental results show that InterpretableSAD performs better than existing models in

detecting anomalous log sequences and identifying anomalous events with high accuracy.

5.1 Introduction

Anomaly detection in sequential log data, which aims to identify sequences that devi-

ate from the expected behavior or patterns, has received much attention due to its broad

application [48, 51, 56, 82, 92, 93]. For example, online services generate large amounts of

log messages that record states of systems, where the log messages can be modeled as an

event sequence [65]. Because online services are everywhere in our daily life, and a little

jitter of the services could cause severe consequences, such as financial losses, it is crucial to

detect anomalous states in a timely manner to ensure the reliability of the online services

and mitigate the losses.

84

Traditional approaches for sequential anomaly detection are strictly rule-based and de-

pendent on domain knowledge about the patterns of sequences [73]. Although the rule-based

approaches can achieve good performance for specific anomalies, the limitations are still ob-

vious, i.e., it is hard to extend to detect new types of anomalies. Currently, many machine

learning-based approaches are proposed. Considering the lack of anomalous samples, many

unsupervised learning models, such as Principal Component Analysis (PCA) [53], or one

class classification models, such as one-class SVM [55], are used to detect anomalies. In

order to further model the temporal information of sequential data, the state-of-the-art

anomaly detection approaches are mainly based on deep learning models. For example,

DeepLog [48] and LogAnomaly [56] utilize long-short term memory (LSTM) network to

capture normal sequential patterns from normal samples and detect anomalies.

Because the anomalous samples are rare due to the nature of anomalies, most of the ex-

isting approaches are trained in an unsupervised learning manner. These approaches usually

assume the normal samples are concentrated in a hypersphere, while the anomalous samples

are outside the hypersphere [67,80]. However, due to the dynamics of sequential data, such

assumption can be easily violated for sequential anomaly detection. In this work, different

from the existing work, we propose a data augmentation strategy to generate the anoma-

lous samples by negative sampling. Based on negative sampling, we can generate sufficient

anomalous samples to train a binary classification model without making an assumption

about normal data distribution. When the generated samples are large enough to cover the

common anomalous scenarios, the classifier trained on generated anomalous samples can

detect the real anomalies as well.

Furthermore, the existing log anomaly detection approaches can only detect anomalous

log sequences and cannot identify anomalous events in the sequence. Specifically, if a log

sequence is detected as anomalous, there must be one or more events in the sequence that

deviate from the expected patterns. For example, if a system is under attack, the operations

conducted by the attacker are anomalous events in a log sequence. As an online service

system can generate hundreds of logs per second, the capacity of distinguishing anomalous

85

events from normal ones in a sequence is also critical for system administrators to locate

the anomalous operations besides detecting the anomalous sequences. However, detecting

the anomalous events in a sequence faces several challenges. First, because the information

of a single event is very limited, it is hard to identify useful features to represent an event.

Second, an anomalous event could be caused by the broken of correlation among the events.

It means we still need the information of the whole sequence to identify the anomalous

events. To tackle these challenges, we creatively apply an interpretable machine learning

technique, Integrated Gradients (IG) [120], for anomalous event detection. The motivation

is that if a classifier predicts a sequence as anomalous, the model interpretation technique

should be able to identify which part of the input sequence leads to the anomalous outcome.

Then, the events that are responsible for the anomalous result are anomalous events.

In this work, we propose a framework, called InterpretableSAD, for detecting anoma-

lous log sequences as well as anomalous events. Specifically, we propose a negative sampling

algorithm to generate potential anomalous sequences automatically so that we can train a bi-

nary classification model through the observed normal samples and the generated anomalous

samples. We further propose to apply Integrated Gradients for anomalous event detection.

The events in a sequence that significantly contribute to the anomalous result are marked

as anomalous events.

The main contributions of this work are as follows. First, we propose a novel negative

sampling strategy to generate potential anomalous samples based on the observed normal

samples, and then we can train a binary classifier for anomaly detection. While data aug-

mentation techniques are widely used in computer vision and natural language processing

to improve model performance, it is under-exploited in the area of anomaly detection. Sec-

ond, most existing anomaly detection models only achieve the anomalous sequence detection

and cannot identify the anomalous events in the sequence. We novelly apply a model in-

terpretation approach, Integrated Gradients (IG), to achieve anomalous event detection.

Third, because IG relies on an appropriate baseline input for feature attributions, we fur-

ther propose a novel baseline generation algorithm to improve the performance of anomalous

86

event detection. Experimental results show that InterpretableSAD can achieve state-of-the-

art performance on anomalous log sequence detection and further identify the anomalous

events in the anomalous sequences with high accuracy.

5.2 Related Work

Anomaly Detection in Sequential Log Data. Many sequential anomaly detection

approaches have been proposed in recent years. Several traditional anomaly detection ap-

proaches are based on supervised learning, such as logistic regression, decision tree [70],

and Support Vector Machines (SVM) [75]. However, the major limitation of the supervised

approaches is that they require an enormous number of labeled data for training, which

is usually unavailable in anomaly detection scenarios. Hence, the unsupervised learning

approaches have received more attention in the anomaly detection field, such as the dimen-

sionality reduction-based approaches and clustering-based approaches [53, 74]. However,

these approaches cannot capture the order information of sequence data.

In recent years, deep learning based sequential anomaly detection models are proposed

to detect anomalies by checking differences between normal and anomalous patterns [48,56,

92, 121, 122]. Specifically, when anomalous events occur, the pattern of sequences will be

changed as well, and the models can detect the changes and then flag anomalies. Most of the

existing approaches adopt recurrent neural networks to detect anomalous sequences in an

unsupervised manner by modeling the patterns of normal sequences [48, 56]. These models

adopt long-short term memory (LSTM) [123] to predict the next possible events based on

previous events in a sequence. An anomalous sequence will be detected if the actual event

is out of a candidate set of expected normal events. However, the existing cutting edge

unsupervised approaches are only effective on sequence level anomaly detection and unable

to provide detailed information of anomalies on the sub-sequence or event level.

Data Augmentation. Modern machine learning models usually require a large amount of

labeled data for training. Unfortunately it is sometimes hard to achieve in reality due to cost

and time factors. Data augmentation technique is to tackle the scarcity of labeled data issue

by artificially expanding the labeled dataset. Currently, data augmentation is extensively

87

used in image classification and natural language processing [124–126] to generate auxiliary

training data. In practice, data augmentation is conducted by a set of transformation

functions, such as rotation and flip for image data or synonym replacement for text data,

on the existing dataset. The data generated by carefully designed transformation functions

is beneficial to improve the performance of machine learning models.

Negative sampling as a special data augmentation technique is used to generate negative

samples instead of positive ones when the negative samples are not available. Negative

sampling is a key step in various applications, such as training word embeddings, knowledge

graph embeddings, as well as recommender systems [127–130]. Since the main challenge of

anomaly detection is the scarcity of anomalous samples, we propose the negative sampling

strategy in our work to generate the potential abnormal sequences from the normal ones.

Then, we can build a binary classification model to detect anomalies.

Interpretable Machine Learning. Although modern deep learning models have achieved

great success in many applications, non-transparency is still a big issue for deploying highly

complex models in production environments. As a consequence, interpretable machine learn-

ing, which aims at providing human understandable explanations about the decisions made

by the models, has become an active research area [131–138]. Interpretable machine learning

techniques can generally be categorized into two groups: intrinsic interpretability and post-

hoc interpretability. Intrinsic interpretability indicates the models are interpretable due to

simple structures, such as decision tree or linear regression, while the post-hoc interpretabil-

ity implies creating a second model to provide explanations for an existing model [131,132].

The interpretable anomaly detection models are very limited in the literature [137,139].

Research in [139] focuses on detecting the outliers in attributed networks, while research

in [137] also targets the interpretable anomaly detection in sequential data that leverages

the attention mechanism to provide an attention score of each event in a sequence. However,

the proposed model is trained to capture the normal patterns based on LSTM by predicting

the next event given the previous events in a sequence. The attention scores, which are used

for interpretation, are more about the correlation among events in a sequence instead of the

88

Fig. 5.1: Framework of InterpretableSAD

correlation between events and the label (normal or anomalous). In our work, after training

a classification model based on sequences generated by negative sampling, our framework

can model the correlation between events and prediction outcome directly based on the

interpretable machine learning technique.

5.3 InterpretableSAD

Consider a log sequence of discrete events S = {s1, ..., st, ..., sT }, where st ∈ E indicates

the event at the t-th position, and E is a set of unique events. In this work, we aim at

predicting whether a log sequence S is anomalous based on a training dataset D = {Si}Ni=1

that consists of only normal sequences. Meanwhile, for a sequence predicted as anomalous,

we further target to identify anomalous events in the sequence so that the domain users

can get insights about the detection model as well as anomalous sequences. To achieve

the above two goals, in the training phase, assuming that we only have normal samples in

our training dataset, we propose a negative sampling approach to generate the potential

anomalous sequences so that we can train a classification model based on both positive and

negative samples. After training, in the detection phase, once a sequence is predicted as

anomalous by the classifier, we novelly leverage an interpretable machine learning technique

to identify the anomalous events in the sequence. Specifically, we adopt the Integrated

89

Gradients approach, which can explain the relationship between the prediction results and

input features, to identify the anomalous events. Figure 5.1 shows our sequential data

anomaly detection framework.

5.3.1 Data Augmentation via Negative Sampling

In the anomaly detection field, in most cases, we have plenty of normal samples but only

observe a small number of anomalous samples. Hence, most anomaly detection approaches

are based on one-class classification models. Different from the existing studies, in this work,

we propose a data augmentation approach via negative sampling to generate the potential

anomalous log sequences based on the observed normal sequences. Then, we can train a

binary classification model based on two classes of samples.

In order to train an accurate binary classifier, we aim to generate a dataset D∗ with

sufficient anomalous samples that can cover common anomalous scenarios. We consider

two anomalous scenarios for anomalous log sequence generation. First, there are some rare

events in the sequences. For example, if an online system is compromised by an attacker, the

attacker could conduct some uncommon events on the system. Second, some regular events

happen in an unusual context. For example, an attacker aims to evade detection by per-

forming some regular activities, but these activities happen at the wrong time, which means

that these activities are suspicious based on their context. To simulate these two scenarios,

we propose an algorithm (shown in Algorithm 3) to generate the potential anomalous log

sequences.

Given the training set D, in order to consider both the event and its context information,

we generate a set of bigram events, where each bigram is a sub-sequence of two adjacent

events, e.g., (st, st+1), in the sequence S. We then build a bigram event dictionary B, where

the key is the bigram, and the value is the corresponding frequency of the bigram in D. Then,

given a normal sequence S ∈ D, we use it as a template to generate the potential anomalous

sample by randomly replace r number of events in S. Specifically, for a randomly selected

event st, we will replace the event st+1 with another event s∗t+1 so that the bigram (st, s
∗
t+1)

is rare or never observed in the training set D. Due to the scarcity of anomalous events, the

90

bigram with a low frequency is suspicious. Since we replace r events with low-frequency, we

expect that there is a high possibility that the generated sequences are anomalous.

Algorithm 3: Negative Sampling
Input : Training set D, Negative sample size M
Output: Negative sample set D∗

1 Generate a bigram event dictionary B based on D
2 for i = 0 to M do
3 Randomly select S from D
4 ind ← Randomly select r indices of events from S
5 for t in ind do
6 (st, s

∗
t+1)← randomly select or generate a rare or never observed bigram in

B
7 (st, st+1)← (st, s

∗
t+1)

8 S∗ ← S, D∗+ = S∗

9 return D∗

5.3.2 Training a Classification Model

After generating a set of anomalous sequences D∗, we use both D and D∗ to train a

binary classification model f : S → [0, 1]. In particular, we first adopt word2vec [127] to

get representations of events in E by training on the dataset D. After mapping the events

in a sequence to the embedding space, we train a neural network fθ to predict whether a

sequence is normal or anomalous:

ŷ = fθ(S), (5.1)

where ŷ indicates the predicted label. Because we have two classes of samples on hand, we

further adopt the cross-entropy loss to train the neural network. The objective function is

defined as:

L =
∑

j∈D∗∪D
−yj log ŷj − (1− yj) log(1− ŷj). (5.2)

It is worth noting that any neural network, which can model the sequential data, is able to

be used in our framework for anomalous sequence detection.

91

5.3.3 Anomalous Event Detection via Integrated Gradients

After the classification model is trained based on the normal and generated anomalous

sequences, we can deploy the model for detecting the anomalous samples for real. However,

in practice, only detecting the anomalous sequences is far from sufficient. For example,

because online service systems can generate a huge amount of messages per minute, only

identifying anomalous sequences is not sufficient to help the system administrator locate the

anomalous operations from attackers. Hence, we further aim at detecting the anomalous

events in sequences. There are two key challenges in detecting anomalous events. First, an

independent event in a sequence does not contain enough information to support anomaly

detection. Second, whether an event is anomalous also depends on its context. To tackle

these challenges, in this work, instead of designing a traditional detection model built on

the event information, we consider the anomalous event detection in a sequence as a model

interpretation problem. The motivation is that when a classification model predicts a se-

quence as anomalous, the model should detect some anomalous patterns in the sequence.

By leveraging the model interpretation techniques, we can further identify the anomalous

patterns, i.e., anomalous events, in the sequence.

In our framework, we adopt Integrated Gradients (IG) [120] to derive feature attribu-

tions of each sequence. IG is a model interpretable technique that can interpret prediction

results by attributing input features in a human-understandable way for various classifica-

tion tasks, such as image or text classification. For example, in an image or text classification

task, IG can show which pixels or words are responsible for a certain label. In this work, we

leverage IG to identify anomalous events that cause the sequential anomalies.

Formally, given a neural network fθ : S → [0, 1], integrated gradients are attributions of

the prediction at input S relative to a baseline input S′ as a vector Afθ(S, S
′) = (a1, ..., aT),

where at is the contribution of st to the prediction fθ(S). A large positive at indicates

that feature strongly increases the network output fθ, while at close to zero indicates that

the feature did not influence fθ. Hence, we consider the importance scores Afθ(S, S
′) as

anomalous scores to detect the anomalous events.

92

Specifically, in our scenario, let S be a sequence, and S′ be a baseline sequence. The

integrated gradient for the t-th event for sequence S and baseline S′ is defined as follows.

IGt(S) ≡ (st − s′t)×
∫ 1

α=0

∂fθ(S
′ + α× (S − S′))

∂st
dα. (5.3)

The integrated gradients have a property called completeness axiom, which indicates that

the sum of integrated gradients over the whole sequence is the difference between the output

of classification model fθ on the input sequence and its baseline, i.e.,

T∑
t=1

Afθ(St, S
′
t) = fθ(S)− fθ(S′). (5.4)

The completeness axiom of IG ensures that the anomalous score of each event is proportional

to the contribution of making S as an anomaly [120].

As shown in Equation 5.3, IG gets the importance score for each event in S by inte-

grating the gradient for each event from a baseline S′ to the sequence S, where the baseline

is supposed to represent “absence” of features [140]. Hence, finding a reasonable baseline

is an essential step for applying the IG method. For image classification models, the black

image is widely used as a baseline, while the zero-embedding matrix is a common baseline

for the text classification task. However, it is not straightforward to find a single base-

line for anomaly detection on sequential data. Different from the text classification task,

say sentiment analysis, where the key words contributed to the sentiment are usually pos-

itive or negative words, the anomalous events in sequences are related to the context of

the sequences, and no widely accepted criteria can be used to quantify the abnormality.

Therefore, we propose to generate a unique baseline for each sequence. Meanwhile, based

on the completeness axiom shown in Equation 5.4, the sum of importance scores over events

in a sequence is the prediction difference between the original sequence and the baseline.

In order to have a reasonable IG value, the generated baseline is expected to be a positive

sequence so that the sum of importance scores can be in a reasonable scale.

Specifically, to generate the baseline sequence for an anomalous sequence, we first sort

93

Algorithm 4: Baseline Generation
Input : Neural network fθ, Anomalous sample S, Training set D, Replacement

Threshold τ
Output: Baseline S′

1 i = 0
2 while fθ(S) is not normal & i < τ do
3 st ← Select the event in S with the lowest frequency based on D
4 st ← st−1, i+ = 1

5 S′ ← S
6 return S′

the events based on their frequencies in the training set D and then replace the lowest

frequent event st with its preceding event st−1 to generate a new sequence. We evaluate

whether this new sequence is a normal sequence or not by the neural network fθ. If this new

sequence is still predicted as anomalous, we further replace the currently lowest frequent

event with its preceding event until the generated sequence is predicted as normal based on

fθ. We consider the generated sequence as a baseline S′ for the original sequence S to derive

the IG values. The motivation of replacing the low-frequency events with their preceding

events is that a normal sequence should have some sort of integrity at the event level. If

there is a low-frequency event in the sequence, we aim at replacing that event with a normal

event and keep the integrity of the sequence.

Meanwhile, followed by the strategy proposed in [141], we expect the generated baseline

has a short distance to the original sequence in the embedding space. Hence, we set a

maximum replacement number τ as a threshold. Once we place τ events in the original

sequence, we will stop the replacement disregard the predicted label of the current generated

baseline. Algorithm 4 shows the procedure of baseline generation for an anomalous sequence.

It is worth noting that the purpose of the above procedure is to generate baselines instead

of detecting anomalous events. We will show in our experiments that simply labeling the

low-frequency events as anomalous events cannot achieve good performance.

After generating the baseline S′, we can derive the anomalous scores of events in a

sequence S. Based on the definition of IG, if we consider the anomalous sequence as a positive

class, the events with positive scores are anomalous, i.e., making positive contributions to

94

the prediction. Hence, by default, we can set a threshold η = 0 to identify the anomalous

events. Moreover, if we have a small validation set consisting of anomalous sequences with

fine-grained labeled information, we can further leverage the validation set to fine-tune the

detection threshold η to identify an optimal value that can lead to better performance on

anomalous event detection.

5.4 Experiments

5.4.1 Experimental Setup

Datasets

We apply our framework on detecting the anomalous log sequences on the following

three log datasets.

• Hadoop Distributed File System (HDFS) [53]. HDFS dataset is generated by running

Hadoop-based map-reduce jobs on Amazon EC2 nodes and manually labeled through

handcrafted rules to identify anomalies. HDFS dataset consists of 11,172,157 log

messages.

• BlueGene/L Supercomputer System (BGL) [65]. BGL dataset contains 4,747,963 log

messages that are collected from a BlueGeme/L supercomputer system at Lawrence

Livermore National Labs. The log messages can be categorized into alert and not-alert

messages. There are 348,460 alert messages that are labeled as anomalous.

• Thunderbird [65]. Thunderbird dataset is another large-scale system log dataset that

is collected from a Thunderbird supercomputer system at Sandia National Labs. We

select the first 5,000,000 log messages from the original dataset for our experiment.

Both BGL and Thunderbird datasets provide the fine-grained label for each log message,

so we adopt these two datasets to evaluate our framework for anomalous sequence and event

95

detection. The HDFS dataset only has labels in the sequence level, so we only use the HDFS

dataset to evaluate the anomalous sequence detection. All datasets are available online 1.

Log Data Preprocessing. The raw log messages in the three datasets are unstructured

text data. Following the typical preprocessing approach, we first we adopt the log parser,

Drain [62], to extract log keys (string templates) from log messages (shown in Figure 5.2).

Fig. 5.2: Log messages and corresponding log keys

Then, similar to previous studies [57], for BGL and Thunderbird datasets, we adopt a

sliding window to generate appropriate sequences. Especially for our experiment, we define

the sliding window with a window size of 100 and a step size of 20. For HDFS, we group log

keys into log sequences based on the session ID in the log messages. We compose a training

dataset D that consists of 100,000 normal log sequences from each log dataset. Without a

particular note, we generate an anomalous dataset D∗ with 2,000,000 anomalous sequences,

which is 20 times larger than the training dataset from each log dataset. When generating

D∗, the number of replaced log keys r in Algorithm 3 for each sequence is randomly set with

the range from zero to the length of original sequence. The testing dataset consists of both

normal and anomalous sequences. The statistics of test datasets are listed in Table 5.1. The

number in the brackets under the column “# of Unique Log Keys” indicates the number of

unique log keys in the training dataset. Since in this work, we focus on the scenario that the

anomalous events are rare, for BGL and Thunderbird datasets, we only select the anomalous
1https://github.com/logpai/loghub/

https://github.com/logpai/loghub/

96

Table 5.1: Statistics of Test Datasets

Dataset # of Unique
Log Keys

of Log Sequences # of Log Keys in
Anomalous Sequences

Normal Anomalous Normal Anomalous
HDFS 48 (19) 458,223 16,838 N/A N/A
BGL 396 (318) 19,430 4,190 326,491 7,139

Thunderbird 806 (774) 22,538 76,189 6,866,417 479,883

Table 5.2: Results on Anomalous Log Sequence Detection

Method BGL Thunderbird HDFS
Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

PCA 67.91 99.79 80.82 94.83 84.43 89.33 97.77 42.12 58.88
iForest 73.13 38.19 50.17 95.06 17.92 30.15 41.59 58.80 48.72

OCSVM 24.60 100 39.49 87.13 100 93.12 6.68 90.58 12.44
LogCluster 8.03 15.97 10.69 86.56 22.94 36.26 98.37 67.45 80.03
DeepLog 42.39 52.08 46.74 82.42 81.36 81.89 56.98 48.37 52.32

LogAnomaly 42.58 53.17 47.29 81.69 82.11 81.90 55.85 48.03 51.65
InterpretableSAD 94.25 88.47 91.27 97.31 96.42 96.86 92.31 87.04 89.60

sequences with anomalous log keys less than or equal to 10% in the testing sets.

Baselines

We use two sets of baselines to evaluate the performance of InterpretableSAD for anoma-

lous sequence and event detection, respectively. Note that to distinguish the terminology

“baseline” used as a benchmark for experiments and the generated input sequence for the

IG method, in this section, we call the baseline used in IG as “feature attribution baseline”.

Baselines for Anomalous Log Sequence Detection

• Principal Component Analysis (PCA) [53]. PCA builds a counting matrix based on the

frequency of log keys and then map the original counting matrix into a low dimensional

space. PCA-based anomaly detection can efficiently detect extreme values.

• One-Class SVM (OCSVM) [67]. One-Class SVM is a one-class classification model

that can detect anomalies based on the observed normal samples.

• Isolation Forest (iForest) [54]. Isolation forest is a tree-based anomaly detection

method. It constructs trees based on the features in normal samples and captures

the anomalies that deviate from normal samples.

97

• LogCluster [74]. LogCluster is a clustering-based one-class approach, which groups

normal samples into clusters and detects the anomalies based on distances to the

clusters.

• DeepLog [48]. DeepLog is a deep learning-based log anomaly detection approach.

DeepLog utilizes LSTM to model the patterns of normal log sequences by training on

a normal dataset and detects the anomalous sequences based on the log key prediction.

If DeepLog cannot correctly predict the next log key in a sequence, the sequence will

be labeled as anomalous.

• LogAnomaly [56]. LogAnomaly is another deep learning approach for anomaly detec-

tion. It combines sequential and quantitative patterns to discover the anomalous log

sequences. Similarly to DeepLog, the anomalous sequence is detected based on whether

the LSTM model, which is trained on the normal samples, can correctly predict the

next log key.

Baselines for Anomalous Event Detection

• Anchors [133]. Anchors is a model-agnostic algorithm for interpretation of any black-

box classification model. Anchors discovers a decision rule (anchors) for each input

sample, and identified anchors contain essential parts of the input that determine the

prediction. To conduct a fair comparison for anomalous event detection, we adopt our

neural network model fθ trained based on normal and generated anomalous samples

as the black-box classification model.

• Low-Freq. The baseline for deriving the integrated gradients of each anomalous se-

quence is generated by replacing the low frequency events with high frequency events

in the context. We further evaluate the performance of only considering the low fre-

quency events in the sequences as anomalous events.

98

• Integrated Gradients (IG). We also evaluate the performance of IG without using our

feature attribution baseline generation algorithm (shown in Algorithm 4) for anoma-

lous event detection. We adopt the zero embedding matrix as the feature attribution

baseline, which is widely used in text classification tasks.

Evaluation Metrics

We consider the anomalous class as the target class and adopt Precision, Recall, and

F1 score to measure the performance of our framework.

Implementation Details

Regarding baselines, we leverage the package Loglizer [70] to evaluate PCA, OCSVM,

iForest as well as LogCluster, and adopt the open source deep learning-based log analysis

toolkit LogDeep to evaluate DeepLog and LogAnomaly 2. We use the open source repository

of Anchor to evaluate its performance on anomalous event detection 3.

Regarding our model, We adopt the long short-term memory (LSTM) network as the

neural network model fθ for anomaly detection. For BGL and Thunderbird datasets, the

embedding size of log keys is 8, while for the HDFS dataset, the embedding size is 4 due

to the small number of unique log keys (19 in the training set). Regarding the LSTM

structures, we set different hyper-parameters on the basis of the characteristics of each

dataset. For the BGL dataset, we use a single-direction LSTM with the hidden size of 128;

for the Thunderbird dataset, we use a bidirectional LSTM with the hidden size of 256; for

the HDFS dataset, we use a single-direction LSTM with the hidden size of 64. The number

of training epochs is set as 10 for all datasets. Our code is available online 4.

5.4.2 Experimental Results on Anomalous Log Sequence Detection

Table 5.2 shows the performance of our model as well as baselines for anomalous se-

quence detection on three datasets. On the BGL dataset, only PCA can achieve reason-
2https://github.com/donglee-afar/logdeep
3https://github.com/marcotcr/anchor
4https://github.com/hanxiao0607/InterpretableSAD

https://github.com/donglee-afar/logdeep
https://github.com/marcotcr/anchor
https://github.com/hanxiao0607/InterpretableSAD

99

able performance, while all other baselines have poor F-1 scores. PCA can achieve an

extremely high recall value, but cannot find a good balance between precision and recall

on the anomalous sequence detection. On the Thunderbird dataset, all the baselines can

achieve reasonable values in terms of precision, while the iForest and LogCluster fail to gain

an acceptable performance on recall values. It means that they can only detect a small

number of anomalous sequences. On the HDFS dataset, most baselines cannot achieve

good performance. Meanwhile, surprisingly, on all three datasets, the deep learning-based

approaches, DeepLog and LogAnomaly, cannot achieve remarkable performance even com-

pared with the traditional anomaly detection models, like PCA. This could be because for

BGL and Thunderbird, we focus on a more challenging scenario that aims at detecting the

anomalous log sequences with small ratios of anomalous log keys (less than 10%). When

only having a small number of anomalous events in a log sequence, the anomalous signal

is not strong enough to make the models label it as anomalous. For the HDFS dataset,

we generate the log sequences based on session IDs, which leads to long sequences, while

DeepLog and LogAnomaly detect anomalous sequences based on the prediction accuracy of

the last log keys, which is insufficient for long sequences. On the other hand, Interpretable-

SAD achieves the best performance in terms of F-1 scores on all three datasets. It means

that the negative samples generated based on the Algorithm 3 represent the true anomalous

log sequences in real datasets. Meanwhile, the good performance also show that once we can

generate appropriate negative samples, a classification model that is trained on two classes

of log sequences can achieve better performance compared with one-class models.

(a) BGL (b) Thunderbird (c) HDFS

Fig. 5.3: Impact of the negative sampling ratio on the anomalous sequence detection

Sensitivity analysis on the size of generated anomalous sequences. In our work,

100

(a) BGL (b) Thunderbird (c) HDFS

Fig. 5.4: Visualization of the normal, anomalous, and generated anomalous sequences.

because we adopt negative sampling to generate potential anomalous sequences, technically,

we can generate an infinite number of anomalous sequences. We further investigate the im-

pact of generated anomalous sample size on anomaly detection performance. In particular,

we generate six anomalous datasets with different sizes, where the ratios of generated anoma-

lous datasets |D∗| to the training dataset |D| are 0.5, 1, 5, 10, 15, 20, respectively. Figure 5.3

shows the performance of anomaly detection on three datasets by training on different sizes

of datasets. We have the following observations. First, for all the datasets, the precision val-

ues are high for different training sizes. Second, for the BGL and Thunderbird datasets, the

recall values almost keep increasing along with the increase of sizes of anomalous datasets.

For example, for the BGL dataset (shown in Figure 5.3a), the best performance is achieved

when the size of generated anomalous dataset is 15 times larger than the training dataset,

while for the Thunderbird dataset (shown in Figure 5.3b), a good performance is achieved

only when the anomalous dataset is 20 times larger than the training dataset. It indicates

that after training on a set of generated anomalous samples, the classification model can

always detect some anomalies based on the observed samples. Hence, the precision values

are high even with a small set of anomalous samples. It also shows the effectiveness of

the negative sampling algorithm. However, in order to detect more anomalies (increasing

recall), we need to generate more anomalous samples to cover various anomalous scenarios.

Once we have sufficient anomalous samples to train the classification model, we can get good

recall values as well as the F-1 scores. For HDFS, we notice that the overall performance

keeps stable over different sizes of anomalies. This is because HDFS only has 19 unique log

101

keys in the training set, which means the search space is relatively small. Comparing with

BGL and Thunderbird, which have 318 and 774 unique log keys, respectively, the number

of potential anomalous scenarios in HDFS is much smaller. As a consequence, generating

50,000 anomalies is sufficient enough to cover most of the anomalous scenarios.

Visualization. We consider the last hidden state in the LSTM model as the sequence

representation and adopt the t-SNE algorithm [142] to map the sequence representations

into a two-dimensional space. For each dataset, we randomly select 1000 normal, anomalous,

and generated samples, separately. As shown in Figure 5.4, for all datasets, the generated

samples via negative sampling can cover the space of real anomalous samples. Especially,

for BGL and HDFS datasets (Figures 5.4a and 5.4c), the points of generated anomalous

samples and true anomalous samples are highly overlapped, while the majority of normal

samples are outside the regions of anomalous samples. For the Thunderbird dataset (Figure

5.4b), the generated samples and abnormal samples are on left side of the space, while the

normal samples are on the right side. Based on the visualization results, it is straightforward

to notice that the LSTM model trained on the normal sequences and generated anomalous

sequences can detect the real anomalous sequences for all three datasets.

5.4.3 Experimental Results on Anomalous Event Detection

Table 5.3: Results on Anomalous Event Detection

Method BGL Thunderbird
Precision Recall F-1 score Precision Recall F-1 score

Anchors 0.31 8.56 0.60 4.58 14.62 6.98
Low-Freq 38.76 93.59 54.82 52.61 99.00 68.70

IG w/o val 6.56 90.27 12.23 10.36 85.65 18.49
IG w/ val 42.43 73.83 53.89 20.92 44.48 28.45

InterpretableSAD
w/o val 50.87 89.23 64.80 94.98 86.79 90.70

InterpretableSAD
w/ val 68.92 82.53 75.11 93.84 98.31 96.02

We then study the performance of InterpretableSAD on anomalous event detection.

