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ABSTRACT

Exploring Application of the Coordinate Exchange to Generating

Optimal Designs Robust to Data Loss

by

Asher Hanson, Master of Science

Utah State University, 2024

Major Professor: Stephen J. Walsh, Ph.D.
Department: Mathematics and Statistics

The purpose of implementing optimal design of experiments (DoE) is to enhance the efficiency

of data extraction while considering the associated resource constraints. DoE’s primary objective

is to maximize information about experimental factors while also managing costs and time invest-

ments. Adopting a suitable DoE allows comparisons and strengthens causal inferences, establishing

a clear link between cause and effect. To achieve optimal designs, researchers rely on computational

algorithms to tailor their designs to specific experiments. The Coordinate Exchange (CEXCH) Al-

gorithm has gained popularity in recent years and emerged as a valuable tool for generating optimal

designs.

Additionally, the importance of incorporating robust characteristics into experimental design

has been found to be vital, depending on the cost of resources and time. This attribute ensures

reliability in data collection by minimizing the impact of potential data loss. The implementation of

robust features becomes particularly crucial in scenarios where the loss of observations may occur,

emphasizing the need for a reliable experimental design. With this objective in mind, the thesis

focuses on utilizing the CEXCH algorithm to create robust optimal designs. This process unfolds in



iv

three distinct phases. First, second-order model designs with two to three factors are generated and

compared to those previously published. Second, to employ the algorithm to generate first-order

model designs tailored specifically for screening purposes. Finally, to explore designs that are robust

to the loss of two observations.

Results obtained during the validation phase indicate that the CEXCH algorithm is adept

at producing designs equal to or better than those already published. This conclusion is drawn

based on scoring each design using various criteria functions and efficiencies. From that phase, there

was reason enough to believe that the CEXCH algorithm could be used for other models to offer

robust optimal designs. Designs from the screening experiments also showed that the robust designs

generated from the CEXCH were comparatively better in most cases than those that were generated

without using a robust criterion. The exploration of designs that were robust to the loss of two

observations resulted positively, with new designs equipped for such experiments. Having completed

the three phases, it is determined that the CEXCH has the ability to aid in generating designs for

researchers interested in having robust optimal designs for their experiments.

(90 pages)
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PUBLIC ABSTRACT

Exploring Application of the Coordinate Exchange to Generating

Optimal Designs Robust to Data Loss

Asher Hanson

The primary objective of this study is to evaluate the efficacy of the coordinate exchange

(CEXCH) algorithm in the generation of robust optimal designs. The assessment involves a compar-

ative analysis, wherein designs produced by the Point Exchange (PEXCH) Algorithm are employed

as benchmarks for evaluating the efficiency of CEXCH designs. Three modified criteria, selected

from the traditional alphabet criteria pool, are utilized to score each algorithm. To enhance the

reliability of the comparative analysis, multiple rounds of validation are conducted, focusing on vi-

sual assessments, design scores, and criteria efficiencies. The findings from each round of validation

contribute to a comprehensive understanding of the effectiveness of the CEXCH algorithm.

Following the investigation into the effectiveness of CEXCH, the subsequent phase involves

the implementation of the algorithm in generating screening designs. Screening experiments are

used to extract insightful factors from an extensive list of potential variables.

Exploring insights into the generating designs robust to the loss of two observations, show that

the application of the CEXCH algorithm, particularly with the integration of robust criteria, yields

designs that compare favorably with alternative criteria and algorithms. These findings highlight

the importance of considering the CEXCH algorithm during the preparatory stages of experimental

design for researchers seeking robust and effective outcomes.
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CHAPTER 1

REVIEW OF ROBUST OPTIMAL DESIGN

1.1

Introduction

Since the development and implementation of experimental design by Ronald Fisher (1935),

the search for optimal designs has gathered a lot of attention in research and application. It is this

drive that led Kristine Smith to introduce the field of Optimal Design [1]. The benefit of optimal

design lies in its ability to create unique designs with minimal variance and accurate predictions for

any given scenario. As scientists design experiments, they want to extract the maximum amount

of information about their factors while considering the associated costs and time required for each

test. To ensure the adequacy of a design for a specific experiment, scientists must guarantee that

it performs optimally and remains robust in the face of potential outcomes that could impact the

experiment.

The origins of experimental design can be traced back to its application in answering agricul-

tural questions related to temperature, soil conditions, and rainfall. This distinctive process enables

experimenters to specify the factors of interest and design experiments that shed light on the ef-

fects of individual factors as well as potential interactions among them. Prior to this methodology,

conducting experiments involved repeatedly changing one factor, recording the outcomes, and then

conducting the experiment numerous times.

Design of Experiments (DoE) is popular for various reasons, one is its ability to facilitate direct

comparison between treatments of interest in a professional and systematic manner. DoE allows

research to minimize bias in comparisons and to make inferences about causation, connecting the

dots between cause and effect [2]. This critical aspect drives extensive testing worldwide, highlighting

the significance of DoE as a topic of interest.

Since DoE development, the incorporation of designed experiments has both spread and be-

come a valuable tool in various fields. In the 1950s, Box and Wilson began experimenting with its
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methods in the chemical industry. During this period, the idea of treating designs as functions and

seeking their optimal conditions emerged. One of their most pivotal contributions was the develop-

ment of Response Surface Methodology (RSM), which facilitated the comparison of the relationship

between responses and quantitative treatment factors.

1.1.1

Brief introduction to optimal design

The field of experimental design has expanded in various ways, thanks to advancements in

computer-aided designs. One notable branch is optimal design, a term coined by Kiefer in 1959,

which aims to create a design space that achieves the best score based on a numerical criterion

[1, 3]. However, the concept and initial work can be attributed to Kristine Smith, a statistician

who worked for Karl Pearson in 1918. Smith recognized the impact of residual error variance on

a design and focused on creating designs with minimal uncertainty [4]. Initially, these findings

were not widely accepted in the statistical community, as optimal design was seen as an abstract

method for working with non-convex multidimensional objective functions. It was only through

advancements in computing power and further investigation into optimization criteria that the field

gained acceptance as a means of creating optimal design spaces [5, 6].

Optimal design is intriguing for various reasons. Joanne R. Wendleburger and George Box

were particularly interested in its ability to quantify uncertainty. Creating an experiment is not

simply a matter of deciding factors and running it multiple times; it requires an artful design that

meets the researchers needs and adapts to unique situations [7]. Experimenters must consider vari-

ability associated with errors in the experimental variables, model specification, random errors, and

measurement errors [8]. Controlling or minimizing variance is a crucial aspect of all experimenta-

tion. Sufficient information is needed to identify the uniqueness in factors and provide quantifiable

measurements to explain the differences, which necessitates multiple observations.

Another reason for the growing interest in optimal design is its capacity to create unique

designs for each specific situation. Often, it is challenging to fit an experiment into a predefined

model design, as each experiment possesses its own distinct characteristics and objectives. “It is

always better to create a custom design for the actual problem you want to solve than to force your

problem to fit a standard design” [9]. Not every design is intended for the same purpose. Some

designs focus on reducing variance in parameter estimates, while others aim to minimize variance

associated with prediction responses.

Peter Goos and Bradley Jones, authors of “Optimal Design of Experiments: A Case Study
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Approach,” provide additional compelling reasons for the power of this field. Early in their book,

they discuss the number of runs in an experiment, emphasizing that “For any given number of runs,

you can find a design that maximizes the information about the model you want to estimate. In

this respect, optimal experimental designs differ completely from full factorial or fractional factorial

designs” [10].

With optimal design gaining recognition as a field of study and finding applications in various

disciplines, promising areas of research have emerged. In a recent paper by Jensen, one such area of

interest is the pursuit of robust designs. The concept of a robust design may seem contradictory to

the idea of optimality, which implies a single optimal design. However, a robust design allows for the

possibility of experimental mishaps or unexpected factors while still obtaining valuable information.

Jensen explains several benefits of studying robustness, the foremost being the ability to conduct

experiments without prior knowledge of the exact factors of interest and still derive valuable insights

[11]. Although this scenario may not be common, as experiments are often expensive or resource-

limited, it would be advantageous to have a design that can yield useful information regardless of

the specific experimental setup.

To help researchers find the region of optimal experimentation, Response Surface Methodology

(RSM) techniques are devised and implemented. RSM is a statistical technique used within optimal

design to explore and model relationships between input variables and output responses. This

technique is useful in identifying optimal operating conditions within a given experimental framework

[12]. In the field of RSM, there are experiments called screening experiments that often have the

characteristic of being saturated, meaning the experiment is designed with only the exact number of

observations required to get estimates of all defined factors. In this paper, the concept of designing

optimal designs is explored to identify strengths and weaknesses in saturated screening designs.

1.1.2

Modeling and Notation

Let N represent the number of design points and K represent the number of experimental

factors. A design point is an x′ : 1×K row-vector. We assume all design factors are scaled to range

[-1,1] and so the design space is the X = [−1, 1]K hypercube. Let X : N ×K represent the design

matrix. While X denotes the space of candidate design points x′, a design matrix X is a collection

of N such design points. Thus, the space of all candidate designs is an NK-dimensional hypercube
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and is denoted:

X ∈
N×
j=1

X =
N×
j=1

[−1, 1]K = [−1, 1]NK = XN . (1.1)

We consider the second-order linear model which has p =
(
K+2
2

)
linear coefficient parameters. In

scalar form, the second-order model is written

y = β0 +

K∑
i=1

βixi +

K−1∑
i=1

K∑
j=i+1

βijxixj +

K∑
i=1

βiix
2
i + ϵ.

Let F : N × p represent the model matrix with rows given by the expansion vector f ′(x′
i) =

(1 xi1 . . . xiK xi1xi2 . . . xi(K−1)xiK x2
i1 . . . x2

iK). The model can be written in vector-

matrix form as y = Fβ + ϵ where we impose the standard ordinary least squares assumptions

ϵ ∼ NN (0, σ2IN ) where NN denotes the N -dimensional multivariate normal distribution. The ordi-

nary least squares estimator of β is β̂ = (F′F)−1F′y which has variance Var(β̂) = σ2(F′F)−1. The

total information matrix for β, specifically M(X) = F′F, plays an important role in optimal design

of experiments—all optimal design objective functions are functions of this matrix.

The practitioner must choose a design from XN to implement the experiment in practice.

The χ is the space design points live in while XN is the space the candidate design matrices live

in. An optimality criterion is used to define which candidate designs X ∈ XN are ‘good’ designs.

An optimization algorithm is required to search XN to find the ‘best’, or optimal, design. Thus, an

exact optimal design problem is defined by three components:

1. The number of design points N that can be afforded in the experiment.

2. The structure of the model one wishes to fit (here the second-order model).

3. A criterion which defines an optimal design. This is a function of M(X).

D-Optimal Exact Design

Let XN be the set of all possible exact designs on χ, X be the set of potential design points,

and x′
i be a design point in X.

X∗ := arg min
XϵXN

|M−1(X)| (1.2)
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D-Optimal Robust Exact Design

The D criterion seeks a design X∗
R satisfying

X∗
R := arg min

XϵXN
max
x′
iϵX

1

|M(X−i)|
(1.3)

where M(X−i) is the moment matrix of the design with a missing point x′
i.

A-Optimal Exact Design

Let XN be the set of all possible exact designs on χ, X be the set of potential design points,

and x′
i be a design in X. The operation ‘tr’ denotes the linear algebra trace function.

X∗ := arg min
XϵXN

tr {M−1(X)} (1.4)

A-Optimal Robust Exact Design

The proposed A-optimal robust exact design satisfies

X∗
R := arg min

XϵXN
max
x′
iϵX

tr{M−1(X−i)} (1.5)

where M(X−i) is the moment matrix of the design with a missing point x′
i.

I-Optimal Exact Design

Let XN be the set of all possible exact designs on χ, X be the set of potential design points,

χ be the cuboid region, x′
i be the design point in X, and V is equal to the volume of the design

space, V =
∫
χ
dx.

X∗ := arg min
XϵXN

N

V

∫
χ

f ′(x′
i)M

−1(X)f(x′
i)dx (1.6)

I-Optimal Robust Exact Design

The I criterion seeks a design X∗
R satisfying

X∗
R := arg min

XϵXN
max
x′
iϵX

[
1

V

∫
χ

f ′(x′
i)M

−1(X−i)f(x
′
i)dx

]
(1.7)

where V is equal to the volume of the design space, V =
∫
χ
dx.



6

1.1.3

Brief introduction to robust optimal design

Part of creating robust designs, is anticipating and planning for missing runs. Missing ob-

servations are not uncommon in real-world experiments and have the potential of corrupting an

experiment [13]. This can significantly impact the reliability of the experiment, particularly when

the number of observations is already limited. Given that experiments often involve significant

funding or meticulous data collection, each result holds insightful information and should not be

undervalued. The suggested approach is to develop designs that can accommodate such situations,

deviating slightly from classical designs. Previous to this exploration, researchers would simply have

to ensure enough runs were created to allow mistakes to occur or they would live with the statistical

consequences.

When studying missing data, there are several categories to consider. One common category

is known as Missing at Random (MAR) or Missing Completely at Random (MCAR). This occurs

when a faulty run or experiment results in a missing observation. Replicating or replacing these runs

can be challenging, leading to missing data in the observations. Another category is Missing Not at

Random (MNAR), which is more complex. MNAR arises when the probability of missing data varies

for reasons that researchers don’t fully understand. In MNAR situations, the likelihood of missing

data depends on certain aspects of the experiment, such as equipment, time, or unknown factors.

Initially, it is common to assume that the missing data are MAR until advanced statistical methods

indicate otherwise and suggest they are MNAR. The study of missing data has led to the exploration

of new criteria and algorithms for designing experiments and handling missing observations.

1.1.4

Literature review

One of the earliest recorded works with robust model designs came from Walter Shewhart in

the 1920’s. Shewhart is popular for working with the Six Sigma Quality strategy and declaring that

three sigmas away from the mean requires correction. From that point, many other scientists have

worked on creating criterion and algorithms to better perfect designs. One reason robust designs are

in such high need is they improve the quality of a product by minimizing the effect of the causes of

variation without eliminating the cause. This approach is different from the classical way because

with a robust model design it is assumed that some form of mistake or error can take place and

that a design that can adapt to such situations is needed. To adapt in this case means to be able to
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receive close to the same amount of information from a test as if no errors were to happen.

Over the years, new methodologies have emerged to assist in the creation of robust designs.

