
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations, Fall
2023 to Present Graduate Studies

5-2024

A Review of Student Attitudes Towards Keystroke Logging and A Review of Student Attitudes Towards Keystroke Logging and

Plagiarism Detection in Introductory Computer Science Courses Plagiarism Detection in Introductory Computer Science Courses

Caleb Syndergaard
Utah State University, a02268117@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/etd2023

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Syndergaard, Caleb, "A Review of Student Attitudes Towards Keystroke Logging and Plagiarism Detection
in Introductory Computer Science Courses" (2024). All Graduate Theses and Dissertations, Fall 2023 to
Present. 142.
https://digitalcommons.usu.edu/etd2023/142

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations, Fall 2023 to Present by an authorized
administrator of DigitalCommons@USU. For more
information, please contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/etd2023
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd2023?utm_source=digitalcommons.usu.edu%2Fetd2023%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd2023%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd2023/142?utm_source=digitalcommons.usu.edu%2Fetd2023%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

A REVIEW OF STUDENT ATTITUDES TOWARDS KEYSTROKE LOGGING AND PLAGIARISM

DETECTION IN INTRODUCTORY COMPUTER SCIENCE COURSES

by

Caleb Syndergaard

A proposal submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

John Edwards, Ph.D. Vicki Allan, Ph.D.
Major Professor Committee Member

Hamid Karimi, Ph.D. D. Richard Cutler, Ph.D
Committee Member Vice Provost of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2024

ii

Copyright © Caleb Syndergaard 2024

All Rights Reserved

iii

ABSTRACT

A REVIEW OF STUDENT ATTITUDES TOWARDS KEYSTROKE LOGGING AND PLAGIARISM

DETECTION IN INTRODUCTORY COMPUTER SCIENCE COURSES

by

Caleb Syndergaard

Utah State University, 2024

Major Professor: John Edwards, Ph.D.
Department: Computer Science

The following paper addresses student attitudes towards keystroke logging and plagia-

rism prevention measures. Specifically, the paper concerns itself with changes made to the

“ShowYourWork” plugin, which was implemented to log the keystrokes of students in Utah

State University’s introductory Computer Science course, CS1400. Recent work performed

by the Edwards Lab provided insights into students’ feelings towards keystroke logging as

a measure of deterring plagiarism. As a result of that research, we have concluded that

measures need to be taken to enable students to have more control over their data and

assist students to feel more comfortable with keystroke logging. This paper introduces the

work done to enhance student privacy and feelings of security and an evaluation of the

effectiveness of the changes made to ShowYourWork.

(77 pages)

iv

PUBLIC ABSTRACT

A REVIEW OF STUDENT ATTITUDES TOWARDS KEYSTROKE LOGGING AND PLAGIARISM

DETECTION IN INTRODUCTORY COMPUTER SCIENCE COURSES

Caleb Syndergaard

The following paper addresses student attitudes towards keystroke logging and plagia-

rism prevention measures. Specifically, the paper concerns itself with changes made to the

“ShowYourWork” plugin, which was implemented to log the keystrokes of students in Utah

State University’s introductory Computer Science course, CS1400. Recent work performed

by the Edwards Lab provided insights into students’ feelings towards keystroke logging as

a measure of deterring plagiarism. As a result of that research, we have concluded that

measures need to be taken to enable students to have more control over their data and

assist students to feel more comfortable with keystroke logging. This paper introduces the

work done to enhance student privacy and feelings of security and an evaluation of the

effectiveness of the changes made to ShowYourWork.

v

To those who have and will continue to assist in the labor of enhancing Computer Science
education for the upcoming generations.

vi

ACKNOWLEDGMENTS

• First, my spouse for being incredibly supportive and patient throughout my academic

endeavors.

• Second, Dr. John Edwards for his insights and instruction.

• Third, Joseph Ditton for his contributions to the ShowYourWork tool. Without which,

this research would not have been possible.

Caleb R. Syndergaard

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . viii

1 INTRODUCTION . 1
1.1 Organization of Thesis . 2

2 RELATED WORKS . 4
2.1 Introduction . 4
2.2 Psychology Behind Plagiarism . 4
2.3 Student Tracking Datasets . 8
2.4 Research Performed by the Edwards Lab . 8

3 IMPLEMENTATION METHODS . 9
3.1 Introduction . 9
3.2 Previous Plugin Versions . 9
3.3 Delete History . 10
3.4 Check for Plagiarism . 31
3.5 Survey . 36
3.6 Coding . 38

4 OUTCOMES AND ANALYSIS . 41
4.1 Introduction . 41
4.2 Survey Results . 41

4.2.1 Student Background . 42
4.2.2 Perception of the Delete History and Check for Plagiarism Features 45
4.2.3 Perception of the ShowYourWork Plugin 53