102

When evaluating InterpretableSAD and IG with the zero embedding matrix as the feature

attribution baseline, we consider two scenarios, with or without a validation set consisting of

10% anomalous sequences in the testing datasets to tune a detection threshold η. Recall that

we only consider the events with anomalous scores greater than η are anomalous. The default

value of η is 0 without tuning on a validation set. As shown in Table 5.3, InterpretableSAD

with a validation set achieves the best performance for anomalous event detection on both

datasets. Meanwhile, even we use the default threshold η = 0 to detect the anomalous events,

the performance is still good. The performance of IG with the zero embedding matrix as

feature attribution baseline is poor, even we use a validation set to tune η. It indicates

the importance of designing a good feature attribution baseline for the IG model, and the

zero embedding matrix that is widely used as the feature attribution baseline in interpreting

text classification models is not suitable for sequential anomaly detection. Moreover, we

notice that simply labeling low frequent events as anomalous cannot achieve good results in

terms of precision and F-1 score, even though the recall values are high on both datasets. It

indicates that anomalous events are usually low frequent in the training dataset, but many

normal events could also have low frequent, which will lead to low precision. It is hard

to balance the precision and recall simply based on the frequency of events. For Anchors,

it cannot achieve reasonable performance on both datasets. This could be because long

sequences have huge search spaces to locate the anchors.

Sensitivity analysis on the distances between sequences and the feature attri-

bution baselines. The performance of Integrated Gradients heavily relies on the feature

attribution baselines. When we generate the feature attribution baselines, we expect the

baseline has a short distance to the original sequence. To further show the impact of base-

lines on anomalous event detection, we consider the anomalous event detection results into

two categories, low error and high error. If InterpretableSAD correctly detects at least 80%

of anomalous events in an anomalous sequence, we consider the prediction result as low error;

otherwise, we consider the prediction result as high error. Then, we explore the correlation

between the performance of anomalous event detection and the distances from sequences to

103

(a) BGL (b) Thunderbird

Fig. 5.5: The correlation between the performance of anomalous event detection and the
distances from sequences to corresponding baselines. Low error indicates given an anomalous
sequence, InterpretableSAD correctly detect at least 80% of anomalous events.

corresponding feature attribution baselines. The distance is the L2 distance between the

embedding matrices of the original sequence and baseline sequence. As shown in Figure

5.5, for both datasets, if baseline sequences have small distances to the original anomalous

sequences, in most cases, we can achieve low error for anomalous event detection. For ex-

ample, because we achieve a high F-1 score (96.02%) on the Thunderbird dataset, most

sequences have small distances to the corresponding feature attribution baselines (shown

in Figure 5.5b), while only a few sequences have large distances to the baselines. Similar

observations on Figure 5.5a, the majority of sequences with high errors have larger distances

to the feature attribution baselines. Hence, based on Figure 5.5, we have two findings. First,

IG is sensitive to the feature attribution baselines, so choosing a good baseline is critical for

anomalous event detection. Second, in practice, a good feature attribution baseline should

meet the following requirements: 1) the feature attribution baseline can be predicted as nor-

mal sequence; 2) the distance from the original sequence to the feature attribution baseline

should be small.

Case Study. For the HDFS dataset, we do not have the fine-grained event labels. We apply

the case study to show the effectiveness of InterpretableSAD on anomalous event detection.

Figure 5.6 shows an example of the model prediction on an anomalous sequence in the

104

Fig. 5.6: An anomalous sequence in the HDFS dataset and the corresponding anomalous
scores

HDFS dataset. The model predicts a sequence (session ID: “blk_-4364732810285057372”)

with 22 events as anomalous. Besides detecting the anomalous sequence, InterpretableSAD

further derives the anomalous score for each event in the sequence. Specifically, this log

sequence records a set of operations about failing to create a block. We notice that the

event “0567184d” has a high anomalous score (1.73), which means it is responsible for the

anomalous prediction outcome. “0567184d” indicates receiving an empty packet for the

block. Based on the highlighted event “0567184d”, we can understand that the failure of

creating a block is caused by receiving empty packets for the block several times. Meanwhile,

for all other operations in this sequence, such as block allocation, adding the block to an

invalid set, and block deletion, InterpretableSAD assigns negative scores, which means these

operations are common in a block creating procedure and not anomalous. Based on this

case study, we show that according to the derived anomalous scores, system administrators

can quickly locate the exactly anomalous events without manually examining each event

in a sequence. This improvement can further help the system administrators to effectively

mitigate the system failure.

105

5.5 Summary

In this work, we have developed InterpretableSAD for anomalous log sequence and more

fine-grained anomalous log event detection. Considering the rare of anomalous samples, In-

terpretableSAD leverages the data augmentation strategy to generate anomalous samples

by proposing a novel negative sampling algorithm. Then, a binary classification model can

be trained on observed normal and generated anomalous sequences. A well-trained classifier

is able to detect the real anomalous sequences. Since an anomalous log sequence usually

consists of a large number of events, only detecting anomalous sequences is not sufficient

to help domain experts locate the exact anomalies. InterpretableSAD further applies an

interpretable machine learning technique, Integrated Gradients (IG), to detect the potential

anomalous events in sequences. IG is able to show the importance of each feature to the

prediction outcome of the classifier. We consider the importance scores derived from IG as

anomalous scores to detect anomalous events. To apply IG for anomalous event detection,

we propose a novel feature attribution baseline generation algorithm because a good base-

line is critical for IG to derive reasonable scores of events. Experimental results on three log

datasets show that our model can achieve state-of-the-art performance on the anomalous

sequence and event detection. In the future, we plan to study how to efficiently generate

negative samples so that a small ratio of generated samples can still cover the majority

anomalous scenarios and also explore the baseline generation algorithms for anomaly detec-

tion with theoretical guarantees. Another direction of future work is to study an intrinsically

interpretable model that is able to detect anomalous sequences and events in an end-to-end

manner. The early version of this work is published at IEEE Big Data 2021 [143].

106

CHAPTER 6

ALGORITHMIC RECOURSE FOR ANOMALY DETECTION IN MULTIVARIATE

TIME SERIES

In this chapter, we introduce RecAD, a novel framework for algorithmic recourse in

time series anomaly detection. This work addresses the critical need for not just detect-

ing anomalies in multivariate time series, which often indicate significant events like system

faults or external attacks, but also recommending effective mitigation actions. RecAD lever-

ages Unsupervised Anomaly Detection (USAD) and a counterfactual reasoning process to

recommend minimal-cost actions that correct abnormalities. The framework accounts for

the downstream impact of interventions, ensuring that the normality is maintained in sub-

sequent time steps. Experimental results on synthetic and real-world datasets demonstrate

RecAD’s effectiveness in not only detecting anomalies but also in suggesting actionable

recourse to restore normalcy.

6.1 Introduction

Multivariate time series is a collection of observations that are recorded chronologically

and have correlations in time. Due to the ubiquitous of multivariate time series, anomaly

detection in time series data has received a large number of studies [144] and has a wide

spectrum of applications, such as detecting abnormal behaviors in online services [145,146].

Algorithmic recourse is to provide recommendations to flip unfavorable outcomes by

automated decision-making systems with minimum cost [147]. For example, if a loan appli-

cation is denied by a system, algorithmic recourse is to figure out how to flip the decision

(loan approved) with minimum cost. In the area of time series anomaly detection, after

receiving an alert about a potential abnormal behavior detected by an anomaly detection

model, algorithmic recourse is to predict recourse actions to fix such abnormal behavior.

For example, Figure 6.1 presents the usage of two control nodes, nodes 117 and 124,

107

Fig. 6.1: Recourse recommendations for flipping an abnormal status of a distribution system
to a normal status.

in an OpenStack testbed [148]. Each node’s performance includes the CPU time spent on

running the user’s programs and memory usage. When an anomaly detection model triggers

an anomaly alert (the red area in the top figure), a recourse action, which aims to flip the

abnormal behavior, is recommended to free up memory usage on node 124. After taking the

recourse action (the green area in the bottom figure), the system returns to normal (dashed

lines in the bottom figure). Therefore, if there is abnormal behavior in a distributed system

detected by an anomaly detection model, algorithmic recourse can help the domain expert

quickly fix the issue with minimum cost.

In this work, we aim to recommend recourse actions to flip abnormal outcomes predicted

by an anomaly detection model. The key challenge to recommending proper actions is that

due to the nature of multivariate time series, any recourse actions on the current time step

has a downstream impact governed by causal relationships. Therefore, the recourse actions

in an abnormal time step should not only fix the current step but also ensure the normality

in the following time steps.

We propose a framework for algorithmic Recourse in time series Anomaly Detection

(RecAD), which is able to recommend recourse actions to flip the abnormal outcome. We

first leverage UnSupervised Anomaly Detection for multivariate time series (USAD) [149] as

the base anomaly detection model, which detects the abnormal time step based on the recon-

struction error of an autoencoder model. Once an abnormal time step is detected, RecAD

108

can predict recourse actions to flip the abnormal outcomes by minimizing the reconstruction

error of the abnormal time step. More importantly, due to the interdependence of multivari-

ate time series, the recourse actions on the abnormal time step have downstream impacts

and make the following time series unobservable in the counterfactual world. To quantify

the downstream impact, RecAD derives the counterfactual time series after recourse based

on the Abduction-Action-Prediction process [150] governed by the causal relationships in

the multivariate time series. Then, the training objective of RecAD is to ensure after ap-

plying the recourse actions, the current and the downstream counterfactual time series are

predicted as normal.

The contribution of this work can be summarized as follows. 1) We propose a novel

framework for algorithmic recourse in time series anomaly detection, called RecAD. To the

best of our knowledge, this is the first work on this topic. 2) RecAD considers the down-

stream impact of the intervention on the abnormal time step by deriving the counterfactual

time series after the intervention. The goal is to ensure the following time series after inter-

vention should also be normal. 3) The empirical studies on two synthetic and one real-world

datasets show the effectiveness of RecAD for recommending recourse in time series anomaly

detection.

6.2 Related Work

6.2.1 Time Series Anomaly Detection

A time series anomaly is defined as a sequence of data points that deviates from frequent

patterns in the time series [151]. Recently, a large number of deep learning-based approaches

have been developed for time series anomaly detection [144, 151]. Most of the approaches

are trained in the semi-supervised setting, which assumes the availability of normal time

series. Then, in the test phase, the anomaly detection model can mark anomalies that

are different from normal behavior measured by an anomaly score. In this work, given a

detected abnormal time series, we would further like to recommend recourse actions to flip

the abnormal outcome.

109

6.2.2 Algorithmic Recourse

Algorithmic recourse is to provide explanations and recommendations to flip unfavorable

outcomes by an automated decision-making system [147]. Specifically, given a predictive

model and a sample having an unfavorable prediction from the model, algorithmic recourse

is to identify the minimal consequential recommendation that leads to a favorable prediction

from the model. The key challenge of identifying the minimal consequential recommendation

is to consider the causal relationships governing the data. Any recommended actions on a

sample should be carried out via structural interventions leading to a counterfactual instance.

Multiple algorithmic recourse algorithms on binary classification models have developed

[152–159]. Recently, algorithmic recourse for anomaly detection on tabular data is also

discussed [160]. However, the existing study also does not consider causal relationships

when generating counterfactuals. In this work, we focus on addressing the algorithmic

recourse for anomaly detection in multivariate time series with the consideration of causal

relationships.

6.3 Preliminary

6.3.1 Granger Causality

Granger causality [161,162] is commonly used for modeling causal relationships in mul-

tivariate time series. The key assumption is that if the prediction of the future value Y can

be improved by knowing past elements of X, then X “Granger causes” Y . Let a station-

ary time-series as X = (x1, . . . ,xt, . . . ,xT), where xt ∈ Rd is a d-dimensional vector (e.g.,

d-dimensional time series data from d sensors) at a specific time t. Suppose that the true

data generation mechanism is defined in the form of

x
(j)
t := f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) + u

(j)
t , for 1 ≤ j ≤ d, (6.1)

where x
(j)
≤t−1 = [· · · , x(j)t−2, x

(j)
t−1] denotes the present and past of series j; u(j)t indicates

exogenous variable of time series j at time step t; F = {f (1), ..., f (d)} is a set of nonlin-

110

ear functions, and f (j)(·) ∈ F is a nonlinear function for time series j that captures how

the past values impact the future values of x(j). Then, the time series i Granger causes

j, if f (j) depends on x
(i)
≤t−1, i.e., ∃x′(i)

≤t−1 ̸= x
(i)
≤t−1 : f (j)(x

(1)
≤t−1, · · · ,x′(i)

≤t−1, · · · ,x
(d)
≤t−1)

̸= f (j)(x
(1)
≤t−1, · · · ,x

(i)
≤t−1, · · · ,x

(d)
≤t−1).

6.3.2 Generalised Vector Autoregression (GVAR)

Granger causal inference has been extensively studied [163–166]. Recently, a generalized

vector autoregression (GVAR) is developed to model nonlinear Granger causality in time

series by leveraging neural networks [165]. GVAR models the Granger causality of the t-th

time step given the past K lags by

xt =
K∑
k=1

gk(xt−k)xt−k + ut, (6.2)

where gk(·) : Rd → Rd×d is a feedforward neural network predicting a coefficient matrix

at time step t − k; ut is the exogenous variable for time step t. The element (i, j) of

the coefficient matrix from gk(xt−k) indicates the influence of x(j)t−k on x
(i)
t . Meanwhile, K

neural networks are used to predict xt. Therefore, relationships between d variables over K

time lags can be explored by inspecting K coefficient matrices. The K neural networks are

trained by the objective function: L = 1
T−K

∑T
t=K+1 ∥xt − x̂t∥2 + λ

T−K
∑T

t=K+1R(Mt) +

γ
T−K−1

∑T−1
t=K+1 ∥Mt+1 − Mt∥2, where x̂t =

∑K
k=1 gk(xt−k)xt−k indicates the predicted

value GVAR;Mt := [gK(xt−K) : gK−1(xt−K+1) : · · · : g1(xt−1)] indicates the concatenation

of generalized coefficient matrices over the past the K time steps; R(·) is the penalty term

for sparsity, such as L1 or L2 norm; the third term is a smooothness penalty; λ and γ are

hyperparameters. After training, the generalized coefficient predicted by gk(xt−k) indicates

the causal relationships between time series at the time lag k.

6.4 RecAD

In this work, we aim to achieve algorithmic recourse for anomaly detection in multivari-

ate time series. To this end, UnSupervised Anomaly Detection for multivariate time series

111

Fig. 6.2: Algorithmic Recourse on Multivariate Time Series

(USAD) [149] is adopted as a base anomaly detection model. After detecting the abnormal

time steps, we propose to recommend recourse actions to flip the abnormal outcome, where

the action values can fix the abnormal behavior with the minimum cost. Because the vari-

ables in a time series have causal connections through time, when recommending actions,

we should consider the downstream impact on other variables. Therefore, we develop a

framework for algorithmic Recourse in time series Anomaly Detection (RecAD), which is

able to predict the recourse actions that fix the abnormal time series.

Anomaly in multivariate time series. Based on the structural equation of multivariate

time series, we propose to describe the anomaly from the perspective of causal relationships

in multivariate time series:

x
(j)
t := f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) + u

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ d. (6.3)

The anomaly term ϵ
(j)
t can be due to either an external intervention or a structural interven-

tion. The external intervention (i.e., non-causal anomaly) indicates a significantly deviat-

ing value in its exogenous variable ũ(j)t and can be defined as: x(j)t = f (j)(x
(1)
≤t−1, · · · ,x

(d)
≤t−1)+

ũ
(j)
t = f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1)+u

(j)
t +ϵ

(j)
t , for 1 ≤ j ≤ d, where ũ(j)t = u

(j)
t +ϵ

(j)
t . The struc-

112

tural intervention (i.e., causal anomaly) indicates the replacement of the structural func-

tions F with abnormal functions F̃ and can be defined as: x(j)t = f̃ (j)(x
(1)
≤t−1, · · · ,x

(d)
≤t−1) +

u
(j)
t = f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1)+u

(j)
t +ϵ

(j)
t , for 1 ≤ j ≤ d, where f̃ (j)(x(1)

≤t−1, · · · ,x
(d)
≤t−1) is an

abnormal function for the time series j at time t. The anomaly term caused by the change

of causal relationships is given by ϵ
(j)
t = f̃ (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) − f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1)

which is time-dependent.

Equation (6.3) also follows the intuitive definition of an anomaly as an observation that

deviates from some concepts of normality [167,168]. Here, normality indicates the structural

equation without the anomaly term ϵ
(j)
t .

6.4.1 Problem Formulation

Denote a multivariate time series as X = (x1, . . . ,xt, . . . ,xT), where each time step

xt ∈ Rd indicates an observation measured at time step t. Following the common setting for

time series anomaly detection [149,169], given a time series X , to model the local dependence

between a time step xt and past lags, we first define a local window with length K as

Wt = (xt−K+1, ...,xt) and convert a time series X to a sequence of sliding windows W =

(WK ,WK+1, ...,WT). The multivariate time series anomaly detection approaches aim to

label whether a time step xt is abnormal based on a score function s(·) given the time

window Wt. If s(Wt) > τ , then the last time step xt will be labeled as abnormal.

When a sliding window Wt is detected as abnormal, we would like to recommend

recourse actions θt on the actionable variables at the time step xt to reverse the abnormal

outcome. Meanwhile, as the time steps keep coming in, if the following sliding window is

still abnormal, we would keep recommending recourse actions until the time series is normal.

As shown in Figure 6.2, in the training phase, once we intervene in a time step xt, the

following time series is in the counterfactual world as the intervention has the downstream

impact, which is unobservable. To properly train the model for action recommendations, the

key is to derive the counterfactual time series, denoted as WCF
t+1 = (x2, ...,xt+θt,xt+1(θt)),

where xt+1(θt) indicates the counterfactual time step t+1 after conducting intervention on

xt. If WCF
t+1 is still detected as abnormal, further recourse actions will be recommended on

113

the counterfactual data xt+1(θt).

6.4.2 Anomaly Detection for Time Series

In this work, we adopt UnSupervised Anomaly Detection for multivariate time se-

ries (USAD) [149] which is a state-of-the-art autoencoder-based anomaly detection model.

USAD consists of two autoencoders, i.e., AE1 and AE2, with a shared encoder and two inde-

pendent decoders, and derives the anomaly score function s(·) based on the reconstruction er-

rors of two autoencoders. In the training phase, given a set of normal sliding windows, USAD

combines traditional reconstruction-based training with adversarial training to capture the

normal patterns of time series. Specifically, reconstruction-based training will let both au-

toencoders learn how to reproduce the input window W, i.e., LAE∗ = ∥W − AE∗(W)∥2,

where AE∗ indicates either AE1 or AE2. The goal of adversarial training is for AE1 to de-

ceive AE2, while AE2 learns to distinguish between real data and reconstructed data from

AE1, i.e., LAD = min
AE1

max
AE2

∥W −AE2(AE1(W))∥2.

After training, the anomaly score of a new window W∗ is then calculated using the

combination of reconstruction errors of two autoencoders,

s(W∗)=α∥W −AE1(W
∗)∥2+β∥W∗−AE2(AE1(W

∗))∥2, (6.4)

where α and β are hyperparameters.

6.4.3 Algorithmic Recourse

When a sliding window Wt is detected as abnormal, we then recommend recourse

actions on xt with the consideration of downstream impacts.

114

Recourse on the abnormal time step

Given an abnormal point xt and the previousK−1 time lags in Wt = (xt−K+1, . . . ,xt−1,xt),

we formulate the recourse on xt as soft intervention,

xt(θt) = xt + θt, (6.5)

where θt is the action values on xt derived by a function, i.e., θt = hϕ(·) parameterized by

ϕ.

In order to successfully flip the abnormal outcomes, we consider two types of information

for recourse prediction via hϕ(·), time lag exclusion term ∆t and the past window Wt−1.

As shown in Equation (6.3), the anomaly in multivariate time series is due to an additional

anomaly term. Therefore, we derive the time lag independent term ∆t at time t as ∆t =

xt − x̂t, where x̂t is the expected values given Wt−1 derived by GVAR. As GVAR can

simulate the nonlinear multivariate GC functions F , ∆t contains only independent noise

term and anomaly term at time t.

Let θt = hϕ(Wt−1,∆t) be the function for predicting the recourse action given the

previous K time lags Wt−1 and ∆t at time step t parameterized by ϕ, which is defined

below:

zt−1 = LSTM(Wt−1) z∆ = FFNN(∆t)

θt = FFNN(zt−1 ⊕ z∆),

(6.6)

where LSTM(·) is the long short-term memory (LSTM) neural network; FFNN(·) is a

feedforward neural network; and ⊕ indicates the vector concatenation operation. In a nut-

shell, to predict the recourse action, first, we adopt LSTM that takes the past K time lags

Wt−1 as input and derives a hidden representation zt−1 of the last time step to represent

Wt−1. Similarly, we adopt a feedforward neural network that takes ∆t as input to derive the

hidden representation z∆. Finally, we use another feedforward neural network for recourse

prediction by concatenating zt−1 and z∆ as input.

115

By applying the action θt on xt, the counterfactual time step can be computed as

xt(θt) = xt + θt. The counterfactual window Wt(θt) is derived by replacing xt with xt(θt)

in Wt. To train the recourse prediction functions, the objective function is defined as:

Lt(ϕ) = max {s(Wt(θt))− ατ, 0}+ λ∥c · θt∥2, (6.7)

where s(Wt(θt)) indicates the anomaly score defined in Equation (6.4); λ is a hyperparam-

eter balancing the action values on the anomaly and the flipping of abnormal outcome, α

is another hyperparameter controlling how close the anomaly score of the counterfactual

sample should be to the threshold τ , c ∈ Rd is a hyperparameter, describing the costs of

revising time series (cost vector). Because in USAD, the anomaly is labeled due to a large

reconstruction error on the input sample, the first term in the objective function is to en-

sure the counterfactual variant has a small reconstruction error. The second term, as a

regularization term, ensures the minimum action cost on the original values.

Inferring the downstream impact. Based on the assumption of Granger causality, the

recourse on xt leads to the counterfactual variants of the following time steps xt′(θt), where

t′ ≥ t.

To evaluate the impact of the intervention, assuming that xt(θt),xt+1(θt), . . . ,xt′(θt) is

known, where t′ ≥ t, we further derive the counterfactual quantity of the next step xt′+1 by

the Abduction-Action-Prediction (AAP) process [150]: 1) Abduction: update the probabil-

ity P (u(i)t′+1) to obtain P (u(i)t′+1|e), where u indicates the exogenous variables and e indicates

propositional evidence; 2) Action: variables are intervened to reflect the counterfactual as-

sumption; 3) Prediction: counterfactual reasoning occurs over the new model using updated

knowledge.

Formally, based on the causal relationships learned by GVAR, the Abduction-Action-

Prediction process to compute the counterfactual value in the t′ + 1-th time step can be

described below.

116

Step 1 (abduction):

ut′+1 = xt′+1 −
K∑
k=1

gk(xt′+1−k)xt′+1−k (6.8)

Step 2 (action):

at′ = xt′ + θt if t′ = t at′ = xt′(θt) if t′ > t (6.9)

Step 3 (prediction):

xt′+1(θt)=

K∑
k=2

gk(xt′+1−k(θt))xt′+1−k(θt)+g1(at′)at′+ut′+1. (6.10)

Equations (6.8)-(6.10) provide the recursive equations for computing the counterfactual

time series for L (L < K) steps based on the AAP process. The closed form formula for

computing counterfactual value xt+L(θt) can be derived as.

xt+L(θt) =
L−1∑
l=0

gL−l(xt+l(θt))xt+l(θt)

+

K∑
n=1+L

gn(xt+L−n)xt+L−n + ut+L,

(6.11)

where ut+L can be derived similar to Equation (6.8).

Because the intervention on the t-th step has the downstream impact, besides ensuring

the counterfactual window Wt(θt) be normal, we would like to make sure that the following

L steps are also normal. Therefore, we update the objective function in Equation (6.7) by

considering the normality of following L steps,

L(ϕ)=
t+L∑
t′=t

max {s(Wt′(θt))−ατ, 0}+λ∥c · θt∥2. (6.12)

Extend to multiple recourse predictions over time series. In practice, a time series

could have multiple abnormal time steps, so the algorithmic recourse algorithm should be

117

able to keep flipping abnormal behavior. However, the challenge during the training phase is

that we only observe a sequence of time series with abnormal time steps, but after conducting

intervention at a time step t, the following time series in the counterfactual world XCF is

unobservable. Therefore, during the training phase, we need to derive the counterfactual

time step, denoted as xCFt+1, based on the AAP process. Then, if the counterfactual window

WCF
t+1 is still detected as abnormal, i.e., s(WCF

t+1) > τ , meaning that xCFt+1 is still abnormal.

We would further train the model hϕ(·) to recommend recourse actions θt+1 to flip xCFt+1.

Algorithm 5 shows the pseudo-code of the training process for recourse predictions

with multiple abnormal time steps over time series. Let X̃− be a set of abnormal time

series detected by USAD, where each abnormal time series has at least one abnormal time

step. For each abnormal time series X in X̃−, initializing the counterfactual time series the

same as the factual data (Line 2). Note that if there is no intervention conducted yet, the

counterfactual time series keeps the same as the observed time series.

Suppose a recourse action is conducted before time step t, we first need to derive the

counterfactual time series XCF (Line 4). To this end, we first get the sliding window Wt that

contains the current time step and the sliding window Wt−1 that only contains the previous

time steps from the observed time series (Line 15). We further get the sliding window

WCF
t and WCF

t−1 from the counterfactual time series (Line 16). Then we can compute the

excepted normal values of the factual world for the current time step t by GVAR according

to Equation (6.2) (Line 17). The time lag exclusion term ut can be derived by Equation (6.8)

(Line 18). Similarly, we further compute the excepted normal values of the counterfactual

world for the current time step t by GVAR (Line 19). As x̂CFt only includes the effects of

the previous time steps without any time lag exclusion values (i.e., noise term and anomaly

term) for the current time step, the accurate counterfactual values for the current time step

t needs to consider the time lag exclusion term ut (Line 20). The XCF and WCF
t values

need to update each time step after a recourse action is conducted (Line 21).

If the updated sliding window WCF
t is still detected as an anomaly (Line 5), we need

to keep predicting the recourse action (Line 6. Specifically, we first compute the action

118

values with hϕ(·) (Line 27). The counterfactual values of the current time step t can be

calculated by Equation (6.9) (Line 28). Then we further update the values at time step t of

counterfactual time series xCFt with values xt(θt), meaning that another recourse action is

conducted (Line 8).

During the training phase, we expect hϕ(·) can recommend the recourse action with

the consideration of its downstream impact on future time steps. Therefore, we compute

the counterfactual values for the following L steps according to Equation (6.11) (Line 9).

Then, we update the parameters in hϕ(·) based on the objective function defined in Equation

(6.12).

Recourse prediction in the test phase

After completing the training process, the recourse prediction function hϕ(·) is capable

of predicting the appropriate recourse recommendations for each detected anomaly. In the

test phase, the multivariate time series is considered as streaming data that is continuously

fed into our framework. USAD starts by analyzing the first K time steps to detect any

anomalies. If an anomaly is detected with the K time step, RecAD will utilize the infor-

mation gathered up to that point WK−1 to make a recourse recommendation for the last

time step xK . Then, different from the training phase, where we can only derive the coun-

terfactual time series after intervention based on the AAP process, as the time series comes

in as a stream, we can directly observe the following time series after the intervention. We

will continue monitoring the incoming data to detect any anomalies and further recommend

recourse actions once an abnormal time step is detected. This process will continue as long

as the system is receiving input data.

6.5 Experiments

6.5.1 Experimental Setups

119

Algorithm 5: Training Procedure of RecAD
Input : Pretrained GVAR gk(·), pretrained anomaly detector s(·), anomaly set

X̃−

Output: hϕ(·) for action prediction
1 foreach X ∈ X̃− do
2 t← K; XCF ← X ; T ← length of X
3 while t ≤ T do
4 XCF , WCF

t , Wt ← Counterfactual_Generation(X , XCF , gk(·))
5 if s(WCF

t) > τ then
6 xt(θt), hϕ(·)← Action_Prediction(Wt, W

CF
t , gk(·), hϕ(·))

7 Update xCFt with xt(θt)
8 Update XCF with xCFt
9 Compute xt+1+L(θt) with Eq. (6.11)

10 Compute L(ϕ) according to Eq. (6.12)
11 Update ϕ = ϕ− η ∂L(ϕ)∂ϕ

12 t ++
13 Return hϕ(·)
14 Function Counterfactual_Generation(X , XCF , gk(·)):
15 Get Wt from X , Wt−1 = Wt \ {xt}
16 Get WCF

t from XCF , WCF
t−1 = WCF

t \ {xCFt }
17 Compute x̂t =

∑K−1
k=1 gk(xt−k)xt−k with Wt−1

18 Compute ut = xt − x̂t ▷ Abduction
19 Compute x̂CFt =

∑K−1
k=1 gk(x

CF
t−k)x

CF
t−k with WCF

t−1

20 xCFt = x̂CFt + ut ▷ Prediction
21 Update XCF and WCF

t with x̂CFt
22 Return XCF , WCF

t , Wt

23 Function Action_Prediction(Wt, W
CF
t , gk(·), hϕ(·)):

24 Wt−1 ←Wt \ {xt}; WCF
t−1 ←WCF

t \ {xCFt }
25 Compute x̂t =

∑K−1
k=1 gk(xt−k)xt−k with Wt−1

26 Compute ∆t = xt − x̂t
27 Compute θt = hϕ(W

CF
t−1,∆t)

28 xt(θt) = xCFt + θt ▷ Action
29 Return xt(θt), hϕ(·)

120

Datasets

We conduct experiments on two semi-synthetic datasets and one real-world dataset.

The purposes of using semi-synthetic datasets are as follows. 1) We can derive the ground

truth downstream time series after the intervention on the abnormal time step based on the

data generation equations in the test phase. 2) We can evaluate the fine-grained performance

of RecAD by injecting different types of anomalies.

Linear Dataset [165] is a synthetic time series dataset with linear interaction dynamics.

We adopt the structural equations defined in [165] that are

defined as:
x
(1)
t = a1x

(1)
t−1 + u

(1)
t + ϵ

(1)
t ,

x
(2)
t = a2x

(2)
t−1 + a3x

(1)
t−1 + u

(2)
t + ϵ

(2)
t ,

x
(3)
t = a4x

(3)
t−1 + a5x

(2)
t−1 + u

(3)
t + ϵ

(3)
t ,

x
(4)
t = a6x

(4)
t−1 + a7x

(2)
t−1 + a8x

(3)
t−1 + u

(4)
t + ϵ

(4)
t ,

(6.13)

where coefficients ai ∼ U([−0.8,−0.2]∪[0.2, 0.8]), additive innovation terms u(·)t ∼ N (0, 0.16),

and anomaly term ϵ
(·)
t .