Welch (1983) and Fang and Wiens (2000) conducted experiments with mean squared error, while

other scientists have explored Bayesian approaches to protect against potential uncertainties while

maintaining a good design for primary terms. HerediaLanger et al. (2004) and Smucker et al. (2011)

focused on creating functions, known as criteria, to evaluate the strength and information capacity

of a design [14]. Srisuradetchai further developed robust functions for traditional alphabet criterion

to create robust designs for all given cases [15]. In his work, he used the point exchange algorithm

to cycle through each possible design point and find the optimal design for each criterion.

1.1.5

Conclusions

From the aforementioned research, it can be concluded that finding a robust model for an

experiment carries much importance. In this paper, I will further investigate the work that has been

done to create interpretable robust designs as well as introduce techniques and steps that prove

to create equal to or better designs than have already been developed. For the purpose of this

paper, the main focus will be on two-level designs using the coordinate exchange algorithm when

the number of runs is small. This field is of most interest as “there is remarkably little done in

accessible methods for exact (small-sample) model-robust designs”[14, 11]. With this work we aim

to provide this capability to the optimal design research community.
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CHAPTER 2

DEVELOPMENT, IMPLEMENTATION, AND VALIDATION OF THE COORDINATE

EXCHANGE FOR GENERATING ROBUST OPTIMAL DESIGNS

2.1

Introduction to Candidate Designs

In order to generate robust optimal designs, a process of building various designs and allocating

a score is required. The purpose of having an algorithm is to take a design and make alterations while

trying to improve a predefined criterion. Since 1972, when the first exchange algorithm was created,

many researchers have introduced unique ways to simplify the computational process (Mitchell 1974;

Cook and Nachtsheim 1980; Johnson and Nachtsheim 1983; Meyer and Nachtsheim 1995; Atkinson

et al. 2007). With several different algorithms to choose from, the task is to select the one that

is both computationally efficient and results in the most optimal design. Each algorithm follows a

similar initiation process: providing a nonsingular design, scoring the design based on a criterion,

exchanging elements between each point of the design space χ, rescoring the design, and comparing

the results of the new and old designs. Differences between algorithms can be with respect to the

space of elements permitted to exchange into the design or the number of swaps occurring during

each exchange.

The algorithm chosen for this project was the coordinate exchange algorithm (CEXCH),

designed by Meyer and Nachtsheim in 1995. The CEXCH is unique because it does not require

a discrete candidate list of design points. “This candidate-list-free property is a crucial advantage

and the reason we use it as the basis for our algorithms” [14]. When the algorithm was initially

created, it was intended for creating optimal designs for completely randomized experiments, where

the experimental observations were independent. Now, the algorithm has been tuned to adapt to all

sorts of experiments, including split-plot, two-way split-plot, mixtures, and many other experiment-

specific designs [16]. Another reason why it is a convenient tool is that “the coordinate-exchange

algorithm runs in polynomial time, which means that the time it needs to find an optimal design
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does not explode when the size of the design and the number of factors increases” [10].

2.2

The Coordinate Exchange

CEXCH works as follows: a specified number of design points N , experimental factors K,

model, and optimality criterion are chosen. The model is unique to each experiment and allows

researchers to decide the factors’ order and interactions. To begin, an initial design is created

by putting together an NK-dimensional space filled with points randomly chosen from a uniform

distribution. The initial design is then evaluated based on the criteria and scored. Next, the

algorithm iterates through the rows and columns of the design matrix X. At each coordinate, each

element from a list of candidate points is swapped into the design and then evaluated using the

criteria. The points swapped into the design range from both ends of the design space and contain

multiple points in between endpoints. The algorithm then compares the newly calculated score with

the initial score to identify if an improvement occurred. If an improvement was made, then the

exchange is made permanent, and the process continues through the rest of the design; if not, then

the original value is retained, and the process moves on. This process goes through the entire design

and then begins again as long as the design score continues to improve at each iteration. Once the

algorithm passes through the full design matrix and no more improvements are found, the exchange

process halts, and the design is returned.

Shown below is an outline of how CEXCH works. The space that the algorithm covers is

represented by G and signifies a regular sequence on [-1, 1].

Algorithm 1 Element-wise CEXCH Pseudocode

1: Inputs: K := number of experimental factors, N := number of affordable experimental runs,
f := the optimal design criterion

2: // Randomly instantiate an N ×K design matrix from a uniform distribution

3: X← {xij
i.i.d∼ U(−1, 1) for i = 1, . . . , N, j = 1, . . . ,K}

4: while {improvements to f are found } do
5: for i = 1, 2, . . . , N do
6: for j = 1, 2, . . . ,K do
7: X← argminxij∈Gf(xij |X−ij) // coordinate proposal is a univariate optimization
8:

9: endfor
10: endfor
11: endwhile

12: Output: X := a locally optimal design

Though the algorithm claims to find the design that can no longer be improved through
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coordinate exchanges, the design may only be a local optimal design. The reason it may be a

local optimal design has to do with the fact that at the beginning of the whole process, the initial

design was randomly generated, and thus, the algorithm is dependent on those points. “Note that

exchange algorithms are heuristics which do not necessarily converge to a global optimum. Thus,

the algorithms should be run multiple times from a variety of randomly generated initial designs to

find a near-optimal design” [14].

Using the coordinate exchange algorithm to find robust optimal designs is useful because of

the explained characteristics above; specifically, the fact that numerous random initial designs will

be used to try and find the optimal design. In research done by Patchanok Srisuradetchai (2015), his

focus was to find optimal robust designs using a point exchange algorithm. Reasons why CEXCH

will prove to find better designs revolves around drawbacks in the point exchange algorithm.

One fault being that the point exchange (PEXCH) algorithm requires the researcher to specify

the set of candidate points which can be a setback with large numbers of factors or size of candidate

set. Because the algorithm is subject to the defined set of candidate points, it is not allowed to

try any number not given. Researchers employing the PEXCH algorithm can generate candidate

lists that are more defined by adding more points; however, a potential drawback is the increase

in computational runtime [7]. Since CEXCH starts off with randomly chosen points between the

bounds of the design, the chance of getting a better optimal design increases. Since the CEXCH

starts by generating a design using a uniform distribution, more specific values get to be tested.

These randomly generated values carry more decimal places allowing for a finer mesh of points as

initial starting points. These defined starting points allow the CEXCH to search more places in the

design space. Later on in the paper, the subject of using OPTIM to find EXACT designs along with

CEXCH will be explained and why using the two of them together has become an option in finding

the global optimal design.

2.3

Robust Criterion

As mentioned previously, one of the main benefits of using robust functions is that they take

into consideration the possibility of accidents occurring, alluding to incomplete observations. The

way robust criteria works can be explained in three steps. First, the function takes in a design

matrix and transforms it into a model matrix, which depends on the number of factors and the

desired model. Then, in a sequential manner starting from the top row and going down, a row is
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omitted and scored depending on the set criterion. This value is then stored in a list that holds all

scores. The last step involves taking the list of scores and finding the optimal score. Depending

on whether the criterion is a maximum or minimum, it determines whether the desired score is the

smallest or largest value in the list. The optimal score is the output of the function and is used to

explain how robust a design is. Depending on the number of runs and factors, this process can be

altered to allow for a robust design that will work well with two or more missing observations.

Algorithm 2 Robust Criterion Pseudocode

1: Inputs: X := design matrix, N := number of rows

2: F← makemodelmatrix(X)
3: det.inf ← det|F’F|
4: if det.inf < .Machine$double.eps

1
2 :

5: criterion.score← 999
6: else
7: sc← //empty list
8: for i = 1, ..., N do
9: // // Matrix F−i is the result of extracting row i from the matrix F.

10: mat← (F’
−iF−i)

11: if det.inf.2 < .Machine$double.eps
1
2 :

12: sc[i]← 999
13: else
14: sc[i]← criterion(mat)
15: endfor
16: criterion.score← max(sc)
17: return criterion.score

2.3.1

Analyzing a Robust Design

As explained in Algorithm 2, the robust criterion is going through a design, dropping a point,

and then scoring the design. In Figure 2.1, we see each step in dropping a point and scoring the

design. In the figure, the red dot is the point that is dropped and the black points are the remaining

observations. This particular example comes from a Robust I design that will be brought up again in

Figure 2.6 and Table 2.5. Above each design is the I score when the red point is dropped. According

to the Robust Criterion, once the list of I scores is gathered, the highest value is returned as the

robust score. In this case, it is the design that has the I score of 1.654 and is found in row 2 column

2. We learn from this plot, that this design suffers the most when the middle point is lost. The

design with the I score of 1.031 (row 3 column 1), has the smallest robust score meaning of all the

scenarios of losing an observation, this would be the best case. Researchers may find it helpful to

know the importance each point has to ensure that the point(s) is not lost.
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Figure 2.1: The Effect of Drop One in Robust Designs
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2.4

Robust Alphabetic Optimality Criteria

To aid in explaining how well a design is, efficiency criteria can be used to mathematically gage

how well one would be under a particular criterion. In this study, we are interested in knowing how

much information was saved by using a robust design compared to a hypothetical orthogonal design.

Srisuradetchai utilized three different forms of efficiency to describe his designs: criterion-efficiency,

min criterion-efficiency and leave-m-out criterion-efficiency; each one demonstrating different robust

strengths to that design. [15]. Written out below are the formulas and explanations as to how each

formula is calculated and its use. To be consistent with notation given previously, F represents the

model matrix and N × p are the number of observations and parameters in a second-order model.

M(X) = F′F and the −i refers to the absence of an observation in a design which will be shown as

a subscript (i = 1, 2, ..., N). Upon removing the ith term, the information matrix will be referred

to as F′
−iF−i.

2.4.1

Variations of the D-efficiency

The traditional D*-efficiency is defined as:

D*-efficiency =

(
|M(X)|

N

) 1
p

× 100.

The minimum of Di reflects the worst-case scenario of have one missing observation:

Di =
|F′

−iF−i|
1
p

N − 1
× 100,

Min D = min
1≤i≤N

{Di}.

Since the Min D is focused on reporting the min efficiency for the −i design, this value is

compared to as a lower bound. The higher the Min D, the more robust it is compared to other

designs given missing data occurs.

The leave-m-out efficiency D-efficiency is defined as:

D(m) =

∑
tϵTm

Di(
N
m

) ,
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which is the average of all the different scenarios of a design missing m points. Tm is the set

of all possible subset designs of size N − m, where m is the number of missing points, and Di is

the D-efficiency of subset design t ϵ Tm. The leave-one-out efficiency is a very intuitive efficiency to

use in this problem space because of its ability to take into consideration all the scored efficiencies

of −i in the design and compute an average. For example, when m = 1, D(1) is the average of D-

efficiencies of all possible designs having one missing point. The absence of even just one observation

can greatly affect the efficiency.

2.4.2

Variations of the A-efficiency

The traditional A*-efficiency is defined as:

A*-efficiency =
p

tr[M−1(X)]
× 100.

The minimum of Ai reflects the worst-case scenario of have one missing observation:

Ai =
p

tr[(N − 1)(F′
−iF−i)−1]

× 100,

Min A = min
1≤i≤N

{Ai}

The leave-m-out efficiency A-efficiency defined as:

A(m) =

∑
tϵTm

Ai(
N
m

) ,

which is the average of all the different scenarios of a design missing m points. Tm is the set

of all possible subset designs of size N −m and Ai is the A-efficiency of subset design tϵTm.

2.4.3

Variations of the I-efficiency

The traditional I*-efficiency is defined as:

I*-efficiency =
V

N tr[M−1(X)
∫
χ
f ′(x′

i)f(x
′
i)dx]

× 100.

The minimum of Ii reflects the worst-case scenario of have one missing observation:
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Ii =
V

(N − 1) tr[(F′
−iF−i)−1

∫
χ
f ′(x′

i)f(x
′
i)dx]

× 100,

Min I = min
1≤i≤N

{Ii}

The leave-one-out efficiency I-efficiency defined as:

I(m) =

∑
tϵTm

Ii(
N
m

) ,

which is the average of all the different scenarios of a design missing m points. Tm is the set

of all possible subset designs of size N −m and Ii is the I-efficiency of subset design tϵTm.

2.4.4

Relative Efficiency

Relative Efficiencies are used to compare two designs by dividing one design efficiency score

by the other and multiplying by 100. This percentage tell us whether design one or two has a better

efficiency score. A relative efficiency larger than 100 indicates that Design 1 is better than Design 2

in terms of optimality.

R.E.(D1, D2) = (D1/D2) ∗ 100

2.5

Details

Once the robust criterion has been decided and created, the next step is selecting an algorithm.

In this experiment, the coordinate-exchange algorithm (CEXCH) was chosen and implemented using

the Julia programming language. Julia was selected for this project due to its quick compilation

of functions and its ability to complete tasks swiftly. As explained in section 2.2 of this chapter,

CEXCH takes in three parameters and returns a list of values determined by the researcher. I have

chosen to include the initial matrix, initial design score, optimal matrix, optimal score, and number

of iterations in the returned values. Both the optimal matrix and score are the most valuable results,

as they represent the end products of the CEXCH algorithm. Since CEXCH is designed to search

for the global optimum, the researcher needs to adjust the algorithm based on whether they are
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searching for the global maximum or minimum. This choice is determined by the design of the

criterion.

2.6

Validation

The following section is dedicated to validating the coordinate exchange results to that of

the exact algorithm (EXACT) provided John J. Borkowski [17] and a point exchange algorithm

(PEXCH) by Patchanok Srisuradetchai [15]. The EXACT designs are created by using the optimal

exact formulas provided in section 1.1.2. While a typical PEXCH initiates by creating a candidate

set of points, Srisuradetchai’s PEXCH algorithm incorporated a scattered starting design. To have

scattered starting design points, the design region was partitioned and then one point was randomly

chosen from each partition region. This approach ensured the starting design points were not

clustered in one place which might happen in completely random selection of designs with a small

sample size. Next, the point design was sequentially filled with points that have the highest prediction

variance, which was equivalent to maximizing the determinant according to the rank-one updated

formula. In the following sections, graphics and tables will be provided with the intent of showing

how the CEXCH was able to achieve equal to or better results than the EXACT and PEXCH via

criterion scores, robust criterion scores, and efficiencies table.

2.7

Reading Plots and Efficiency Tables

For each design case in this chapter, a plot and efficiency table will be provided to illustrate

the design and allow comparison. Each plot will have the following: a title that specifies the selected

criteria, the traditional alphabet criteria score, the robust criteria score, and either a two-dimensional

or three-dimensional plot of the design.

The reported scores indicate how well that design did when scored using that criterion. For

all criteria presented in this research, smaller the score the better.