5 DISCUSSION AND FURTHER RESEARCH . 59
5.1 Threats to Validity . 59
5.2 Further Research . 59
5.3 Conclusion . 60

REFERENCES . 62

APPENDICES . 64
A End of Semester Survey . 65

A.1 End of Semester Survey . 65

viii

LIST OF FIGURES

Figure Page

3.1 Relationships between the delete and masking algorithms. 10

4.1 How much computer programming experience did you have before taking CS
1400? . 42

4.2 How much computer programming experience did you have before taking CS
1400? . 43

4.3 I forgot about the ShowYourWork plugin 44

4.4 I used the ShowYourWork playback feature 45

4.5 I think the delete history tool enables students to cheat more easily. 46

4.6 I felt more comfortable with my keystrokes being logged knowing that I could,
at any time, delete my history. 47

4.7 I used the ShowYourWork delete history feature 48

4.8 Why did you use the delete feature? . 49

4.9 Please share any additional thoughts or insights you have about the delete
history feature. 49

4.10 (In relation to the preceding question, “Do you feel like the ShowYourWork
check for plagiarism feature accurately assessed your work?”) Please explain 51

4.11 Please share any additional thoughts you have about the ShowYourWork
plugin. 53

4.12 I believe that I would get caught if I plagiarized in CS 1400. 55

4.13 The CS 1400 instructor is capable of finding cases of plagiarism. 56

4.14 The ShowYourWork plugin that logs keystrokes would make it easier for the
CS 1400 instructor to find cases of plagiarism. 57

4.15 I think the ShowYourWork plugin was a good idea. 57

CHAPTER 1

INTRODUCTION

This research project serves as a continuation of research performed by the EdwardsLab

at Utah State University. In the Fall semester of 2021, Utah State University began to

track and collect keystroke data for students enrolled in the introductory Computer Science

Course, CS1400 [1]. Students enrolled in CS1400 are required to use the PyCharm IDE,

created by JetBrains. A plugin to the IDE, named ShowYourWork has been developed to

perform the keystroke logging. The impetus behind the decision to collect keystroke data

was a desire within the faculty to understand how students were writing code and solving

the problems administered through homework assignments. Beyond a desire to understand

student work, discouraging plagiarism was also a driving force behind the implementation

of keystroke logging. The data collected from keystroke logging has been invaluable to

the research of the EdwardsLab, however, we recognize that research into the effects that

keystroke logging has on students is limited, and mostly indicates that there are negative

side effects of tracking students [1]. The primary negative aspect of keystroke logging is that

it induces anxiety in students [1]. In the previous set of survey results, one student stated,

“Even though I didn’t cheat, I was constantly stressed out that my assignments were being

marked for plagiarism. This caused A LOT of anxiety throughout the semester, so much so

that I wish I didn’t take this class because of the emphasis on cheating....It would be really

helpful if my professor was more clear about what the plugin is, especially for students who

are prone to feelings of anxiety.”

In an attempt to mitigate these negative effects, I have made modifications to the plugin

that seek to return control to the students over their data. The original implementation

of this plugin allowed students to view the history of their project at the granular level of

individual keystrokes and also to revert their working file to any point in its history. I have

enhanced the plugin by adding the following operations:

2

• A delete history option, which allows students to delete any keystrokes recorded be-

tween two intervals.

• A check for plagiarism utility, which allows students to click a button and receive

a prompt detailing whether or not evidence of plagiarism was found within their

document.

This paper focuses on the changes in student perception of keystroke logging given the

addition of the aforementioned features to the plugin. We anticipate that these features

will have a positive impact on students’ feelings towards keystroke logging and that it will

reduce the number of students who suffer from anxiety tied to the ShowYourWork utility.

Logging student data at the keystroke level introduces an ample amount of information

for a Computer Science program at any university and with the addition of these tools we

provide an avenue for academic institutions to begin collecting keystroke data without

violating students’ rights and privacy. This work is impactful because it will allow more

universities to begin logging student keystrokes, and thus greatly enhance the quality of

instruction at these organizations. In order to ascertain students’ feelings towards the

ShowYourWork plugin, a survey was administered at the end of the semester.

The results of the survey in the Spring 2022 semester will serve as a benchmark or

control for the results of this survey. I will be making direct comparisons between the

results of the surveys administered pre and post addition of the delete history and check

for plagiarism functionalities.

My overall contributions are two-fold. First, I introduce novel algorithms that were

necessary to the implementation of the delete history and check for plagiarism features and

second, the survey data that will allow us to measure changes in student attitudes [2].