Abnormal behavior injection. For non-causal point anomalies, the anomaly term is single

or multiple extreme values for randomly selected time series variables at a specific time step

t. For example, a point anomaly at time step t can be generated with an abnormal term

ϵt = [0, 2, 4, 0], which means the second and third time series have extreme values.

For non-causal sequence anomalies, the anomaly terms are function-generated values

in a given time range. For instance, setting ϵ
(1)
t+i = 0.1 × i, for 0 ≤ i ≤ n, will cause a

trend anomaly for time series variable x(1); setting ϵ(1)t+i ∼ N (0, 0.16), for 0 ≤ i ≤ n, will

cause a shapelet anomaly; and setting ϵ(1)t+i = (a1x
(1)
t+2i−1 + u

(1)
t+2i) + (a1x

(1)
t+2i−2 + u

(1)
t+2i−1)−

(a1x
(1)
t+i−1 + u

(1)
t+i), for 0 ≤ i ≤ n, will cause a seasonal anomaly.

For causal sequence anomalies, we consider two scenarios: 1) changing the coefficients

A = {a1, a2, · · · , a8} from a normal one to a different one in a time range t to t + n; 2)

121

changing generative functions from the original equation to the following equation:

x
(1)
t = a1x

(1)
t−1 + a2x

(3)
t−1 + a3x

(4)
t−1 + u

(1)
t + ϵ

(1)
t ,

x
(2)
t = a4x

(2)
t−1 + a5x

(1)
t−1 + u

(2)
t + ϵ

(2)
t ,

x
(3)
t = a6x

(3)
t−1 + u

(3)
t + ϵ

(3)
t ,

x
(4)
t = a7x

(4)
t−1 + u

(4)
t + ϵ

(4)
t .

(6.14)

Lotka-Volterra [170] is another synthetic time series model that simulates a prairie ecosys-

tem with multiple species. We follow the structure from [165], which defines as:

dx(i)

dt
= αx(i) − β

∑
j∈Pa(x(i))

y(j) − η(x(i))2, for 1 ≤ j ≤ p,

dy(j)

dt
= δy(j)

∑
k∈Pa(y(j))

x(k) − ρy(j), for 1 ≤ j ≤ p,

x
(i)
t = x

(i)
t + ϵ

(i)
t , for 1 ≤ j ≤ p,

y
(j)
t = y

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ p,

(6.15)

where x(i) and y(j) denote the population sizes of prey and predator, respectively; α, β, η, δ, ρ

are parameters that decide the strengths of interactions, Pa(x(i)) and Pa(y(j)) correspond

the Granger Causality between prey and predators for x(i) and y(j) respectively, and ϵ(·)t is

the abnormal term. We adopt 10 prey species and 10 predator species.

Abnormal behavior injection. We adopt similar strategies as used in the Linear Dataset

to inject abnormal behavior.

For point anomalies and non-causal sequence anomalies, we perform a similar procedure

as the linear dataset, i.e., randomly select time series variables at a specific time step t and

assign single or multiple extreme values as point anomalies, and assign function-generated

abnormal terms for a time range from t to t+ n as sequence anomalies.

For causal sequence anomalies, we still consider two scenarios: 1) changing the coeffi-

cients α, β, η, δ, ρ to different values than the normal ones; 2) changing Pa(x(i)) and Pa(y(j))

to different ones from the original generative functions Equation (6.15).

122

Multi-Source Distributed System (MSDS) [148] is a real-world dataset that contains

distributed traces, application logs, and metrics from an OpenStack testbed. MSDS consists

10-dimensional time series. The fault injections are treated as anomalies. The first half of

MSDS without fault injection is used as a training set, while the second half includes 5.37%

time steps as fault injections, which is used as a test set. As the real-world dataset, we

cannot observe the downstream time series after the intervention. Therefore, in the test

phase, we use GVAR and AAP to generate the counterfactual time series for evaluation.

Table 6.1: Statistics of three datasets for anomaly detection.

Dataset Dim. Train Test (Anomalies %)
Point Non-causal Seq. Causal Seq.

Linear 4 50,000 250,000 (2%) 250,000 (6%) 250,000 (6%)
Lotka-Volterra 20 100,000 500,000 (1%) 500,000 (3%) 500,000 (3%)

MSDS 10 146,340 146,340 (5.37%)

Table 6.1 shows the statistics of three datasets. Training datasets only consist of normal

time series. Note that the test sets listed in Table 6.1 are used for evaluating the performance

of anomaly detection. After detecting the abnormal time series in the test set, for the

synthetic datasets, we use 50% of abnormal time series for training RecAD and another 50%

for evaluating the performance of RecAD on recourse prediction, while for the MSDS dataset,

we use 80% of abnormal time series for training RecAD and the rest 20% for evaluation.

Baselines

To our best knowledge, there is no causal algorithmic recourse approach in time se-

ries anomaly detection. We compare RecAD with the following baselines: 1) Multilayer

perceptron (MLP) which is trained with the normal flattened sliding windows to predict

the normal values for the next step; 2) LSTM which can capture the information over long

periods of time and learn complex temporal dependencies to make predictions for the next

step; 3) Vector Autoregression (VAR) is a statistical model that used to analyze GC within

multivariate time series data and predict future values; 4) Generalised Vector Autoregres-

sion (GVAR) [165] is an extension of self-explaining neural network that can infer nonlinear

123

multivariate GC and predict values of the next step.

For all the baselines, in the training phase, we train them to predict the last value in

a time window on the normal time series so that they can capture the normal patterns.

In the testing phase, when a time window is detected as abnormal by USAD for the first

time, indicating the last time step xt is abnormal, we use baselines to predict the expected

normal value in the last time step x̃t. Then, the recourse action values can be derived as

θt = x̃t−xt. For the sequence anomalies, we keep using the baselines to predict the expected

normal values and derive the action values by comparing them with the observed values.

Evaluation Metrics

We evaluate the performance of algorithmic recourse based on the following three met-

rics.

1) Flipping ratio, which is to show the effectiveness of algorithms for algorithmic

recourse.

Flipping Ratio =
Number of flipped time steps

All detected abnormal time steps

2) Action cost per multivariate time series, which is to check the efficiency of predicted

actions.

Action Cost =
Total action cost

of abnormal multivariate time series
,

where the “Total action cost” indicates the action cost (∥c · θt∥2) to flip all the abnormal

data in the test set.

3) Action step per multivariate time series, which is to show how many action steps

are needed to flip the abnormal time series.

Action Step =
Total number of action time steps

of abnormal multivariate time series

Implementation Details

Similar to [149], we adopt a sliding window with sizes 5, 5, and 10 for the Linear,

Lotka-Volterra, and MSDS datasets, respectively. We set the hyperparameters for GVAR

124

by following [165]. When training hϕ(·), we set L in the objective function as L = 1,

which is to ensure the following one time step should be normal. The cost vector c can

be changed according to the requirements or prior knowledge. Because the baseline models

are prediction-based models that cannot take the cost into account, to be fair, we use 1 as

the cost vector. For baselines, MLP is a feed-forward neural network with a structure of

((K − 1) ∗ d)-100-100-100-d that the input is the flattened vector of K − 1 time steps with d

dimensions and the output is the predicted value of the next time step. The LSTM model

consists of one hidden layer with 100 dimensions and is connected with a fully connected

layer with a structure of 100-d. We use statsmodels1 to implement the VAR model. The

baseline GVAR model is the same as GVAR within our framework. To implement hϕ(·) in

RecAD, we utilize an LSTM that consists of one hidden layer with 100 dimensions and a

feed-forward network with structure d-100. Then we use another feed-forward network with

a structure of 200-d to predict the intervention values. Our code is available online2.

6.5.2 Experimental Results

Evaluation Results on Synthetic Datasets.

We first report the experimental results with standard deviations over 10 runs on syn-

thetic datasets as we can conduct more fine-grained evaluations on synthetic datasets.

Table 6.2: Anomaly detection on synthetic datasets.

Anomaly Types Metrics Linear Lotka-Volterra

Non-causal
Point

F1 0.749±0.022 0.787±0.106

AUC-PR 0.619±0.024 0.840±0.116

AUC-ROC 0.816±0.016 0.851±0.068

Non-causal
Seq.

F1 0.878±0.011 0.677±0.061

AUC-PR 0.798±0.015 0.519±0.026

AUC-ROC 0.914±0.010 0.794±0.089

Causal
Seq.

F1 0.756±0.003 0.714±0.020

AUC-PR 0.604±0.004 0.559±0.016

AUC-ROC 0.877±0.002 0.824±0.078

1https://www.statsmodels.org/
2https://www.tinyurl.com/RecAD2023

https://www.statsmodels.org/
https://www.tinyurl.com/RecAD2023

125

The performance of anomaly detection. We evaluate the performance of USAD for

anomaly detection in terms of the F1 score, the area under the precision-recall curve (AUC-

PR), and the area under the receiver operating characteristic (AUC-ROC) on two synthetic

datasets. Table 6.2 shows the evaluation results. Overall, USAD can achieve promising

performance on different types of anomalies, which lays a solid foundation for recourse

prediction.

Table 6.3: The performance of recourse prediction on non-causal anomaly.

Model
Linear Lotka-Volterra

Point Seq. Point Seq.
Flipping Ratio ↑ Action Cost ↓ Action Step ↓ Flipping Ratio ↑ Action Cost ↓ Action Step ↓ Flipping Ratio ↑ Action Cost ↓ Action Step ↓ Flipping Ratio ↑ Action Cost ↓ Action Step ↓

MLP 0.778±0.054 8.406±0.257 1.188±0.051 0.867±0.048 22.394±0.545 2.261±0.027 0.741±0.126 277.580±117.126 1.237±0.180 0.688±0.259 761.550±64.422 2.195±0.757

LSTM 0.807±0.045 8.383±0.253 1.170±0.040 0.878±0.044 22.439±0.553 2.248±0.031 0.893±0.087 313.510±124.921 1.096±0.061 0.889±0.097 1590.483±85.126 1.339±0.145

VAR 0.676±0.063 8.841±0.224 1.311±0.077 0.765±0.061 23.696±0.511 2.434±0.037 0.558±0.166 326.967±126.322 1.57±0.324 0.504±0.151 1445.084±189.943 2.570±0.676

GVAR 0.775±0.053 8.446±0.249 1.207±0.052 0.848±0.051 22.415±0.547 2.287±0.029 0.493±0.332 270.335±117.223 2.020±1.049 0.606±0.266 749.792±105.656 2.547±0.905

RecAD 0.901±0.035 8.201±0.176 1.104±0.024 0.944±0.041 21.264±0.947 2.193±0.046 0.915±0.088 262.759±99.008 1.085±0.055 0.972±0.016 1374.112±343.470 1.329±0.192

The performance of recourse prediction on non-causal anomaly. The non-causal

anomaly encompasses both point and sequential anomalies. Table 6.3 shows the performance

of RecAD for recourse prediction on non-causal anomaly. First, in all settings, RecAD

can achieve the highest flipping ratios, which shows the effectiveness of RecAD on flipping

abnormal behavior. Meanwhile, RecAD can achieve low or comparable action costs and

action steps compared with other baselines. Although some baselines can achieve lower

action costs in some settings, this could be due to the low flipping ratios. More importantly,

all baselines do not consider the downstream impact of recourse actions.

Table 6.4: The performance of recourse prediction on causal anomaly.

Dataset Model Flipping Ratio ↑ Action Cost ↓ Action Step ↓

Linear

MLP 0.884±0.023 41.387±2.151 2.359±0.035

LSTM 0.903±0.021 42.412±2.002 2.398±0.043

VAR 0.782±0.035 59.346±3.285 2.883±0.062

GVAR 0.874±0.024 39.474±2.116 2.415±0.041

ReccAD 0.919±0.037 38.917±6.247 2.169±0.206

Lotka-
Volterra

MLP 0.665±0.277 1578.597±49.253 2.247±0.744

LSTM 0.890±0.099 3159.333±173.463 2.310±0.100

VAR 0.488±0.178 3088.788±435.034 2.630±0.640

GVAR 0.584±0.277 1846.415±347.144 2.618±0.858

ReccAD 0.970±0.012 2767.819±581.046 1.386±0.120

126

The performance of recourse prediction on causal anomaly. We examine the per-

formance of RecAD on causal anomaly. The results are shown in Table 6.4. First, RecAD

can achieve the highest flipping ratio compared with baselines on both Linear and Lotka-

Volterra datasets. High flipping ratios on both datasets indicate that the majority of causal

anomalies can be successfully flipped. Meanwhile, RecAD can also achieve low action costs

and action steps with high flipping ratios. Although MLP can achieve the lowest action

cost on the Lotka-Volterra dataset, the flipping ratio achieved by MLP is much lower than

RecAD. Overall, RecAD meets the requirement of algorithmic recourse, i.e., flipping the

abnormal outcome with minimum costs, on causal anomalies.

Therefore, based on Tables 6.3 and 6.4, we can demonstrate that RecAD can provide

recourse prediction on different types of anomalies in multivariate time series.

Evaluation Results on Real Dataset

We further report the experimental results with standard deviations over 10 runs on

MSDS.

The performance of anomaly detection. We first evaluate the performance of USAD

for anomaly detection. USAD can achieve 0.888±0.097, 0.996±0.001, and 0.985±0.003 in terms

of F1 score, AUC-PR, and AUC-ROC, respectively. It means USAD can find most of the

anomalies in the MSDS dataset.

Table 6.5: The performance of recourse prediction in MSDS.

Model Flipping Ratio ↑ Action Cost ↓ Action Step ↓
MLP 0.687±0.282 6.848±2.506 1.443±0.680

LSTM 0.830±0.211 6.798±2.604 1.279±0.493

VAR 0.704±0.273 6.759±2.821 1.432±0.596

GVAR 0.712±0.211 8.923±3.258 1.425±0.466

RecAD 0.841±0.080 6.747±1.543 1.249±0.068

The performance of recourse prediction. Because for the real-world dataset, we do

not know the types of anomalies, we report the performance of recourse prediction on any

detected anomalies. As shown in Table 6.5, RecAD achieves the flipping ratio of 0.84,

127

meaning that RecAD can flip 84.1% of detected abnormal time steps, much higher than all

baselines. Regarding the average action cost per time series and the average action step,

RecAD also outperforms the baselines by registering the lowest values. This suggests that,

by incorporating Granger causality, RecAD is capable of identifying recourse actions that

minimize both cost and the number of action steps.

Table 6.6: The performance of recourse prediction using different components of RecAD.

Dataset Metric RecAD w/o FFNN RecAD w/o LSTM RecAD

Linear
Flipping Ratio ↑ 0.340±0.191 0.676±0.085 0.922±0.040

Action Cost ↓ 119.286±174.173 23.589±23.453 22.794±13.054

Action Step ↓ 2.905±0.882 2.276±0.939 1.822±0.521

Lotka-
Volterra

Flipping Ratio ↑ 0.353±0.210 0.523±0.090 0.952±0.054

Action Cost ↓ 876.107±810.047 1035.192±881.242 1468.230±1086.090

Action Step ↓ 2.706±1.068 2.304±0.646 1.266±0.180

MSDS
Flipping Ratio ↑ 0.228±0.147 0.697±0.214 0.841±0.080

Action Cost ↓ 3.494±2.665 4.136±0.727 6.747±1.543

Action Step ↓ 2.048±0.607 1.581±0.525 1.249±0.068

Ablation Study

We evaluate the performance of using different parts of RecAD (i.e., FFNN and LSTM)

for recourse prediction. As RecAD contains an LSTM to catch the previous K− 1 time lags

and a feedforward neural network (FFNN) to include the time lag exclusion term ∆t, we

then test the performance of these two parts separately. Table 6.6 shows the average flipping

ratio, action cost, and action step for three types of anomalies for the synthetic datasets

and results for the real-world dataset MSDS. We can notice that RecAD achieves higher

flipping ratios and lower action steps than the one only using a part of RecAD. It shows the

importance of considering both information for reasonable action value prediction.

Sensitivity Analysis

The objective function (Equation (6.12)) for training RecAD employs the hyperparam-

eter λ to balance the flipping ratio and action value. As shown in Figure 6.3, on both

synthetic datasets, we have similar observations that with the increasing of λ, both action

128

(a) Linear (b) Lotka-Volterra

Fig. 6.3: Effects of the hyperparameter λ in Eq. (6.12).

Fig. 6.4: Recourse recommendations for intervening in an imbalanced ecosystem to restore
balance.

value and flipping ratio decrease. A large λ indicates a large penalty for high action values,

which could potentially hurt the performance of flipping abnormal time steps as small action

values may not be sufficient to flip the anomalies.

Case Study

We further conduct case studies to show how to use the recourse action predicted by

RecAD as an explanation for anomaly detection in multivariate time series.

Case study on the Lotka-Volterra dataset. Figure 6.4 shows a simulation of a prairie

ecosystem that contains antelope, hare, fox, and gray wolf based on the Lotka-Volterra

model [170], where each time series indicates the population of a species. As shown in the

129

top figure, in most of the time steps, the numbers of carnivores (fox and gray wolf) and

herbivores (antelope and hare) keep stable in a balanced ecosystem, say 0.1k-1k antelopes,

1k-10k hares, 0.1k-1k foxes, and 0.1k-1k gray wolves. After detecting abnormal behavior at

a specific time step (red area in the top figure), the algorithmic recourse aims to provide

recourse actions to flip the abnormal outcome. In this case, the algorithmic recourse model

recommends the intervention of reducing the populations of hares, foxes, and gray wolves by

100.1k, 9.3k, and 7.5k, respectively. After applying the recourse actions (green area in the

bottom figure), we can notice the populations of four species become stable again (the dashed

line in the bottom figure). Therefore, the recourse actions can provide recommendations to

restore the balance of the prairie ecosystem.

Fig. 6.5: Recourse recommendations for restoring the abnormal CPU and RAM usages in
MSDS.

Case study on the MSDS dataset. Figure 6.5 depicts a case study on MSDS with control

nodes 117 and 124. USAD detects a subsequence of anomaly consisting of two abnormal

time steps from two time series (CPU and RAM usages on node 117), highlighted in the red

130

area of the top figure.

When the first abnormal time step is detected, RecAD suggests releasing the CPU usage

by 6.7 on node 117 (the green area in the middle figure). In other words, it also means the

anomaly here is due to the higher CPU usage than normal with a value of 6.7. After taking

this action, the following time steps are affected by this action. A counterfactual time series

is then generated using the AAP process, which is shown as the dashed lines in the middle

of Figure 6.5. RecAD continues to monitor subsequent time steps for any abnormalities.

The following time step is still detected as abnormal in the time series of memory usage

of node 117. RecAD recommends releasing the RAM usage by 13.39 on node 117 (the green

area in the bottom figure), meaning that the abnormal time step here is due to high memory

usage in a margin of 13.39. After taking the recourse action, the counterfactual time series

is then generated (the dashed lines in the bottom figure). We can then observe that the

entire time series returns to normal.

In summary, recourse actions recommended by RecAD can effectively flip the outcome

and lead to a normal counterfactual time series. Meanwhile, based on the recourse actions,

the domain expert can understand why a time step is abnormal.

6.6 Summary

In this work, we have developed a novel framework for algorithmic recourse in time series

anomaly detection, called RecAD, which can recommend recourse actions to fix anomalies

with the minimum cost. To recommend proper actions with the consideration of the down-

stream impact of the intervention on the current time step, we leverage Granger causality

to model the interdependence in multivariate time series and derive the counterfactual time

series based on the Abduction-Action-Prediction process. The empirical studies have demon-

strated the effectiveness of RecAD for recommending recourse actions in time series anomaly

detection. The early version of this work is preprinted at arXiv [171].

131

CHAPTER 7

ROOT CAUSE ANALYSIS OF ANOMALIES IN MULTIVARIATE TIME SERIES

THROUGH GRANGER CAUSAL DISCOVERY

In this chapter, we propose a novel autoencoder-based framework for root cause anal-

ysis (AERCA). AERCA captures the Granger causality in multivariate time series via an

encoder-decoder structure, which not only learns the causal dependency between time se-

ries but also explicitly models the distributions of exogenous variables of time series in the

normal status. By defining the anomaly as an intervention on exogenous variables of time

series, AERCA identifies the root cause of abnormal time series by highlighting the ex-

ogenous variables that are significantly deviated from their normal status. Experiments on

multiple synthetic and real-world datasets demonstrate that AERCA can accurately capture

the causal relationships between time series and further identify the root cause of abnormal

time series.

7.1 Introduction

Root cause analysis, which is to identify the underlying causes of an anomaly, has a

wide spectrum of applications in various domains, such as diagnosing the fault of online

cloud-based systems or cyber-physical systems [38, 172–174]. For example, cyber-physical

systems, such as water plant systems, are usually equipped with multiple sensors to monitor

the system status of different entities, e.g., water tanks, and detect abnormal status. Once an

abnormal status of the cyber-physical systems is detected, root cause analysis is to effectively

locate the abnormal entities leading to the abnormal behavior of the whole system. For

instance, the overflow of a downstream water tank in a water plant could be due to an issue

of upstream actuators. The importance of root cause analysis lies in its ability to determine

why a system fails, enabling domain users to take further actions to mitigate the abnormal

status.

132

When an abnormal status is detected, the traditional approach for detecting the root

cause is to manually trace the root cause based on the topological structure of the systems.

However, due to the increasing complexity of the system, such an approach becomes chal-

lenging and time-consuming. Therefore, developing data-driven approaches for root cause

analysis has received a lot of attention [38]. Systems, such as cyber-physical systems, are

usually equipped with sensors to monitor their status via various metrics such that the sen-

sor data can be treated as multivariate time series. Analyzing the multivariate time series

data can provide insightful information for root cause analysis.

Recently, one line of research has been proposed that first learns the dependency graph

from the time series data and then locates the root causes via exploring the dependency

graph [175–179]. Building a high-fidelity dependency graph from observational data is crucial

for this approach to achieve accurate root cause identification. Typically, the dependency

graph is a directed acyclic graph (DAG), where each node indicates an entity in the system,

such as a water tank, and a directed edge from node A to node B indicates that node A

impacts node B, such as the upstream water tank impacts the downstream water tank. The

DAG, a.k.a., the causal graph, can depict the causal relationship between time series to help

understand how the abnormal behavior propagates through the system and further improve

the effectiveness of locating the root cause. Specifically, the causal graph is learned from

the time series data and causal inference techniques are leveraged for root causal analysis.

Equipped with a structural causal model (SCM), the root cause is usually caused by the

change of the SCM, as illustrated in Figure 7.1.

The current causal discovery approaches for root cause analysis mainly focus on iden-

tifying the causal structures among time series/endogenous variables (solid circle in Figure

7.1) without explicitly modeling the impact of exogenous variables (dotted circle in Figure

7.1) in the SCM. However, we argue that it is crucial to explicitly consider exogenous vari-

ables in causal discovery for root cause analysis due to the external nature of the factors that

cause anomalies. In SCM, an exogenous variable is one whose variation is not accounted

for within the model but is considered to be external. For this reason, we model the root

133

Fig. 7.1: Root cause analysis through Granger causality.

cause of the anomaly as an intervention to the exogenous variables, which we refer to as the

exogenous intervention. As a result, we assume that the exogenous variables follow a

stable distribution in the normal data but undergo exogenous interventions when anomalies

occur. For example, if an attacker directly manipulates the sensor reading of the water tank

in a water plant, it can be considered an exogenous intervention since all underlying causal

relationships among entities in the water plant remain unchanged.

Based on the definition of the exogenous intervention, identifying the root cause is

equivalent to detecting the exogenous intervention. Therefore, the key to root cause iden-

tification is to model the normality of exogenous variables for all time series and then

highlight abnormal exogenous variable values. To this end, we propose a novel autoencoder-

based framework for root cause analysis, denoted as AERCA, which can discover both the

Granger causal relationship in time series and the distribution of exogenous variables. To

model the data generation process, i.e., the causal relationships as well as the distributions

of exogenous variables, the encoder aims to model the abductive reasoning process to derive

the exogenous variable for each time series. We assume that the exogenous variables are

mutually independent and impose constraints to ensure this independence. Meanwhile, the

decoder learns a deductive reasoning process to infer the input based on the exogenous vari-

ables. We show that to predict the input at time t, rather than using exogenous variables

134

of all time steps before t, the decoder only needs to take in the exogenous variables and

observed time series from a window prior to t. We train AERCA on the normal data. Then,

upon deployment, if the encoder-derived values of exogenous variables significantly deviate

from the norm, the corresponding time series are highly likely to be the root cause of the

anomaly.

The contributions of this work are as follows: 1) we propose a novel encoder-decoder

structure for Granger causal discovery, which can not only learn the causal relationships

between time series but also capture the distribution of exogenous variables; 2) based on the

learned structural causal model, AERCA can not only identify the root cause time series but

also highlight the root cause time steps; 3) experimental results on multiple datasets show

that AERCA can achieve state-of-the-art performance on both Granger causal discovery

and root cause identification.

7.2 Related Work

Understanding the root cause of an anomaly has received increasing attention because

of wide real-world applications. Accurate root cause localization can help domain users

understand and mitigate abnormal behaviors.

Traditionally, root cause diagnosis is achieved by finding variables that are changed

significantly during the failure period [180]. However, this line of approaches cannot consider

the impact of other variables, leading to a high false positive.

Recently, the mainstream approaches in root cause analysis follow a two-step framework:

identifying the dependency between variables from observational data and then localizing

the root cause by exploring the dependency graph. Therefore, the key step is to build

the dependency graph. In some scenarios, domain knowledge or a systems tool can be

leveraged to build the dependency graph. For example, in a microservice system, a directed

edge between two nodes usually indicates a system call [174, 181–183]. After obtaining the

dependency graph, when a system metric indicates an abnormal status, the random walk

technique is adopted to localize the root cause, where the nodes with high probabilities of

visiting have a high chance of being the root cause nodes [183].

135

However, there are some limitations to leveraging the domain knowledge or a systems

tool to build the dependency graph. First, as the system becomes sophisticated, it becomes

impractical to build the dependency graph based on domain knowledge. Second, the call

graph learned by system tools may not represent the true dependency between sensors [181].

Therefore, data-driven approaches are now commonly used for learning the dependency

between variables. For example, various deep neural networks are developed to capture

the temporal and spatial correlations in the multivariate time series for root cause analysis

[169, 184]. The graph neural network, such as the graph attention network (GAT), is also

adopted to learn the dependencies between components, and attention weights learned by

GAT represent the dependent strength between components [185].

Recently, causal inference-based root cause analysis has received increasing attention,

which models the anomaly as data under intervention [175, 176]. Under this assumption,

root cause localization is to identify the intervention on observational data [176]. Several

approaches leverage the PC algorithm [186] or its variance to build the causal graph by using

the conditional independent test [177,178]. Some approaches also leverage the graph neural

networks to learn the causal relationships between nodes by simulating the data generation

process [179,187].

In this work, we propose a novel approach for Granger causal discovery via explicitly

modeling the distribution of exogenous variables in the structural causal model. For the

task of root cause identification, most of the existing studies can only locate the root cause

time series but cannot further indicate the abnormal time step. In contrast, our approach

locates the root cause as the time series receiving exogenous intervention at specific time

steps, which is much more informative.

7.3 Preliminary

7.3.1 Structural Causal Model (SCM)

We adopt Pearl’s Structural Causal Model (SCM) [150], which is defined below.

136

Definition 1 An SCM is a triple M = {U, V, F} where

1) U is a set of exogenous variables that are determined by factors outside the model and

assumed to be unobserved in the model.

2) V is a set of endogenous variables/time series that are determined by variables in

U ∪ V .

3) F is a set of functions {f (1), . . . , f (d)}; for each X(j) ∈ V , a corresponding function

f (j) is a mapping from U ∪ (V \ {X(j)}) to X(j), where a set of time series XPA(j) ⊆

V \{X(j)} are called the parents of X(j).

An SCM is often illustrated by a causal graph G where a node represents each observed

variable, and the causal relationships are represented by directed edges.

Fig. 7.2: The overview of the proposed AERCA.

7.3.2 Granger Causality

Granger causality [161,162] is commonly used for modeling causal relationships in mul-

tivariate time series. The key assumption is that if the prediction of the future value Y can

137

be improved by knowing past elements of X, then X “Granger causes” Y . Granger causal-

ity was originally defined for linear relationships, while recently, the non-linear Granger

causality has been proposed [164,188]:

Let a stationary time-series as X = (x1, . . . ,xt, . . . ,xT), where xt ∈ Rd is a d-dimensional

vector (e.g., d-dimensional time series data from d sensors) at a specific time t. Suppose

that the true data generation mechanism is defined in the form of

x
(j)
t := f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) + u

(j)
t , for 1 ≤ j ≤ d, (7.1)

where x
(j)
≤t−1 = [· · · , x(j)t−2, x

(j)
t−1] denotes the past of series j; u(j)t ∈ u(j) indicates exogenous

variable for time series j at time step t; F = {f (1), ..., f (d)} is a set of non-linear functions,

and f (j)(·) ∈ F is a nonlinear function for time series j that captures how the past values

impact the future values of x(j).

The time series i Granger causes j, if f (j) depends on x
(i)
≤t−1, i.e., ∃x′(i)

≤t−1 ̸= x
(i)
≤t−1 :

f (j)(x
(1)
≤t−1, · · · ,x′(i)

≤t−1, · · · ,x
(d)
≤t−1) ̸= f (j)(x

(1)
≤t−1, · · · ,x

(i)
≤t−1, · · · ,x

(d)
≤t−1).

7.4 Problem Formulation

Based on the structural equation of multivariate time series defined in Equation 7.1, in

this work, we focus on the anomaly caused by exogenous interventions on a single or multiple

time series, e.g., due to attacks on a sensor, leading to a significantly deviating value in its

exogenous variable û(j)t , which can be defined as

x̃
(j)
t = f (j)(x

(1)
≤t−1, · · · ,x

(d)
≤t−1) + û

(j)
t

= f (j)(x
(1)
≤t−1, · · · ,x

(d)
≤t−1) + u

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ d,

(7.2)

where û(j)t = u
(j)
t + ϵ

(j)
t with an anomaly term ϵ

(j)
t . Note that the abnormal time series

caused by exogenous interventions can be either a point anomaly or a sequential anomaly.

The point anomaly can be due to an exogenous intervention on a specific time series at a time

step. In contrast, a sequence anomaly can be caused by the propagation of an exogenous

138

intervention through time by following the causal structural model or a consistent exogenous

intervention over time steps.

Therefore, an informative root cause analysis shows not just the time series but also

the time steps receiving the exogenous intervention. Based on this motivation, we define

the task of root cause identification below.

Definition 2 The root cause identification is to locate the time series/variables (j) at spe-

cific time step(s) t with the abnormal exogenous variable û(j)t .