Below the graphics, there will be an efficiency table. The efficiencies will be arranged so that

the first group will line up with the type of criteria that generated the designs. This means that if the

designs were generated using the D and Robust D, then the first group will be about D efficiencies.

In the table, there will also be an efficiency that is highlighted red. Highlighting that particular

value serves two purposes. One, it is the efficiency that best represents the robustness to one data
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loss for those criteria. Two, this value indicates whether the CEXCH has generated a design that is

more robust than the design generated from the PEXCH. If the value is greater than 100, then the

CEXCH design found a more robust design. I will only highlight the efficiency that correlates with

the Min efficiency of the criteria being used to generate the design as that is the value that indicates

robustness. In a real life scenario, a researcher may look across all efficiencies to understand the risk

of using a design. If there is a low chance of data loss, using a robust design may not be wise. In

this paper, the main focus is to compare optimal robust designs, so when making comparisons, the

Min efficiency is going to be my indicator to whether my robust design is better or worse.

Efficiency values tell how well the design would do compared to a hypothetical orthogonal

design. So, when reading the table, the higher the value the better. Depending on the section in this

paper, the first two to three columns show which algorithm was used to generate the design. There

will be occasions when there will be a 0 value in these columns. This indicates that this design is

not robust to data loss. The following columns are relative efficiencies comparing design efficiencies

between the different algorithms. The middle columns provide efficiencies comparing the CEXCH to

the EXACT and the PEXCH to the EXACT. This value indicates whether a robust design is better

than using an exact one. The last column compares the robust designs computed from the CEXCH

and PEXCH. This value is of importance because I want to know whether the CEXCH algorithm

is able to generate better designs than the PEXCH. In the second and third column sections of the

table, there may be an N/A value. This value shows up when the calculation may have been trying

to divide by 0.

When comparing designs, there are three different possible outcomes, those being Better,

Equal, and Worse. A better design will be different in point arrangement, have a smaller robust

score, and a higher efficiency. An equal design may have the same or a different point arrangement

but will have the same robust score and efficiency, resulting in a 100 relative efficiency score. A worse

design will have a different design with a higher robust score and a lower efficiency. The robust and

efficiency scores are synonymous in meaning, thus if a design has a higher robust score than another,

its efficiency score will be less than the other design.
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2.7.1

Two-factor D-Optimal Designs

The 7-Point Design

Figure 2.2: Seven-point D-optimal EXACT (left), PEXCH (center), and CEXCH (right) designs for
a second-order model in two factors.

Table 2.1: Properties of the 7-point 2-factor D-optimal designs.
Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

D-efficiency 45.029 40.567 40.567 90.091 90.091 100
Min D-efficiency 25.144 31.567 31.567 125.581 125.581 100

Leave-1-out D-efficiency 34.789 33.24 33.24 95.547 95.547 100
A-efficiency 26.598 23.534 23.534 88.48 88.48 100

Min A-efficiency 3.128 4.565 4.565 145.94 145.94 100
Leave-1-out A-efficiency 12.509 14.29 14.29 114.238 114.238 100

I-efficiency 21.653 20.147 20.147 93.045 93.045 100
Min I-efficiency 2.783 3.627 3.627 130.327 130.327 100

Leave-1-out I-efficiency 10.405 12.43 12.43 119.462 119.462 100

Results for 7-point 2-factor D-optimal designs are shown in Figure 2.2 and Table 2.1. From

the plots, we see two different point arrangements; this is because the CEXCH design is just a 90

degree rotation of the PEXCH design. With these designs, the axes are interchangeable, meaning

that though the plots above look different, they are actually the same if the axes were to be switched.

From the table, we see that the PEXCH and CEXCH both achieved the Min D-efficiency of 31.567

which is better than the EXACT design with a 25.144.
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The 8-Point Design

Figure 2.3: Eight-point D-optimal EXACT (left), PEXCH (center), and CEXCH (right) designs for
a second-order model in two factors.

Table 2.2: Properties of the 8-point 2-factor D-optimal designs.
Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

D-efficiency 45.616 45.428 45.428 99.588 99.588 100
Min D-efficiency 33.648 38.514 38.514 114.461 114.461 100

Leave-1-out D-efficiency 40.38 40.873 40.873 101.221 101.221 100
Leave-2-out D-efficiency 31.035 29.809 29.809 96.05 96.05 100

A-efficiency 28.899 22.5 22.5 77.857 77.857 100
Min A-efficiency 15.192 16.59 16.59 109.202 109.202 100

Leave-1-out A-efficiency 21.134 17.012 17.012 80.496 80.496 100
Leave-2-out A-efficiency 11.325 10.165 10.165 89.757 89.757 100

I-efficiency 22.619 16.791 16.791 74.234 74.234 100
Min I-efficiency 11.943 12.187 12.187 102.043 102.043 100

Leave-1-out I-efficiency 16.91 13.197 13.197 78.043 78.043 100
Leave-2-out I-efficiency 9.223 7.827 7.827 84.864 84.864 100

Results for 8-point 2-factor D-optimal designs are shown in Figure 2.3 and Table 2.2. The

plots show that PEXCH and CEXCH found the same design which has all its points along the edges

and in the corners. Score wise, both the PEXCH and CEXCH got Min D-efficiency of 38.514 beating

the EXACT design which scored a 33.648. From the efficiency table, we see that the PEXCH and

CEXCH scored the same values in all fields. We learn that in this case there does exist a robust

design that has better robust properties that an EXACT generated design.
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2.7.2

Two-factor A-Optimal Designs

The 7-Point Design

Figure 2.4: Seven-point A-optimal EXACT (left), PEXCH (center), and CEXCH (right) designs for
a second-order model in two factors.

Table 2.3: Properties of the 7-point 2-factor A-optimal designs.
Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

A-efficiency 27.797 21.259 21.238 76.479 76.404 99.901
Min A-efficiency 0 9.97 10.125 N/A N/A 101.555

Leave-1-out A-efficiency 7.123 11.888 12.04 166.896 169.03 101.279
D-efficiency 38.535 34.066 33.95 88.403 88.102 99.659

Min D-efficiency 0 23.627 24.26 N/A N/A 102.679
Leave-1-out D-efficiency 11.444 27.976 28.026 244.46 244.897 100.179

I-efficiency 24.657 20.011 19.851 81.157 80.509 99.2
Min I-efficiency 0 7.446 6.797 N/A N/A 91.284

Leave-1-out I-efficiency 6.15 11.444 11.634 186.081 189.171 101.66

Results for 7-point 2-factor A-optimal designs are shown in Figure 2.4 and Table 2.3. In

this case, the CEXCH generated a design slightly different than the PEXCH; they have a similar

structure, but the points are not in the same locations. Looking at the table, we see that the relative

efficiency score of CEXCH, PEXCH for Min A-efficiency is 101.555. This means the CEXCH design

is 1.555 percent more optimal that the PEXCH design. The table also shows that the EXACT

design is not robust to losing data because its Min A-efficiency 0.
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The 8-Point Design

Figure 2.5: Eight-point A-optimal EXACT (left), PEXCH (center), and CEXCH (right) designs for
a second-order model in two factors.

Table 2.4: Properties of the 8-point 2-factor A-optimal designs.
Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

A-efficiency 29.301 27.396 27.396 93.499 93.499 100
Min A-efficiency 4.216 19.388 19.388 459.867 459.867 100

Leave-1-out A-efficiency 17.945 20.439 20.439 113.898 113.898 100
Leave-2-out A-efficiency 6.434 11.449 11.449 177.945 177.945 100

D-efficiency 41.618 44.039 44.039 105.817 105.817 100
Min D-efficiency 23.972 35.937 35.937 105.817 149.912 100

Leave-1-out D-efficiency 34.885 39.254 39.254 112.524 112.524 100
Leave-2-out D-efficiency 15.691 28.208 28.208 179.772 179.772 100

I-efficiency 25.294 22.569 22.569 89.227 89.227 100
Min I-efficiency 4.32 15.833 15.833 366.505 366.505 100

Leave-1-out I-efficiency 15.542 17.358 17.358 111.684 111.684 100
Leave-2-out I-efficiency 5.438 9.552 9.552 175.653 175.653 100

Results for 8-point 2-factor A-optimal designs are shown in Figure 2.5 and Table 2.4. From

the plots, we see that PEXCH and CEXCH generated the same design which focused on symmetry

and having a point in each corner. The table explains that PEXCH and CEXCH designs both

have a Min A-efficiency of 19.388 which is better than the EXACT design score of 4.216. This

robust generated design appears to do well in all efficiencies compared to a non-robust design. This

conclusion comes from looking over the efficiency values in the R.E.(P, E) and R.E.(C, E) columns.

In the different A-efficiencies provided, the robust design also did well in Leave-1-out A-efficiency
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and Leave-2-out A-efficiency.

2.7.3

Two-factor I-Optimal Designs

The 7-Point Design

Figure 2.6: Seven-point I-optimal EXACT (left), PEXCH (center), and CEXCH (right) designs for
a second-order model in two factors.

Table 2.5: Properties of the 7-point 2-factor I-optimal designs.
Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

I-efficiency 24.907 21.147 19.66 84.904 78.934 92.968
Min I-efficiency 0 9.094 10.075 N/A N/A 110.787

Leave-1-out I-efficiency 6.185 12.059 11.375 194.972 183.913 94.328
D-efficiency 38.326 37.194 31.893 98.998 83.215 84.057

Min D-efficiency 0 25.408 21.754 N/A N/A 85.619
Leave-1-out D-efficiency 11.382 31.042 26.362 272.729 231.611 84.924

A-efficiency 27.426 23.619 20.027 86.119 73.022 84.792
Min A-efficiency 0 7.221 8.17 N/A N/A 113.142

Leave-1-out A-efficiency 7.046 13.194 11.457 187.255 162.603 86.835

Results for 7-point 2-factor I-optimal designs are shown in Figure 2.6 and Table 2.5. In this

scenario, we find that each algorithm generated a different design. From the table we see from

the highlighted 110.787 that the design generated by the CEXCH algorithm is 10.787 percent more

efficient than the PEXCH design. The CEXCH design has a Min I-efficiency of 10.075 and the

PEXCH design has a 9.094. The EXACT design has a Min I-efficiency of 0, meaning it is not robust

to losing data.
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The 8-Point Design

Figure 2.7: Eight-point I-optimal EXACT (left), PEXCH (center), and CEXCH (right) designs for
a second-order model in two factors.

Table 2.6: Properties of the 8-point 2-factor I-optimal designs.
Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

I-efficiency 25.57 22.569 23.898 88.264 93.461 105.889
Min I-efficiency 5.474 15.833 16.907 289.24 308.86 106.783

Leave-1-out I-efficiency 15.899 17.358 18.048 109.177 113.517 103.975
Leave-2-out I-efficiency 5.601 9.552 9.647 170.541 172.237 100.995

D-efficiency 0.919 44.039 4 0.582 107.625 99.176 92.15
Min D-efficiency 26.183 35.937 31.978 137.253 122.133 88.983

Leave-1-out D-efficiency 34.482 39.254 36.178 113.839 104.919 92.164
Leave-2-out D-efficiency 15.538 28.208 27.707 181.542 178.318 98.224

A-efficiency 28.999 27.396 27.444 94.472 94.638 100.175
Min A-efficiency 5.861 19.388 17.271 330.797 294.677 89.081

Leave-1-out A-efficiency 18 20.388 20.4 113.55 113.333 99.809
Leave-2-out A-efficiency 6.489 11.449 10.696 176.437 164.833 93.423

Results for 8-point 2-factor I-optimal designs are shown in Figure 2.7 and Table 2.6. From

the plots, we see that all three algorithms produced different designs. The PEXCH and CEXCH

found designs that have interesting symmetrical properties. In the R.E.(C, P) column of the table,

we learn that the CEXCH design outperformed the PEXCH design in all I-efficiencies. This is the

first case analyzed so far that has that characteristic. In the R.E(C, E) column, we find that the

CEXCH design does better than the EXACT design in Min-I efficiency, Leave-1-out efficiency, and

Leave-2-out efficiency. From the results, I would conclude that the CEXCH algorithm was able
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to find a new design that performs better to loss of data than other algorithms according to my

returned efficiencies.

2.8

Validation Conclusion

Table 2.7: Chapter Summary for 2 Factor N = 7 and 8 scores.
Experiment Design Robust - D Robust - A Robust - I

2-Factor N = 7 Equal Better Better
2-Factor N = 8 Equal Equal Better

By validating CEXCH with Borkowski [17] and Srisuradetchai [15], we now have a good

understanding of how well the algorithm compares to what has already been published. From

seeing the side-by-side plots and efficiency tables, and summary 2.7 it can be said that the CEXCH

algorithm has the ability to perform equal to or better than PEXCH; this can be attributed to

CEXCH’s ability to search through numerous random designs to find the optimal design. And

though the EXACT design is helpful in many response surface design searches, its ability to prescribe

a design that is robust to missing observations is often weak and not helpful. In the next chapter

we will use this knowledge to discuss designs for bigger factors (K) and observations (N).
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CHAPTER 3

FURTHER VALIDATION OF THE COORDINATE EXCHANGE FOR GENERATING ROBUST

OPTIMAL DESIGNS WITH K = 3 AND EXTENSION TO UNADDRESSED PROBLEMS.

3.1

Introduction

In the following sections, we will present the efficiencies and plots for designs generated using

the algorithms EXACT, PEXCH, and CEXCH. Each section will begin with an overview of the

efficiencies for each design, followed by an explanation and a 3D plot illustrating the design. Designs

generated using PEXCH are not included due to the absence of reported data by Srisuradetchai [15].

However, he did report the efficiencies for each design, which will be presented in the tables. The

following sections are specific to designs with K = 3, and N ranges from 11 to 13. The choice of

starting at 11 is to ensure there are enough runs to estimate all the parameters in a second-order

model, including interactions. The tables and 3D plots for each design will be in the Appendix at

the end of the chapter. The 3D plots are helpful in demonstrating the uniqueness of each criterion

and the variability among algorithms.

3.1.1

Three-factor D-Optimal Designs

From Table 3.3, starting with N = 11, CEXCH-generated designs performed better overall

for efficiencies related to D. In the other categories, CEXCH was very close or slightly behind. In

the Figure 3.1 for Robust-D, with K = 3 and N = 11, it’s evident that the point on the bottom face

of the cube is not at the center but is slightly shifted outward. This movement in the point might be

one of the contributing factors to the robust design. Continuing in the table, when N = 12, designs

resulting from CEXCH and PEXCH are similar, often times only differing by a hundredth. Similarly,

in the figure 3.1, the point on the bottom face is shifted away from the center. It’s noteworthy that

CEXCH and PEXCH outperformed EXACT in terms of Min-D efficiency, while in other aspects, the
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EXACT algorithm performed better. In this case, determining whether a robust design is necessary

becomes crucial for researchers when choosing the optimal design.