1.1 Organization of Thesis

This thesis is organize in a manner commensurate with the chronological order in which

the research occurred. Each section will be expounded upon in detail and will depend on

information given in previous sections. Thus, an in-order reading of this thesis is imperative

3

to achieve a comprehensive understanding of my methods and results. The paper will seek

to primarily address the following:

• A review of prior research and existing knowledge.

• Implementation details for the plugin and survey changes.

• An analysis of the administered survey.

• A review of outcomes and conclusions.

CHAPTER 2

RELATED WORKS

2.1 Introduction

In recent years there has been a significant increase in research publications relating

to Computer Science education. Upon searching for the term “CS Education” in the ACM

Digital Library, one will see that publications relating to this have increased exponentially

since 1975. Dozens of recent publications are concerned about the rampant plague of

plagiarism that has swept through the Computer Science community in recent years. With

the advent of the “Internet age” accessibility to tools assisting with plagiarism has increased

dramatically. While different measures of plagiarism deterrence have been implemented,

Computer Science remains a disproportionately strong contributor to the yearly count of

academic violations [3, 4].

Possible explanations for Computer Science students’ propensity for plagiarism include

the ease with which solutions are shared, the availability of solutions on the internet, and the

rigorous nature of Computer Science courses in general [4]. In many respects, the causes

for academic dishonesty in any field are simply more prevalent in the field of Computer

Science. Regardless of the reasons for the prevalence of cheating in the field, solutions

for mitigating the frequency of plagiarism are necessary. Proposed methods of deterring

plagiarism include using plagiarism detection software, administering severe punishments

for plagiarism, keystroke tracking, and a myriad of other techniques. In this paper we seek

to expound on research regarding keystroke tracking as a deterrent.

2.2 Psychology Behind Plagiarism

Research into the psychology behind plagiarism is abundant. With the rising avail-

ability of information and ease with which students can cheat, understanding the impetus

5

behind cheating is becoming increasingly important. Beyond this, understanding what

avenues academic institutions should pursue in order to deter cheating is also extremely

important. In a study performed in 2014 by Eric Beasly, he found that out of 298 students

who cheated, 99 of them stated that “ignorance of consequences” was a major contributor

to why they cheated and 87 of them claimed “ignorance of rules” as their reason for cheat-

ing [5]. In many regards, universities and other academic institutions unwittingly contribute

to dishonesty by not making what constitutes cheating readily available and by not being

more explicit about the consequences of plagiarism. One student in Beasly’s study stated,

“If I knew what I was doing was wrong I wouldn’t have done it plain and simple. I wish I

could say I wish I never cheated but it is not that simple because at the time of my incident

I was unaware that my behavior was wrong” [5]. Because the definition of plagiarism is

not always well defined, students fall victim to being penalized for actions they did not

realize were incorrect in the first place. The weight of ignorance does not fall squarely on

the shoulders of the institutions, however, as many students fail to put forth sufficient effort

to understand the university’s guidelines. One student went as far as to say, “I think if i

had read the part about academic dishonesty closer mayeb i would have taken more time

to lookup about plagirism and what it really is” [5]. Responses like these demonstrate a

disconnect between the information academic institutions are trying to convey about pla-

giarism and their enrolled populous. Many institutions require that a section addressing

academic dishonesty be included in every course syllabus, however from the responses col-

lected by Beasly, it is clear that this method of delivering information about cheating is

ineffective and needs to be revisited.

Ignorance is not the only driving factor behind plagiarism. In the article “Motivational

Perspectives on Student Cheating:Toward an Integrated Model of Academic Dishonesty”,

the authors seek to provide a framework under which cheating can be classified [6]. The

authors, Murdock and Anderman, devise three categories for reasons behind cheating and

phrase them as questions that students may ask themselves before deciding to cheat.

The first question the authors evaluate is “What are my goals?” [6] Included in this

6

section is an evaluation of previous literature on the subject of plagiarism. Murdock and

Anderman submit the following summary of previous research into students who cheated

because it enabled them to achieve specific goals: “there is a distinction between students

who approach classroom tasks with a genuine desire to understand(i.e., high intrinsic value,

strong mastery or learning goals)versus those who are more interested in external indicators

of accomplishment (i.e., performance goals, ego goals, extrinsic motivation)” [6]. In this cat-

egory, factors such as “extrinsic goals” and “performance orientation” are considered, with

a students “personal theory of intelligence”, parental and peer pressures for a grade, social

comparison in the classroom, and classroom goal structures being cited as the “individual

and contextual influences” for cheating. The authors conclude this section by stating “as

our society continues to emphasize out-comes over learning, many argue that cheating is

likely to continue to occur” [6, 7].