7.5 AERCA

For the anomaly caused by the exogenous interventions, to achieve the root cause anal-

ysis, we model the Granger causality in multivariate time series by explicitly modeling the

distribution of exogenous variables. To this end, we develop an encoder-decoder structure

for root cause analysis, called AERCA, which can calculate the exogenous variable for each

time series at a specific time step. Especially, AERCA explicitly computes the exogenous

variables via the encoder, and the decoder predicts the current value by simulating the data

generation mechanism defined by the Granger causality. By training the encoder-decoder

structure on the normal time series, the model can capture the distribution of exogenous

variables in the normal status. When an exogenous intervention occurs, the derived ex-

ogenous variables should significantly differ from the normal ones. Meanwhile, because we

explicitly derive the exogenous variables at each time step, even if the time series is still ab-

normal due to the error propagation through time, AERCA can distinguish the root cause

from the downstream impact. Figure 7.2 shows the framework of AERCA.

7.5.1 Granger Causal Discovery

Motivation. As shown in Equation 7.1, based on the Granger causality, the value of

the time series at step t is a function of past time series plus an exogenous term at the

current step, i.e., xt := f(x≤t−1) + ut for simplicity. Then, by recursively resolving the

139

previous time step, say xt−1, with their previous time step, i.e., xt−2 until the first time

step, we can rewrite the Granger causal model as a function of exogenous variables:

xt = f(u≤t−1) + ut. (7.3)

Equation 7.3 indicates that the observed data at step t is a function of all previous exoge-

nous variables. In the context of the encoder-decoder structure, the observed data can be

reconstructed from the exogenous variables, which matches the purpose of the decoder.

On the other hand, we can rewrite Equation 7.1 as

ut := xt − f(x≤t−1). (7.4)

It means we can derive the exogenous variables based on the observed data, leading to the

design of the encoder.

Therefore, we develop an encoder-decoder structure, where the encoder learns Granger

causal relationships f(·) by taking the previous time series values as input to compute the

exogenous variables by simulating the Equation 7.4, while the decoder takes exogenous

variables derived from the encoder as inputs to reconstruct the value of the current time

step xt by simulating the Equation 7.3.

Encoder-decorder Structure. Given normal multivariate time series X = (x1, . . . ,xt, . . . ,xT),

we define a window with length K as Wt = (xt−K+1, ...,xt) and convert a time series X to a

sequence of sliding windows W = (WK ,WK+1, ...,WT). We first aim to learn the Granger

causality of time series in a window, i.e., a window causal graph [188].

Given a time series window, the encoder parameterizes the Granger causality in time

series defined in Equation 7.1 as

xt =

K∑
k=1

ωθk(xt−k)xt−k + ut, (7.5)

where ωθk(xt−k) indicates the k-th neural network to predict the Granger causal relationship

140

between xt−k and xt. The output of ωθk(xt−k) can be reshaped as a d×d coefficient matrix,

where the entry element (i, j) indicates the influence of x(j)t−k on x(i)t . As shown in Equation

7.5, K neural networks are used to predict the weights of past K time legs on deriving

xt. Therefore, relationships between d time series over K time lags can be explored by

inspecting K coefficient matrices.

Because the goal of the encoder is to derive the exogenous variables, we can rewrite the

Equation 7.5 as

ut = xt −
K∑
k=1

ωθk(xt−k)xt−k. (7.6)

Therefore, given a time series window Wt, we apply the encoder K times to derive the

exogenous variables in a window, denoted as Ut = (ut−K+1, . . . ,ut).

To enforce independence between the derived exogenous variables, we ensure that the

distribution of Ut adheres to an isotropic standard Gaussian distribution Q. By assuming

that the exogenous variables follow a multivariate Gaussian distribution and applying the KL

divergence to quantify the distribution difference, we formulate the independence constraint

as

DKL
t (P (Ut)∥Q) = µTt µt + tr{Σt} − d− log |Σt| (7.7)

where µt and Σt are the mean and covariance matrix of Ut.

The decoder is to reconstruct the input xt based on the exogenous variables Ut. One

challenge is that theoretically, the value xt at the current time step is computed by the

exogenous variables of all the previous time steps. However, considering the potential infi-

nite length of the time series, it is impractical to reconstruct xt by using all the previous

time steps. To tackle this challenge, we iteratively replace the xt−k with xt−(k+1) for a

subsequence with length n and derive the following equation.

141

xt =
n+1∑
m=2

yn+1−mut−(n+1−m)

+ ynxt−n +
n+1∑
m=2

yn+1−m

K∑
k=m

ωkxt−k−(n+1−m),

(7.8)

where ωk indicates the parameter of Granger causality, and yn is computed by a recursive

equation: y0 = 1, y1 = ω1y0, y2 = ω1y1 + ω2y0, ..., yn = ω1yn−1 + ω2yn−2 + ...+ ωny0.

Equation 7.8 indicates that the value at the current time step xt can be derived by the

exogenous variables from a previous window [ut−1, ...,ut−K] and the observed time series

from the immediate previous window [xt−K−1, ...,xt−2K].

Inspired by the Equation 7.8, we propose a decoder structure that combines both ob-

served time series and exogenous variables. Specifically, we parameterize the impact of

exogenous variable ut−k on xt by a neural network ω̄θ̄k and the impact of observed time

series xt−K−k on xt by another neural network ω̄′
θ̄′k

. Then, the decoder computes xt based

on the following equation.

x̂t =
K∑
k=1

ω̄θ̄k(ut−k)ut−k +
K∑
k=1

ω̄′
θ̄′k
(xt−K−k)xt−K−k + ut, (7.9)

where x̂t indicates the reconstructed value at time step t, and ut−k is computed by encoder

defined in Equation 7.6.

The whole encoder-decoder structure can be defined as x̂t = AEθk,θ̄k,θ̄′k
(x<t). Given a

time series with length T , the objective function to train the encoder neural netework ωθk

and decoder neural networks ω̄θ̄k , ω
′
θ̄′k

is defined as:

L =
T∑

t=K+1

{
∥x̂t − xt∥2 + βDKL

t + λenR(Ωt) + λdeR(Ω̄t) + λdeR(Ω̄
′
t)
}

+
T−1∑

t=K+1

{
γenS(Ωt+1,Ωt) + γdeS(Ω̄t+1, Ω̄t) + γdeS(Ω̄

′
t+1, Ω̄

′
t)
}
,

(7.10)

where DKL
t indicates the independence constraint on Ut defined in Equation 7.7; Ωt :=

142

[ωθK (xt−K) : · · · : ωθ1(xt−1)] indicates the concatenation of coefficient matrices over the

past K time steps; similarly, we have Ω̄t := [ω̄θK (ut−K) : · · · : ω̄θ1(ut−1)] and Ω̄′
t :=

[ω̄′
θ′K

(xt−2K) : · · · : ω̄′
θ′1
(xt−K−1)]; R(·) indicates the L1 and L2 norm penalty for sparsity of

the coefficient matrices from the encoder and decoder; the S(·, ·) is a smoothness penalty,

defined as S(Ωt+1,Ωt) = ∥Ωt+1 − Ωt∥2; λ and γ are hyperparameters.

Granger Causal Discovery. As the encoder-decoder is proposed to simulate the

data generation process governed by Granger causality, we expect the function ωθk can

capture the causal relationships in time series. To further summarize the Granger causal

relationships between variables as a summary causal graph, similar to [165], we aggregate

the output from ωθk into a summarized coefficient matrix as

Si,j = max
1≤k≤K

{medianK+1≤t≤T (|(ωθk(xt−k))i,j |), for 1 ≤ i, j ≤ d,

where Si,j indicates the strength of the Granger causal effect from x(i) on x(j). To further

derive the adjacency matrix A, we set a threshold τ , if the value Si,j > τ , then Ai,j = 1. In

experiments, the threshold is set based on the quantile of the coefficient matrix S.

7.5.2 Root Cause Localization

After training on the normal time series, we expect that the exogenous variables can

be approximated by the encoder. When deploying the model for root cause localization, we

assume the time series is arrived in a streaming manner. When a new time step t∗ is arrived,

we first adopt the encoder to derive the exogenous variables ut∗ based on Equation 7.6. Then,

for each time series, u(j)t∗ , we compute the z-score as the root cause score z(j)t∗ =
u
(j)
t∗ −µ(j)

σ(j) ,

where µ(j) and σ(j) indicate the mean and standard deviation of the exogenous variable

for the j-th time series in normal data. We then adopt streaming peaks-over-threshold

(SPOT) [189] to dynamically determine the threshold of labeling the potential root cause.

7.6 Experiments

143

Table 7.1: Statistics of Datasets

Dataset Training Test
of Time Step # of Sequences (|X |) Avg. Len. (T) Avg. # of Root Variables

Linear (4) 5,000 100 500 3.75
Nonlinear (6) 5,000 100 500 5.25

Lotka-Volterra (40) 40,000 100 2,000 30.75
Lorenz 96 (20) 200,000 100 2,000 15.75

SWaT (51) 49,500 20 51 13.35
MSDS (10) 29,268 4,255 21 3.05

7.6.1 Experimental Setup

Datasets. We conduct experiments on four synthetic and two real-world datasets. By using

the synthetic datasets, we have the ground truth about the structural causal models as well

as the root cause of anomalies. For the real-world datasets, we only have information about

root cause variables. Therefore, we use the real-world dataset only for evaluating the root

cause identification.

Linear Dataset [165] is a synthetic time series dataset with linear interaction dynamics.

The structural equations are defined as:

x
(1)
t = a1x

(1)
t−1 + u

(1)
t + ϵ

(1)
t ,

x
(2)
t = a2x

(2)
t−1 + a3x

(1)
t−1 + u

(2)
t + ϵ

(2)
t ,

x
(3)
t = a4x

(3)
t−1 + a5x

(2)
t−1 + u

(3)
t + ϵ

(3)
t ,

x
(4)
t = a6x

(4)
t−1 + a7x

(2)
t−1 + a8x

(3)
t−1 + u

(4)
t + ϵ

(4)
t ,

where coefficients ai ∼ U([−0.8,−0.2]∪[0.2, 0.8]), additive innovation terms u(·)t ∼ N (0, 0.16),

and anomaly term ϵ
(·)
t .

Nonlinear Dataset [190] is a synthetic time series dataset with non-linear interaction

dynamics, of which the structural equation is defined as:

Xt = AT
t∑

m=1

βm cos(Xt−m + 1) + ϵ,

where β is the regression coefficient, and ϵ represents standard Gaussian noise. The noise

scale is kept below 1 and is proportional to the value of d. The non-linear relationship

144

between time series is introduced through the cosine function. The adjacency matrix A of

the underlying causal graph is generated using the Erdős–Rényi model [191].

Lotka-Volterra [165] is a synthetic time series model that simulates a prairie ecosystem

with multiple species. The structural equations are defined as:

dx(i)

dt
= αx(i) − β

∑
j∈Pa(x(i))

y(j) − η(x(i))2, for 1 ≤ j ≤ p,

dy(j)

dt
= δy(j)

∑
k∈Pa(y(j))

x(k) − ρy(j), for 1 ≤ j ≤ p,

x
(i)
t = x

(i)
t + ϵ

(i)
t , y

(j)
t = y

(j)
t + ϵ

(j)
t , for 1 ≤ j ≤ p,

where x(i) and y(j) denote the population sizes of prey and predator, respectively; α, β, η, δ, ρ

are parameters that decide the strengths of interactions, Pa(x(i)) and Pa(y(j)) correspond

the Granger Causality between prey and predators for x(i) and y(j) respectively, and ϵ(·)t is

the abnormal term. We simulate 20 prey species and 20 predator species.

Lorenz 96 [165] a synthetic time series data, where the i-th variable is defined by the

following nonlinear differential equations:

dx(i)

dt
= (x(i+1) − x(i−2))x(i−1) − x(i) + F, for 1 ≤ i ≤ d,

where x(0) := x(d), x(−1) := x(d−1), and x(d+1) := x1; and F is a constant controlling the

nonlinearity of the data.

Abnormal behavior injection to the synthetic datasets. For point anomalies, the anomaly

term is single or multiple extreme values for randomly selected time series variables at a

specific time step t. For example, a point anomaly at time step t can be generated with an

abnormal term ϵt = [0, 2, 4, 0], which means the second and third time series have extreme

values.

For sequential anomalies, the anomaly terms are function-generated values in a given

time range. For instance, setting ϵ(1)t+i = 0.1 × i, for 0 ≤ i ≤ n, will cause a trend anomaly

for time series variable x(1); setting ϵ(1)t+i ∼ N (0, 0.16), for 0 ≤ i ≤ n, will cause a shapelet

145

anomaly; and setting ϵ
(1)
t+i = (a1x

(1)
t+2i−1 + u

(1)
t+2i) + (a1x

(1)
t+2i−2 + u

(1)
t+2i−1) − (a1x

(1)
t+i−1 +

u
(1)
t+i), for 0 ≤ i ≤ n, will cause a seasonal anomaly.

SWaT [192] is a real-world dataset collected from a testbed that simulates a real-world

water treatment plant. The dataset consists of both normal operations and attack scenarios

within the water treatment process.

Multi-Source Distributed System (MSDS) [148] is a real-world dataset developed on

an OpenStack testbed. Instances of fault injections are identified as anomalies.

Table 7.1 shows the statistics of datasets for training and evaluation. The number in

the parenthesis indicates the dimensions of multivariate time series. The training set only

has the normal time series. In the test set, for each sequence in the synthetic datasets, we

conduct one or multiple exogenous interventions randomly to generate the anomalies. The

last column shows the average number of variables receiving the exogenous interventions.

Note that because Lorenz 96 [165] has the most complicated interdependencies between time

series, we use more training samples to train AERCA for causal discovery.

Evaluation Metrics. In this work, the root cause identification is achieved based on the

learned causal models. Therefore, we evaluate AERCA in both causal discovery and root

cause identification.

Causal Discovery. We adopt the commonly used metrics to evaluate the performance

of causal discovery [163, 188, 193–196], including F1, AUC-ROC, AUC-PR, and Hamming

distance (HD). In the context of causal discovery, F1, AUC-ROC, and AUC-PR quantify

the correctness of edge discovery, while Hamming distance calculates the proportion of

disagreeing edges between the learned causal graph and the ground truth causal graph.

Root Cause Identification. Following the existing work [174, 176, 178, 197], we adopt

the “recall at top-k” to evaluate the performance of root cause identification, denoted as

AC@K. This metric quantifies the probability of identifying the correct root cause in the

list of variables with the top-k highest root cause scores. Given a set of time series X , the

definition of AC@K is shown below.

146

AC@K =
1

|X |
∑
X∈X

|V (RC)
X ∩ {RX[k]|k = 1, 2, ...K}|

min(K, |V (RC)
X |)

,

where RX[k] indicates the time series at the k-th rank for the sequence X, and V
(RC)
X

indicates a set of root cause variables over the whole time series X. Note that if a time

series receives multiple exogenous interventions, it only counts as one root cause time series

in V
(RC)
X . We further compute the overall performance by computing the average AC@K,

denoted as Avg@K = 1
K

∑K
k=1AC@k.

AC@k quantifies the performance of root cause analysis as long as the approach finds

the root cause time series. However, in some cases, a time series can receive exogenous

interventions for multiple time steps. To quantify the effectiveness of approaches for locating

the root cause time series at specific time steps, we further develop the metric “recall at top-k

over all time steps” below.

AC∗@K =
1

|X |
∑
X∈X

|
⋃
t∈T V

(RC)
xt ∩ {R∗

X[k]|k = 1, 2, ...,K}|
min(K, |

⋃
t∈T V

(RC)
xt |)

,

where V (RC)
xt indicates the set of root cause time series at the t-th time step; R∗

X[k] indicates

the time series at the k-th rank over all time steps. Similarly, we also compute the overall

performance by computing the average AC∗@K, denoted as Avg∗@K = 1
K

∑K
k=1AC

∗@k.

The experimental results are reported as the average of five independent runs. For

baselines that cannot identify the root cause at specific time steps, we consider the root

cause predicted by the baselines indicating the abnormal time series at the last time step in

a sliding window.

Baselines. We choose two sets of baselines for comparing the performance of causal dis-

covery and root cause identification, respectively.

Causal Discovery. We compare AERCA for the causal discovery with the following

baselines. 1) VAR (Vector AutoRegressive) [166] is a linear model to analyze and predict the

temporal interdependencies between multiple time series datasets; 2) cMLP [164] indicates

structured multilayer perceptrons (MLPs) combined with sparsity penalties on the weights

147

for Granger causal discovery; 3) cLSTM [164] leverages recurrent neural networks (RNNs)

for Granger causal discovery; 4) TCDF (Temporal Causal Discovery Framework) [163]

uses attention-based convolutional neural networks for causal discovery from time series

data; 5) eSRU (economy-Statistical Recurrent Units) [198] leverages a special type of RNN

called the statistical recurrent unit (SRU) for inferring the Granger causality; 6) PCMCI

[199] combines linear or nonlinear conditional independence tests with a causal discovery

algorithm to estimate causal networks; 7) GVAR [165] is a vector autoregression with

generalized coefficient matrices predicted by neural networks; 8) CUTS [200] is a neural

Granger causal discovery algorithm building a causal adjacency matrix with imputed data

under sparse penalty.

Root Cause Identification. We compare AERCA with the following baselines. 1) ϵ-

Diagnosis [180] assumes that the root cause nodes have significantly changed between the

abnormal and normal periods and conducts pair-wise significant tests to locate the root

cause; 2) RCD (Root Cause Discovery) [178] learns the partial causal graph related to

the root cause and locate the root cause as the interventional targets; 3) CIRCA (Causal

Inference-based Root Cause Analysis) [176] builds structural causal graph via domain knowl-

edge and locates the root cause in anomalies as the nodes with significant distribution

changes given its parents. All baselines are implemented by PyRCD [201].

Implementation Details. We implement distinct neural network configurations tailored

to the complexity of the dataset at hand. Specifically, for synthetic datasets, we employ a

two-layer feedforward neural network architecture with a hidden dimension of 50, whereas

for real-world datasets, the architecture is expanded to eight layers, each boasting a hidden

dimension of 1000. Preprocessing of data is standardized across datasets using a MinMax

scaler, with further efficiency measures including downsampling of the SWaT dataset at

intervals of every 10 seconds and the MSDS dataset every 5 steps. The training framework

is anchored by a learning rate of 1 × 10−6, with the Adam optimizer facilitating parame-

ter optimization. Hyperparameters β, λ, and γ are initially set to 1, ensuring a balanced

approach to regularization and loss function adjustment. The maximum training epochs

148

are set to 5000, incorporating an early stopping criterion that halts training if no improve-

ment in loss is observed for 20 consecutive epochs. All experiments were conducted on an

Ubuntu 20.04 server equipped with an AMD Ryzen 3960X 24-Core processor at 3.8GHz,

dual GeForce RTX 3090 GPUs, and 128 GB of RAM. The implementation uses Python

3.9.7 and PyTorch 1.11.0.

7.6.2 Experimental Results

Table 7.2: Overall performance (mean±std.) of causal discovery.

Model Linear Nonlinear Lotka-Volterra Lorenz 96
F1 AUC-PR AUC-ROC HD F1 AUC-PR AUC-ROC HD F1 AUC-PR AUC-ROC HD F1 AUC-PR AUC-ROC HD

VAR 0.969±0.019 0.998±0.003 0.999±0.001 0.011±0.009 0.473±0.164 0.529±0.181 0.676±0.140 0.258±0.130 0.533±0.013 1.000±0.000 1.000±0.000 0.044±0.003 0.404±0.162 0.562±0.376 0.764±0.204 0.360±0.121

cMLP 0.745±0.029 0.595±0.038 0.829±0.0.25 0.229±0.033 0.419±0.134 0.327±0.079 0.609±0.089 0.340±0.217 0.511±0.011 0.065±0.014 0.508±0.007 0.049±0.001 0.472±0.058 0.202±0.027 0.569±0.038 0.193±0.031

cLSTM 0.684±0.042 0.522±0.048 0.766±0.047 0.312±0.062 0.378±0.000 0.233±0.000 0.500±0.000 0.767±0.000 0.356±0.176 0.052±0.001 0.500±0.000 0.400±0.428 0.453±0.048 0.194±0.021 0.572±0.031 0.232±0.035

TCDF 0.943±0.070 0.933±0.081 0.950±0.061 0.033±0.040 0.473±0.107 0.343±0.072 0.655±0.087 0.307±0.065 0.853±0.032 0.749±0.050 0.890±0.021 0.019±0.002 0.429±0.007 0.290±0.006 0.645±0.004 0.260±0.011

eSRU 0.964±0.070 0.958±0.082 0.969±0.061 0.021±0.041 0.408±0.152 0.332±0.071 0.617±0.092 0.267±0.069 0.422±0.039 0.323±0.030 0.634±0.016 0.055±0.002 0.195±0.024 0.225±0.009 0.539±0.009 0.215±0.006

PCMCI 0.969±0.031 0.981±0.040 0.986±0.042 0.025±0.038 0.607±0.094 0.456±0.172 0.742±0.147 0.273±0.175 0.465±0.025 0.291±0.019 0.906±0.017 0.109±0.008 0.368±0.004 0.227±0.007 0.680±0.013 0.540±0.021

GVAR 0.862±0.052 0.981±0.040 0.986±0.042 0.131±0.066 0.421±0.094 0.562±0.145 0.683±0.097 0.487±0.103 0.787±0.011 0.988±0.015 0.999±0.002 0.027±0.002 0.568±0.330 0.582±0.361 0.776±0.194 0.142±0.109

CUTS 0.810±0.076 0.792±0.066 0.844±0.050 0.104±0.034 0.357±0.040 0.249±0.014 0.536±0.032 0.513±0.124 0.8770.031 0.791±0.047 0.892±0.024 0.011±0.002 0.341±0.003 0.206±0.002 0.621±0.004 0.404±0.012

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 0.000±0.000 0.826±0.057 0.996±0.013 0.998±0.006 0.027±0.014 0.857±0.000 1.000±0.000 1.000±0.000 0.026±0.000 0.800±0.000 0.998±0.002 0.999±0.001 0.105±0.000

Table 7.3: Overall performance (mean±std.) of root cause analysis.

Dataset Model AC@1 AC@3 AC@5 AC@10 Avg@10 AC∗@1 AC∗@10 AC∗@100 AC∗@500 Avg∗@500

Linear

ϵ-Diagnosis 0.900±0.300 0.850±0.189 1.000±0.000 1.000±0.000 0.950±0.043 0.000±0.000 0.000±0.000 0.000±0.000 0.250±0.316 0.086±0.125

RCD 0.500±0.500 0.817±0.189 1.000±0.000 1.000±0.000 0.907±0.076 0.000±0.000 0.000±0.000 0.000±0.000 0.150±0.300 0.064±0.160

CIRCA 0.600±0.490 0.800±0.306 1.000±0.000 1.000±0.000 0.910±0.106 0.000±0.000 0.000±0.000 0.025±0.075 0.233±0.327 0.088±0.144

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.763±0.137 0.990±0.018 1.000±0.000 1.000±0.000 0.998±0.001

Nonlinear

ϵ-Diagnosis 0.400±0.490 0.667±0.325 0.880±0.165 1.000±0.000 0.837±0.139 0.000±0.000 0.000±0.000 0.000±0.000 0.092±0.142 0.056±0.088

RCD 0.600±0.490 0.750±0.344 0.880±0.165 1.000±0.000 0.878±0.118 0.000±0.000 0.000±0.000 0.080±0.240 0.263±0.405 0.116±0.215

CIRCA 0.700±0.458 0.717±0.395 0.835±0.295 1.000±0.000 0.863±0.160 0.000±0.000 0.000±0.000 0.017±0.050 0.160±0.182 0.064±0.075

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.433±0.132 0.830±0.094 0.994±0.010 0.995±0.009 0.987±0.094

Lotka-
Volterra

ϵ-Diagnosis 0.100±0.300 0.133±0.163 0.138±0.149 0.247±0.188 0.158±0.131 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

RCD 0.100±0.300 0.133±0.163 0.138±0.149 0.247±0.188 0.158±0.131 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

CIRCA 0.120±0.325 0.107±0.169 0.120±0.150 0.225±0.230 0.146±0.163 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

AERCA 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.997±0.005 0.998±0.004 1.000±0.000 1.000±0.000 1.000±0.000

Lorenz96

ϵ-Diagnosis 0.100±0.300 0.200±0.221 0.280±0.312 0.450±0.330 0.314±0.225 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

RCD 0.200±0.400 0.333±0.333 0.400±0.358 0.556±0.337 0.421±0.278 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

CIRCA 0.360±0.480 0.330±0.244 0.346±0.249 0.539±0.263 0.408±0.220 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000

AERCA 0.996±0.009 0.996±0.009 0.997±0.008 0.996±0.008 0.990±0.011 0.842±0.016 0.970±0.013 0.996±0.009 0.996±0.009 0.987±0.010

SWaT

ϵ-Diagnosis 0.075±0.179 0.125±0.217 0.125±0.217 0.375±0.383 0.180±0.194 0.150±0.357 0.125±0.217 0.125±0.217 1.000±0.000 0.633±0.128

RCD 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.458 0.100±0.161 0.000±0.000 0.025±0.043 0.214±0.066 0.799±0.070 0.416±0.028

CIRCA 0.000±0.000 0.000±0.000 0.000±0.000 0.300±0.458 0.100±0.161 0.000±0.000 0.025±0.043 0.214±0.066 0.799±0.070 0.416±0.028

AERCA 0.220±0.111 0.290±0.088 0.330±0.048 0.455±0.044 0.342±0.052 0.020±0.026 0.320±0.026 1.000±0.000 1.000±0.000 0.950±0.002

MSDS

ϵ-Diagnosis 0.004±0.004 0.266±0.002 0.452±0.009 1.000±0.000 0.492±0.001 0.000±0.000 0.389±0.410 0.706±0.310 1.000±0.000 0.880±0.113

RCD 0.412±0.048 0.573±0.010 0.984±0.001 1.000±0.000 0.821±0.012 0.025±0.026 0.216±0.806 0.806±0.205 1.000±0.000 0.908±0.078

CIRCA 0.454±0.238 0.860±0.140 0.917±0.084 1.000±0.000 0.809±0.035 0.000±0.000 0.102±0.108 0.741±0.273 1.000±0.000 0.884±0.083

AERCA 0.381±0.408 0.908±0.062 0.974±0.027 1.000±0.000 0.896±0.037 0.230±0.004 1.000±0.000 1.000±0.000 1.000±0.000 0.997±0.000

Performance of Causal Discovery. Table 7.2 shows the results of AERCA and baselines

for causal discovery. For baselines, different approaches can achieve good performance on

different datasets. For example, VAR can achieve high F1, AUC-PR, AUC-ROC, and low

HD on the Linear dataset, but the performance of VAR on other nonlinear datasets is poor,

149

which is expected as VAR is a linear model. Some other advanced approaches, such as

TCDF, GVAR, and CUTS, can achieve good performance on the Lotka-Volterra dataset.

However, none of the baseline approaches can achieve satisfactory performance on both

Nonlinear and Lorenz96 datasets. In contrast, AERCA achieves the perfect performance

on the Linear dataset with 1 F1, AUC-PR, AUC-ROC scores, and 0 Hamming distance,

indicating AERCA can learn the causal graph without any error. For the more challenging

three nonlinear datasets, AERCA can achieve high F1, AUC-PR, AUC-ROC scores and

very low Hamining distance, showing the capability of AERCA for discovering the nonlinear

causal relationships.

Performance of Root Cause Identification. Table 7.3 presents the results of AERCA

and baseline models for root cause identification across synthetic and real-world datasets,

utilizing the AC@K metric with consideration for the dimensionality of multivariate time

series within each dataset. Although baselines show promising results in terms of AC@5 and

AC@10 on both Linear and Nonlinear datasets, it’s important to note that these datasets

are of low dimensionality. For instance, in the Linear dataset with four dimensions, AC@5

essentially treats all time series as potential root causes, explaining why all approaches

achieve a score of 1 for AC@5. In contrast, AERCA shows exceptional performance across all

datasets, excluding the MSDS dataset, even at the AC@1 metric, indicating its capability to

accurately identify the time series with the highest root cause score. On the MSDS dataset,

AERCA can still identify the majority of root cause time series, as evidenced by the highest

Avg@10 score. For the more challenging metric AC*@K, AERCA can achieve high AC*@1

scores on most datasets except the SWaT dataset, meaning that AERCA can successfully

detect the root cause at specific time steps. Furthermore, AERCA achieves near-perfect

AC*@10 scores on most datasets. Considering that there are thousands or even tens of

thousands of candidates (T ∗ d) on each dataset when trying to highlight the root cause at

specific time steps, the performance of AERCA is promising.

Case Study. Figure 7.3 shows a short snippet of multivariate time series on the Nonlinear

dataset, where we conduct four exogenous interventions on four different time series at

150

different time steps. We highlight the predicted root cause with the top 5 highest root cause

scores (AC*@5) via purple bars. We can notice that AERCA correctly detects the root cause

time series receiving the exogenous interventions at specific time steps. Meanwhile, as shown

at the bottom of each time series, the distribution of root cause score (z-score) matches the

exogenous variables, especially when the time series receives the exogenous interventions.

Fig. 7.3: Visualization of multivariate time series, exogenous variables, and predicted root
cause scores on the Nonlinear dataset (6 dimensions) with the ground truth and predicted
root cause.

151

(a) Avg@10 (b) Avg∗@500

Fig. 7.4: Performance of root cause identification with various numbers of continuous ex-
ogenous interventions.

Sensitivity Analysis. We evaluate the performance of AERCA on root cause identification

when the anomalies are caused by continuous exogenous interventions. We tune the number

of time steps having the exogenous interventions and check the performance change. Recall

that to make the task more challenging, at each time step, the exogenous intervention is

conducted on different time series. Figure 7.4 shows the evaluation results. We can observe

that in terms of Avg@10, the performance of AERCA remains stable on both Linear and

Nonlinear datasets and slightly decreases on the Lotka-Volterra dataset when increasing the

time steps receiving the exogenous interventions. It shows that AERCA can identify the

root cause correctly with continuous interventions on different time series. Meanwhile, in

terms of Avg*@500, AERCA can still achieve reasonable performance on Linear, Nonlinear,

and Lorenz96 datasets, indicating that in most cases, AERCA can identify the time series

receiving exogenous interventions at specific time steps with high root cause scores. The

main reason that the performance of AERCA on Lotka-Volterra significantly decreases is

because Lotka-Volterra has more variables, which makes the candidates of root cause signifi-

cantly larger, especially for computing the metric AC*@K. In summary, AERCA can achieve

promising performance on root cause identification for continuous interventions when the

number of dimensions in multivariate time series is moderate.