3.1.2

Three-factor A-Optimal Designs

Referring to Table 3.4, starting with N = 11, the CEXCH-generated design outperformed the

PEXCH design in all cases and surpassed the EXACT design in all instances related to robustness.

Identifying the specific point in the plot contributing to these superior efficiency scores is more

challenging, but it remains intriguing to observe the arrangement of the design in comparison to

previously examined cases. In the section for N = 12, CEXCH designs excelled in efficiencies

related to A. In other efficiency measures, EXACT and PEXCH designs alternated in achieving

higher results. In the final table, representing N = 13, CEXCH designs surpassed both EXACT and

PEXCH designs in all efficiency categories, except for I-efficiency.

3.1.3

Three-factor I-Optimal Designs

From Table 3.5, starting with N = 11, the CEXCH-generated design performed better than

the PEXCH design and was better than the EXACT design with efficiencies concerning robustness.

It is interesting to compare the plots and observe the distinct locations of the points. In the table

for N = 12, the CEXCH design outperformed the PEXCH design in all efficiency categories related

to A and I. However, for D-efficiency and I-efficiency, the EXACT design reported higher values but

significantly lower than CEXCH in other aspects. In the last table for N = 13, CEXCH performed

very similarly to PEXCH, often differing by only a hundredth.

3.2

Section Conclusion

Table 3.1: Chapter Summary for 3 Factor N = 11, 12 and 13.
Experiment Design Robust - D Score Robust - A Score Robust - I Score

3-Factor N = 11 Better Better Better
3-Factor N = 12 Equal Better Better
3-Factor N = 13 Equal Better Better
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Table 3.1 provides a summary view of how the CEXCH produced robust optimal designs

compared to the PEXCH. The designs for this experiment can be found in Figure 3.3 in the Appendix.

From the results, only with the Robust D criteria was there ever a time when the designs were equal

in score. In all other cases, CEXCH designs were better. This is further validation in a higher

dimension that this algorithm can generate robust optimal designs.

3.3

Comparing Three-factor Designs when N = (14, 15 and 16).

Compared to the section above, the following three-factor designs are only of generated EX-

ACT and CEXCH designs. At this point in paper, I am convinced that CEXCH performs equal to

and often times better than PEXCH. As number of observations increases, it will be interesting to

observe if robust design can still perform better than EXACT design across the board of efficiencies.

In the following sections we will observe second order models when K = 3 and N = 14, 15, and 16.

The tables and plots for each experiment will be found in the Appendix of this chapter.

3.3.1

Three-factor D-Optimal Designs with N = (14, 15 and 16).

Referring to Table 3.6, it is evident that for N = 14, the design generated by CEXCH per-

formed significantly better than that generated by EXACT. The appearance of N/A values in the

table indicates that, during the calculation of efficiency, a singular matrix was encountered. Fre-

quent N/A responses can make comparisons challenging, but in this instance, we can still observe

that CEXCH created a robust overall design. Examining the plots, we can see the differences between

the designs produced by EXACT and CEXCH. CEXCH’s design shows clear symmetry compared

to the more random appearance of the EXACT design. In the subsequent table where N = 15,

CEXCH performed better compared to the design generated by the EXACT algorithm, especially

in terms of efficiencies related to A. Once again, when looking at the plots, the unique structures

of the two designs contribute to the efficiency scores. In the table for N = 16, CEXCH’s design

excelled in all categories except for two, indicating its high quality as a design.



28

3.3.2

Three-factor A-Optimal Designs with N = (14, 15 and 16).

From Table 3.7, starting withN = 14, the CEXCH-generated design is identical to the EXACT

design. However, when N = 15, the CEXCH design performs better, achieving higher efficiency

scores in all categories. It’s interesting to see how effectively the CEXCH design outperformed the

EXACT design, given that both were intended to excel under the A-criterion. In the last case,

when N = 16, the CEXCH design once again performs well, securing higher efficiency scores than

the EXACT design. While N/A values are present, it’s worth noting that these designs were not

specifically optimized for scenarios with two missing points.

3.3.3

Three-factor I-Optimal Designs with N = (14, 15 and 16).

Referring to Table 3.8, at N = 14, the design generated by CEXCH outperforms the EXACT

design in all relative efficiency measures for all criteria. In this scenario, it’s helpful to examine

the 3D plots to observe the distinct orientation of points. The CEXCH design displays greater

symmetry, with the exception of two points on the top (see Figure 3.6). In the following case at N

= 15, the CEXCH design once again surpasses the EXACT design in all efficiency scores. In the

plot, the EXACT design achieved optimality by having two points share a location, the CEXCH

design assigns a point to the center of each of the six faces of the cube. In the last table, when N

= 16, the CEXCH design achieves higher efficiencies than the EXACT design. Unlike the CEXCH

design, which has 16 unique positions for all its points, the EXACT design has two points sharing

a location on the cube.

3.4

Conclusion

Table 3.2: Chapter Summary for 3 Factor N = 14, 15 and 16 scores.
Experiment Design Robust - D Robust - A Robust - I

3-Factor N = 11 Better Equal Better
3-Factor N = 12 Better Better Better
3-Factor N = 13 Better Better Better
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Having gone through various scenarios of N for the second order model with K = 3, it can

be concluded that the CEXCH algorithm consistently produces designs that are equal to or better

than those generated by the other algorithms. Table 3.2 shows that in eight of the nine scenarios,

using a robust optimal criterion proved helpful in finding a more optimal design than simply using

an EXACT design. This discovery provides a solid foundation for further research aimed at finding

the algorithm’s specific strengths and limitations on a case-by-case basis.

With the reliability of CEXCH as a design generator established and verified, the next chapter

will focus on creating new first order designs using models with varying factors, K, and observations

N . The focus will continue to be with the D and A criterion but in higher dimensions. The K factor

will include factors 2 and 5 with N being dependent on the number of factors.
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Appendix

Table 3.3: Properties of 3-factor D-optimal designs for N = (11, 12 and 13).
11-point D-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

D-efficiency 44.769 41.889 42.375 93.567 94.653 101.160
Min D-efficiency 0 34.823 35.144 N/A N/A 100.922

Leave-1-out D-efficiency 29.091 36.016 36.418 123.805 125.186 101.116
A-efficiency 21.39 22.592 21.598 105.619 100.972 95.600

Min A-efficiency 0 5.6 5.079 N/A N/A 90.696
Leave-1-out A-efficiency 13.244 13.404 12.938 101.208 97.690 96.523

I-efficiency 11.73 12.724 11.794 108.474 100.546 92.691
Min I-efficiency 0 3.38 2.78 N/A N/A 82.249

Leave-1-out I-efficiency 7.164 7.645 7.151 106.714 99.819 93.538

12-point D-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

D-efficiency 44.986 44.921 44.388 99.856 98.671 98.813
Min D-efficiency 38.956 38.974 38.974 100.046 100.046 100.000

Leave-1-out D-efficiency 40.639 40.593 40.187 99.887 98.888 99.000
Leave-2-out D-efficiency 29.909 30.441 30.252 101.779 101.147 99.379

A-efficiency 22.364 22.273 21.892 99.593 97.889 98.289
Min A-efficiency 7.642 7.731 7.693 101.165 100.667 99.508

Leave-1-out A-efficiency 16.688 16.637 16.54 99.694 99.113 99.417
Leave-2-out A-efficiency 8.155 8.165 8.237 100.123 101.006 100.882

I-efficiency 11.978 11.901 11.98 99.357 100.017 100.664
Min I-efficiency 3.446 3.506 3.47 101.741 100.696 98.973

Leave-1-out I-efficiency 8.99 8.927 9.102 99.299 101.246 101.960
Leave-2-out I-efficiency 4.449 4.449 4.591 100.000 103.192 103.192

13-point D-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

D-efficiency 46.391 45.443 45.443 97.957 97.957 100.000
Min D-efficiency 38.326 40.259 40.259 105.044 105.044 100.000

Leave-1-out D-efficiency 43.12 42.223 42.223 97.920 93.282 100.000
Leave-2-out D-efficiency 38.555 37.583 37.583 97.479 97.479 100.000

A-efficiency 26.948 24.149 24.149 89.613 89.613 100.000
Min A-efficiency 14.335 12.425 12.425 86.676 86.676 100.000

Leave-1-out A-efficiency 21.986 19.788 19.788 90.003 90.003 100.000
Leave-2-out A-efficiency 15.204 13.676 13.676 89.950 89.950 100.000

I-efficiency 13.751 12.511 12.511 90.982 90.982 100.000
Min I-efficiency 8.327 5.868 5.868 70.265 70.470 100.000

Leave-1-out I-efficiency 11.409 10.356 10.356 90.770 90.770 100.000
Leave-2-out I-efficiency 8.004 7.244 7.244 90.505 90.505 100.000
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Figure 3.1: Exact and Robust I - Optimal Designs for K = 11, 12, 13
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Table 3.4: Properties of 3-factor A-optimal designs for N = (11, 12 and 13).
11-point A-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

A-efficiency 28.891 17.477 18.364 60.493 63.563 105.075
Min A-efficiency 0.014 8.488 9.021 60628.571 64435.714 106.279

Leave-1-out A-efficiency 8.905 9.413 10.009 105.705 112.398 106.332
D-efficiency 40.887 28.963 29.392 70.837 71.886 101.481

Min D-efficiency 16.02 22.511 23.453 140.518 146.398 104.185
Leave-1-out D-efficiency 28.041 24.643 25.16 87.882 89.726 102.098

I-efficiency 16.44 11.132 11.335 67.713 68.948 101.824
Min I-efficiency 0.008 4.33 4.645 54125.000 58062.500 107.275

Leave-1-out I-efficiency 5.332 6.067 6.334 113.785 118.792 104.401

12-point A-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

A-efficiency 28.909 23.703 34.939 81.992 120.859 147.403
Min A-efficiency 4.737 14.962 15.498 315.854 327.169 103.582

Leave-1-out A-efficiency 16.971 17.118 17.432 100.866 102.716 101.834
Leave-2-out A-efficiency 6.378 8.082 8.356 126.717 131.013 103.390

D-efficiency 42.177 40.504 38.857 96.033 92.128 95.934
Min D-efficiency 30.313 33.023 31.966 108.940 105.453 96.799

Leave-1-out D-efficiency 36.464 36.412 35.088 99.857 96.226 96.364
Leave-2-out D-efficiency 27.108 29.527 28.06 108.924 103.512 95.032

I-efficiency 16.383 13.382 14.067 81.682 85.863 105.119
Min I-efficiency 2.653 7.5 8.173 282.699 308.066 108.973

Leave-1-out I-efficiency 9.83 9.861 10.443 100.315 106.236 105.902
Leave-2-out I-efficiency 3.792 4.761 5.107 125.554 134.678 107.267

13-point A-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

A-efficiency 29.669 25.099 25.994 84.597 87.613 103.566
Min A-efficiency 0.124 18.794 19.661 15156.452 15855.645 104.613

Leave-1-out A-efficiency 19.684 20.283 21.119 103.043 107.290 104.122
Leave-2-out A-efficiency 10.312 14.038 14.465 136.133 140.273 103.042

D-efficiency 40.272 39.079 40.471 97.038 100.494 103.562
Min D-efficiency 19.314 33.747 35.058 174.728 181.516 103.885

Leave-1-out D-efficiency 34.726 36.225 37.565 104.317 108.175 103.699
Leave-2-out D-efficiency 27.086 32.358 33.354 119.464 123.141 103.078

I-efficiency 17.083 14.683 14.638 85.951 85.688 99.694
Min I-efficiency 0.068 10.01 10.033 14720.588 14754.412 100.230

Leave-1-out I-efficiency 11.598 11.987 12.044 103.354 103.845 100.476
Leave-2-out I-efficiency 6.171 8.381 8.34 135.813 135.148 99.511
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Figure 3.2: Exact and Robust I - Optimal Designs for K = 11, 12, 13
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Table 3.5: Properties of 3-factor I-optimal designs for N = (11, 12 and 13).
11-point I-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

I-efficiency 16.528 11.132 11.335 67.352 68.581 101.824
Min I-efficiency 0.066 4.33 4.645 6560.606 7037.879 107.275

Leave-1-out I-efficiency 5.286 6.067 6.334 114.775 119.826 104.401
D-efficiency 40.969 28.963 29.392 70.695 71.742 101.481

Min D-efficiency 19.951 22.511 23.453 112.831 117.553 104.185
Leave-1-out D-efficiency 29.47 24.643 25.16 83.621 85.375 102.098

A-efficiency 26.339 17.477 18.364 66.354 69.722 105.075
Min A-efficiency 0.119 8.488 9.021 7132.773 7580.672 106.279

Leave-1-out A-efficiency 9.661 9.413 10.009 97.433 103.602 106.332

12-point I-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

I-efficiency 17.018 13.382 14.067 78.634 82.660 105.119
Min I-efficiency 0.045 7.5 8.173 16666.667 18162.222 108.973

Leave-1-out I-efficiency 7.74 9.861 10.443 127.403 134.922 105.902
Leave-2-out I-efficiency 1.727 4.761 5.107 275.680 295.715 107.267

D-efficiency 39.435 40.504 38.857 102.711 98.534 95.934
Min D-efficiency 18.571 33.023 31.966 177.820 172.129 96.799

Leave-1-out D-efficiency 30.386 36.412 35.088 119.832 115.474 96.364
Leave-2-out D-efficiency 9.413 29.527 28.06 313.683 298.098 95.032

A-efficiency 28.623 23.703 34.939 82.811 122.066 147.403
Min A-efficiency 0.078 14.962 15.498 19182.051 19869.231 103.582

Leave-1-out A-efficiency 12.659 17.118 17.432 135.224 137.704 101.834
Leave-2-out A-efficiency 2.842 8.082 8.356 284.377 294.018 103.390

13-point I-optimal

Criteria Evaluated EXACT PEXCH CEXCH R.E.(P, E) R.E.(C, E) R.E.(C, P)

I-efficiency 17.083 14.683 14.793 85.951 86.595 100.749
Min I-efficiency 0.068 10.01 11.644 14720.588 17123.529 116.324

Leave-1-out I-efficiency 11.598 11.987 12.041 103.354 103.820 100.450
Leave-2-out I-efficiency 6.171 8.381 8.397 135.813 136.072 100.191

D-efficiency 40.272 39.079 36.987 97.038 91.843 94.647
Min D-efficiency 19.314 33.747 31.789 174.728 164.590 94.198