Ablation Study. To properly learn the exogenous variables, it is critical to ensure the

exogenous variables of different time series are independent of each other. Therefore, we

152

(a) AUC-PR (b) AUC-ROC

Fig. 7.5: Impact of the independent constraint on exogenous variables (defined in Eq. 7.7)
for causal discovery.

have an independent constraint on exogenous variables defined in Equation 7.7. To show the

importance of the independent constraint for causal discovery, we conduct the ablation study

to compare the performance of causal discovery when AERCA is trained with and without

the independent constraint in the objective function. As shown in Figure 7.5, on Linear,

Nonlinear, and Lotka-Volterra datasets, without the independent constraint on exogenous

variables, the performance of AERCA for causal discovery is much worse. On Lorenz96, the

impact is minor, but without the independent constraint, the performance of AERCA is still

lower. The experimental results demonstrate the importance of the independent constraint

on exogenous variables for causal discovery.

7.7 Summary

In this work, we have developed AERCA for the root cause analysis of anomalies in

multivariate time series through Granger causal discovery. AERCA considers the anomalies

caused by external interventions on exogenous variables in SCM. To achieve root cause

analysis, AERCA explicitly considers the exogenous variables when simulating the data

153

generation process guided by SCM. After training on the normal time series data, AERCA

can learn the causal relationships among time series as well as derive the exogenous variables.

At deployment, the exogenous variables deviated from the normal values will have high root

cause scores. Experimental results on multiple datasets show that AERCA can achieve

state-of-the-art performance on both causal discovery and root cause identification.

154

CHAPTER 8

ON ROOT CAUSE LOCALIZATION AND ANOMALY MITIGATION THROUGH

CAUSAL INFERENCE

In this chapter, we propose RootCLAM, which aims to achieve Root Cause Localization

and Anomaly Mitigation from a causal perspective. Especially, we formulate anomalies

caused by external interventions on the normal causal mechanism and aim to locate the

abnormal features with external interventions as root causes. After that, we further propose

an anomaly mitigation approach that aims to recommend mitigation actions on abnormal

features to revert the abnormal outcomes such that the counterfactuals guided by the causal

mechanism are normal. Experiments on three datasets show that our approach can locate

the root causes and further flip the abnormal labels.

8.1 Introduction

Deep anomaly detection models have been used to automatically detect a variety of

anomalies, such as bank fraud detection. As many anomaly detection tasks are high-stakes

decision-making tasks, there is a growing demand for the transparency of the detection

results, especially, for the outcomes as anomalies [202]. For example, if a credit card trans-

action is declined by an automated decision-making algorithm due to the potential fraud-

ulent features of this transaction, the user would like to know which features lead to the

transaction decline and how to avoid such a situation in the future.

To answer the question of which features lead to abnormal outcomes, several inter-

pretable anomaly detection approaches are proposed based on the idea of feature attri-

butions [141, 203, 204]. Although feature attribution-based approaches can highlight the

abnormal features, they ignore the dependencies between different features, whereas some

abnormal features may be caused by other upstream abnormal features. For example, if

a loan application is declined, a feature attribution-based approach may highlight the low

155

income and low savings as abnormal features. However, the actual situation may be that low

savings are caused by low income, and low income is the root cause of the loan application

decline. Identifying the root cause of the anomaly can provide insights into the anomaly as

well as efficient actions to fix the anomaly.

In this work, we study the problem of anomaly mitigation facilitated by the root cause

localization. We propose a framework named Root Cause Localization and Anomaly Miti-

gation (RootCLAM). The framework consists of two phases. In the first phase, we attempt

to identify and localize the features that are the root cause of the anomaly for each abnormal

instance. Then, in the second phase, we answer the question of how to fix the abnormal

outcome by finding the algorithmic recourse [160] on the abnormal outcome. Traditional

algorithmic recourse may perform actions on any feature in order to improve or flip the out-

come. However, in the context of anomaly mitigation, it is more natural to perform recourse

actions on the root cause features as not all features are equally important for mitigation.

Thus, our framework aims to find the algorithmic recourse by only using root cause features.

Developing RootCLAM faces several challenges. First, despite several root cause analy-

sis approaches proposed for anomalies in time series data [175,205–207], the research on the

root cause analysis of the tabular data is still limited, especially in the context of anomaly

detection. Second, to perform appropriate recourse actions on root cause features to change

the outcome, one needs to quantitatively analyze the causal connection between these actions

and the outcome [175, 205, 208, 209]. Last but not least, algorithmic recourse is known as

providing a counterfactual interpretation of the outcome. However, existing counterfactual

inference techniques [210–213] usually assume that the causal connections between features

can be described by linear equations, which may not be realistic in practical situations.

To address these challenges, we first assume that the data generation is governed by

a Structural Causal Model (SCM) [150], and treat the root cause as external interventions

on specific features. As a result, the root cause localization is to identify features that

are impacted by the external intervention. Then, we formulate the algorithmic recourse

for anomaly mitigation as soft interventions [214] in order to represent the causal effect of

156

recourse actions on the outcome as a differentiable expression. Based on that, we develop a

continuous optimization-based iterative algorithm that follows the causal graph topological

order to compute the actions such that the outcome will be flipped to normal by performing

the actions. In addition, we leverage the causal graph autoencoder to conduct counterfactual

inference. In particular, we adopt the Variational Causal Graph Autoencoder (VACA)

[215] which can deal with non-linear SCMs by leveraging graph neural networks. Finally,

anomaly mitigation is achieved as the outcome of the algorithmic recourse based on root

cause features.

For empirical evaluation, we conduct experiments on several semi-synthetic and real-

world datasets. The results show that our method can produce the largest flipping ratio

regarding the anomaly detection outcomes while requiring the minimum perturbation com-

pared with the baseline methods.

8.2 Preliminary

8.2.1 Structural Causal Model (SCM)

We adopt Pearl’s Structural Causal Model (SCM) [150] as the prime methodology for

computing counterfactuals. Throughout this work, we use the upper/lower case alphabet to

represent features/values.

Inferring causal effects in the SCM is facilitated by the intervention. The hard inter-

vention forces some variable X ∈ V to take a certain value x. For an SCMM, intervention

do(X = x′) is equivalent to replacing original function in F with X = x′. The soft inter-

vention, on the other hand, forces some variables to take a certain functional relationship

in responding to some other variables [214]. The soft intervention substitutes equation

x = f(xPA , u) with a new equation. After the intervention, the distributions of all features

that are the descendants of X may be changed, called the interventional distributions.

8.2.2 Counterfactuals

Counterfactuals are about answering questions such as for two features X,Y ∈ V ,

157

whether Y would be y had X been x′ given that X is equal to x in the factual instance.

Symbolically we denote this counterfactual instance as xdo(X=x′)|x. The counterfactual

question involves two worlds, the factual world and the counterfactual world, and cannot be

answered directly by the do-operator. When the complete knowledge of the SCM is known,

the counterfactual can be computed by the Abduction-Action-Prediction process [150]:

1) Abduction: Beliefs about the world are updated by taking into account all evidence given

in the context. Formally, update the probability P (u) to P (u|e).

2) Action: Perform do intervention, do(X = x′), to reflect the counterfactual assumption,

and a new causal model is created by interventionsM′ =Mdo(X=x′).

3) Prediction: Counterfactual reasoning occurs over the new modelM′ using updated knowl-

edge P (u|e).

8.2.3 Causal Graph Autoencoder

A causal graph autoencoder is a type of deep learning model that aims to learn a latent

representation of the data that captures the underlying causal relationships among variables

given a causal graph. In this work, we adopt the Variational Causal Graph Autoencoder

(VACA) [215] which can accurately approximate the interventional and counterfactual dis-

tributions on diverse SCMs and can deal with non-linear causal relationships. The VACA

consists of an adjacency matrix A of the causal graph, a decoder pζ(x|z, A) which is a graph

neural network (GNN) that takes as input a set of latent variables z and the matrix A and

outputs the likelihood of x, and an encoder qξ(z|x, A) which is another GNN that takes

x and A as input and outputs the latent variables of z. The VACA is trained to fit the

observational distribution.

To compute the counterfactual instance of a factual instance x under the hard inter-

vention do(Xi = x′), the VACA first computes the distribution of z by feeding the factual

instance x and A into encoder qξ(z|x, A). Then, the VACA constructs the intervened in-

stance x̄ by replacing the value of xi in the factual instance x with the intervened value x′,

as well as the intervened matrix Ā by removing all incoming edges of node Xi in the causal

158

Fig. 8.1: The pipeline to achieve root cause identification and anomaly mitigation.

graph. The VACA feeds x̄ and Ā into encoder qξ(z|x, A) to compute the intervened distri-

bution of the latent variables, denoted by z̄. Next, the VACA removes the latent variable

in z that corresponds to xi, i.e., zi, and replaces it with z̄i in z̄ to obtain a new vector z̃.

This step is to perform the intervention in the hidden space that is equivalent to performing

the intervention in the original feature space. Finally, z̃ and Ā are fed into the decoder

pζ(x|z, A) to compute the counterfactual instance.

8.3 RootCLAM

In this section, we introduce RootCLAM, which is a two-phase framework that rec-

ommends anomaly mitigation actions to flip abnormal outcomes to normal ones. When an

anomaly is detected, root cause localization is first to identify the abnormal features lead-

ing to the abnormal outcome. Then, anomaly mitigation is to further find actions on an

anomaly to flip the prediction from a fixed anomaly detection model with the consideration

of the root cause of the anomaly. Figure 8.1 illustrates our framework for root cause analysis

and anomaly mitigation.

8.3.1 Problem Formulation

We start with formulating the problem for root cause localization and anomaly mitiga-

tion. Consider an unlabeled dataset X = {x(n)}Nn=1 consisting of both normal and abnormal

samples, where x = [x1, ..., xi, ...xd] ∈ Rd is a sample with d features. We adopt a score-

based anomaly detection model g(·) : X → R, which labels abnormal samples if g(x) > τ ,

159

where τ indicates the threshold. By applying g(·) on X , we can obtain a set of detected

abnormal samples X̂−. Our goal is to find the root causes of the anomalies as well as the

actions to fix them.

Root Cause. First, we need to define the root cause. Assume that the normal data are

generated from a Structural Causal Model (SCM) given as follows:

∀xi ∈ X , xi ∼ P (xi|{xj ,∀j ∈ XPAi
}, ui).

We consider that any anomaly is caused by certain external interventions on some features

in the SCM. Thus, the root causes of anomalies are defined as follows.

Definition 3 Given any anomaly x ∈ X̂−, the root causes of x is a set of features I that

receives external interventions.

We do not assume the type of the SCM, but we do assume that the external intervention

on a feature xi can be represented as an intervention on the exogenous variable ui. It is

straightforward to show that this assumption holds for some common types of SCM, such as

the additive noise model where the structural function is a linear combination of XPAi
and

ui. Based on this assumption, we treat the root cause as the feature where the intervention

leads to a significant change in its distribution.

Definition 4 (Root cause). Given an anomaly x ∈ X̂−, the root cause of x is a set of fea-

tures I that receives an external intervention leading to a significant change in the marginal

distributions of exogenous variables P (uI).

It is worth noting that the features that are not the root cause may still exhibit ab-

normal behaviors. For example, suppose that a feature xi receives an external intervention,

meaning that the probability distribution P (ui) is changed to a different distribution P ′(ui).

Meanwhile, the change in xi may propagate through the SCM, influencing another down-

stream feature xj , where xj is a child of xi defined by SCM. As a result, the value of xj may

also become abnormal due to the propagation from the external intervention on xi through

the SCM, despite being a non-root cause.

160

Anomaly Mitigation. Once the anomaly is detected, one can perform recourse actions

to modify the values of certain features to change the abnormal sample to a normal one.

As it is natural to modify root cause features only, we consider the problem of anomaly

mitigation that asks to find a minimum perturbation on the root cause features i ∈ I of

a sample to flip the label made by g(·). From the causal perspective, the recourse actions

can be modeled as soft interventions. Specifically, define the anomaly mitigation action as

a parameter vector θ = [θ1, ..., θi, ...θd] (θj = 0 if j /∈ I). For each root cause feature xi, we

formulate the action that changes xi to xi+θi as a soft intervention. Then, the consequence

of the action on a sample x is the counterfactual instance of x under the soft intervention.

We denote this counterfactual instance as x(θ) which depends on the value of θ as well as

the underlying SCM.

With the above notations, the problem of anomaly mitigation becomes to find the pa-

rameter vector θ that minimizes the cost of the changes made by the mitigation actions,

subject to making the counterfactual instance x(θ) a normal sample for each original ab-

normal sample x. It is formulated as that the anomaly detection model should have the

anomaly score less than the threshold τ by taking counterfactual sample x(θ) as input, i.e.,

g(x(θ)) ≤ τ . By using the weighted L2 norm of the action values θ as the quantitative cost

measure, given by ∥c · θ∥2 where c is a cost vector for describing costs of revising all root

cause features (cj = 1 if j /∈ I), the problem is finally formulated as

argmin
θ
∥c · θ∥2 s.t. ∀x ∈ X̂−, g(x(θ)) ≤ τ (8.1)

Solving the optimization problem in Eq. (8.1) is not trivial. When an action is performed

to change xi to xi+θi, the downstream features that are causally related will also be affected

by this action. For example, changing an annual salary usually has an impact on the account

balance. Thus, the counterfactual instance x(θ) is not simply equal to x+θ. Ignoring causal

relationships will lead to incorrect action recommendations, and counterfactual inference is

needed to derive the accurate consequence of actions. Next, we address this challenge by

leveraging the Variational Causal Graph Autoencoder (VACA), a state-of-the-art causal

161

graph autoencoder.

8.3.2 Root Cause Localization

Based on the Definition 4, the idea of localizing the root cause features is to examine the

exogenous variables of all features. If an exogenous variable ui does not follow the regular

distribution P (ui) learned from the normal data, the exogenous variable should be the root

cause of an anomaly that receives the external intervention. In this way, even if a feature

is abnormal, as long as its exogenous variable follows a similar distribution as the normal

data, we treat it as a non-root cause feature and attribute the abnormal behavior to be

propagated from its parents.

To this end, we leverage VACA to learn the distribution of the exogenous variable. As

mentioned earlier, VACA contains an encoder that maps the features to a hidden exogenous

representation, i.e., z ∼ qξ(z|x, A), as well as a decoder that maps the hidden exogenous

representation back to the feature space, i.e., x ∼ pζ(x|z, A). The decoder and encoder are

implemented as graph neural networks, and all computations follow the structural equation

specified by the SCM. For each feature xi ∈ x, the purpose of zi ∈ z is to capture the

information of xi that cannot be explained by its parents. Thus, zi plays a similar role to

ui, which implies that we can examine the distribution of z to localize the root causes.

Specifically, after training the VACA on normal data, for each sample x ∈ X̂−, we

first derive the hidden variable z based on the encoder of VACA and further calculate the

cumulative probability Φ(zi) for each exogenous variable based on the distribution fitted

from normal data. To identify the root cause features with significant changes in exogenous

variables, we set a threshold π for the percentage of the values (in our experiments we use

π = 0.125). If Φ(zi) is smaller than π or larger than 1− π, we consider the feature xi as a

potential root cause. As there can be multiple root cause features in a particular sample,

we examine the exogenous variables of all features and get a set of root cause features I.

162

8.3.3 Causal Graph Autoencoder-based Anomaly Mitigation

For each sample in X̂−, after getting the root causes, we further want to flip the ab-

normal outcome with minimum actions on root cause features I. The challenge in solving

Eq. (8.1) is how to compute counterfactual instance x(θ) and solve θ as a continuous op-

timization problem. We propose to perform the Abduction-Action-Prediction process to

conduct the counterfactual inference based on the VACA. Since we perform actions on all

features, we consider an iterative Abduction-Action-Prediction process as follows:

x1(θ) = x1 + θ1︸ ︷︷ ︸
Action

,

for i = 2 · · · d, x̃i ∼
∫
P (xi|{xj(θ), ∀j ∈ PAi}, ui) P (ui|x)︸ ︷︷ ︸

Abduction

dũi

︸ ︷︷ ︸
Prediction

,

xi(θ) = x̃i + θi︸ ︷︷ ︸
Action

,

(8.2)

where the features are sorted in topological order. More specifically, to compute x(θ), we: (1)

infer the updated probability P (ui|x) (Abduction); (2) perform the action on each feature

xi (Action); and (3) infer the counterfactual values of the downstream features. Steps (2)

and (3) are repeated until all features are modified.

There are two challenges in directly applying the VACA to our context. First, the

VACA is designed to perform hard intervention where the connections from the parents

to the intervened node are cut off. However, in our context, we conduct interventions on

all actionable features. By using hard intervention, the parent-child relations of multiple

features would be cut-off and cannot pass to downstream nodes, which totally changes the

underlying SCM making the generated counterfactual instances infidelity. Therefore, we

perform soft interventions on all features where the parent-child relations are preserved,

which cannot be achieved by directly using the VACA to perform hard interventions on all

features. Second, the hidden exogenous representation z produced by the encoder may not

be in the same space as the features, but we want to compute the recourse on the original

feature space. These two challenges mean that the action values cannot be directly added

163

on z when we adopt the VACA as the causal graph autoencoder.

We address the above challenges by proposing an iterative algorithm, where each iter-

ation performs a hard intervention on one feature following a topological order. The idea is

to pass the influence of each hard intervention to the downstream nodes before performing

the hard intervention on the next node in the topological order, in order to simulate how

the soft intervention works. Specifically, at the ith iteration, to take the generated action

on feature Xi, we perform a hard intervention on Xi as do(Xi = xi + θi) to obtain the in-

tervened instance x̄. Then, we use the VACA to compute the interventional influence on all

descendants of Xi similarly to the above discussion. In this process, x̄ is first transformed to

the hidden representation z̄ by the encoder. Meanwhile, the sample x before the intervention

is also transformed to the hidden representation z by the encoder. Then, z̄i in z̄ replaces

zi in z to perform the intervention in the hidden space that is equivalent to performing the

intervention in the original feature space. Finally, the interventional influences of this action

are transmitted to all descendants of Xi by the decoder which produces the counterfactual

instance of the sample under the intervention. It is worth noting that, at the beginning of

the ith iteration, the value of xi has already been updated by taking into account the inter-

ventional influences of actions taken on ancestors of Xi. As a result, after we perform the

hard intervention on all features, we obtain the counterfactual instance under the recourse.

Finally, for the sake of generalization, instead of computing θ for each instance sepa-

rately, we define a function θ = hϕ(x) for generating the action given x. By integrating the

score-based anomaly detection model and VACA for computing the counterfactual instance

into Eq. (8.1) and adding the constraint to the objective as regularization, we obtain the

final objective function as follows:

L(ϕ) =
∑

x(n)∈X̂−

max
{
g
(
x(n)(θ(n))

)
− ατ, 0

}
+ λ∥c · θ(n)∥2, (8.3)

where θ(n) = hϕ(x
(n)) indicates the action values for the sample x(n); λ is a hyperparameter

balancing the actions on the anomalies and the flipping of abnormal outcomes; α is another

hyperparameter controlling how close the anomaly score of counterfactual sample should

164

Algorithm 6: Training Procedure of RootCLAM for Mitigation Action Predic-
tion
1 foreach x ∈ X̂− do
2 Compute root cause features I for x
3 x̃← x
4 foreach i ∈ I do
5 Compute θi = hϕi(x)
6 Draw z̃ ∼ qξ(z|x̃, A) // Abduction

7 Compute x̄i(θ) = x̃i + θi // Action

8 Replace x̃i in x with x̄i(θ) and get x̄
9 Draw z̄ ∼ qξ(z|x̄, Ā)

10 Replace z̃i in z̃ with z̄i in z̄ and get z(θ)
11 Draw x(θ) ∼ pζ(x|z(θ), Ā) // Prediction

12 x̃← x(θ)

13 Compute L(ϕ) according to Eq. (8.3)
14 Compute ∂L(ϕ)

∂ϕ

15 Update ϕ = ϕ− η ∂L(ϕ)∂ϕ

16 return hϕ

be to the threshold τ . Note that the only trainable parameters in this objective function

are the parameters ϕ of hϕ(x) for generating the action values. Eq. (8.3) can be minimized

using off-the-shelf gradient-based optimization algorithms. The training procedure is shown

in Algorithm 6.

Practical Considerations. RootCLAM assumes the availability of a causal graph about

the data. In practice, the causal graphs may not be available. In this case, we can leverage

the causal discovery algorithms to identify the causal relations of observational data [216].

8.4 Experiments

8.4.1 Experimental Setup

Datasets. We conduct experiments on two semi-synthetic datasets and one real-world

dataset. For the real-world dataset, as we do not have the ground-truth SCM, we only use

it for a case study.

• Loan [152] is a semi-synthetic dataset about a loan approval scenario derived from

the German Credit dataset [217], which consists of 7 endogenous features including loan

165

amount (L), loan duration (D), income (I), savings (S), education level (E), age (A), and

gender (G). The label Y indicates the probability of loan approval. We treat the samples

with high approval probabilities as normal and the samples with low approval probabilities

as anomalous. The structural equations for data generation are be found in [152]. Due to

the space limit, we do not include the equations in this work.

• Adult [215] is another semi-synthetic dataset about the annual income of a person

derived from the real-world Adult dataset [217], which consists of 10 endogenous features

of a person including age (A), education level (E), hours worked per week (H), race (R),

native country (N), sex (S), work status (W), marital status (M), occupation sector (O),

and relationship status (L). We use the SCM designed in the paper [215]. We follow the

common settings of the adult dataset to treat samples with income less than $50k as normal

and samples with income more than $50k as abnormal. We use the structural equations for

data generation defined in [215].

Anomaly Injection. To quantify the performance of RootCLAM for root cause local-

ization, we generate abnormal samples by revising exogenous variables of some features.

Especially, to generate anomalies, we first randomly select one to four features and then

change the distribution of the corresponding exogenous variables. For example, on the Loan

dataset, we change the exogenous variable US of savings (S) from N (0, 25) to N (−25, 25).

In this way, we have the ground truth of the root causes for each abnormal sample.

•Donors 1 is a real-world dataset that aims to predict whether a project on DonorsChoose.org

is exciting to the business. The dataset consists of 10 endogenous features of a project, in-

cluding “at least one teacher-referred donor”, “fully funded”, “at least one green donation”,

“great chat”, “three or more non teacher-referred donors”, “one non teacher-referred donor

giving 100 plus”, “donation from thoughtful donor”, “great messages proportion”, “teacher-

referred count”, “non teacher-referred count”. A project must meet all of the following five

criteria to be exciting: 1) was fully funded; 2) had at least one teacher-referred donor; 3)

has a higher than average percentage of donors leaving an original message; 4) has at least
1https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose

https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose

166

Table 8.1: Statistics of three datasets.

Dataset # of Features Normal Dataset Unlabeled Dataset
Normal Anomalous

Loan 7 10,000 10,000 1,000
Adult 10 10,000 10,000 1,000
Donors 10 10,000 26,710 2,671

one “green” donation; 5) has one or more of: 5.1) donations from three or more non teacher-

referred donors, 5.2) one non teacher-referred donor gave more than $100, 5.3) the project

received a donation from a “thoughtful donor”.

We consider exciting projects as normal and non-exciting projects as abnormal, while

anomaly mitigation is to provide guidance to make the project exciting. As a real-world

dataset, we do not have the ground-truth SCM, so we only use it for a case study. The causal

graph used in RootCLAM is approximated by the PC algorithm [218] with some minor edits

to incorporate the domain knowledge. Figure 8.2 shows the causal graph on Donors.

Fig. 8.2: Learned causal graph on Donors.

Table 8.1 shows the statistics of three datasets. To simulate the anomaly detection

scenario, we set the ratio of abnormal samples to normal samples as 1:10 in the unlabeled

dataset for testing.

Anomaly Detection Models. We adopt Deep Support Vector Data Description (Deep

SVDD) [80] and autoencoder-based model (AE) [167] as anomaly detection models g(·).

167

• Deep SVDD derives the anomaly scores of the test sample based on its distance

to the center µ of a hypersphere constructed by normal samples, i.e., g(x) = ∥r(x) − µ∥2,

where r(x) indicates the hidden representation of a sample x derived from r(·). Then, the

objective function (Eq. (8.3)) for the recourse recommendation can be rewritten as:

LS(ϕ)=
∑

x(n)∈X̂−

max{∥x(n)(θ(n))− µ∥2 − ατ, 0}+ λ∥c · θ(n)∥2.

• AE-based anomaly detection model derives the anomaly scores of samples based on

the reconstruction errors of an autoencoder that is trained by normal samples, i.e., g(x) =

∥x − x̂∥2, where x̂ indicates the reconstructed sample from autoencoder. Then, to provide

recourse for the AE-based anomaly detection model, the objective function (Eq. (8.3)) can

be rewritten as:

LAE(ϕ) =
∑

x(n)∈X̂−

max{∥x(n)(θ(n))− ̂x(n)(θ(n))∥2−ατ, 0}+ λ∥c · θ(n)∥2.

In our experiments, we first train Deep SVDD and AE on the normal dataset, respec-

tively, and then apply the models on the unlabeled dataset X and get the corresponding

X̂− from each model.

Baseline for Root Cause Localization. We compare RootCLAM with CausalRCA [219],

a state-of-the-art approach for root cause analysis. We use the implementation in the DoWhy

package [220].

Baselines for Anomaly Mitigation. To our best knowledge, there is no causal anomaly

mitigation approach. We compare RootCLAM with two baselines, C-CHVAE and NaiveAM.

• C-CHVAE [221] can find feasible counterfactual flipping the output of classifiers,

but does not consider the underlying causal relationships when generating counterfactuals.

We adapt C-CHVAE by replacing classifiers with anomaly detection models.

•NaiveAM directly predicts the action values on all feasible features without consider-

ing the underlying causal structure. Specifically, given a set of abnormal sample X̂−, we still

train a neural network ĥϕ(·) to predict the action value, θ̂ = ĥϕ(x), where x ∈ X̂−. However,

168

instead of generating the counterfactual samples guided by SCM, NaiveAM generates the

revised samples by simply adding the action value on the original sample, i.e.,

x̂(θ) = x+ θ̂. (8.4)

NaiveAM is also trained on the objective function in Eq. (8.3) by replacing θ and x(θ) with

θ̂ and x̂(θ), respectively. After training, in order to evaluate whether the predicted actions

can really flip the labels in the counterfactual world, on Adult and Loan datasets, we also

generate the counterfactual samples based on the structural equations given θ̂, denoted as

x̂(θ) (SCM).

Implementation Details. For a fair comparison, the hyperparameters of neural networks

for action prediction in NaiveAM and RootCLAM are the same. We set the hyperparameters

for VACA by following [215]. By default, the threshold for anomaly detection is set to 0.995

quantiles of the training samples’ distances to the center (Deep SVDD) or the reconstruction

errors (AE). For the intervention value prediction, we utilize a feed-forward network with

structure m-2048-2048-n, where m is the input dimension and n is the number of actionable

features. The costs c in Eq. (8.3) are user-specified functions for each root cause feature to

represent preferences or feasibility of features changing. The cost functions can be changed

according to the requirements or prior knowledge. To be fair, we use the standard deviation

of each root cause feature as the cost for NaiveAM and RootCLAM. Our code is available

online 2.

8.4.2 Experimental Results

The performance of anomaly detection. We evaluate the performance of anomaly

detection in terms of the F1 score, the area under the receiver operating characteristic

(AUROC), and the area under the precision-recall curve (AUPRC). Table 8.2 shows the

anomaly detection evaluation results. In short, both AE and Deep SVDD can achieve good

performance for anomaly detection, meaning that the predicted abnormal samples X̃− have
2https://github.com/hanxiao0607/RootCLAM

https://github.com/hanxiao0607/RootCLAM

169

high accuracy. It lays a solid foundation for action prediction.

After getting the abnormal set X̃− of each dataset, we then train and test the root

cause localization and anomaly mitigation with the train/test split ratio of 80/20.

Table 8.2: Anomaly detection on the unlabeled datasets.

Dataset AE Deep SVDD
F1 AUROC AUPRC F1 AUROC AUPRC

Loan 0.923 0.998 0.982 0.888 0.993 0.944
Adult 0.893 0.984 0.899 0.837 0.923 0.823
Donors 0.967 0.998 0.979 0.988 0.999 0.998

Table 8.3: Root cause localization on the unlabeled datasets.

AE Deep SVDD
Accu. Pre. Rec. F1 Accu. Pre. Rec. F1

Loan CausalRCA 0.707 0.522 0.680 0.591 0.704 0.508 0.561 0.533
RootCLAM 0.728 0.545 0.765 0.636 0.727 0.523 0.776 0.631

Adult CausalRCA 0.853 0.554 0.615 0.583 0.850 0.546 0.593 0.569
RootCLAM 0.866 0.567 0.849 0.680 0.855 0.544 0.794 0.646

Table 8.4: The performance of anomaly mitigation in terms of the flipping ratio and norm
of action values.

Metric
Loan Adult

C-CHVAE NaiveAM RootCLAM C-CHVAE NaiveAM RootCLAM

AE
Flipping Ratio

Ŷ 1.000 1.000 0.891 0.114 0.885 0.960

Y 0.499 0.337 0.839 0.065 0.598 1.000

Action Value ∥c · θ∥2 22.383 6.382 5.185 115.862 34.389 14.504

Deep SVDD
Flipping Ratio

Ŷ 1.000 1.000 0.988 0.671 1.000 1.000

Y 0.496 0.847 0.963 0.586 0.595 1.000

Action Value ∥c · θ∥2 17.832 13.474 5.862 63.124 69.169 29.274

The performance of RootCLAM on root cause localization. After detecting the

anomalies, the next step is to identify the root causes. We further evaluate the performance

of RootCLAM on root cause localization in terms of accuracy, precision, recall, and F1.

As shown in Table 8.3, RootCLAM outperforms CausalRCA in terms of accuracy and F1

170

score on both datasets. Especially, RootCLAM achieves much higher recall compared with

CausalRCA, which means RootCLAM can identify more root cause features.

The performance of RootCLAM on counterfactual sample generation. Generating

high-fidelity counterfactual samples is a fundamental requirement for predicting high-quality

actions to flip the labels. We evaluate the quality of estimated counterfactual samples in

terms of the mean squared error (MSE) as well as the standard deviation of the squared

error (SSE) between the true and the estimated counterfactual samples on the Loan and

Adult datasets that have the ground truth structural equations for data generation. On

Loan, the MSE and SSE are 3.976 and 2.266, respectively, while on Adult, the MSE and

SSE are 3.334 and 0.900, respectively. It means RootCLAM can get good counterfactual

samples.

The performance of anomaly mitigation in terms of flipping ratio. We evaluate

the performance of anomaly mitigation by examining the flipping ratio that anomalies are

transferred to normal through the interventions predicted by hϕ(·). The flipping ratio is

calculated as the fraction of the number of flipped samples over all detected anomalies.

Because we would like to check whether the predicted actions can really flip the labels in the

counterfactual world, given the predicted action values from RootCLAM and baselines, we

also use the ground-truth structural equations to generate the counterfactual samples. We

calculate the flipping ratio by considering two scenarios: 1) whether the anomaly detection

model would detect the counterfactual samples as normal, denoted as Ŷ; 2) whether the

ground truth Y is flipping from abnormal to normal based on the ground-truth structural

equations, denoted as Y.

As shown in Table 8.4, on Loan and Adult datasets, both RootCLAM and NaiveAM

can successfully flip almost all abnormal samples detected. However, C-CHVAE cannot get

good performance on the Adult dataset. For the flipping ratio on the ground truth label

Y, RootCLAM can successfully flip most of the abnormal samples on both datasets. It

means the actions predicted by RootCLAM can reverse the majority of abnormal samples

to normal in the counterfactual world. However, NaiveAM and C-CHVAE cannot get good

171

(a) AE-Loan (b) AE-Adult

(c) DeepSVDD-Loan (d) DeepSVDD-Adult

Fig. 8.3: Trade-off between flipping ratio and action value.

performance on flipping the ground truth label Y. This is because both NaiveAM and C-

CHVAE do not consider the underlying causal structure in the data, showing that simply

revising the root cause features is not sufficient to flip the ground-truth labels.

The performance of anomaly mitigation in terms of the norm of action values.

One requirement for anomaly mitigation is to conduct minimal interventions on the original

samples. We further calculate the norm of action values, i.e., ∥c · θ∥2, on the samples with

successfully flipping labels. As shown in the last row of Table 8.4, RootCLAM makes much

smaller changes on the original samples and still has higher flipping ratios on the ground

truth label Y.

The trade-off between the flipping ratio and the norm of action values. In the ob-

jective function (Eq. (8.3)), λ as a hyper-parameter controls the trade-off between the norm

of action values and the flipping ratio in the training phase. A large λ value indicates that

the model will be trained with an emphasis on minimizing the action values. Given the pre-

172

dicted action values, we adopt ground-truth structural equations to generate counterfactual

samples and then check the flipping ratios based on anomaly detection models (Ŷ) and the

ground truth label Y. Figure 8.3 shows the results. Each point on the line from left to right

indicates the result from one λ value in the set [1, 10−1, 10−2, 10−3, 5 × 10−4, 10−4, 10−5].

Because good mitigation action predictions should be able to flip the label with minimum

changes, closing to the top-left corner indicates good performance.

First, on both datasets, we can notice that in most cases, increasing the norm of action

values can improve the flipping ratio. It means most of the abnormal samples can be

flipped as normal ones with sufficient changes. Therefore, the key is to conduct minimum

interventions on the original samples. The exception is that when having a large norm

of action values on NaiveAM to flip the ground-truth label Y , we can notice the flipping

ratio either does not changes or drops, which shows the importance to consider the causal

relationships when applying the mitigation actions.

As shown in Figure 8.3a, on the Loan dataset, both NaiveAM and RootCLAM can

achieve a high flipping ratio evaluated by AE with very small action values (∥c · θ∥2 < 3).

On the other hand, in terms of flipping the ground truth label Y, RootCLAM can achieve

a much higher flipping ratio compared with NaiveAM. On the Adult dataset, as shown in

Figure 8.3b, RootCLAM can still achieve a near 100% flipping ratio on the detected label

Ŷ as well as the ground truth label Y, while the performance of NaiveAM is poor.

As shown in Figure 8.3c, on the Loan dataset, both NaiveAM and RootCLAM can

achieve a near 100% flipping ratio evaluated by Deep SVDD with very small action val-

ues (∥c · θ∥2 < 7.5). On the other hand, in terms of flipping the ground truth label Y,

RootCLAM can achieve a higher flipping ratio with a lower norm of action values compared

with NaiveAM. On the Adult dataset, as shown in Figure 8.3d, RootCLAM can still achieve

better performance over NaiveAM by setting various λ values for flipping both the ground

truth label Y and detected label Ŷ.

Sensitivity analysis by setting various α in the objective function (Eq. (8.3))

for anomaly mitigation. The hyperparameter α in Eq. (8.3) controls how close the

173

(a) AE-Loan (b) AE-Adult

(c) DeepSVDD-Loan (d) DeepSVDD-Adult

Fig. 8.4: Sensitivity analysis by setting various α.

anomaly scores of counterfactual samples should be to the threshold. We evaluate the

flipping ratios by tuning the hyperparameter α. A smaller α indicates that the counterfactual

samples should be closer to the center of normal samples (DeepSVDD) or have a smaller

reconstruction error (AE).

Figures 8.4a to 8.4d have similar observations. First, in all settings, the flipping ratios

in terms of detected label Ŷ are high and keep stable, which shows that a small intervention

on abnormal samples can flip the detecting results. Meanwhile, by reducing the α value,

we can observe the increase of the flipping ratio in terms of ground-truth label Y as well

as the norm of action value, which means flipping the ground-truth label requires more

interventions.

Sensitivity analysis by setting various π for root cause localization. Because the

root cause features are identified with a small or large cumulative probability controlled by π,

we evaluate the performance of root cause localization by tuning the threshold π. As shown

174

(a) AE-Loan (b) AE-Adult

(c) DeepSVDD-Loan (d) DeepSVDD-Adult

Fig. 8.5: Sensitivity analysis by setting various π.

in Figure 8.5, on both datasets, increasing the threshold π can increase the recall of root

cause localization with a minor negative impact on the precision. The overall performance

in terms of accuracy and F1 keeps improving with a large π value.

Case study. We conduct case studies to show that RootCLAM can identify root causes

and recommend mitigation actions.

Loan Dataset. Table 8.5 shows the case study on the Loan dataset with the root

cause features I={"loan amount", "loan duration"}. For the semi-synthetic Loan dataset,

the positive values of features usually indicate above the average, while negative values

indicate below the average. The rows x̂(θ) (SCM) and x(θ) (SCM) indicate counterfactual

samples generated based on the structural equations given the predicted action values from

NaiveAM and RootCLAM, respectively, while x(θ) (Eq. 8.2) indicates the counterfactual

samples generated based on our approach.

Given an abnormal sample x, RootCLAM successfully identifies the two root cause

175

Table 8.5: Case study on the Loan dataset, where “loan amount” (L) and “loan duration”
(D) are root cause features.

G A E L D I S Y
x 0 -1.878 -0.095 2.423 5.634 -2.064 0.697 0.003

AE

NaiveAM θ̂ / / / -2.441 -8.159 0.217 -6.342 /
x̂(θ) (SCM) 0 -1.878 -0.095 -0.017 -2.525 -1.847 -5.646 0.838

RootCLAM
θ / / / -5.958 -11.336 / / /

x(θ) (Eq. 8.2) 0 -2.133 -0.089 -3.125 -9.154 -1.982 0.162 0.954
x(θ) (SCM) 0 -1.878 -0.095 -3.534 -11.659 -2.064 0.697 0.976

Deep SVDD

NaiveAM θ̂ / / / -1.655 -3.911 -1.869 -0.161 /
x̂(θ) (SCM) 0 -1.878 -0.095 0.769 1.723 -3.932 0.536 0.083

RootCLAM
θ / / / -2.157 -12.324 / / /

x(θ) (Eq. 8.2) 0 -2.134 -0.089 0.453 -7.600 -1.982 0.162 0.818
x(θ) (SCM) 0 -1.878 -0.095 0.267 -8.847 -2.064 0.697 0.850

G – ‘gender’, A – ‘age’, E – ‘education level’, L – ‘loan amount’, D – ‘loan duration’, I – ‘income’, S – ‘savings’

features. Meanwhile, the mitigation actions predicted by RootCLAM indicate that reducing

the loan amount (L) and the loan duration (D) can significantly improve the loan approval

rate. On the other hand, although NaiveAM predicts more actions for anomaly mitigation,

the odds of loan approval based on NaiveAM are still lower than the result from RootCLAM.

Table 8.6: Case study on the Adult dataset, where “hours worked per week” (H) is the root
cause feature

R A N S E H W M O L I
x 2 36.401 1 1 5.264 52.520 1 1 2 1 60,816

AE

NaiveAM θ̂ / 9.219 / / 0.266 -4.148 / / / / /
x̂(θ) (SCM) 2 45.620 1 1 5.529 48.372 1 1 2 1 60,816

RootCLAM
θ / / / / / -9.672 / / / / /

x(θ) (Eq. 8.2) 2 38.293 1 1 5.370 44.791 1 1 2 1 45,816
x(θ) (SCM) 2 36.401 1 1 5.264 42.848 1 1 2 1 45,816

Deep SVDD

NaiveAM θ̂ / 20.734 / / 0.549 -8.573 / / / / /
x̂(θ) (SCM) 2 57.135 1 1 5.813 43.947 1 1 2 1 45,816

RootCLAM
θ / / / / / -12.672 / / / / /

x(θ) (Eq. 8.2) 2 38.293 1 1 5.370 40.217 1 1 2 1 45,816
x(θ) (SCM) 2 36.401 1 1 5.264 39.848 1 1 2 1 45,816

R – ‘race’, A – ‘age’, N – ‘native country’, S – ‘sex’, E – ‘education level’, H – ‘hours worked per week’, W –
‘work status’, M – ‘marital status’, O – ‘occupation sector’, L – ‘relationship status’, I – ‘income’

Adult Dataset. Table 8.6 shows the case study on the Adult dataset with the root

cause features I={"hours worked per week"}. In this case, the action values predicted by

RootCLAM on the hours worked per week is negative, which indicates that reducing hours

worked per week can make the sample normal (Income less than 50k). As we consider

an income higher than 50k as abnormal, our predicted action value can indicate why an

176

Table 8.7: Case study on the Donors dataset

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Y
x 0 1 0 1 0 1 0 66 0 3 1

AE
NaiveAM θ̂ / / / / / / / 34 5 -5 /

x̂(θ) (Eq. 8.4) 0 1 0 1 0 1 0 100 5 -3 1

RootCLAM θ / / / / / / / 26 2 5 /
x(θ) (Eq. 8.2) 1 1 1 1 1 1 0 100 2 6 0

Deep SVDD
NaiveAM θ̂ / / / / / / / 34 5 -4 /

x̂(θ) (Eq. 8.4) 0 1 0 1 0 1 0 100 5 -2 1

RootCLAM θ / / / / / / / 26 2 5 /
x(θ) (Eq. 8.2) 1 1 1 1 1 1 0 100 2 6 0

F1 – ‘at least 1 teacher-referred donor’, F2 – ‘fully funded’, F3 – ‘at least 1 green donation’, F4 – ‘great
chat’, F5 – ‘three or more non teacher-referred donors’, F6 – ‘one non teacher-referred donor giving 100 plus’,
F7 – ‘donation from thoughtful donor’, F8 – ‘great messages proportion’, F9 – ‘teacher-referred count’, F10
– ‘non teacher-referred count’.

individual can have a high income, i.e., having a large number of hours worked per week.

On the other hand, NaiveAM cannot ensure the success of anomaly mitigation. For the

AE-based model, the income value is not changed based on the action values predicted

from NaiveAM. For the DeepSVDD-based model, although the action values predicted by

NaiveAM successfully reduce the income, NaiveAM predicts larger action values compared

to RootCLAM.

Donors Dataset. We consider a project that is not exciting as an anomaly and aim

to flip the label. Based on the definition of an exciting project, the original sample x in

Table 8.7 is not exciting because this project fails to meet the requirements of at least one

teacher-referred donor (F1) and at least one “green” donation (F3). In this case study,

RootCLAM identifies “great messages proportion” (F8), “teacher-referred count” (F9), and

“non teacher-referred count” (F10) as the root cause features. All root cause features are

ancestors of exciting requirements shown in Figure 8.2. After getting the action values from

hϕ(·), we round to the nearest integer. Because we do not have the ground truth structural

equations for Donors, Table 8.7 only shows the predicted counterfactual samples from the

models.

For the purpose of anomaly mitigation, in order to make the project exciting, as shown

in Table 8.7, the project host should try to have more ‘great messages’, increase the ‘teacher-

referred count’ as well as ‘non-teacher-referred count’. After doing such changes, as shown in

177

the last row, some key features, such as F1, F3, and F5, are flipped to 1. Then, we can notice

that the counterfactual sample will be exciting. On the other hand, because NaiveAM does

not consider the causal relationships among features, NaiveAM cannot derive the impact on

other features after changing the root cause features. As a result, NaiveAM cannot flip the

label.

8.5 Summary

In this work, we developed RootCLAM, a framework for root cause analysis and

anomaly mitigation through causal inference. RootCLAM first learns a Variational Causal

Graph Autoencoder from the normal data. Then, given an abnormal sample, RootCLAM

identifies root cause features with the exogenous variables significantly deviated from the

regular data. Then, RootCLAM computes mitigation actions as soft interventions on root

cause features that can flip the anomalies to normal. Experiments show that RootCLAM

achieves state-of-the-art performance on root cause localization and can further successfully

fix most of the anomalies. The early version of this work is published at CIKM 2023 [222].

178

CHAPTER 9

ACHIEVING COUNTERFACTUAL FAIRNESS FOR ANOMALY DETECTION

In this chapter, we propose a Counterfactually Fair Anomaly Detection (CFAD) frame-

work to address the challenges of achieving counterfactual fairness for anomaly detection.

One major challenge is the unobservability of counterfactual data, as any intervention on

one feature will subsequently affect the values of other features due to the underlying causal

mechanism. To overcome this challenge, we develop an approach to generate counterfac-

tual data based on a graph autoencoder. The second challenge is achieving counterfactual

fairness while preserving high anomaly detection performance. To achieve this, we use an

autoencoder as the base anomaly detection model and apply adversarial training to en-

sure that the hidden representations of factual and counterfactual data derived from the

encoder cannot be distinguished by a discriminator. This leads to similar detection results

for both factual and counterfactual data, ensuring counterfactual fairness. We do not re-

quire knowledge of the causal graph and structural equations but only assume that the data

generation follows a generalized linear SCM. Experimental results show that CFAD enables

counterfactual fairness for anomaly detection.

9.1 Introduction

Anomaly detection, which aims to detect samples that are deviated from the normal

ones, has a wide spectrum of applications. Recently, deep anomaly detection models, pow-

ered by complex deep neural nets, have made promising progress in effectively detecting

anomalies. Besides effectiveness, researchers recently notice the importance of taking the

societal impact of anomaly detection into consideration as many anomaly detection tasks

involve human individuals. Fairness as one fundamental component to build trustworthy AI

has received much attention. Recent studies have shown that anomaly detection models can

incur discrimination against certain groups. For example, a deep anomaly detection model

179

could overly flag black males as anomalies [223]. In the scenarios of credit risk analysis,

anomaly detection models predict more females as anomalies [224].

Several fair anomaly detection models have been proposed, which ensure no discrim-

ination against a particular group based on the sensitive feature [223–228]. However,

these approaches mainly focus on achieving association-based fairness notions like demo-

graphic parity. Recent studies have demonstrated the importance of treating fairness as

causation-based notions that concern the causal effect of the sensitive feature on the model

outcomes [229–231]. Counterfactual fairness is one important causation-based fairness no-

tion [232, 233]. It considers that a model is fair if, for a particular individual, the model

outcome in the factual world is the same as that in the counterfactual world where the

individual had belonged to a different group. To the best of our knowledge, no studies have

been conducted to ensure counterfactual fairness in anomaly detection.

In this work, we focus on counterfactual fairness for anomaly detection with the goal to

ensure that the detection outcomes remain consistent in both the factual and counterfactual

worlds. Achieving counterfactual fairness for anomaly detection is challenging. First, we

can only observe the factual data. The counterfactual data are unobservable and cannot be

obtained by simply changing the sensitive feature of the factual data. This is because the

data generation is governed by an underlying causal mechanism where any intervention on

one feature will subsequently affect the values of other features. Second, in anomaly detec-

tion, we can only observe factual normal data. Building a detection model which ensures the

detection results be unchanged for individuals across the factual and counterfactual worlds

while also preserving high anomaly detection performance imposes additional challenges.

To tackle the above challenges, we propose a Counterfactually Fair Anomaly Detection

(CFAD) framework. We do not require the knowledge of the causal graph and structural

equations but only assume that the data generation follows a generalized linear Structural

Causal Model (SCM). We use an autoencoder as the base anomaly detection model where

the anomaly score of a sample is derived based on the reconstruction error of the autoen-

coder. Then, we propose a two-phase approach. In the first phase, motivated by [211] which

180

leverages the graph autoencoder for causal structure learning from observed data, we develop

an approach to generate counterfactual data based on a graph autoencoder. In the second

phase, we apply adversarial training [234,235] on a vanilla autoencoder to achieve counter-

factual fairness for anomaly detection. The idea is to ensure that the hidden representations

of factual and counterfactual data derived from the encoder cannot be distinguished by a

discriminator. As a result, the reconstruction error, i.e., anomaly score, will not differ much

between the factual and counterfactual data, leading to similar detection results for both

factual and counterfactual data.

9.2 Preliminary

Structural Causal Model (SCM). Our work adopts Pearl’s Structural Causal Model

(SCM) [150] as the prime methodology for defining and measuring counterfactual fairness.

Throughout this work, we use the upper/lower case alphabet to represent variables/values.

Definition 5 An SCM is a triple M = {U, V, F} where

1) U is a set of exogenous variables that are determined by factors outside the model. A joint

probability distribution P (u) is defined over the variables in U .

2) V is a set of endogenous variables that are determined by variables in U ∪ V .

3) F is a set of deterministic functions {f1, . . . , fn}; for each Xi ∈ V , a corresponding

function fi is a mapping from U ∪ (V \ {Xi}) to Xi, i.e., Xi = fi(Xpa(i), Ui), where

Xpa(i) ⊆ V \{Xi} called the parents of Xi, and Ui ⊆ U .

An SCM is often illustrated by a causal graph G where each observed variable is repre-

sented by a node, and the causal relationships are represented by directed edges →. In this

graphical representation, the definition of parents is consistent with that in the SCM.

Inferring causal effects in the SCM is facilitated by the do-operator which simulates

the physical interventions that force some variable X ∈ V to take a certain value x. For

an SCM M, intervention do(X = x) is equivalent to replacing original function in F with

X = x. After the replacement, the distributions of all variables that are the descendants of

181

X may be changed. We call the SCM after the intervention the submodel, denoted byM[x].

For any variable Y ∈ V which is affected by the intervention, its interventional variant in

submodel M [x] is denoted by Y [x].

Counterfactuals. Counterfactuals are about answering questions such as for two variables

X,Y ∈ V , whether Y would be y had X been x in unit (or situation) U = u. Such

question involves two worlds, the factual world represented by M and the counterfactual

world represented by M[x], and hence cannot be answered directly by the do-operator.

When the complete knowledge of the SCM is known, the counterfactual quantity can be

computed by the three-step process:

1) Abduction: Update P (u) by evidence e to obtain P (u|e).

2) Action: ModifyM by performing intervention do(x) to obtain the submodelM[x].

3) Prediction: Use modified submodel M[x] with updated probability P (u|e) to compute

the probability of Y = y.

9.3 CFAD

9.3.1 Counterfactual Fairness

We start by defining counterfactual fairness in the context of anomaly detection. Fol-

lowing the typical anomaly detection setting, we assume a training set D = {d(n)}Nn=1 which

consists of N normal samples/individuals and a test set that consists of both normal samples

and anomalies. Each sample is given by d(n) = {s(n), x(n)} where S denotes a binary sensi-

tive variable and X = {Xi | i = 1 : m} denotes all other variables (i.e., profile attributes).

We then use Y to denote the anomaly label. For representation, we use S = {s+, s−} to de-

note advantage and disadvantage groups respectively, and use Y = {0, 1} to denote normal

samples and anomalies respectively. The goal is to learn a detection model for computing

an anomaly score g(x(n)) based on the profile attributes for each individual n, which can be

used to judge whether it is an anomaly.

182

To define counterfactual fairness, similar to [232], for each individual d(n) we consider

its instance in the counterfactual worldMs by flipping the value of its sensitive variable to

the opposite s (i.e., s+ becomes s− and vice versa), denoted by d(n)cf = {s, x(n)cf } where x(n)cf

represents the profile attributes in the counterfactual world. Note that x(n)cf may not be the

same as x(n) due to the causal relation between S and X in the underlying data generation

mechanism. Then, counterfactual fairness is defined as:

Definition 6 An anomaly detection model is counterfactually fair if for each individual n

we have g(x(n)) = g(x
(n)
cf).

9.3.2 Overview of Counterfactually Fair Anomaly Detection (CFAD)

The goal of CFAD is to train an anomaly detection model on D that can: (1) effectively

detect anomalies, and (2) ensure counterfactual fairness. To achieve this goal, CFAD consists

of two phases, counterfactual data generation and fair anomaly detection. Counterfactual

data generation is to generate a counterfactual dataset Dcf = {d
(n)
cf }Nn=1 of D in which each

counterfactual sample is generated by the submodel which flips the value of the sensitive

variable to its counterpart. To this end, we assume a generalized linear SCM and develop

a novel graph autoencoder for data generation. In the second phase, we make use of a

standard autoencoder for anomaly detection where the anomaly score is derived based on

the reconstruction error. To achieve fairness, we develop an adversarial training framework

to train the autoencoder by taking the factual and counterfactual data as inputs. The idea

is to make the hidden representations of the autoencoder not encode the information of the

sensitive variable so that intervening the sensitive variable would not change the detection

outcome. Figure 9.1 shows the framework of CFAD.

9.3.3 Phase One: Counterfactual Data Generation

We assume that the data generation follows a generalized linear SCM, which is a com-

mon assumption in gradient-based causal discovery. To ease representation, we also assume

that S has no parents in the SCM. Our method can easily extend to cases where S has

183

Fig. 9.1: Framework of CFAD

parents by keeping the values of S’s parents unchanged in the counterfactual world since the

intervention on S has no influence on its parents. Thus, W.L.O.G. the structural equation

of each variable Xi in X can be written as follows.

Xi = A1,i · f(S) +
∑

Xj∈Xpa(i)\{S}

Aj,i · f(Xj) + Ui, (9.1)

where f(·) can be any linear/nonlinear function and Aj,i is an element in the adjacency

matrix A ∈ R(m+1)×(m+1) which indicates the weights of the generalized linear SCM. Each

184

sample d(n) = {s(n), {x(n)i | i = 1 : m}} satisfies Eq. (9.1). Following the Abduction-Action-

Prediction process, from Eq. (9.1), we have

u
(n)
i = x

(n)
i −A1,i · f(s(n))−

∑
Xj∈Xpa(i)\{S}

Aj,i · f(x(n)j).

Meanwhile, by performing intervention to flip s(n) to its counterpart s, the structural

equation of counterfactual variable Xi[s] in the submodelM[s] of Eq. (9.1) is given by

Xi[s] = A1,i · f(s) +
∑

Xj∈Xpa(i)\{S}

Aj,i · f(Xj [s]) + Ui. (9.2)

Note that S is fixed to s by the intervention and Ui is not affected by the intervention.

Denoting the counterfactual of d(n) by d
(n)
cf = {s, {x(n)i [s] | i = 1 : m}}, it should satisfy

Eq. (9.2). Thus, we have

x
(n)
i [s] = A1,i · f(s) +

∑
Xj∈Xpa(i)\{S}

Aj,i · f(x(n)j [s]) + u
(n)
i ,

which leads to

x
(n)
i [s] = A1,i ·f(s)+

∑
Xj∈Xpa(i)\{S}

Aj,i ·f(x(n)j [s])+x
(n)
i −A1,i ·f(s(n))−

∑
Xj∈Xpa(i)\{S}

Aj,i ·f(x(n)j). (9.3)

Finally, we compute the value of x(n)i [s] according to Eq. (9.3) following the topological order

and derive d(n)cf from the observational data.

The challenge in the above derivation is how to estimate function f(·) and adjacency

matrix A of the SCM. Next, we develop a causal structure discovery approach based on the

graph autoencoder as proposed in [211].

Causal Structure Discovery

We estimate the adjacency matrix of the SCM defined in Eq. (9.1) by a graph autoen-

coder model with parameters {θ1, ϕ1, Â}. Specifically, an encoder is first adopted to derive

185

the hidden representation of a sample d(n), i.e., h(n) = Eθ1(d
(n)), where Eθ1(·) is parame-

terized by a multilayer neural network. Then, the message passing operation is applied on

the hidden representation, i.e., h′(n) = ÂTh(n), where Â is a parameter matrix. Finally, a

decoder is used to reconstruct the original input from h′(n), i.e.,

d̂(n) = Dϕ1(h
′(n)) = Dϕ1(Â

TEθ1(d
(n))),

where Dϕ1(·) is parameterized by a different multilayer neural network. Note that both the

encoder Eθ1(·) and the decoder Dϕ1(·) work in a variable-wise manner in order to preserve

the order of the message passing in the SCM. To train the graph autoencoder model, the

objective function is defined as:

LGAE(A, θ1, ϕ1) =
1

2N

N∑
n=1

∥d(n) − d̂(n)∥22 + λ∥Â∥1 s.t. tr(eÂ⊙Â)−m− 1 = 0,

where the constraint tr(eÂ⊙Â)−m−1 = 0 is to ensure acyclicity in the graph. After training,

matrix Â will be a good estimation of the adjacency matrix A.

One challenge in applying the graph autoencoder to our work is that, although the

graph autoencoder can accurately estimate the adjacency matrix Â, it does not produce a

good reconstruction of the input sample, which implies that it does not accurately estimate

the function f(·) in the SCM. In order to generate the counterfactual data, the reconstructed

sample with high fidelity is critical. Hence, we improve the graph autoencoder by adding

another decoder that focuses on data reconstruction, where the trained matrix Â and the

encoder Eθ1(·) are reused in this step.

In particular, we similarly feed each sample d(n) to trained encoder Eθ1(·) to obtain the

corresponding hidden representation. Then, in order to be consistent with the structural

equations Eq. (9.1), different from [211] where the message passing operation is applied in

the representation space, we first use a new variable-wise decoder Dϕ′1
to transform the

hidden representation back to the original data space, and then aggregate the message from

the neighbors based on matrix Â. As a result, the reconstruction process of each sample is

186

given by the following equation.

d̂(n) = ÂTDϕ′1
(Eθ1(d

(n))).

The objective function is to reconstruct the input with Â and θ1 fixed:

LD(ϕ
′
1) =

1

2N

N∑
n=1

d∑
i=1

∥d(n)i − d̂
(n)
i ∥

2
2.

After training, we obtain the approximated mapping function f̂ = Dϕ′1
◦ Eθ1 .

Generating Counterfactual Data

Given estimated adjacency matrix Â and function f̂ , for each sample d(n), we generate

its counterfactual d(n)cf following the Abduction-Action-Prediction process. We first intervene

s(n) to its counterpart s and compute f̂(s). Then, we sort all variables in X in a topological

order and compute x̂(n)i [s] iteratively according to Eq. (9.3) where A and f are replaced by

their estimators Â and f̂ . Finally, we obtain D̂cf = {d̂
(n)
cf }Nn=1, where d̂(n)cf = {s, {x̂(n)i [s] | i =

1 : m}}.

9.3.4 Phase Two: Fair Anomaly Detection

We use the autoencoder as the base model for anomaly detection, which is trained

to minimize the reconstruction errors of normal samples. It is worth noting that a fully-

connected autoencoder model is used here which is different from the variable-wise autoen-

coder used in the previous section for counterfactual data generation. Meanwhile, to achieve

counterfactual fairness, we leverage the idea of adversarial training to make the hidden rep-

resentations derived by the autoencoder not encode the information of the sensitive variable.

To this end, we develop a pre-training and fine-tuning framework to ensure the effectiveness

of anomaly detection as well as counterfactual fairness. The reason for adopting the pre-

training and fine-tuning training approach instead of the end-to-end training is that some

counterfactual samples in D̂ could be anomalies. If we include all samples in D̂ to train

187

the autoencoder model, the performance of anomaly detection can be damaged. Hence, we

use samples in D to pre-train the autoencoder model. Then, during fine-tuning, we slightly

update the autoencoder so that the effectiveness of anomaly detection and counterfactual

fairness can be balanced. Finally, we do not use the sensitive variable and only use the

non-sensitive variables X to train the anomaly detection model.

To be more specific, in the pre-training phase, given the training set with normal samples

D, an encoder first maps each sample x(n) to a hidden representation z(n) = Eθ2(x
(n)),

and then a decoder aims to reconstruct the original input from the hidden representation

x̂(n) = Dϕ2(z
(n)). The objective function is to minimize the reconstruction error of normal

samples:

LAE(θ2, ϕ2) =
1

2N

N∑
n=1

∥d(n) −Dϕ2 ◦ Eθ2(x(n))∥22.

After pre-training the autoencoder model, in order to achieve counterfactual fairness,

we further incorporate the adversarial training strategy to further fine-tune the autoencoder

model so that the hidden representation z(n) derived by the encoder is free of the infor-

mation of the sensitive variable. To this end, for each sample d(n) = {s(n), x(n)} and its

counterfactual sample d̂(n)cf = {s, x̂(n)cf }, we first derive the hidden representations, z(n) and

z
(n)
cf , respectively, by feeding them to the encoder Eθ2 . Then, a discriminator Cψ is applied

on z(n) and z
(n)
cf to predict whether the hidden representations are from observed or coun-

terfactual samples, which is a binary classification task. We parameterize the discriminator

Cψ by a multilayer neural network with the sigmoid function as the output layer and use

the negative of the standard cross-entropy loss for binary classification tasks as the objective

function to train the discriminator:

LC(θ2, ψ) =
1

N

N∑
n=1

[log(Cψ(z
(n))) + log(1− Cψ(z

(n)
cf))].

The discriminator is trained to accurately separate the hidden representations of observed

and counterfactual samples. Meanwhile, to make the hidden representation derived from

the encoder invariant to the change of sensitive attribute, the adversarial game is to train

188

the encoder Eθ2 to fool the discriminator Cψ but still be good for reconstructing the original

input. As a result, the objective function can be defined as a minimax problem:

min
θ2,ϕ2

max
ψ
LAE(θ2, ϕ2) + λLC(θ2, ψ), (9.4)

where λ is a hyper-parameter to balance the reconstruction error and adversarial loss. Be-

sides minimizing the reconstruction error LAE, the encoder also tries to maximize the cross-

entropy loss for the discriminator LC(θ2, ψ). Once the discriminator is unable to distinguish

the hidden representations from factual or counterfactual data, we expect that both factual

and counterfactual samples have similar reconstruction errors.

After training, the anomaly score for a new sample d = {s, x} is computed based on

the reconstruction error:

g(x) = ∥x−Dϕ2 ◦ Eθ2(x)∥22.

If the anomaly score g(x) > τ , where τ is a hyperparameter of the model, we label the

sample as anomalous, i.e., ŷ = 1.

9.4 Experiments

9.4.1 Experimental Setup

Datasets. We conduct experiments on a synthetic dataset and two real-world datasets,

Adult and COMPAS. Table 9.1 summarizes the statistics of three datasets.

Table 9.1: Statistics of datasets.