Leave-1-out D-efficiency 34.726 36.225 34.331 104.317 98.863 94.772
Leave-2-out D-efficiency 27.086 32.358 33.354 119.464 123.141 103.078

A-efficiency 29.669 25.099 24.59 84.597 82.881 97.972
Min A-efficiency 0.124 18.794 17.69 15156.452 14266.129 94.126

Leave-1-out A-efficiency 19.684 20.283 19.758 103.043 100.376 97.412
Leave-2-out A-efficiency 10.312 14.038 13.641 136.133 132.283 97.172
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Figure 3.3: Exact and Robust I - Optimal Designs for K = 11, 12, 13
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Table 3.6: Properties of 3-factor D-optimal designs for N = (14, 15 and 16).
14-point D-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

D-efficiency 46.326 46.304 99.953
Min D-efficiency 41.056 42.453 103.403

Leave-1-out D-efficiency 43.729 43.759 100.069
Leave-2-out D-efficiency 40.384 37.856 93.740

A-efficiency 26.349 31.056 117.864
Min A-efficiency 18.267 26.076 142.749

Leave-1-out A-efficiency 22.655 27.087 119.563
Leave-2-out A-efficiency 17.838 N/A N/A

I-efficiency 13.401 17.143 127.923
Min I-efficiency 8.72 14.348 164.541

Leave-1-out I-efficiency 11.645 14.977 128.613
Leave-2-out I-efficiency 9.275 N/A N/A

15-point D-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

D-efficiency 44.413 45.834 103.200
Min D-efficiency 39.27 41.922 106.753

Leave-1-out D-efficiency 42.436 43.707 102.995
Leave-2-out D-efficiency 39.694 39.044 98.362

A-efficiency 20.68 29.648 143.366
Min A-efficiency 13.008 24.663 189.599

Leave-1-out A-efficiency 18.453 26.444 143.305
Leave-2-out A-efficiency 15.753 22.004 139.681

I-efficiency 10.177 16.354 160.696
Min I-efficiency 5.417 13.604 251.135

Leave-1-out I-efficiency 9.185 14.096 153.468
Leave-2-out I-efficiency 7.952 12.096 152.113

16-point D-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

D-efficiency 43.859 44.884 102.337
Min D-efficiency 38.944 42.288 108.587

Leave-1-out D-efficiency 42.167 43.299 102.685
Leave-2-out D-efficiency 40.149 41.334 102.952

A-efficiency 20.157 23.499 116.580
Min A-efficiency 16.892 15.665 92.736

Leave-1-out A-efficiency 18.379 21.479 116.867
Leave-2-out A-efficiency 16.242 18.949 116.667

I-efficiency 9.254 11.645 125.837
Min I-efficiency 7.245 6.995 96.549

Leave-1-out I-efficiency 8.481 10.735 126.577
Leave-2-out I-efficiency 7.544 9.566 126.803
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Figure 3.4: Exact and Robust A - Optimal Designs for N = 14, 15 and 16
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Table 3.7: Properties of 3-factor A-optimal designs for N = (14, 15 and 16).
14-point A-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

A-efficiency 31.056 31.056 100.000
Min A-efficiency 26.076 26.076 100.000

Leave-1-out A-efficiency 27.087 27.087 100.000
Leave-2-out A-efficiency N/A N/A N/A

D-efficiency 46.304 46.304 100.000
Min D-efficiency 42.453 42.453 100.000

Leave-1-out D-efficiency 43.759 43.759 100.000
Leave-2-out D-efficiency 37.856 37.856 100.000

I-efficiency 17.143 17.143 100.000
Min I-efficiency 14.348 14.348 100.000

Leave-1-out I-efficiency 14.977 14.977 100.000
Leave-2-out I-efficiency N/A N/A N/A

15-point A-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

A-efficiency 29.572 31.291 105.813
Min A-efficiency 24.979 27.263 109.144

Leave-1-out A-efficiency 25.934 27.827 107.299
Leave-2-out A-efficiency 20.915 23.137 110.624

D-efficiency 43.826 44.716 102.031
Min D-efficiency 39.445 40.844 103.547

Leave-1-out D-efficiency 41.554 42.542 102.378
Leave-2-out D-efficiency 38.537 39.699 103.015

I-efficiency 17.095 18.136 106.089
Min I-efficiency 14.132 15.97 113.006

Leave-1-out I-efficiency 14.935 16.097 107.780
Leave-2-out I-efficiency 11.973 13.316 111.217

16-point A-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

A-efficiency 29.412 31.055 105.586
Min A-efficiency 23.358 27.122 116.114

Leave-1-out A-efficiency 26.106 28.126 107.738
Leave-2-out A-efficiency N/A 24.425 N/A

D-efficiency 43.528 44.262 101.686
Min D-efficiency 39.273 40.219 102.409

Leave-1-out D-efficiency 41.542 42.429 102.135
Leave-2-out D-efficiency 37.783 40.179 106.341

I-efficiency 16.129 17.766 110.149
Min I-efficiency 7.245 15.431 212.988

Leave-1-out I-efficiency 8.481 16.087 189.683
Leave-2-out I-efficiency 8.807 13.966 158.578
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Figure 3.5: Exact and Robust A - Optimal Designs for N = 14, 15 and 16



40

Table 3.8: Properties of 3-factor I-optimal designs for N = (14, 15 and 16).
14-point I-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

I-efficiency 17.021 16.662 97.891
Min I-efficiency 0.245 14.083 5748.163

Leave-1-out I-efficiency 12.46 14.442 115.907
Leave-2-out I-efficiency 8.133 11.269 138.559

D-efficiency 38.618 43.044 111.461
Min D-efficiency 21.612 38.31 177.263

Leave-1-out D-efficiency 34.755 40.604 116.829
Leave-2-out D-efficiency 30.276 37.05 122.374

A-efficiency 29.091 28.76 98.862
Min A-efficiency 0.432 23.619 5467.361

Leave-1-out A-efficiency 21.062 24.906 118.251
Leave-2-out A-efficiency 13.597 19.574 143.958

15-point I-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

I-efficiency 17.095 18.136 106.089
Min I-efficiency 14.132 15.97 113.006

Leave-1-out I-efficiency 14.935 16.097 107.780
Leave-2-out I-efficiency 11.973 13.316 111.217

D-efficiency 43.826 44.716 102.031
Min D-efficiency 39.445 40.844 103.547

Leave-1-out D-efficiency 41.554 42.542 102.378
Leave-2-out D-efficiency 38.537 39.699 103.015

A-efficiency 29.572 31.291 105.813
Min A-efficiency 24.979 27.263 109.144

Leave-1-out A-efficiency 25.934 27.827 107.299
Leave-2-out A-efficiency 20.915 23.137 110.624

16-point I-optimal

Criteria Evaluated EXACT CEXCH R.E.(C, E)

I-efficiency 17.388 18.333 105.435
Min I-efficiency 14.037 15.862 113.001

Leave-1-out I-efficiency 15.365 16.432 106.944
Leave-2-out I-efficiency 12.723 13.959 109.715

D-efficiency 42.193 42.987 101.882
Min D-efficiency 37.807 39.12 103.473

Leave-1-out D-efficiency 40.209 41.09 102.191
Leave-2-out D-efficiency 37.671 38.698 102.726

A-efficiency 29.07 30.65 105.435
Min A-efficiency 24.594 26.961 109.624

Leave-1-out A-efficiency 25.838 27.587 106.769
Leave-2-out A-efficiency 21.536 23.573 109.459
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Figure 3.6: Exact and Robust I - Optimal Designs for K = 14, 15 and 16
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CHAPTER 4

GENERATING ROBUST DESIGNS IN SCREENING EXPERIMENTS

In research, it is common to attempt to identify factors that will be significant in an experiment

before utilizing all of the company’s time and resources. One approach is to conduct a screening

experiment. “The screening analysis aims to identify the few factors that drive most of the process

variation, often according to a linear model comprising main effects and interaction effects” [12].

Once a screening experiment is complete, researchers can then focus on preparing an experiment

that will focus in on the effects of factors that were previously proven to be significant.

In the following sections, designs will be created using both the D and A traditional alphabet

criteria and robust criterion as done in the previous chapters. Screening designs are not typically

created with the intention of making predictions, but rather getting the best parameter estimates.

For that reason, the following sections will focus solely on D and A designs and not I. The results

will determine whether linear models consisting of just main effects or main effects and interaction

effects are more efficient when created using a robust criterion or if the traditional alphabet criterion

will suffice. All designs will be computed using the coordinate exchange algorithm subject to the

criterion being used.

In the section about two factors, first designs will be presented from just the main effects

models. Directly after will be two factor models with main effects and interaction. As mentioned,

oftentimes screening is done to help narrow down the number of factors presented, so generating

models for a two-factor model isn’t the most practical. The reason it is being done here is to first

demonstrate the effect of robust designs on the simplest case possible and then to provide comparison

to higher factor models. To conclude the chapter, designs will be presented for five factor models.

In that section, both designs for main effects and main effects with interaction will be introduced

and compared.
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4.1

Two-factor Designs: Main Effects Model

In the following section, a main effects model will be used to generate robust designs. The

formula for such a model can be explained by the following:

y = β0 +

2∑
i=1

βixi + ϵ (4.1)

The following two factor designs will experiment with N starting at 4 and going to 11. Four

is the minimum number of observations required to create a robust design given that in the model

has three parameters.

4.1.1

Two-factor Design with N = 4

Figure 4.1: 4-point design for a main effects model with two factors.

Table 4.1: Properties of the 4-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 100 100 100 100 100 100
Min D-efficiency 83.995 83.995 83.995 83.995 100 100

Leave-1-out D-efficiency 83.995 83.995 83.995 83.995 100 100
A-efficiency 100 23.534 100 88.48 100 100

Min A-efficiency 66.667 66.667 66.667 66.667 100 100
Leave-1-out A-efficiency 66.667 66.667 66.667 66.667 100 100



44

Results for 4-point 2-factor designs are shown in Figure 4.1 and Table 4.1 and were generated

to satisfy a first order model with only main effects. The plots and robust scores indicate that all

four criteria generated the same design. Each design has its points in the corners to try and capture

as much information possible about the response space.

4.1.2

Two-factor Design with N = 5

Figure 4.2: 5-point design for a main effects model with two factors.

Table 4.2: Properties of the 5-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 96.406 96.406 96.406 86.177 100 89.39
Min D-efficiency 79.37 79.37 79.37 72.112 100 90.855

Leave-1-out D-efficiency 87.622 87.622 87.622 77.69 100 88.665
Leave-2-out D-efficiency 58.796 58.796 58.796 54.763 100 88.665

A-efficiency 93.333 93.333 93.333 88.48 100 94.800
Min A-efficiency 60 60 60 66.667 100 111.112

Leave-1-out A-efficiency 76 76 76 68 100 89.474
Leave-2-out A-efficiency 46.667 46.667 46.667 40 100 85.714

Results for 5-point 2-factor designs are shown in Figure 4.2 and Table 4.2 and were generated

to satisfy a first order model with only main effects. From the plots, we see that the D, Robust D,

and A Designs are all the same. The D related designs both found designs with robust scores of

0.0312. The A related designs both have a robust score of 1.25, but found different designs. And

though they have the same robust score when compared to the Min A-efficiency, we learn that the

Robust A Design achieves a higher efficiency.
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4.1.3

Two-factor Design with N = 6

Figure 4.3: 6-point design for a main effects model with two factors.

Table 4.3: Properties of the 6-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 96.15 96.15 96.15 85..664 100 89.094
Min D-efficiency 80 80 80 78.566 100 98.208

Leave-1-out D-efficiency 90.937 90.937 90.937 81.536 100 89.662
Leave-2-out D-efficiency 79.58 79.58 79.58 72.642 100 91.282

A-efficiency 92.308 92.308 92.308 81.536 100 88.782
Min A-efficiency 60 60 60 81.953 100 117.752

Leave-1-out A-efficiency 82.222 82.222 82.222 73.741 100 89.685
Leave-2-out A-efficiency 66.667 66.667 66.667 59.891 100 89.835

Results for 6-point 2-factor designs are shown in Figure 4.3 and Table 4.3 and were generated

to satisfy a first order model with only main effects. From the plots, we see that the D, Robust D, and

A criteria generated the same design. The design they generated favors having all the observations

in the corners of the space. The Robust A Design did not favor a symmetric corner focused design,

and instead has its points in a few corners and along the center of two sides. From the table, we see

that the Robust A Design outperforms the A Design from the R.E. (R.A., A) score of 117.752.
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4.1.4

Two-factor Design with N = 7

Figure 4.4: 7-point design for a main effects model with two factors.

Table 4.4: Properties of the 7-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 97.713 94.341 97.713 93.316 96.549 95.5
Min D-efficiency 83.995 87.358 83.995 86.739 104.004 103.267

Leave-1-out D-efficiency 94.414 91.246 94.414 90.271 96.645 95.612
Leave-2-out D-efficiency 89.375 86.43 89.375 85.291 96.705 95.654

A-efficiency 95.238 93.506 95.238 92.369 98.181 96.988
Min A-efficiency 66.667 80 66.667 80 119.999 119.999

Leave-1-out A-efficiency 88.645 87.108 88.645 86.08 98.266 97.106
Leave-2-out A-efficiency 79.048 77.751 79.048 76.834 98.359 97.199

Results for 7-point 2-factor designs are shown in Figure 4.4 and Table 4.4 and were generated

to satisfy a first order model with only main effects. In these scenario, the D and A criterion

generated the same design, having all of its points in the corners of the space. The Robust D and

Robust A both found designs that have some points in the corners but also a point in the center of

a side. The Robust D got a robust score of 0.0069 and the Robust A got a 0.625, both of which are

smaller and thus more robust-optimal than the traditional D and A designs. From the table in the

furthest two columns, we find 104.004 for R.E. (R.D., D) and 119.999 for R.E. (R.A., A), further

validating the conclusion that the a designs is more efficient in producing robust design subject to

one data loss.
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4.1.5

Two-factor Design with N = 8

Figure 4.5: 8-point design for a main effects model with two factors.

Table 4.5: Properties of the 8-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 100 100 100 100 100 100
Min D-efficiency 97.713 97.713 97.713 97.713 100 100

Leave-1-out D-efficiency 97.713 97.713 97.713 97.713 100 100
Leave-2-out D-efficiency 94.414 94.414 94.414 94.414 100 100

A-efficiency 100 100 100 100 100 100
Min A-efficiency 95.238 95.238 95.238 95.238 100 100

Leave-1-out A-efficiency 95.238 95.238 95.238 95.238 100 100
Leave-2-out A-efficiency 88.645 88.645 88.645 88.645 100 100

Results for 8-point 2-factor designs are shown in Figure 4.5 and Table 4.5 and were generated

to satisfy a first order model with only main effects. From the plots and the table, we find that all

four criteria found the same design. In this case, it must be favorable to be symmetric and have all

observations in the corners.
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4.1.6

Two-factor Design with N = 9

Figure 4.6: 9-point design for a main effects model with two factors.