Synthetic Adult COMPAS
Training Test Training Test Training Test

Normal (Y=0) 12000 4000 12000 4000 2000 1283
Abnormal (Y=1) N/A 400 N/A 800 N/A 384

Synthetic Dataset. We first build a synthetic dataset with 21 variables where we

can obtain the ground truth of counterfactuals. We first randomly generate the adjacency

189

Fig. 9.2: Adjacency matrix A Fig. 9.3: Results on data generation.

(a) Adult (b) COMPAS

Fig. 9.4: Learned causal graphs.

matrix A of a causal graph using the Erdős-Rényi model [236] where one node is defined

as a root node for representing the sensitive variable S. Figure 9.2 shows the generated

adjacency matrix A. The value of S is randomly generated with binarized value {-1, 1}

to indicate sensitive and non-sensitive groups. Then, similar to [211], the rest 20 variables

are generated based on the following data generating procedure: X = 3AT cos(X + 1) + U ,

where U is a standard Gaussian noise. Finally, one leaf node is selected as the decision

attribute Y for determining anomalies. Specifically, for each sample, if the value of Y is

greater than 0.85 quantile or smaller than 0.01 quantile, we label this sample as an anomaly,

i.e., Y = 1. If the value of Y is between 0.3 and 0.7 quantiles, we label the sample as

normal, i.e., Y = 0. Meanwhile, for both training and test sets, for 50% of the samples,

their corresponding counterfactuals have labels that are different from the factual ones.

190

Adult Dataset. Adult is a real-world dataset with 14 features [217]. We treat “gender ”

as the sensitive attribute and samples with “income > 50k ” as anomalies. We normalize

all continuous features and binarize all categorical features. Figure 9.4a shows the causal

graph on Adult learned in Phase One of our approach. Meanwhile, as we do not know the

ground truth of counterfactuals, we use the generated counterfactual samples for measuring

counterfactual fairness.

COMPAS Dataset. COMPAS is another real-world dataset [237], which consists of 8

features. We consider “race” as the sensitive attribute, where “African-American” and “Cau-

casian” are the disadvantage and advantage groups, respectively, and treat “recidivists” as

anomalies. Similar to Adult, we normalize all continuous features and binarize all categorical

features. Figure 9.4b shows the learned causal graph.

Baselines. We compare CFAD with the following baselines: 1) Principal Component Anal-

ysis (PCA), which is a dimensional reduction based anomaly detection approach; 2) One-

class SVM (OCSVM), which is a one-class classification model that can detect outliers

based on the observed normal samples; 3) Isolation Forest (iForest), which is a widely used

tree-based anomaly detection model; 4) Autoencoder (AE), which is trained on normal

data and widely-used for anomaly detection based on the deep autoencoder structure; 5)

Deep Clustering based Fair Outlier Detection (DCFOD) [224], which adopts the adversar-

ial training to achieve the group fairness in anomaly detection; 6) Fairness-aware Outlier

Detection (FairOD) [226], which is also an autoencoder-based anomaly detection approach

with fairness regularizers.

Evaluation Metrics. We evaluate the performance of anomaly detection based on Area

Under Precision-Recall Curve (AUC-PR), Area Under Receiver Operating Characteristic

Curve (AUC-ROC), and Macro-F1. We evaluate counterfactual fairness by computing

the changing ratio of the samples whose detection outcomes are different from those for

their corresponding counterfactuals, i.e., changing_ratio =
∑N

n=1 1[ŷ
(n) ̸=ŷ(n)

cf]

N , where 1[·] is

the indicator function.

191

Implementation Details. Regarding baselines, we use Loglizer [70] to evaluate PCA, OC-

SVM, and iForest. We implement FairOD and DCFOD based on public source code [224].

By default, the threshold τ for anomaly detection is set based on the 0.95 quantile of

reconstruction errors (AE, FairOD, and CFAD) or distance to the normal center (DCFOD)

in the training set. Our code on CFAD is available online1.

9.4.2 Experimental Results

Counterfactual Data Generation. We first evaluate the performance of counterfactual

data generation in the synthetic dataset by comparing CFAD with GAE [211] in terms of

Euclidean distance between the generated and ground-truth samples. As shown in Figure

9.3, on the factual data, CFAD achieves a much lower reconstruction error compared with

GAE. More importantly, for counterfactual data generation, CFAD is much better compared

with GAE. It indicates that by incorporating a variable-wise decoderDϕ′1
for data generation,

CFAD can generate counterfactual samples with high fidelity.

Table 9.2: Anomaly detection on synthetic and real datasets with threshold τ = 0.95. For
AUC-PR, AUC-ROC, and Macro-F1, the higher the value the better the effectiveness; for
Changing Ratio, the lower the value the better the fairness.

Method Synthetic Dataset Adult Dataset COMPAS Dataset
AUC-PR AUC-ROC Macro-F1 Changing Ratio AUC-PR AUC-ROC Macro-F1 Changing Ratio AUC-PR AUC-ROC Macro-F1 Changing Ratio

PCA 0.992 0.999 0.908 0.478 0.238 0.582 0.476 0.261 0.365 0.642 0.595 0.268
OC-SVM 0.776 0.953 0.477 0.399 0.282 0.638 0.482 0.285 0.337 0.593 0.488 0.376
iForest 0.190 0.693 0.570 0.271 0.312 0.658 0.570 0.279 0.311 0.567 0.564 0.415

AE 0.957 0.996 0.883 0.461 0.349 0.640 0.608 0.590 0.344 0.616 0.581 0.407
DCFOD 0.383 0.832 0.721 0.212 0.249 0.623 0.533 0.071 0.260 0.569 0.466 0.067
FairOD 0.580 0.873 0.689 0.261 0.222 0.621 0.531 0.131 0.265 0.548 0.493 0.068

CFAD 0.947 0.996 0.930 0.199 0.319 0.589 0.576 0.057 0.314 0.596 0.539 0.049

Anomaly Detection. We further evaluate the performance of anomaly detection in terms

of effectiveness as well as fairness. Table 9.2 shows the evaluation results. We report the

mean value after five runs.

Synthetic Dataset. CFAD can well balance the effectiveness and fairness in anomaly

detection with high AUC-PR, AUC-ROC, and Macro-F1 and a low changing ratio. AE can

achieve good performance on anomaly detection, but its changing ratio is high. DCFOD
1https://github.com/hanxiao0607/CFAD

https://github.com/hanxiao0607/CFAD

192

and FairOD, which achieve group fairness in anomaly detection, both have relatively low

changing ratios, but their effectiveness in anomaly detection is not satisfactory.

Real Datasets. We have similar observations on the Adult and COMPAS datasets.

CFAD achieves good performance in both effectiveness and fairness. For baselines that have

no fairness component, their performance is good in terms of the effectiveness in anomaly

detection, but they all have high changing ratios. Similarly, although DCFOD and FairOD

have relatively low changing ratios, their effectiveness is much worse than other approaches.

(a) Synthetic (b) Adult (c) COMPAS

Fig. 9.5: Trade-off between effectiveness and fairness.

Trade-off Between Effectiveness and Fairness. We further investigate the trade-off

between effectiveness and fairness by varying the threshold as different quantiles of recon-

struction errors or distances in the training set. We plot the effectiveness and fairness

of each threshold setting of four approaches CFAD, AE, DCFOD, and FairOD in Figure

9.5, where the x-axis is the changing ratio (counterfactual fairness), the y-axis indicates

the Macro-F1 score (effectiveness), and each dot in the line indicates the result from one

threshold. The dots from right to left indicate the performance based on quantiles including

{0.8, 0.85, 0.9, 0.95, 0.97, 0.98, 0.99, 0.995, 0.999}. Ideally, we expect an anomaly detection

model can achieve a high Marco-F1 score with a low changing ratio, which is the top left

corner of the figure.

As shown in Figure 9.5, CFAD performs best when the effectiveness trades off with

fairness, as CFAD is closest to the top left corner of the figure. Specifically, on the Synthetic

dataset, CFAD achieves much higher Macro-F1 values (effectiveness) with similar changing

rates (fairness) compared with DCFOD and FairOD. Meanwhile, for most of the thresholds

193

chosen based on quantiles, CFAD has higher Macro-F1 and lower changing ratios compared

with AE. On the Adult and COMPAS datasets, CFAD can have higher Macro-F1 values

and lower changing ratios compared with DCFOD and FairOD.

9.5 Summary

In this work, we have developed a counterfactually fair anomaly detection (CFAD)

framework, which is able to effectively detect anomalies and also ensure counterfactual

fairness. The core idea of CFAD is to generate counterfactual data governed by a learned

causal structure based on the proposed graph autoencoder model. Then, by using a vanilla

autoencoder as the anomaly detection model, an adversarial training strategy is adopted to

ensure the representations derived by the autoencoder without the information of sensitive

attributes. After that, counterfactual fairness is achieved by having similar reconstruction

errors for both factual and counterfactual samples. The experimental results show that

CFAD can achieve counterfactually fair anomaly detection while well-balancing the trade-

off between effectiveness and fairness. The early version of this work is published at PAKDD

2023 [210].

194

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize our works. We further propose several potential research

directions associated with our previous chapters on anomaly detection.

10.1 Conclusions

This dissertation addresses the multifaceted challenges of responsible anomaly detec-

tion, focusing on enhancing performance in diverse conditions, improving explainability, and

ensuring fairness. In specific, we tackle key issues in the area of anomaly detection, focusing

on:

• Improving Detection Performance: How to enhance accuracy in detecting anomalies

across different scenarios, especially with limited data and in changing environments.

This includes developing advanced models that can adapt and maintain high perfor-

mance over time.

• Making Models Understandable: How to make anomaly detection models more trans-

parent, allowing users to see why anomalies are flagged. This involves creating tech-

niques that explain the model’s decisions in a way that users can easily understand.

• Fairness in Detection: How to ensure that our anomaly detection methods are fair and

do not discriminate against any group. We look into ways to design systems that treat

all users equitably and avoid bias.

In Chapter 2, we delve into enhancing log anomaly detection with the integration of

Generative Pre-trained Transformers (GPT), proposing the novel LogGPT framework. Tra-

ditional methods, while effective, often struggle with the dynamic and complex nature of

log data, limiting their predictive accuracy. LogGPT, through its reinforcement learning

and novel reward mechanism, significantly improves anomaly detection performance. By

195

pre-training on normal log sequences and fine-tuning with a focus on anomaly detection,

LogGPT shows superior results over state-of-the-art methods across multiple datasets, con-

firming its robustness and adaptability in identifying log anomalies.

In Chapter 3, we explore the implementation of LogTAD, a novel framework for unsu-

pervised cross-system log anomaly detection via domain adaptation. This approach leverages

the adversarial domain adaptation technique to align log data distributions across different

systems, facilitating effective anomaly detection in newly deployed or less familiar systems

with minimal data requirements. By utilizing a small subset of logs from the target sys-

tem, LogTAD demonstrates high accuracy in cross-system anomaly detection, significantly

mitigating the challenge of limited anomalous samples and showcasing its adaptability and

efficiency in diverse system environments.

In Chapter 4, we developed FADS, a framework tailored for few-shot anomaly detec-

tion, leveraging reinforced data selection for enhanced performance. Simultaneously, we

introduced FADScr, an extension of FADS, incorporating a combinatorial reward mech-

anism. This innovative approach selectively augments the training set with high-quality,

weakly-labeled samples from a large, unlabeled dataset, substantially improving anomaly

detection and classification accuracy. Through rigorous experimentation, FADS and FAD-

Scr demonstrated significant advancements in detecting and classifying anomalies with only

a limited number of labeled samples, outperforming existing methodologies.

In Chapter 5, we introduce InterpretableSAD, an innovative framework focused on the

interpretation of anomaly detection within sequential log data. This framework uniquely

combines the power of negative sampling and Integrated Gradients (IG) for both anomaly

sequence identification and the pinpointing of fine-grained anomalous events. By generating

anomalous sequences through negative sampling, we effectively enrich the training dataset,

enabling the model to learn the distinguishing features of anomalies. Furthermore, leveraging

IG provides clear insights into which specific events within a sequence contribute to its

classification as anomalous, enhancing the interpretability of the detection process. This dual

approach not only improves anomaly detection accuracy but also aids system administrators

196

in locating system vulnerabilities or issues, thereby significantly contributing to system

reliability and security.

In Chapter 6, we focus on RecAD, a novel approach for providing algorithmic recourse

in the context of anomaly detection within multivariate time series data. RecAD introduces

a mechanism to recommend corrective actions for identified anomalies, aiming to reverse

the detected abnormal behavior to normal with minimal intervention costs. By considering

the causal relationships and downstream impacts of interventions, RecAD enhances the in-

terpretability and effectiveness of anomaly mitigation strategies. This approach is validated

through extensive experiments, demonstrating its capability to recommend actionable in-

sights for anomaly correction in complex time series data.

In Chapter 7, we present AERCA, an innovative autoencoder-based framework for root

cause analysis in multivariate time series. AERCA leverages Granger causality to capture

and model the causal dependencies and exogenous variables’ distributions in normal states,

facilitating the identification of anomalies’ root causes. Through a comprehensive encoder-

decoder architecture, it effectively highlights significant deviations in exogenous variables,

offering a novel approach to understanding and diagnosing anomalies. Tested across various

datasets, AERCA proves highly effective in accurately determining causal relationships and

pinpointing anomalies’ origins.

In Chapter 8, we introduce RootCLAM, a framework designed to address root cause

localization and anomaly mitigation using causal inference techniques. RootCLAM differ-

entiates itself by focusing on the identification of root causes for anomalies through causal

analysis and then proposing mitigation actions to correct these anomalies. This approach

not only identifies the symptoms of anomalies but also addresses their underlying causes,

offering a more comprehensive solution for anomaly detection and resolution. RootCLAM’s

effectiveness is demonstrated through its application on several datasets, showcasing its

ability to accurately identify root causes and suggest effective mitigation strategies.

In Chapter 9, we introduce CFAD, a framework designed to ensure counterfactual fair-

ness in anomaly detection. By generating counterfactual data and applying fair anomaly

197

detection methods, CFAD aims to maintain detection outcomes consistent across factual and

counterfactual scenarios, irrespective of sensitive attributes. This novel approach addresses

the challenge of counterfactual fairness in anomaly detection, demonstrating its effective-

ness and counterfactual fairness across various datasets through experimentation. CFAD

represents a significant step forward in creating equitable and accurate anomaly detection

models.

10.2 Future Work

Privacy Preservation. As anomaly detection often involves sensitive data, preserving

privacy while maintaining high detection performance is paramount. Future research could

explore privacy-preserving techniques such as differential privacy, secure multi-party com-

putation, or homomorphic encryption within anomaly detection frameworks. Developing

models that can operate effectively on encrypted or anonymized data, ensuring that individ-

ual privacy is safeguarded while still providing accurate anomaly detection, will be crucial

for the widespread adoption of these technologies in sensitive domains.

Robustness to Adversarial Attacks. Another future research should focus on enhancing

the robustness of anomaly detection models against adversarial attacks, a critical challenge

in maintaining system integrity and reliability. Developing sophisticated defense mechanisms

that can identify and neutralize adversarial attempts without compromising detection accu-

racy is essential. Exploring adversarial training, anomaly detection in adversarial settings,

and leveraging insights from cybersecurity can provide robust frameworks capable of with-

standing sophisticated threats.

Fairness without Losing Accuracy. Last but not least, ensuring fairness in anomaly

detection models without sacrificing accuracy. This involves creating algorithms that can

detect anomalies across diverse datasets without bias towards any group or individual. Fu-

ture work could include the development of fairness-aware learning algorithms, exploration

of bias mitigation techniques in the data preprocessing and model training phases, and the

establishment of benchmarks and metrics for evaluating both fairness and accuracy concur-

rently.

198

REFERENCES

[1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Inter-
national conference on machine learning. PMLR, 2016, pp. 1928–1937.

[2] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural
information processing systems, 2000, pp. 1008–1014.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” ArXiv, vol. abs/1707.06347, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:28695052

[4] R. Ramamurthy, P. Ammanabrolu, K. Brantley, J. Hessel, R. Sifa, C. Bauckhage,
H. Hajishirzi, and Y. Choi, “Is reinforcement learning (not) for natural language pro-
cessing?: Benchmarks, baselines, and building blocks for natural language policy op-
timization,” arXiv preprint arXiv:2210.01241, 2022.

[5] P. J. Rousseeuw and M. Hubert, “Anomaly detection by robust statistics,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 2, p.
e1236, 2018.

[6] J. Frontera-Pons, M. A. Veganzones, F. Pascal, and J.-P. Ovarlez, “Hyperspectral
anomaly detectors using robust estimators,” IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, vol. 9, no. 2, pp. 720–731, 2015.

[7] I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen, “Variational autoencoders
and nonlinear ica: A unifying framework,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2207–2217.

[8] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data mining for
credit card fraud: A comparative study,” Decision support systems, vol. 50, no. 3, pp.
602–613, 2011.

[9] A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system: A survey,”
Journal of Network and Computer Applications, vol. 68, pp. 90–113, 2016.

[10] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network anomaly detection
techniques,” Journal of Network and Computer Applications, vol. 60, pp. 19–31, 2016.

[11] M. Toledano, I. Cohen, Y. Ben-Simhon, and I. Tadeski, “Real-time anomaly detection
system for time series at scale,” in KDD 2017 Workshop on Anomaly Detection in
Finance. PMLR, 2018, pp. 56–65.

[12] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A
comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1,
pp. 16–24, 2013.

https://api.semanticscholar.org/CorpusID:28695052

199

[13] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey of deep
learning-based network anomaly detection,” Cluster Computing, vol. 22, pp. 949–961,
2019.

[14] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang,
“Machine learning and deep learning methods for cybersecurity,” Ieee access, vol. 6,
pp. 35 365–35 381, 2018.

[15] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, “Network anomaly detec-
tion and classification via opportunistic sampling,” IEEE network, vol. 23, no. 1, pp.
6–12, 2009.

[16] O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, and B. Furht, “Sensor fault and
patient anomaly detection and classification in medical wireless sensor networks,” in
2013 IEEE international conference on communications (ICC). IEEE, 2013, pp.
4373–4378.

[17] L. Martí, N. Sanchez-Pi, J. M. Molina, and A. C. B. Garcia, “Anomaly detection
based on sensor data in petroleum industry applications,” Sensors, vol. 15, no. 2, pp.
2774–2797, 2015.

[18] J. Marzat, H. Piet-Lahanier, F. Damongeot, and E. Walter, “Model-based fault diag-
nosis for aerospace systems: a survey,” Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of aerospace engineering, vol. 226, no. 10, pp. 1329–1360,
2012.

[19] F. Lopez, M. Saez, Y. Shao, E. C. Balta, J. Moyne, Z. M. Mao, K. Barton, and
D. Tilbury, “Categorization of anomalies in smart manufacturing systems to support
the selection of detection mechanisms,” IEEE Robotics and Automation Letters, vol. 2,
no. 4, pp. 1885–1892, 2017.

[20] C. Kim, J. Lee, R. Kim, Y. Park, and J. Kang, “Deepnap: Deep neural anomaly
pre-detection in a semiconductor fab,” Information Sciences, vol. 457, pp. 1–11, 2018.

[21] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to support research in
the design of secure water treatment systems,” in International conference on critical
information infrastructures security. Springer, 2017, pp. 88–99.

[22] P. Seeböck, J. I. Orlando, T. Schlegl, S. M. Waldstein, H. Bogunović, S. Klimscha,
G. Langs, and U. Schmidt-Erfurth, “Exploiting epistemic uncertainty of anatomy seg-
mentation for anomaly detection in retinal oct,” IEEE transactions on medical imag-
ing, vol. 39, no. 1, pp. 87–98, 2019.

[23] N. Shvetsova, B. Bakker, I. Fedulova, H. Schulz, and D. V. Dylov, “Anomaly detection
in medical imaging with deep perceptual autoencoders,” IEEE Access, vol. 9, pp.
118 571–118 583, 2021.

[24] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, “f-anogan:
Fast unsupervised anomaly detection with generative adversarial networks,” Medical
image analysis, vol. 54, pp. 30–44, 2019.

200

[25] L. Cheng, K. R. Varshney, and H. Liu, “Socially responsible ai algorithms: Issues,
purposes, and challenges,” Journal of Artificial Intelligence Research, vol. 71, pp. 1137–
1181, 2021.

[26] H. Liu, Y. Wang, W. Fan, X. Liu, Y. Li, S. Jain, Y. Liu, A. Jain, and J. Tang, “Trust-
worthy ai: A computational perspective,” ACM Transactions on Intelligent Systems
and Technology, vol. 14, no. 1, pp. 1–59, 2022.

[27] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,” in TKDD.
ACM, 2012.

[28] M. Braei and S. Wagner, “Anomaly detection in univariate time-series: A survey on
the state-of-the-art,” arXiv preprint arXiv:2004.00433, 2020.

[29] P. Malhotra, L. Vig, G. Shroff, P. Agarwal et al., “Long short term memory networks
for anomaly detection in time series.” in ESANN, vol. 2015, 2015, p. 89.

[30] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for
multivariate time series through stochastic recurrent neural network,” in Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, 2019, pp. 2828–2837.

[31] M. A. Bashar and R. Nayak, “Tanogan: Time series anomaly detection with generative
adversarial networks,” in 2020 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 2020, pp. 1778–1785.

[32] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–
5551, 2020.

[33] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning for anomaly detection:
A review,” ACM computing surveys (CSUR), vol. 54, no. 2, pp. 1–38, 2021.

[34] V. Jyothsna, R. Prasad, and K. M. Prasad, “A review of anomaly based intrusion
detection systems,” International Journal of Computer Applications, vol. 28, no. 7,
pp. 26–35, 2011.

[35] J. Wang, Y. Chen, W. Feng, H. Yu, M. Huang, and Q. Yang, “Transfer learning
with dynamic distribution adaptation,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 11, no. 1, pp. 1–25, 2020.

[36] S. Niu, Y. Hu, J. Wang, Y. Liu, and H. Song, “Feature-based distant domain transfer
learning,” in 2020 IEEE International Conference on Big Data (Big Data). IEEE,
2020, pp. 5164–5171.

[37] H. Ott, J. Bogatinovski, A. Acker, S. Nedelkoski, and O. Kao, “Robust and transferable
anomaly detection in log data using pre-trained language models,” in 2021 IEEE/ACM
international workshop on cloud intelligence (CloudIntelligence). IEEE, 2021, pp. 19–
24.

201

[38] J. Soldani and A. Brogi, “Anomaly detection and failure root cause analysis in (mi-
cro) service-based cloud applications: A survey,” ACM Computing Surveys (CSUR),
vol. 55, no. 3, pp. 1–39, 2022.

[39] Z. Li, Y. Zhu, and M. van Leeuwen, “A survey on explainable anomaly detection,”
arXiv preprint arXiv:2210.06959, 2022.

[40] G. Pang and C. Aggarwal, “Toward explainable deep anomaly detection,” in Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 4056–4057.

[41] Y. Ming, P. Xu, H. Qu, and L. Ren, “Interpretable and steerable sequence learning
via prototypes,” in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019, pp. 903–913.

[42] S. Venkataramanan, K.-C. Peng, R. V. Singh, and A. Mahalanobis, “Attention
guided anomaly localization in images,” in European Conference on Computer Vision.
Springer, 2020, pp. 485–503.

[43] E. Delaney, D. Greene, and M. T. Keane, “Instance-based counterfactual explanations
for time series classification,” in ICCBR, 2021, pp. 32–47.

[44] D. Sulem, M. Donini, M. B. Zafar, F.-X. Aubet, J. Gasthaus, T. Januschowski, S. Das,
K. Kenthapadi, and C. Archambeau, “Diverse counterfactual explanations for anomaly
detection in time series,” arXiv preprint arXiv:2203.11103, 2022.

[45] E. Ates, B. Aksar, V. J. Leung, and A. K. Coskun, “Counterfactual explanations for
multivariate time series,” in ICAPAI, 2021, pp. 1–8.

[46] M. Salehi, H. Mirzaei, D. Hendrycks, Y. Li, M. H. Rohban, and M. Sabokrou, “A uni-
fied survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions
and future challenges,” arXiv preprint arXiv:2110.14051, 2021.

[47] S. Yuan and X. Wu, “Trustworthy anomaly detection: a survey,” arXiv preprint
arXiv:2202.07787, 2022.

[48] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis
from system logs through deep learning,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[49] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,” in 2021
international joint conference on neural networks (IJCNN). IEEE, 2021, pp. 1–8.

[50] V.-H. Le and H. Zhang, “Log-based anomaly detection with deep learning: How far
are we?” in Proceedings of the 44th international conference on software engineering,
2022, pp. 1356–1367.

[51] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv
preprint arXiv:1901.03407, 2019.

202

[52] M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, “Deep learning for anomaly
detection in log data: A survey,” Machine Learning with Applications, vol. 12, p.
100470, 2023.

[53] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale
system problems by mining console logs,” in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, 2009, pp. 117–132.

[54] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth ieee interna-
tional conference on data mining. IEEE, 2008, pp. 413–422.

[55] Y. Wang, J. Wong, and A. Miner, “Anomaly intrusion detection using one class svm,”
in Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop,
2004. IEEE, 2004, pp. 358–364.

[56] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao, P. Sun
et al., “Loganomaly: Unsupervised detection of sequential and quantitative anomalies
in unstructured logs.” in IJCAI, vol. 7, 2019, pp. 4739–4745.

[57] Z. Wang, Z. Chen, J. Ni, H. Liu, H. Chen, and J. Tang, “Multi-scale one-class recurrent
neural networks for discrete event sequence anomaly detection,” in Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, 2021, pp.
3726–3734.

[58] W. J. Murdoch, P. J. Liu, and B. Yu, “Beyond word importance: Contextual decom-
position to extract interactions from lstms,” arXiv preprint arXiv:1801.05453, 2018.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.

[60] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[61] S. Zhang, Y. Liu, X. Zhang, W. Cheng, H. Chen, and H. Xiong, “Cat: Beyond efficient
transformer for content-aware anomaly detection in event sequences,” in Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022,
pp. 4541–4550.

[62] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing approach with
fixed depth tree,” in 2017 IEEE international conference on web services (ICWS).
IEEE, 2017, pp. 33–40.

[63] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[64] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

203

[65] A. Oliner and J. Stearley, “What supercomputers say: A study of five system logs,” in
37th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN’07). IEEE, 2007, pp. 575–584.

[66] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Largescale system problem
detection by mining console logs,” Proceedings of SOSP’09, 2009.

[67] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Esti-
mating the support of a high-dimensional distribution,” Neural computation, vol. 13,
no. 7, pp. 1443–1471, 2001.

[68] K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu, “Improving one-class svm for anomaly
detection,” in Proceedings of the 2003 international conference on machine learning
and cybernetics (IEEE Cat. No. 03EX693), vol. 5. IEEE, 2003, pp. 3077–3081.

[69] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering based prob-
lem identification for online service systems,” in Proceedings of the 38th International
Conference on Software Engineering Companion, 2016, pp. 102–111.

[70] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log analysis for
anomaly detection,” in 2016 IEEE 27th international symposium on software reliability
engineering (ISSRE). IEEE, 2016, pp. 207–218.

[71] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report: Deep learning-
based system log analysis for anomaly detection,” arXiv preprint arXiv:2107.05908,
2021.

[72] X. Han, S. Yuan, and M. Trabelsi, “Loggpt: Log anomaly detection via gpt,” in 2023
IEEE International Conference on Big Data (BigData). IEEE, 2023, pp. 1117–1122.

[73] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels, and
E. Kirda, “Beehive: Large-scale log analysis for detecting suspicious activity in en-
terprise networks,” in Proceedings of the 29th annual computer security applications
conference, 2013, pp. 199–208.

[74] R. Vaarandi and M. Pihelgas, “Logcluster-a data clustering and pattern mining algo-
rithm for event logs,” in 2015 11th International conference on network and service
management (CNSM). IEEE, 2015, pp. 1–7.

[75] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm bluegene/l
event logs,” in Seventh IEEE International Conference on Data Mining (ICDM 2007).
IEEE, 2007, pp. 583–588.

[76] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log parsing for large-
scale log data analysis,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 6, pp. 931–944, 2017.

[77] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data system logs using
convolutional neural network,” in 2018 IEEE 16th Intl Conf on Dependable, Autonomic
and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th

204

Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp. 151–158.

[78] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log parsing and
its use in log mining,” in 2016 46th annual IEEE/IFIP international conference on
dependable systems and networks (DSN). IEEE, 2016, pp. 654–661.

[79] R. Chen, S. Zhang, D. Li, Y. Zhang, F. Guo, W. Meng, D. Pei, Y. Zhang, X. Chen, and
Y. Liu, “Logtransfer: Cross-system log anomaly detection for software systems with
transfer learning,” in 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), 2020.

[80] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. Müller,
and M. Kloft, “Deep one-class classification,” in International conference on machine
learning. PMLR, 2018, pp. 4393–4402.

[81] X. Han and S. Yuan, “Unsupervised cross-system log anomaly detection via domain
adaptation,” in Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, 2021, pp. 3068–3072.

[82] G. Pang, C. Shen, L. Cao, and A. v. d. Hengel, “Deep learning for anomaly detection:
A review,” arXiv preprint arXiv:2007.02500, 2020.

[83] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[84] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A
survey on few-shot learning,” ACM computing surveys (csur), vol. 53, no. 3, pp. 1–34,
2020.

[85] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for few-shot learning,”
arXiv preprint arXiv:1703.05175, 2017.

[86] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one
shot learning,” Advances in neural information processing systems, vol. 29, pp. 3630–
3638, 2016.

[87] A. Ayyad, Y. Li, R. Muaz, S. Albarqouni, and M. Elhoseiny, “Semi-supervised few-shot
learning with prototypical random walks,” in AAAI Workshop on Meta-Learning and
MetaDL Challenge. PMLR, 2021, pp. 45–57.

[88] K. Ding, Q. Zhou, H. Tong, and H. Liu, “Few-shot network anomaly detection via
cross-network meta-learning,” in Proceedings of the Web Conference 2021, 2021, pp.
2448–2456.

[89] S. Yuan, P. Zheng, X. Wu, and H. Tong, “Few-shot insider threat detection,” in Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge Man-
agement, 2020, pp. 2289–2292.

[90] G. Pang, C. Ding, C. Shen, and A. v. d. Hengel, “Explainable deep few-shot anomaly
detection with deviation networks,” arXiv preprint arXiv:2108.00462, 2021.

205

[91] Y. Lu, F. Yu, M. K. K. Reddy, and Y. Wang, “Few-shot scene-adaptive anomaly
detection,” in European Conference on Computer Vision. Springer, 2020, pp. 125–
141.

[92] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng,
Z. Li et al., “Robust log-based anomaly detection on unstable log data,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp. 807–817.

[93] M.-h. Oh and G. Iyengar, “Sequential anomaly detection using inverse reinforcement
learning,” in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & data mining, 2019, pp. 1480–1490.

[94] L. Ruff, R. A. Vandermeulen, N. Görnitz, A. Binder, E. Müller, K.-R. Müller, and
M. Kloft, “Deep semi-supervised anomaly detection,” in International Conference on
Learning Representations, 2019.

[95] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection with outlier
exposure,” in International Conference on Learning Representations, 2018.

[96] D. Zha, K.-H. Lai, M. Wan, and X. Hu, “Meta-aad: Active anomaly detection with
deep reinforcement learning,” in 2020 IEEE International Conference on Data Mining
(ICDM). IEEE, 2020, pp. 771–780.

[97] M. E. Villa-Pérez, M. Á. Álvarez-Carmona, O. Loyola-González, M. A. Medina-Pérez,
J. C. Velazco-Rossell, and K.-K. R. Choo, “Semi-supervised anomaly detection algo-
rithms: A comparative summary and future research directions,” Knowledge-Based
Systems, vol. 218, p. 106878, 2021.

[98] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised
anomaly detection via adversarial training,” in Computer Vision–ACCV 2018: 14th
Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised
Selected Papers, Part III 14. Springer, 2019, pp. 622–637.

[99] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep actor-critic reinforcement learning
for anomaly detection,” in 2019 IEEE global communications conference (GLOBE-
COM). IEEE, 2019, pp. 1–6.

[100] M. N. Kurt, O. Ogundijo, C. Li, and X. Wang, “Online cyber-attack detection in smart
grid: A reinforcement learning approach,” IEEE Transactions on Smart Grid, vol. 10,
no. 5, pp. 5174–5185, 2018.

[101] C.-I. Chang and S.-S. Chiang, “Anomaly detection and classification for hyperspectral
imagery,” IEEE transactions on geoscience and remote sensing, vol. 40, no. 6, pp.
1314–1325, 2002.

[102] Z. Yu, L. Chen, Z. Cheng, and J. Luo, “Transmatch: A transfer-learning scheme for
semi-supervised few-shot learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 12 856–12 864.

206

[103] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering
analysis,” in International conference on machine learning. PMLR, 2016, pp. 478–
487.

[104] T. Lucas, P. Weinzaepfel, and G. Rogez, “Barely-supervised learning: Semi-supervised
learning with very few labeled images,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 36, no. 2, 2022, pp. 1881–1889.

[105] Y. Koizumi, S. Murata, N. Harada, S. Saito, and H. Uematsu, “Sniper: Few-shot learn-
ing for anomaly detection to minimize false-negative rate with ensured true-positive
rate,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 915–919.

[106] X. Zhou, W. Liang, S. Shimizu, J. Ma, and Q. Jin, “Siamese neural network based
few-shot learning for anomaly detection in industrial cyber-physical systems,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5790–5798, 2020.

[107] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” Advances in neural information
processing systems, vol. 12, 1999.

[108] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set),” in 2015 military communications
and information systems conference (MilCIS). IEEE, 2015, pp. 1–6.

[109] A. collaborative project between the Communications Security Establishment (CSE)
& the Canadian Institute for Cybersecurity (CIC), “A realistic cyber defense dataset
(cse-cic-ids2018).”

[110] J. Glasser and B. Lindauer, “Bridging the gap: A pragmatic approach to generating
insider threat data,” in 2013 IEEE Security and Privacy Workshops. IEEE, 2013, pp.
98–104.

[111] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vec-
tor method for novelty detection,” Advances in neural information processing systems,
vol. 12, 1999.

[112] C. Elkan and K. Noto, “Learning classifiers from only positive and unlabeled data,”
in Proceedings of the 14th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2008, pp. 213–220.

[113] M. Kato, T. Teshima, and J. Honda, “Learning from positive and unlabeled data with
a selection bias,” in International conference on learning representations, 2018.

[114] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, V. Vapnik et al., “Support vector
regression machines,” Advances in neural information processing systems, vol. 9, pp.
155–161, 1997.

[115] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning internal representations
by error propagation,” 1985.

207

[116] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[117] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural
machine translation: Encoder-decoder approaches,” arXiv preprint arXiv:1409.1259,
2014.

[118] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recur-
rent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[119] X. Han, D. Xu, S. Yuan, and X. Wu, “Few-shot anomaly detection and classification
through reinforced data selection,” in 2022 IEEE International Conference on Data
Mining (ICDM). IEEE, 2022, pp. 963–968.

[120] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in
International Conference on Machine Learning. PMLR, 2017, pp. 3319–3328.

[121] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and H. Zhang, “Automated
it system failure prediction: A deep learning approach,” in 2016 IEEE International
Conference on Big Data (Big Data). IEEE, 2016, pp. 1291–1300.

[122] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec: a heterogeneous
graph embedding based approach for detecting cyber threats within enterprise,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 1777–1794.

[123] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[124] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep
learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

[125] J. Wei and K. Zou, “Eda: Easy data augmentation techniques for boosting performance
on text classification tasks,” arXiv preprint arXiv:1901.11196, 2019.

[126] S. Kobayashi, “Contextual augmentation: Data augmentation by words with paradig-
matic relations,” arXiv preprint arXiv:1805.06201, 2018.

[127] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[128] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translat-
ing embeddings for modeling multi-relational data,” in Neural Information Processing
Systems (NIPS), 2013, pp. 1–9.

[129] J. Ding, Y. Quan, X. He, Y. Li, and D. Jin, “Reinforced negative sampling for recom-
mendation with exposure data.” in IJCAI, 2019, pp. 2230–2236.

[130] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed rep-
resentations of words and phrases and their compositionality,” Advances in neural
information processing systems, vol. 26, 2013.

208

[131] C. Molnar, Interpretable machine learning. Lulu. com, 2020.

[132] M. Du, N. Liu, and X. Hu, “Techniques for interpretable machine learning,” Commu-
nications of the ACM, vol. 63, no. 1, pp. 68–77, 2019.

[133] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-agnostic
explanations,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[134] ——, “"why should i trust you?" explaining the predictions of any classifier,” in Pro-
ceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, 2016, pp. 1135–1144.

[135] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
arXiv preprint arXiv:1705.07874, 2017.

[136] Y.-H. H. Tsai, M. Ma, M. Yang, R. Salakhutdinov, and L.-P. Morency, “Multimodal
routing: Improving local and global interpretability of multimodal language analysis,”
in Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

[137] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neural network atten-
tion mechanisms for interpretable system log anomaly detection,” in Proceedings of
the First Workshop on Machine Learning for Computing Systems, 2018, pp. 1–8.

[138] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C. Chan, “Gee: A
gradient-based explainable variational autoencoder for network anomaly detection,”
in 2019 IEEE Conference on Communications and Network Security (CNS). IEEE,
2019, pp. 91–99.

[139] N. Liu, X. Huang, and X. Hu, “Accelerated local anomaly detection via resolving
attributed networks.” in IJCAI, 2017, pp. 2337–2343.

[140] P. Sturmfels, S. Lundberg, and S.-I. Lee, “Visualizing the impact of feature attribution
baselines,” Distill, vol. 5, no. 1, p. e22, 2020.

[141] J. Sipple, “Interpretable, multidimensional, multimodal anomaly detection with nega-
tive sampling for detection of device failure,” in International Conference on Machine
Learning. PMLR, 2020, pp. 9016–9025.

[142] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine
learning research, vol. 9, no. 11, 2008.

[143] X. Han, H. Cheng, D. Xu, and S. Yuan, “Interpretablesad: Interpretable anomaly
detection in sequential log data,” in 2021 IEEE International Conference on Big Data
(Big Data). IEEE, 2021, pp. 1183–1192.

[144] A. Blázquez-García, A. Conde, U. Mori, and J. A. Lozano, “A review on out-
lier/anomaly detection in time series data,” in ACM CSUR, 2021, pp. 1–33.

209

[145] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, and
Q. Zhang, “Time-series anomaly detection service at microsoft,” in KDD, 2019, pp.
3009–3017.

[146] D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, and S. T. Edwards, “Time series
anomaly detection; detection of anomalous drops with limited features and sparse
examples in noisy highly periodic data,” arXiv preprint arXiv:1708.03665, 2017.

[147] A.-H. Karimi, G. Barthe, B. Schölkopf, and I. Valera, “A survey of algorithmic recourse:
contrastive explanations and consequential recommendations,” in ACM CSUR, 2022,
pp. 1–29.

[148] S. Nedelkoski, J. Bogatinovski, A. K. Mandapati, S. Becker, J. Cardoso, and O. Kao,
“Multi-source distributed system data for ai-powered analytics,” in ESOCC, 2020, pp.
161–176.

[149] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga, “Usad: Unsuper-
vised anomaly detection on multivariate time series,” in KDD, 2020.

[150] J. Pearl, Causality. Cambridge university press, 2009.

[151] S. Schmidl, P. Wenig, and T. Papenbrock, “Anomaly detection in time series: a com-
prehensive evaluation,” in VLDB, 2022.

[152] A.-H. Karimi, J. Von Kügelgen, B. Schölkopf, and I. Valera, “Algorithmic recourse
under imperfect causal knowledge: a probabilistic approach,” Advances in Neural In-
formation Processing Systems, 2020.

[153] A.-H. Karimi, B. Schölkopf, and I. Valera, “Algorithmic recourse: from counterfactual
explanations to interventions,” in ACM FAccT, 2021.

[154] J. von Kügelgen, A.-H. Karimi, U. Bhatt, I. Valera, A. Weller, and B. Schölkopf, “On
the fairness of causal algorithmic recourse,” in AAAI, 2022.

[155] R. Dominguez-Olmedo, A. H. Karimi, and B. Schölkopf, “On the adversarial robustness
of causal algorithmic recourse,” in ICML, 2022, pp. 5324–5342.

[156] B. Ustun, A. Spangher, and Y. Liu, “Actionable recourse in linear classification,” in
Proceedings of the Conference on Fairness, Accountability, and Transparency, 2019.

[157] S. Joshi, O. Koyejo, W. Vijitbenjaronk, B. Kim, and J. Ghosh, “Towards realistic
individual recourse and actionable explanations in black-box decision making systems,”
arXiv preprint arXiv:1907.09615, 2019.

[158] R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, and P. Flach, “Face: feasi-
ble and actionable counterfactual explanations,” in Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, 2020, pp. 344–350.

[159] M. Pawelczyk, S. Bielawski, J. v. d. Heuvel, T. Richter, and G. Kasneci, “Carla:
a python library to benchmark algorithmic recourse and counterfactual explanation
algorithms,” arXiv preprint arXiv:2108.00783, 2021.

210

[160] D. Datta, F. Chen, and N. Ramakrishnan, “Framing algorithmic recourse for anomaly
detection,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, 2022, pp. 283–293.

[161] C. W. Granger, “Investigating causal relations by econometric models and cross-
spectral methods,” Econometrica: journal of the Econometric Society, pp. 424–438,
1969.

[162] R. Dahlhaus and M. Eichler, “Causality and graphical models in time series analysis,”
Oxford Statistical Science Series, pp. 115–137, 2003.

[163] M. Nauta, D. Bucur, and C. Seifert, “Causal discovery with attention-based convolu-
tional neural networks,” Machine Learning and Knowledge Extraction, vol. 1, no. 1,
p. 19, 2019.

[164] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. B. Fox, “Neural granger causality,” in
IEEE PAMI, 2021, pp. 4267–4279.

[165] R. Marcinkevičs and J. E. Vogt, “Interpretable models for granger causality using
self-explaining neural networks,” arXiv preprint arXiv:2101.07600, 2021.

[166] H. Lütkepohl, New introduction to multiple time series analysis. Springer Science &
Business Media, 2005.

[167] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft,
T. G. Dietterich, and K.-R. Müller, “A unifying review of deep and shallow anomaly
detection,” Proceedings of the IEEE, vol. 109, no. 5, pp. 756–795, 2021.

[168] A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly detection for iot time-series data: A
survey,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6481–6494, 2019.

[169] S. Tuli, G. Casale, and N. R. Jennings, “Tranad: Deep transformer networks for
anomaly detection in multivariate time series data,” arXiv preprint arXiv:2201.07284,
2022.

[170] N. Bacaër, A short history of mathematical population dynamics. Springer, 2011, vol.
618.

[171] X. Han, L. Zhang, Y. Wu, and S. Yuan, “Algorithmic recourse for anomaly detection
in multivariate time series,” arXiv preprint arXiv:2309.16896, 2023.

[172] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitoring and root cause
analysis for cloud-hosted web applications,” in Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 469–478.

[173] V. Jeyakumar, O. Madani, A. Parandeh, A. Kulshreshtha, W. Zeng, and N. Yadav,
“Explainit!–a declarative root-cause analysis engine for time series data,” in Proceedings
of the 2019 International Conference on Management of Data, 2019, pp. 333–348.

211

[174] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng, X. Sun, and X. Li,
“Microrank: End-to-end latency issue localization with extended spectrum analysis
in microservice environments,” in Proceedings of the Web Conference 2021, 2021, pp.
3087–3098.

[175] C. K. Assaad, I. Ez-Zejjari, and L. Zan, “Root cause identification for collective anoma-
lies in time series given an acyclic summary causal graph with loops,” in International
Conference on Artificial Intelligence and Statistics. PMLR, 2023, pp. 8395–8404.

[176] M. Li, Z. Li, K. Yin, X. Nie, W. Zhang, K. Sui, and D. Pei, “Causal inference-based root
cause analysis for online service systems with intervention recognition,” in Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2022, pp. 3230–3240.

[177] Y. Zhang, Z. Guan, H. Qian, L. Xu, H. Liu, Q. Wen, L. Sun, J. Jiang, L. Fan, and
M. Ke, “Cloudrca: A root cause analysis framework for cloud computing platforms,” in
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, 2021, pp. 4373–4382.

[178] A. Ikram, S. Chakraborty, S. Mitra, S. Saini, S. Bagchi, and M. Kocaoglu, “Root cause
analysis of failures in microservices through causal discovery,” Advances in Neural
Information Processing Systems, vol. 35, pp. 31 158–31 170, 2022.

[179] D. Wang, Z. Chen, J. Ni, L. Tong, Z. Wang, Y. Fu, and H. Chen, “Interdependent
causal networks for root cause localization,” in Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023, pp. 5051–5060.

[180] H. Shan, Y. Chen, H. Liu, Y. Zhang, X. Xiao, X. He, M. Li, and W. Ding, “?-diagnosis:
Unsupervised and real-time diagnosis of small-window long-tail latency in large-scale
microservice platforms,” in The World Wide Web Conference, 2019, pp. 3215–3222.

[181] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-oriented ar-
chitecture,” ACM SIGMETRICS Performance Evaluation Review, vol. 41, no. 1, pp.
93–104, 2013.

[182] J. Weng, J. H. Wang, J. Yang, and Y. Yang, “Root cause analysis of anomalies of
multitier services in public clouds,” IEEE/ACM Transactions on Networking, vol. 26,
no. 4, pp. 1646–1659, 2018.

[183] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen, “Cloudranger: Root
cause identification for cloud native systems,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2018, pp.
492–502.

[184] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong,
H. Chen, and N. V. Chawla, “A deep neural network for unsupervised anomaly de-
tection and diagnosis in multivariate time series data,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 1409–1416.

212

[185] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai, J. Tong, and
Q. Zhang, “Multivariate time-series anomaly detection via graph attention network,”
in ICDM, 2020, pp. 841–850.

[186] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation, Prediction,
and Search. MIT press, 2000.

[187] D. Wang, Z. Chen, Y. Fu, Y. Liu, and H. Chen, “Incremental causal graph learning
for online root cause analysis,” in Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2023, pp. 2269–2278.

[188] C. K. Assaad, E. Devijver, and E. Gaussier, “Survey and evaluation of causal discovery
methods for time series,” Journal of Artificial Intelligence Research, vol. 73, pp. 767–
819, 2022.

[189] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouet, “Anomaly detection in streams
with extreme value theory,” in Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, 2017, pp. 1067–1075.

[190] S. Absar, Y. Wu, and L. Zhang, “Neural time-invariant causal discovery from time
series data,” in 2023 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2023, pp. 1–8.

[191] M. E. Newman, “Estimating network structure from unreliable measurements,” Phys-
ical Review E, vol. 98, no. 6, p. 062321, 2018.

[192] A. P. Mathur and N. O. Tippenhauer, “Swat: A water treatment testbed for research
and training on ics security,” in 2016 international workshop on cyber-physical systems
for smart water networks (CySWater). IEEE, 2016, pp. 31–36.

[193] R. Moraffah, P. Sheth, M. Karami, A. Bhattacharya, Q. Wang, A. Tahir, A. Raglin,
and H. Liu, “Causal inference for time series analysis: Problems, methods and evalu-
ation,” Knowledge and Information Systems, vol. 63, pp. 3041–3085, 2021.

[194] U. Hasan, E. Hossain, and M. O. Gani, “A survey on causal discovery methods for iid
and time series data,” Transactions on Machine Learning Research, 2023.

[195] X. Sun, O. Schulte, G. Liu, and P. Poupart, “Nts-notears: Learning nonparametric
dbns with prior knowledge,” arXiv preprint arXiv:2109.04286, 2021.

[196] R. Pamfil, N. Sriwattanaworachai, S. Desai, P. Pilgerstorfer, K. Georgatzis, P. Beau-
mont, and B. Aragam, “Dynotears: Structure learning from time-series data,” in In-
ternational Conference on Artificial Intelligence and Statistics. PMLR, 2020, pp.
1595–1605.

[197] M. Ma, J. Xu, Y. Wang, P. Chen, Z. Zhang, and P. Wang, “Automap: Diagnose
your microservice-based web applications automatically,” in Proceedings of The Web
Conference 2020, 2020, pp. 246–258.

[198] S. Khanna and V. Y. Tan, “Economy statistical recurrent units for inferring nonlinear
granger causality,” arXiv preprint arXiv:1911.09879, 2019.

213

[199] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic, “Detecting
and quantifying causal associations in large nonlinear time series datasets,” Science
advances, vol. 5, no. 11, p. eaau4996, 2019.

[200] Y. Cheng, R. Yang, T. Xiao, Z. Li, J. Suo, K. He, and Q. Dai, “Cuts: Neural causal
discovery from irregular time-series data,” arXiv preprint arXiv:2302.07458, 2023.

[201] C. Liu, W. Yang, H. Mittal, M. Singh, D. Sahoo, and S. C. Hoi, “Pyrca: A library for
metric-based root cause analysis,” arXiv preprint arXiv:2306.11417, 2023.

[202] E. Panjei, L. Gruenwald, E. Leal, C. Nguyen, and S. Silvia, “A survey on outlier
explanations,” The VLDB Journal, pp. 1–32, 2022.

[203] J. Kauffmann, K.-R. Müller, and G. Montavon, “Towards explaining anomalies: a deep
taylor decomposition of one-class models,” Pattern Recognition, vol. 101, p. 107198,
2020.

[204] P. Liznerski, L. Ruff, R. A. Vandermeulen, B. J. Franks, M. Kloft, and K.-R. Müller,
“Explainable deep one-class classification,” arXiv preprint arXiv:2007.01760, 2020.

[205] W. Yang, K. Zhang, and S. Hoi, “A causal approach to detecting multivariate
time-series anomalies and root causes,” 2023. [Online]. Available: https:
//openreview.net/forum?id=f25VGPzATcn

[206] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang, and D. Pei,
“Localizing failure root causes in a microservice through causality inference,” in 2020
IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). IEEE,
2020, pp. 1–10.

[207] K. Budhathoki, L. Minorics, P. Blöbaum, and D. Janzing, “Causal structure-based
root cause analysis of outliers,” in International Conference on Machine Learning.
PMLR, 2022, pp. 2357–2369.

[208] C. Louizos, U. Shalit, J. M. Mooij, D. Sontag, R. Zemel, and M. Welling, “Causal effect
inference with deep latent-variable models,” Advances in neural information processing
systems, vol. 30, 2017.

[209] Y. Yu, J. Chen, T. Gao, and M. Yu, “Dag-gnn: Dag structure learning with graph
neural networks,” in ICML, 2019.

[210] X. Han, L. Zhang, Y. Wu, and S. Yuan, “Achieving counterfactual fairness for anomaly
detection,” in Advances in Knowledge Discovery and Data Mining: 27th Pacific-Asia
Conference, PAKDD 2023. Springer, 2023.

[211] I. Ng, S. Zhu, Z. Chen, and Z. Fang, “A graph autoencoder approach to causal structure
learning,” arXiv preprint arXiv:1911.07420, 2019.

[212] K. Kiritoshi, T. Izumitani, K. Koyama, T. Okawachi, K. Asahara, and S. Shimizu,
“Estimating individual-level optimal causal interventions combining causal models and
machine learning models,” in The KDD’21 Workshop on Causal Discovery. PMLR,
2021, pp. 55–77.

https://openreview.net/forum?id=f25VGPzATcn
https://openreview.net/forum?id=f25VGPzATcn

214

[213] M. J. Vowels, N. C. Camgoz, and R. Bowden, “D’ya like dags? a survey on structure
learning and causal discovery,” ACM CSUR, 2021.

[214] J. Correa and E. Bareinboim, “A calculus for stochastic interventions: Causal effect
identification and surrogate experiments,” in AAAI, 2020.

[215] P. Sánchez-Martin, M. Rateike, and I. Valera, “Vaca: Designing variational graph
autoencoders for causal queries,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 7, 2022, pp. 8159–8168.

[216] C. Glymour, K. Zhang, and P. Spirtes, “Review of causal discovery methods based on
graphical models,” Frontiers in genetics, vol. 10, p. 524, 2019.

[217] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[218] M. Kalisch and P. Bühlman, “Estimating high-dimensional directed acyclic graphs
with the pc-algorithm.” Journal of Machine Learning Research, vol. 8, no. 3, 2007.

[219] D. Janzing, K. Budhathoki, L. Minorics, and P. Blöbaum, “Causal structure based
root cause analysis of outliers,” arXiv preprint arXiv:1912.02724, 2019.

[220] A. Sharma and E. Kiciman, “Dowhy: An end-to-end library for causal inference,”
arXiv preprint arXiv:2011.04216, 2020.

[221] M. Pawelczyk, K. Broelemann, and G. Kasneci, “Learning model-agnostic counterfac-
tual explanations for tabular data,” in Proceedings of The Web Conference 2020, 2020,
pp. 3126–3132.

[222] X. Han, L. Zhang, Y. Wu, and S. Yuan, “On root cause localization and anomaly
mitigation through causal inference,” in Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, 2023, pp. 699–708.

[223] H. Zhang and I. Davidson, “Towards fair deep anomaly detection,” in Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency. ACM,
2021.

[224] H. Song, P. Li, and H. Liu, “Deep clustering based fair outlier detection,” in Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
pp. 1481–1489.

[225] P. Deepak and S. S. Abraham, “Fair outlier detection,” in 21th International Confer-
ence on Web Information Systems Engineering: WISE 2020, 2020, pp. 447–462.

[226] S. Shekhar, N. Shah, and L. Akoglu, “Fairod: Fairness-aware outlier detection,” in
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 2021, pp.
210–220.

[227] M. Almanza, A. Epasto, A. Panconesi, and G. Re, “k-clustering with fair outliers,” in
WSDM. ACM, 2022.

215

[228] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias
and fairness in machine learning,” ACM computing surveys (CSUR), vol. 54, no. 6,
pp. 1–35, 2021.

[229] N. Kilbertus, M. Rojas-Carulla, G. Parascandolo, M. Hardt, D. Janzing, and
B. Schölkopf, “Avoiding discrimination through causal reasoning,” in NIPS, 2017.

[230] R. Nabi and I. Shpitser, “Fair inference on outcomes,” in AAAI, 2018.

[231] B. van Breugel, T. Kyono, J. Berrevoets, and M. van der Schaar, “Decaf: Generating
fair synthetic data using causally-aware generative networks,” in Advances in Neural
Information Processing Systems, 2021.

[232] M. J. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual fairness,” Advances
in neural information processing systems, vol. 30, 2017.

[233] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations without
opening the black box: Automated decisions and the gdpr,” Harv. JL & Tech., vol. 31,
p. 841, 2017.

[234] H. Edwards and A. Storkey, “Censoring representations with an adversary,” arXiv
preprint arXiv:1511.05897, 2015.

[235] D. Madras, E. Creager, T. Pitassi, and R. S. Zemel, “Learning adversarially
fair and transferable representations. corr abs/1802.06309 (2018),” arXiv preprint
arXiv:1802.06309, 2018.

[236] X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing, “Dags with no tears: Contin-
uous optimization for structure learning,” Advances in Neural Information Processing
Systems, 2018.

[237] J. Dressel and H. Farid, “The accuracy, fairness, and limits of predicting recidivism,”
Science advances, vol. 4, no. 1, p. eaao5580, 2018.

216

CURRICULUM VITAE

Xiao Han

Education

• Ph.D. in Computer Science. Utah State University, Logan, UT. August 2020 - May

2024 (Expected).

• M.S. in Data Analytics. George Washington University, Washington, DC. August

2018 - May 2020.

• M.Eng. in Computer Science. Oregon State University, Corvallis, OR. September

2014 - December 2017.

• B.Econ. in Finance. Shandong University, Jinan, Shandong, China. September 2008

- May 2012.

• B.Eng. in Computer Science and Technology. Shandong University, Jinan, Shandong,

China. September 2008 - May 2012.

Research Interests

Data mining, machine learning, and artificial intelligence, with a particular focus on

anomaly detection, fairness-aware machine learning, root cause analysis, and reinforcement

learning.

Published Conference Papers

• Xiao Han, Shuhan Yuan, and Mohamed Trabelsi. LogGPT: Log Anomaly Detection

via GPT. In 2023 IEEE International Conference on Big Data (Big Data). 2023.

217

• Xiao Han, Lu Zhang, Yongkai Wu, and Shuhan Yuan. On Root Cause Localization

and Anomaly Mitigation through Causal Inference. In Proceedings of the 32nd ACM

International Conference on Information & Knowledge Management. (CIKM). 2023.

• Xiao Han, Lu Zhang, Yongkai Wu, and Shuhan Yuan. Achieving Counterfactual

Fairness for Anomaly Detection. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining. (PAKDD). 2023.

• Xiao Han, Depeng Xu, Shuhan Yuan, and Xintao Wu. Few-shot Anomaly Detection

and Classification Through Reinforced Data Selection. In 2022 IEEE International

Conference on Data Mining (ICDM). 2022.

• Xiao Han, He Cheng, Depeng Xu, and Shuhan Yuan. InterpretableSAD: Inter-

pretable Anomaly Detection in Sequential Log Data. In 2021 IEEE International

Conference on Big Data (Big Data). 2021.

• Xiao Han and Shuhan Yuan. Unsupervised cross-system log anomaly detection via

domain adaptation. In Proceedings of the 30th ACM International Conference on

Information & Knowledge Management. (CIKM). 2021.

Preprints

• Xiao Han, Saima Absar, Lu Zhang, and Shuhan Yuan. Root Cause Analysis of

Anomalies in Multivariate Time Series through Granger Causal Discovery. under

review. 2024.

• Xiao Han, Lu Zhang, Yongkai Wu, and Shuhan Yuan. On Interpretable Anomaly

Detection Using Causal Algorithmic Recourse. arXiv preprint. 2022.

	Achieving Responsible Anomaly Detection
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation
	Why Is Anomaly Detection Important?
	Why Is Responsible Anomaly Detection Important?
	Challenges in Responsible Anomaly Detection

	Contributions and Findings
	Organization of the Dissertation

	LOGGPT: LOG ANOMALY DETECTION VIA GPT
	Introduction
	Related Work
	Preliminary
	Log Sequence Preprocessing
	Log Language Model

	LogGPT
	Generative Log Language Model
	Reinforcement Learning for Log Anomaly Detection
	Policy Update
	Anomaly Detection

	Experiments
	Experimental Setup
	Experimental Results

	Summary

	UNSUPERVISED CROSS-SYSTEM LOG ANOMALY DETECTION VIA DOMAIN ADAPTATION
	Introduction
	LogTAD
	Log Sequence Representation
	Log Sequence Centralization
	System-agnostic Representation via Domain Adversarial Training

	Experiments
	Experimental Setup
	Experimental Results

	Summary

	FEW-SHOT ANOMALY DETECTION AND CLASSIFICATION THROUGH REINFORCED DATA SELECTION AND FEW-SHOT ANOMALY DETECTION AND CLASSIFICATION THROUGH REINFORCED DATA SELECTION WITH A COMBINATORIAL REWARD
	Introduction
	Related Work
	FADS
	Problem Definition
	Framework Overview
	Prototypical Network
	Reinforced Data Selection
	Training Details
	Experimental Setup
	Implementation Details
	Experimental Results

	FADScr
	Framework Overview
	Reinforced Data Selection
	Training Details
	Implementation Details
	Experimental Results

	Summary

	INTERPRETABLESAD: INTERPRETABLE ANOMALY DETECTION IN SEQUENTIAL LOG DATA
	Introduction
	Related Work
	InterpretableSAD
	Data Augmentation via Negative Sampling
	Training a Classification Model
	Anomalous Event Detection via Integrated Gradients

	Experiments
	Experimental Setup
	Experimental Results on Anomalous Log Sequence Detection
	Experimental Results on Anomalous Event Detection

	Summary

	ALGORITHMIC RECOURSE FOR ANOMALY DETECTION IN MULTIVARIATE TIME SERIES
	Introduction
	Related Work
	Time Series Anomaly Detection
	Algorithmic Recourse

	Preliminary
	Granger Causality
	Generalised Vector Autoregression (GVAR)

	RecAD
	Problem Formulation
	Anomaly Detection for Time Series
	Algorithmic Recourse

	Experiments
	Experimental Setups
	Experimental Results

	Summary

	ROOT CAUSE ANALYSIS OF ANOMALIES IN MULTIVARIATE TIME SERIES THROUGH GRANGER CAUSAL DISCOVERY
	Introduction
	Related Work
	Preliminary
	Structural Causal Model (SCM)
	Granger Causality

	Problem Formulation
	AERCA
	Granger Causal Discovery
	Root Cause Localization

	Experiments
	Experimental Setup
	Experimental Results

	Summary

	ON ROOT CAUSE LOCALIZATION AND ANOMALY MITIGATION THROUGH CAUSAL INFERENCE
	Introduction
	Preliminary
	Structural Causal Model (SCM)
	Counterfactuals
	Causal Graph Autoencoder

	RootCLAM
	Problem Formulation
	Root Cause Localization
	Causal Graph Autoencoder-based Anomaly Mitigation

	Experiments
	Experimental Setup
	Experimental Results

	Summary

	ACHIEVING COUNTERFACTUAL FAIRNESS FOR ANOMALY DETECTION
	Introduction
	Preliminary
	CFAD
	Counterfactual Fairness
	Overview of Counterfactually Fair Anomaly Detection (CFAD)
	Phase One: Counterfactual Data Generation
	Phase Two: Fair Anomaly Detection

	Experiments
	Experimental Setup
	Experimental Results

	Summary

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work

	REFERENCES
	CURRICULUM VITAE