Table 4.6: Properties of the 9-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 98.844 98.844 98.844 98.844 100 100
Min D-efficiency 95.647 95.647 95.647 95.647 100 100

Leave-1-out D-efficiency 97.098 97.098 97.098 97.098 100 100
Leave-2-out D-efficiency 94.72 94.72 94.72 94.72 100 100

A-efficiency 97.778 97.778 97.778 97.778 100 100
Min A-efficiency 91.304 91.304 91.304 91.304 100 100

Leave-1-out A-efficiency 94.203 94.203 94.203 94.203 100 100
Leave-2-out A-efficiency 89.484 89.484 89.484 89.484 100 100

Results for 9-point 2-factor designs are shown in Figure 4.6 and Table 4.6 and were generated

to satisfy a first order model with only main effects. From the plots and the table, we find that all

four criteria found the same design. In this case, it is again favorable to be symmetric and have all

observations in the corners.
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4.1.7

Two-factor Design with N = 10

Figure 4.7: 10-point design for a main effects model with two factors.

Table 4.7: Properties of the 10-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 98.648 98.648 98.648 98.648 100 100
Min D-efficiency 94.948 94.948 94.948 94.948 100 100

Leave-1-out D-efficiency 97.285 97.285 97.285 97.285 100 100
Leave-2-out D-efficiency 95.509 95.509 95.509 95.509 100 100

A-efficiency 97.297 97.297 97.297 97.297 100 100
Min A-efficiency 89.655 89.655 89.655 89.655 100 100

Leave-1-out A-efficiency 94.529 94.529 94.529 94.529 100 100
Leave-2-out A-efficiency 90.999 90.999 90.999 90.999 100 100

Results for 10-point 2-factor designs are shown in Figure 4.7 and Table 4.7 and were generated

to satisfy a first order model with only main effects. From the plots and the table, we find that all

four criteria have the same design. Once again, we see that it is must be favorable to be symmetric

and have all observations in the corners.
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4.1.8

Two-factor Design with N = 11

Figure 4.8: 11-point design for a main effects model with two factors.

Table 4.8: Properties of the 11-point 2-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 99.116 99.116 99.116 96.605 100 97.467
Min D-efficiency 95.244 95.244 95.244 94.354 100 99.066

Leave-1-out D-efficiency 98.029 98.029 98.029 95.549 100 97.47
Leave-2-out D-efficiency 96.661 96.661 96.661 94.219 100 97.474

A-efficiency 98.182 98.182 98.182 96.257 100 98.039
Min A-efficiency 90 90 90 91.971 100 102.19

Leave-1-out A-efficiency 95.971 95.971 95.971 94.088 100 98.038
Leave-2-out A-efficiency 93.225 93.225 93.225 91.395 100 98.037

Results for 11-point 2-factor designs are shown in Figure 4.8 and Table 4.8 and were generated

to satisfy a first order model with only main effects. The plots show that D, Robust D, and A Designs

are the same; a design that has all its observations in the corners. The Robust A Design is different,

having moved a point from a corner to the center of one side. This change allows the Robust A

Design to find a design with a Min A-efficiency of 91.971, beating the A Design’s efficiency of 90.

4.2

Two-factor Designs: Main Effects with Interaction Model

In this section, two-factor designs were generated from a model that includes main effects and

interaction. This time there will be four parameters, which changes the starting N point to 5. In
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this section, designs for N = 5 up to 11 will be presented and analyzed. The model for the following

designs is written as:

y = β0 +

2∑
i=1

βixi +

1∑
i=1

2∑
j=i+1

βijxixj + ϵ (4.2)

4.2.1

Two-factor Design with N = 5

Figure 4.9: 5-point design for a 2-factor main effects with interaction model.

Table 4.9: Properties of the 5-point 2-factor optimal designs: Main Effects and Interaction
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 95.137 84.59 95.137 84.59 88.914 88.914
Min D-efficiency 0 50 0 50 N/A N/A

Leave-1-out D-efficiency 40.003 60 40.003 60 149.989 149.989
A-efficiency 91.429 84.211 91.429 84.211 92.105 92.105

Min A-efficiency 0 18.182 0 18.182 N/A N/A
Leave-1-out A-efficiency 40 24.545 40 24.545 86.363 86.363

Results for 5-point 2-factor designs are shown in Figure 4.9 and Table 4.9 and were generated

to satisfy a first order model for main effects and interaction. From the plots, we see that the D and

A designs are the same as well as the Robust D and Robust A Designs. The robust designs both

moved one of their points from a corner and placed it in the center. From the table, we see that the

D and A designs both reported 0 for the Min-efficiency while Robust D and Robust A got a 50 for

Min D-efficiency and a 18.182 for Min A-efficiency.
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4.2.2

Two-factor Design with N = 6

Figure 4.10: 6-point design for a 2-factor main effects with interaction model.

Table 4.10: Properties of the 6-point 2-factor optimal designs: Main Effects and Interaction
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 94.281 81.65 94.281 81.65 86.603 86.603
Min D-efficiency 0 62.603 0 62.603 N/A N/A

Leave-1-out D-efficiency 63.424 71.247 63.424 71.247 112.334 112.334
Leave-2-out D-efficiency 26.671 38.856 26.67 38.856 145.686 149.692

A-efficiency 88.889 80 88.889 80 90 90
Min A-efficiency 0 41.739 0 41.739 N/A N/A

Leave-1-out A-efficiency 60.952 56.917 60.952 56.917 93.38 93.38
Leave-2-out A-efficiency 26.667 28.889 26.667 28.889 108.332 108.332

Results for 6-point 2-factor designs are shown in Figure 4.10 and Table 4.10 and were generated

to satisfy a first order model for main effects and interaction. In this scenario, the D and A designs

both reported the same design that has all its points in the corners. The Robust D and Robust A

designs are also same but instead of having all the observations in the corners, there are points in

the center of opposing sides. From the table, we find that the non-robust designs are not robust to

data loss because of their reported 0 in the Min-efficiency sections.
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4.2.3

Two-factor Design with N = 7

Figure 4.11: 7-point design for a 2-factor main effects with interaction model.

Table 4.11: Properties of the 7-point 2-factor optimal designs: Main Effects and Interaction
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 96.102 89.433 96.102 77.273 93.06 80.407
Min D-efficiency 0 66.667 0 63.175 N/A N/A

Leave-1-out D-efficiency 80.812 82.652 80.812 71.189 102.277 88.092
Leave-2-out D-efficiency 54.364 60.612 54.364 58.153 111.493 106.97

A-efficiency 91.429 85.714 91.429 75.421 93.749 82.491
Min A-efficiency 0 38.095 0 48.184 N/A N/A

Leave-1-out A-efficiency 76.19 71.703 76.19 61.877 94.111 81.214
Leave-2-out A-efficiency 52.245 50.292 52.245 44.443 96.262 85.067

Results for 7-point 2-factor designs are shown in Figure 4.11 and Table 4.11 and were generated

to satisfy a first order model for main effects and interaction. From the plots, we learn that the D

and A criterion both generated the same design. The Robust D design differs by having a point

along one of the sides. The Robust A design has all seven of its points in the corners and in the

middle of the sides, except for two points. From the efficiency table, I see that the D and A designs

both have 0 for the Min-efficiency sections, which tells us that they are not robust to data loss. The

Robust D design got a Min D-efficiency of 66.667 and the Robust A design got a Min A-efficiency

of 48.184.
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4.2.4

Two-factor Design with N = 8

Figure 4.12: 8-point design for a 2-factor main effects with interaction model.

Table 4.12: Properties of the 8-point 2-factor optimal designs: Main Effects and Interaction
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 100 100 100 100 100 100
Min D-efficiency 96.102 96.102 96.102 96.102 100 100

Leave-1-out D-efficiency 96.102 96.102 96.102 96.102 100 100
Leave-2-out D-efficiency 80.812 80.812 80.812 80.812 100 100

A-efficiency 100 100 100 100 100 100
Min A-efficiency 91.429 91.429 91.429 91.429 100 100

Leave-1-out A-efficiency 91.429 91.429 91.429 91.429 100 100
Leave-2-out A-efficiency 76.19 76.19 76.19 76.19 100 100

Results for 8-point 2-factor designs are shown in Figure 4.12 and Table 4.12 and were generated

to satisfy a first order model for main effects and interaction. From the plots and the table, we find

that all four criteria have the same design. In this case, it must be favorable to be symmetric and

have all observations in the corners.
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4.2.5

Two-factor Design with N = 9

Figure 4.13: 9-point design for a 2-factor main effects with interaction model.

Table 4.13: Properties of the 9-point 2-factor optimal designs: Main Effects and Interaction
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 98.372 98.372 98.372 98.372 100 100
Min D-efficiency 93.06 93.06 93.06 93.06 100 100

Leave-1-out D-efficiency 95.374 95.374 95.374 95.374 100 100
Leave-2-out D-efficiency 85.871 85.871 85.871 85.871 100 100

A-efficiency 96.97 96.97 96.97 96.97 100 100
Min A-efficiency 85.714 85.714 85.714 85.714 100 100

Leave-1-out A-efficiency 90.476 90.476 90.476 90.476 100 100
Leave-2-out A-efficiency 80.224 80.224 80.224 80.224 100 100

Results for 9-point 2-factor designs are shown in Figure 4.13 and Table 4.13 and were generated

to satisfy a first order model for main effects and interaction. From the plots and the table, we find

that all four criteria have the same design. In this case, whether generated by a robust criterion or

a traditional one, the same design is found.
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4.2.6

Two-factor Design with N = 10

Figure 4.14: 10-point design for a 2-factor main effects with interaction model.

Table 4.14: Properties of the 10-point 2-factor optimal designs: Main Effects and Interaction
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 97.98 97.98 97.98 97.98 100 100
Min D-efficiency 91.545 91.545 91.545 91.545 100 100

Leave-1-out D-efficiency 95.641 95.641 95.641 95.641 100 100
Leave-2-out D-efficiency 89.738 89.738 89.738 89.738 100 100

A-efficiency 96 96 96 96 100 100
Min A-efficiency 82.051 82.051 82.051 82.051 100 100

Leave-1-out A-efficiency 91.002 91.002 91.002 91.002 100 100
Leave-2-out A-efficiency 83.81 83.81 83.81 83.81 100 100

Results for 10-point 2-factor designs are shown in Figure 4.14 and Table 4.14 and were gen-

erated to satisfy a first order model for main effects and interaction. From the plots and the table,

we find that all four criteria have the same design. In this case, the best design is one that has all

its points in the corners of the design space.
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4.2.7

Two-factor Design with N = 11

Figure 4.15: 11-point design for a 2-factor main effects with interaction model.

Table 4.15: Properties of the 11-point 2-factor optimal designs: Main Effects and Interaction
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 98.575 98.575 98.575 94.183 100 95.545
Min D-efficiency 91.18 91.18 91.18 89.218 100 97.848

Leave-1-out D-efficiency 96.743 96.743 96.743 92.412 100 95.523
Leave-2-out D-efficiency 93.232 93.232 93.232 89.948 100 96.478

A-efficiency 96.97 96.97 96.97 92.843 100 95.744
Min A-efficiency 80 80 80 82.5 100 103.125

Leave-1-out A-efficiency 93.091 93.091 93.091 89.077 100 95.688
Leave-2-out A-efficiency 87.883 87.883 87.883 84.057 100 95.646

Results for 11-point 2-factor designs are shown in Figure 4.15 and Table 4.15 and were gener-

ated to satisfy a first order model for main effects and interaction. From the plots and the table, we

find that D, Robust D, and A criteria found the same design. The Robust A Design differs because

it has a point in the center of one of the sides. And from the table, we find that this change is

advantageous because it gives the Robust A Design a Min A-efficiency of 82.5 which is bigger than

the A Design which has an efficiency of 80.
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4.3

Five-factor Designs: Main Effects Model

In this section, five-factor designs are analyzed from a main effects model. In this model, there

are six parameters, so the starting N value is 7 and will go up to 11. The model for the following

designs is:

y = β0 +

5∑
i=1

βixi + ϵ (4.3)

For each design, a table of criterion scores and efficiencies will be presented and analyzed.

4.3.1

Five-factor Design with N = 7

Table 4.16: Criterion Scoring of the 7-point 5-factor optimal designs: Main Effects
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 0.0002 0.0002 1.1625 1.4081
Robust Criterion (D/A) 0.0002 0.0002 3 3.1831

Table 4.17: Properties of the 7-point 5-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 83.874 83.874 83.874 68.643 100 81.841
Min D-efficiency 66.667 66.667 66.667 53.977 100 80.965

Leave-1-out D-efficiency 69.142 69.142 69.142 57.394 100 83.009
A-efficiency 73.333 77.482 73.333 62.688 105.085 84.993

Min A-efficiency 33.333 34.409 33.333 32.521 103.228 97.564
Leave-1-out A-efficiency 39.456 41.384 39.456 35.554 104.886 90.111

Results for 7-point 5-factor designs are reported via robust scores in Table 4.16 and efficiency

scores in Table 4.17. These designs were generated to satisfy a first order model for only main

effects. The table shows that the D criterion and Robust D generated the same design. The Robust

A design was not able to generate a design better than the A criterion as we see in the robust scores

and Min A-efficiency. It is possible that if more designs were generated, then the robust criterion

would eventually find the same design as the traditional alphabet criterion.
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4.3.2

Five-factor Design with N = 8

Table 4.18: Criterion Scoring of the 8-point 5-factor optimal designs: Main Effects
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 3.815e-06 3.815e-06 0.75 0.75
Robust Criterion (D/A) 1.526e-05 1.526e-05 1.125 1.125

Table 4.19: Properties of the 8-point 5-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 100 100 100 100 100 100
Min D-efficiency 90.709 90.709 90.709 90.709 100 100

Leave-1-out D-efficiency 90.709 90.709 90.709 90.709 100 100
Leave-2-out D-efficiency 47.997 47.997 47.997 47.997 100 100

A-efficiency 100 100 100 100 100 100
Min A-efficiency 76.19 76.19 76.19 76.19 100 100

Leave-1-out A-efficiency 76.19 76.19 76.19 76.19 100 100
Leave-2-out A-efficiency 38.095 38.095 38.095 38.095 100 100

Results for 8-point 5-factor designs are reported via robust scores in Table 4.18 and efficiency

scores in Table 4.19. These designs were generated to satisfy a first order model for only main effects.

We see from the robust scores, that the D and Robust D design both got a score of 1.562e-05; the A

and Robust A also both got the same score of 1.125. From the efficiency table we see that for both

relative efficiencies, the Min relative efficiency is 100, meaning that the robust criteria did not find

a better robust design.

4.3.3

Five-factor Design with N = 9

Table 4.20: Criterion Scoring of the 9-point 5-factor optimal designs: Main Effects
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 2.180e-06 2.466e-06 0.696 0.725
Robust Criterion (D/A) 8.719e-06 8.719e-06 1.071 1.035
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Table 4.21: Properties of the 9-point 5-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 97.578 95.594 97.578 92.917 97.967 95.223
Min D-efficiency 87.129 87.129 87.129 84.682 100 97.192

Leave-1-out D-efficiency 90.643 89.195 90.643 86.579 98.403 95.516
Leave-2-out D-efficiency 64.733 74.484 64.733 74.251 115.063 114.703

A-efficiency 95.726 93.453 95.726 91.916 97.626 96.02
Min A-efficiency 70 71.587 70 72.466 102.267 103.523

Leave-1-out A-efficiency 78.333 77.726 78.333 76.131 99.225 97.189
Leave-2-out A-efficiency 52.525 55.54 52.525 54.064 105.74 102.93

Results for 9-point 5-factor designs are reported via robust scores in Table 4.20 and efficiency

scores in Table 4.21. These designs were generated to satisfy a first order model for only main effects.

We see from the robust scores, that the D and Robust D design both got a score of 8.719e-06. The

A and Robust A Designs are different and, in this case, the Robust A Design is better because it

has a robust score of 1.035 which is smaller than the A Design with a score of 1.071. The efficiency

table also supports this conclusion because the R.E. (R.A., A) is 103.523, showing that the robust

design is more robust to data loss.

4.3.4

Five-factor Design with N = 10

Table 4.22: Criterion Scoring of the 10-point 5-factor optimal designs: Main Effects
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 1.272e-06 1.356e-06 0.656 0.656
Robust Criterion (D/A) 3.815e-06 3.391e-06 0.819 0.819

Table 4.23: Properties of the 10-point 5-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 96.075 95.047 95.047 95.047 98.93 100
Min D-efficiency 88.889 90.651 90.651 90.651 101.982 100

Leave-1-out D-efficiency 91.375 90.651 90.651 90.651 99.208 100
Leave-2-out D-efficiency 77.153 76.98 76.98 76.98 99.776 100

A-efficiency 92.903 91.525 91.525 91.525 98.517 100
Min A-efficiency 76.19 81.356 81.356 81.356 106.78 100

Leave-1-out A-efficiency 81.771 81.356 81.356 81.356 99.482 100
Leave-2-out A-efficiency 64.528 65.46 65.46 65.46 101.444 100

Results for 10-point 5-factor designs are reported via robust scores in Table 4.22 and efficiency

scores in Table 4.23. These designs were generated to satisfy a first order model for only main effects.
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The table shows that the D and Robust D designs have different robust score, 3.815e-06 and 3.391e-

06. The Robust A and Alphabet A have the same robust score. In this case, the Robust D generated

a different design that achieves a better Min D-efficiency score. This tells me that the Robust-D

design is more robust to one missing observation. The Robust A and Alphabet A designs achieved

all the same efficiency scores further stating that they have the same design.

4.3.5

Five-factor Design with N = 11

Table 4.24: Criterion Scoring of the 11-point 5-factor optimal designs: Main Effects
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 6.698e-07 6.698e-07 0.583 0.583
Robust Criterion (D/A) 1.507e-06 1.507e-06 0.708 0.708

Table 4.25: Properties of the 11-point 5-factor optimal designs: Main Effects
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 97.189 97.189 97.189 97.189 100 100
Min D-efficiency 93.393 93.393 93.393 93.393 100 100

Leave-1-out D-efficiency 93.729 93.729 93.729 93.729 100 100
Leave-2-out D-efficiency 87.885 87.885 87.885 87.885 100 100

A-efficiency 93.506 93.506 93.506 93.506 100 100
Min A-efficiency 84.706 84.706 84.706 84.706 100 100

Leave-1-out A-efficiency 85.668 85.668 85.668 85.668 100 100
Leave-2-out A-efficiency 75.046 75.046 75.046 75.046 100 100

Results for 11-point 5-factor designs are reported via robust scores in Table 4.24 and efficiency

scores in Table 4.25. These designs were generated to satisfy a five-factor model with only main

effects. From the robust scores, I see that each set of criteria found a design with the same score. The

D and Robust D have a score of 1.507e-06 and the A and Robust A reported 0.708. The efficiency

table shows that all the relative efficiencies are 100. This tells me that all four criteria generated

the same design.

4.4

Five-factor Designs: Main Effects with Interaction Model

In this section, five-factor designs from a model with main effects and interactions will pre-

sented. Since this model is including all combinations of factors, there will be a lot more parameters

compared to the two-factor designs. In this case, there are sixteen parameters, so the starting N
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will be seventeen, and in this section, designs for N = 17, 18, 19, and 20 will be analyzed. Similar to

the last section, because there are five factors, there isn’t a possible way to illustrate the design. For

that reason each section will have a table with the design criterion scores and the efficiency table.

y = β0 +

5∑
i=1

βixi +

4∑
i=1

5∑
j=i+1

βijxixj + ϵ (4.4)

4.4.1

Five-factor Design with N = 17

Table 4.26: Criterion Scoring of the 17-point 5-factor optimal designs: Main Effects and Interactions
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 2.711e-20 3.392e-20 1.352 3.3553
Robust Criterion (D/A) 3.469e-18 4.493e-18 6.939 7.928

Table 4.27: Properties of the 17-point 5-factor optimal designs: Main Effects and Interactions
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 98.285 96.915 80.914 38.835 95.723 47.995
Min D-efficiency 77.111 75.875 66.01 33.051 95.796 50.07

Leave-1-out D-efficiency 82.463 81.505 69.722 24.4 96.299 49.339
A-efficiency 97.154 95.751 69.636 28.05 94.572 40.281

Min A-efficiency 11.268 10.904 14.412 12.614 99.583 87.524
Leave-1-out A-efficiency 32.52 32.481 28.371 14.525 98.462 51.197

Results for 17-point 5-factor designs are reported via robust scores in Table 4.26 and efficiency

scores in Table 4.27. These designs were generated to satisfy a five-factor model with main effects

and interactions. The table shows that for both D and A, the traditional alphabet achieved better

scores. I hypothesize that if more runs were completed, the robust criterion could find the same

designs, but for the few thousand coordinate exchange runs completed, they did not. In this case,

the alphabet designs outperformed the robust ones in all efficiencies.

4.4.2

Five-factor Design with N = 18

Table 4.28: Criterion Scoring of the 18-point 5-factor optimal designs: Main Effects and Interactions
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 1.355e-20 1.355e-20 0.938 1.549
Robust Criterion (D/A) 8.674e-19 8.674e-19 4.844 2.412
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Table 4.29: Properties of the 18-point 5-factor optimal designs: Main Effects and Interactions
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 96.934 96.934 96.934 63.734 100 65.75
Min D-efficiency 79.143 79.143 79.143 58.215 100 73.557

Leave-1-out D-efficiency 86.287 86.287 86.287 58.788 100 68.131
Leave-2-out D-efficiency 58.01 58.01 57.976 50.549 100 87.19

A-efficiency 94.815 94.815 94.815 57.383 100 60.521
Min A-efficiency 19.431 19.431 19.431 39.017 100 200.798

Leave-1-out A-efficiency 50.838 50.838 50.838 40.404 100 79.476
Leave-2-out A-efficiency 18.974 18.974 18.974 19.33 100 101.876

Results for 18-point 5-factor designs are reported via robust scores in Table 4.28 and efficiency

scores in Table 4.29. These designs were generated to satisfy a five-factor model with main effects

and interactions. The table shows that the D designs and Robust D both found designs with the

same robust score. As for the A type designs, Robust A reported a better robust score. The D and

Robust D must have found the same design because they also share all the same efficiencies. The

reported R.E. (R.A., A) is 200.798, which means the Robust A Design is a better design in the face

of data loss than the traditional A Design.

4.4.3

Five-factor Design with N = 19

Table 4.30: Criterion Scoring of the 19-point 5-factor optimal designs: Main Effects and Interactions
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 6.776e-21 1.237e-20 0.906 1.283
Robust Criterion (D/A) 2.891e-19 1.992e-19 3.479 1.810

Table 4.31: Properties of the 19-point 5-factor optimal designs: Main Effects and Interactions
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 95.898 92.357 95.898 70.89 96.308 73.922
Min D-efficiency 80.059 81.945 80.059 65.409 102.356 81.701

Leave-1-out D-efficiency 87.954 85.211 87.954 66.598 96.881 75.719
Leave-2-out D-efficiency 74.19 72.31 74.19 60.834 97.455 81.757

A-efficiency 92.922 87.555 92.922 65.635 94.224 70.635
Min A-efficiency 25.549 46.564 25.549 49.209 182.254 192.215

Leave-1-out A-efficiency 61.335 60.112 61.335 51.615 98.006 84.153
Leave-2-out A-efficiency 34.867 35.221 34.867 34.42 101.015 98.718

Results for 19-point 5-factor designs are reported via robust scores in Table 4.30 and efficiency

scores in Table 4.31. The table shows that in both cases, the robust designs have better robust scores
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than the traditional alphabet designs. The robust scores indicate that the Robust D and Robust A

Designs are more robust than the D and A because their scores are smaller. Both relative efficiency

scores shown in the last two columns are greater than 100, the values being 102.356 and 192.215.

This means that the generated robust designs are more robust to data loss than the traditional

designs.

4.4.4

Five-factor Design with N = 20

Table 4.32: Criterion Scoring of the 20-point 5-factor optimal designs: Main Effects and Interactions
Criteria D Robust D A Robust A

Alphabet Criterion (D/A) 3.388e-21 3.388e-21 0.875 1.023
Robust Criterion (D/A) 3.614e-20 3.614e-20 1.448 1.438

Table 4.33: Properties of the 20-point 5-factor optimal designs: Main Effects and Interactions
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 95.137 95.137 95.137 84.378 100 88.681
Min D-efficiency 86.372 86.372 86.372 77.951 100 90.25

Leave-1-out D-efficiency 89.216 89.216 89.216 79.937 100 89.599
Leave-2-out D-efficiency 77.995 77.995 77.995 74.412 100 94.929

A-efficiency 91.429 91.429 91.429 78.203 100 85.534
Min A-efficiency 58.16 58.16 58.16 58.561 100 100.689

Leave-1-out A-efficiency 69.265 69.265 69.265 63.756 100 92.059
Leave-2-out A-efficiency 47.722 47.722 47.722 47.775 100 100.111

Results for 10-point 5-factor designs are reported via robust scores in Table 4.32 and efficiency

scores in Table 4.33. The table shows that the D designs and Robust D both found designs with

the same robust score. The Robust A criteria generated a design with a robust score of 1.438 which

is smaller than the A Design’s robust score of 1.448. In the efficiency table, we see that the D and

Robust D Designs both have the same efficiencies; this means they are the same design. The Robust

A Design got a Min A-efficiency of 58.561 which is better than the Min A-efficiency of the A Design

of 58.16.
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4.5

Screening Result Summary

Table 4.34: Robust D Designs
Design Settings Better Equal Worse

2-factor: Main effect (8 design scenarios) N = 4, . . . , 11 1 7 0
2-factor: Main effects with Interaction (7 design scenarios) N = 5, . . . , 11 3 4 0

5-factors: Main effects (5 design scenarios) N = 7, . . . , 11 1 4 0
5-factors: Main effects with Interactions (4 design scenarios) N = 17, . . . , 20 1 2 1

Table 4.35: Robust A Designs
Design Settings Better Equal Worse

2-factor: Main effect (8 design scenarios) N = 4, . . . , 11 4 4 0
2-factor: Main effects with Interaction (7 design scenarios) N = 5, . . . , 11 4 3 0

5-factors: Main effects (5 design scenarios) N = 7, . . . , 11 1 3 1
5-factors: Main effects with Interactions (4 design scenarios) N = 17, . . . , 20 3 0 1

Tables 4.34 and 4.35 explain how well screening designs generated using a robust optimal cri-

terion compared to those created using an EXACT approach. Of the forty-eight combined scenarios

of D and A, using a robust criterion proved helpful in finding the more robust design in eighteen

cases. In twenty-seven of them, equal robust designs were found, and in three scenarios the EXACT

approach found a more robust design. In cases where the Robust Design computed a score less

than the traditional, it is possible that given more runs, the CEXCH algorithm would find the same

design. It would appear, depending on the researcher and probability of data loss, choosing a Robust

Optimal Design may prove insightful in certain screening design cases.
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CHAPTER 5

INTRODUCTION TO CREATING ROBUST DESIGNS USING A ROBUST DROP TWO

CRITERION.

In chapters two and three, the robust designs generated were to be optimal if one given

observation was removed. In this chapter, several designs were created to be robust to two missing

observations. The following examples belong to two-factor models with N going from 8 to 10. In

each section, plots and criterion scores will be presented followed by an analysis of the information.

5.0.1

2-factor Design with N = 8

Figure 5.1: 8-point design for a second order model.
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Table 5.1: Properties of the 8-point 2-factor optimal designs
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 45.612 43.094 42.265 36.669 94.48 86.76
Min D-efficiency 33.418 34.114 32.543 26.706 102.083 82.064

Min D-efficiency: Drop 2 0 23.392 12.515 17.017 Inf 135.973
Leave-1-out D-efficiency 40.346 38.5 37.442 32.728 95.425 87.41
Leave-2-out D-efficiency 30.978 30.779 29.296 26.179 99.358 89.36

A-efficiency 28.898 22.857 28.23 21.574 79.095 76.422
Min A-efficiency 14.898 14.648 14.932 11.561 98.322 77.424

Min A-efficiency: Drop 2 0 0.738 0.169 1.759 Inf 1040.828
Leave-1-out A-efficiency 21.083 17.04 20.564 16.111 80.823 78.346
Leave-2-out A-efficiency 11.253 9.843 10.485 8.778 87.47 83.72

Results for 8-point 2-factor designs robust to two data loss are shown in Figure 5.1 and Table

5.1. From the figure, I can see that each design is different in point arrangement. The D Design

is the only one that has a clear symmetric design. The Robust D Design has its points closer to

the edges of the space and has a close resemblance to the CEXCH 8-point drop-1-design discussed

in chapter 2 (Figure 2.5). The A and Robust A Designs differ in designs, indicating that a robust

to two data loss structure has a strong effect on the design. From the reported robust scores and

the Min Efficiencies, the robust designs did much better. The Robust D Design got an efficiency of

23.392 and the D Design got 0, informing us that its design is not suitable for the loss of two data

points. The Robust A Design has a Min A-efficiency of 1.759 while the A Design has a 0.169. In

both scenarios, the Robust generated designs are better than the traditional.
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5.0.2

2-factor Design with N = 9

Figure 5.2: 9-point design for a second order model.

Table 5.2: Properties of the 9-point 2-factor optimal designs
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 46.224 45.602 46.224 42.736 98.654 92.454
Min D-efficiency 39.581 39.294 39.581 36.11 99.275 91.231

Min D-efficiency: Drop 2 30.569 30.821 30.569 29.731 100.824 97.259
Leave-1-out D-efficiency 42.829 42.306 42.829 39.683 98.779 92.655
Leave-2-out D-efficiency 38.165 37.669 38.165 35.428 98.7 92.829

A-efficiency 31.169 29.815 31.169 27.89 95.656 89.48
Min A-efficiency 22.5 20.794 22.5 17.978 92.418 79.902

Min A-efficiency: Drop 2 11.96 12.292 11.96 12.576 102.776 105.151
Leave-1-out A-efficiency 25.968 24.949 25.968 23.405 96.076 90.13
Leave-2-out A-efficiency 19.269 18.473 19.269 17.476 95.869 90.695

Results for 9-point 2-factor designs robust to two data loss are shown in Figure 5.2 and Table

5.2. Looking at the plots, the D and A Designs found the same design, each having points in the

corners, in the center, and in the center of each edge. The Robust D and A Designs are similar to

the D and A except for the position of the points along the edges. The Robust D Design has taken

its points along the edges and moved them all counterclockwise a little. From the table, I find that

the robust designs are more efficient in the Min Efficiency: Drop 2 field. This conclusion comes from

the 100.824 in the R.E. (R.D., D) column and the 105.151 in the R.E. (R.A., A) column.
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5.0.3

2-factor Design with N = 10

Figure 5.3: 10-point design for a second order model.

Table 5.3: Properties of the 10-point 2-factor optimal designs
Criteria Evaluated D Robust D A Robust A R.E.(R.D., D) R.E.(R.A., A)

D-efficiency 45.983 45.801 44.781 44.464 99.604 99.292
Min D-efficiency 39.299 38.987 38.125 38.78 99.206 101.718

Min D-efficiency: Drop 2 31.084 32.815 30.023 32.114 105.569 106.965
Leave-1-out D-efficiency 43.468 43.355 42.082 41.994 99.74 99.791
Leave-2-out D-efficiency 40.075 40.006 38.514 38.733 99.828 100.569

A-efficiency 29.321 28.594 33.377 28.896 97.521 86.575
Min A-efficiency 20.696 19.736 25.564 20.449 95.361 79.991

Min A-efficiency: Drop 2 12.193 13.848 14.516 15.069 113.573 103.81
Leave-1-out A-efficiency 25.739 25.204 28.767 25.304 97.921 87.962
Leave-2-out A-efficiency 21.081 20.704 22.972 20.763 98.212 90.384

Results for 10-point 2-factor designs robust to two data loss are shown in Figure 5.3 and Table

5.3. From the plots, I see a similar pattern of having the points spread out in the space with a point

in the center for each design. The A and Robust A design both have symmetric structures down

the center. The efficiency table indicates that in both cases, the robust designs reported better Min

Efficiency: Drop 2. The D Design got a 31.084 and the Robust D Design achieved a 32.815. The

A Design got a 14.516 and the Robust A got a 15.069. In this scenario, choosing a robust design

specifically designed to be robust to two data loss proved better than the traditional approach.

However, it each case, if the design isn’t going to lose two points, it may prove advantageous to go
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with the traditional design. It would be important for the researcher to understand the experiment

well along with the pros and cons in choosing one of these robust designs.

5.1

Chapter Summary

Table 5.4: Designs Robust to Loss of 2 Data Points Summary
Design Settings Robust D Criteria Robust A Criteria

2-factor: N = 8 Better Better
2-factor: N = 9 Better Better
2-factor: N = 10 Better Better

Table 5.4 is a summary of the designs observed in the chapter. Results show that using a

modified robust criterion is helpful in finding designs that are robust to loss of 2 observations com-

pared to traditional EXACT models. In application, it would be best to ensure that an experiment

doesn’t lose any observations, but depending on the experiment, it may be necessary to accept that

managing all factors will be difficult and designs robust to loss of more than one observation is

necessary.
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CHAPTER 6

CONCLUSION

In this paper, principles of optimal robust design were used to explore efficiency in algorithm

selection. The algorithm of particular interest is the coordinate exchange algorithm (CEXCH). Un-

like other algorithms, CEXCH can generate optimal designs without relying on a discrete candidate

list of design points. Its ability to start with a randomly generated design allows for testing of more

coordinate points in search for the best optimal design.

Chapter one introduced robust criteria by using the D, A, and I criterion from the traditional

alphabet criterion. These criteria were designed to be functional even with data loss. In chapter two,

variations of criteria efficiency were presented, offering varying perspectives on design effectiveness

and robustness. With the understanding of algorithms and robust criteria, the second half of the

chapter focused on validating results against previously published research.

To validate the functionality of the coordinate exchange algorithm in computing optimal ro-

bust designs, comparisons were made with the works of John J. Borkowski and Patchanok Srisuradetchai.

Borkowski’s EXACT designs were not optimized for robustness, while Srisuradetchai’s PEXCH de-

signs utilized robust criteria. The validation process involved presenting and analyzing plots for

each method—EXACT, PEXCH, and CEXCH. From the results produced in chapter two, evidence

showed that the CEXCH could create designs equal to or better in comparison to other designs.

In chapter three, validation was extended to three factors, represented in three-dimensional

plots. The scenarios ran showed that the CEXCH could generate robust designs equal to or better

even with in the change of factors and observations. With this evidence supporting the use of

the CEXCH algorithm in searching for optimal robust deigns, the focus was changed to generating

designs in a screening setting.

Chapter four was specific to screening designs and began by presenting designs for a first-order

model with main effects for two factors. In this chapter, designs were computed using the traditional

alphabet criteria and the robust criteria and the sequentially scored and compared. Results found

that robust designs were equal to or better than traditional criteria. The next step was comparing
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models that also had the interaction term. Results from these designs again supported the efficiency

of optimal robust designs in handling data loss.

The last section of chapter four focused on comparing designs with a higher factor, specifically

five. In cases where the model was just a first order with main effects, robust criteria sometimes

failed to outperform traditional criteria in all cases but still managed to provide several cases when

the robust design was more suitable. For models with main effects and interactions, robust criteria

consistently computed designs superior to traditional criteria.

Chapter five introduced robust criteria specializing in generating designs robust to losing two

data points. Three scenarios demonstrated that using robust criteria increased efficiency for designs

facing potential loss of two observations. Understanding the potential use of coordinate exchange

to compute robust optimal designs holds great value in the field of research where every observation

is in some way expensive, either by time or funding. Future research may involve generating more

designs with different factor settings or models, potentially revealing patterns indicating optimum

cases for robust designs. The patterns I am referring to may come from design shape. During my

search for optimal screening designs, there were two cases where the CEXCH algorithm struggled to

find an optimal robust design that was more robust than the EXACT design. These two cases were:

N = 7 5-factors with only main effects and N = 17 5-factors with main effects and interactions. As

always, maybe if given more runs, the CEXCH would find the same design as the EXACT algorithm,

but maybe there is something occurring at different N settings.

In recent research, Stallrich suggested that “generally A-optimal designs tend to push vari-

ances closer to their minimum possible value” and thus have the ability to correctly classify factors as

active/inert [12]. Stallrich then provided examples and analysis of why, when constructing screening

designs, being A-optimal has better characteristics than D-optimal. With this knowledge, I would

suggest that if one were to pursue further robust screening designs, A-optimal is a promising option.
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APPENDIX: DESIGN CATALOG

All designs generated can be found on the author’s GitHub page and at the link:
https://github.com/Ellwood12/Robust-Optimal-Designs
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APPENDIX: JULIA CODE

using LinearAlgebra, Distributions, NLopt, DataFrames, CSV, Plots, Combinatorics

function genDesign(N, K)

u = rand(Uniform(-1, 1), (N * K))

X = reshape(u, N, K)

return X

end

function D_crit(X)

N = size(X,1)

# THE CURRENT MODEL IS A SECOND ORDER WITH TWO FACTORS AND INTERACTION

F_mat = hcat(fill(1, N), X, X[:,1] .* X[:,2], X.^2)

det_int = det(*(F_mat’, F_mat))

limit = eps()^(2)

if det_int < limit

D_score = typemax(Float64)

else

D_score = 1/ (det(*(F_mat’,F_mat)))

end

return D_score

end

function A_crit(X)

N = size(X,1)

# THE CURRENT MODEL IS A SECOND ORDER WITH TWO FACTORS AND INTERACTION

F_mat = hcat(fill(1, N), X, X[:,1] .* X[:,2], X.^2)

det_int = det(*(F_mat’, F_mat))

if det_int < sqrt(eps())

A_score = typemax(Float64)

else

A_score = tr(inv(*(F_mat’,F_mat)))

end

return A_score

end

function I_crit(X)

N = size(X,1)

# THE CURRENT MODEL IS A SECOND ORDER WITH TWO FACTORS AND INTERACTION

F_mat = hcat(fill(1, N), X, X[:,1] .* X[:,2], X.^2)

det_int = det(*(F_mat’, F_mat))

if det_int < sqrt(eps())

I_score = typemax(Float64)

else

I_score = N * tr(*(K_2, inv(*(F_mat’, F_mat))))
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end

return I_score

end

function rb_D(X)

N = size(X,1)

# THE CURRENT MODEL IS A SECOND ORDER WITH TWO FACTORS AND INTERACTION

F_mat = hcat(fill(1, N), X, X[:,1] .* X[:,2], X.^2)

det_int = det(*(F_mat’, F_mat))

if det_int < eps()^(2)

D_score = typemax(Float64)

else

rows = size(F_mat, 1)

sc = Vector{Float64}(undef, rows)

for i in 1:rows

mat = F_mat[setdiff(1:size(F_mat, 1), i), :]

det_inf2 = det(*(mat’, mat))

if det_inf2 < eps()^(2)

sc[i] = typemax(Float64)

else

sc[i] = 1/ (det(*(mat’,mat)))

end

end

D_score = maximum(sc)

end

return D_score

end

function rb_A(X)

N = size(X,1)

# THE CURRENT MODEL IS A SECOND ORDER WITH TWO FACTORS AND INTERACTION

F_mat = hcat(fill(1, N), X, X[:,1] .* X[:,2], X.^2)

det_int = det(*(F_mat’, F_mat))

if det_int < eps()^(2)

A_score = typemax(Float64)

else

rows = size(F_mat, 1)

sc = Vector{Float64}(undef, rows)

for i in 1:rows

mat = F_mat[setdiff(1:size(F_mat, 1), i), :]

det_inf2 = det(*(mat’, mat))

if det_inf2 < sqrt(eps())

sc[i] = typemax(Float64)

else

sc[i] = tr(inv(*(mat’, mat)))

end

end

A_score = maximum(sc)

end

return A_score

end

K_2 = [ 1 0 0 0 (1/3) (1/3);

0 (1/3) 0 0 0 0;
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0 0 (1/3) 0 0 0;

0 0 0 (1/9) 0 0;

(1/3) 0 0 0 (1/5) (1/9);

(1/3) 0 0 0 (1/9) (1/5)]

K_3 = [ 1 0 0 0 0 0 0 (1/3) (1/3) (1/3);

0 (1/3) 0 0 0 0 0 0 0 0;

0 0 (1/3) 0 0 0 0 0 0 0;

0 0 0 (1/3) 0 0 0 0 0 0;

0 0 0 0 (1/9) 0 0 0 0 0;

0 0 0 0 0 (1/9) 0 0 0 0;

0 0 0 0 0 0 (1/9) 0 0 0;

(1/3) 0 0 0 0 0 0 (1/5) (1/9) (1/9);

(1/3) 0 0 0 0 0 0 (1/9) (1/5) (1/9);

(1/3) 0 0 0 0 0 0 (1/9) (1/9) (1/5)]

function rb_I(X)

N = size(X,1)

# THE CURRENT MODEL IS A SECOND ORDER WITH TWO FACTORS AND INTERACTION

F_mat = hcat(fill(1, N), X, X[:,1] .* X[:,2], X.^2)

det_int = det(*(F_mat’, F_mat))

if det_int < sqrt(eps())

I_score = typemax(Float64)

else

rows = size(F_mat, 1)

sc = Vector{Float64}(undef, rows)

for i in 1:rows

mat = F_mat[setdiff(1:size(F_mat, 1), i), :]

det_inf2 = det(*(mat’, mat))

if det_inf2 < sqrt(eps())

sc[i] = typemax(Float64)

else

# IF THE MODEL WERE TO HAVE THREE FACTORS, WHICH K_2 TO K_3

sc[i] = tr(*(K_2, inv(*(mat’, mat))))

end

end

I_score = maximum(sc)

end

return I_score

end

function cexch(N, K, crit)

X_init = genDesign(N, K)

X_t = deepcopy(X_init)

improvement = true

n_iter = 0

points = range(-1, stop = 1, step = .1)

np = length(points) + 1

while improvement

n_iter = n_iter + 1

crit_iter = crit(X_t)

crit_t = NaN

for i in 1:N

for j in 1:K
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point_matrix = Vector{Any}(undef, np)

point_list = fill(NaN, np)

point_matrix[np] = deepcopy(X_t)

point_list[np] = crit(X_t)

for k in eachindex(points)

X = deepcopy(X_t)

X[i, j] = points[k]

point_matrix[k] = deepcopy(X)

point_list[k] = crit(X)

end

ind_best = argmin(point_list)

X_t = deepcopy(point_matrix[ind_best])

crit_t = deepcopy(point_list[ind_best])

end

end

if crit_t == crit_iter

improvement = false

end

end

return Dict("initDesign" => X_init, "init_crit" => crit(X_init),

"optDesign" => X_t, "opt_crit" => crit(X_t),

"niter" => n_iter)

end
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