The next category considered by Murdock and Anderson is “Can I Do This?” [6]. In

this section, factors like self-efficacy and outcome expectations are reviewed with personal

ability, personal effort, teacher’s pedagogical skill, and grading standards serving as the

individual and contextual influences [6]. In their final summary of this section, the authors

state, “Similar to the research linking students’ goals to cheating, there is more evidence

that students’ individual self-efficacy beliefs and their perceived outcome expectations are

related to cheating, and there is less evidence for the effects of the environment on cheating,

via their impact of these beliefs systems. When students have high self-efficacy beliefs and

expect to succeed at an academic task, cheating is probably neither a necessary nor useful

strategy”. Simply stated, students who have a lower self-perception of their abilities to

learn a given skill are more likely to attempt some form of cheating or plagiarism.

Finally, the authors consider the question “What are the costs?”. Here, the authors

consider students perspectives on “getting caught and punished” and a “negative view of

self” [6]. This section of the paper provides a deeper insight into how students perceive

themselves after cheating and offers the insight that, “these costs are not only the direct

costs of being caught and punished, but the psychological costs that come from being seen,

7

or seeing oneself, as a person who does something unethical” [6]. Despite how invaluable

an understanding of the human psyche before and after cheating would be, without being

able to collect objective, quantitative data, it is exceptionally difficult to determine the

overall effect that self-perception has on a student’s desire and disposition to cheat. In

the conclusion of this section of the paper, Murdock and Anderson mention that, “as with

much of the other scholarship in this area, one of the major limitations to our understanding

results from an almost exclusive reliance on one-time correlational studies using self-report

data” [6].

It is interesting to note that students attempt to reduce this psychological toll that

cheating takes through means of justification. A study performed by Agustus Jordan in

2001 found, unsurprisingly, that “Cheaters...justified cheating behavior to a greater extent

than did noncheaters” [8]. Despite the discrepancy between cheaters and non-cheaters

in how justifiable they deem cheating, there are many factors that influence whether a

population as a whole feels as if cheating is warranted. In the article by Murdock and

Anderson they found that “When blame for cheating is shifted to others, the most common

target is the teacher and his or her instructional practices” [6]. To further expound on

this point, “cheating was rated as more justifiable and more likely in classrooms where

teachers emphasized performance goals as compared to mastery goals and where teachers

were perceived as less versus more competent” [6]. In addition to teacher ideology and

competency, another major factor influencing a student’s propensity to cheat was their

peer’s perception of cheating as a whole. In the research performed by Jordan, they found

that “cheating behavior was related to perceptions of the behavior of peers and to attitudes

about cheating. Both factors were significant predictors of cheating rates. Cheaters believed

that more students engaged in cheating behaviors than did noncheaters...In addition, the

more the participants cheated, the higher their estimate of cheating on campus” [8].

As many students seem to be unaware of the consequences of cheating and what actually

constitutes cheating in the first place, it is unsurprising that cheating occurs so frequently.

Beyond this, if a student anticipates their peers are going to cheat, they are more likely to

8

cheat themselves. It should then come as no surprise that Computer Science finds itself at

the forefront of academic violations, as the stigma that “Computer Science students cheat

the most” is constantly perpetuated. In order to mitigate the negative effects of plagiarism,

it seems that students’ confidence in one another to not cheat, and their confidence in their

institution’s ability to find cheaters needs to increase dramatically. A proposed manner

of accomplishing exactly that is to keep a more granular record of the code that students

produce in foundational Computer Science courses.

2.3 Student Tracking Datasets

The concept of using programs to detect plagiarism is not a novel one, with work dating

back to at least 1988 with the formulation of the Plague program which compared programs

for similarity in structure [9]. More recently, there has been a shift towards evaluating a

single assignment submission at multiple points in its history to get a better idea of how

the student arrived at the code they are turning in [10] . The major shortcoming with these

datasets is granularity, which is what the EdwardsLab at USU has sought to fix with the

ShowYourWork plugin.

2.4 Research Performed by the Edwards Lab

In recent years, the EdwardsLab recognized the need to collect student data in order

to facilitate new research, improving the quality of instruction in the Computer Science de-

partment at USU. In order to collect temporal data with a higher resolution than previous

systems, the EdwardsLab created the ShowYourWork plugin. ShowYourWork is a plugin

implemented for the PyCharm integrated development environment produced by the Jet-

Brains company. The plugin currently uses an SQLite database to collect keystrokes. In

order to understand students’ feelings towards the plugin, a survey was administered at the

end of the first semesters during which the plugin was being used. Hart et. al. evaluated

the results of this survey in the paper “Plagiarism Deterrence in CS1 Through Keystroke

Data” [1]. The data collected previously by the EdwardsLab will serve as a control for the

data collected in this study.

CHAPTER 3

IMPLEMENTATION METHODS

3.1 Introduction

In this section we analyze the implementation methods for the ShowYourWork plugin.

We begin with an overview of the plugin as it stood during the time in which Hart et al.

collected their survey data [1]. After this we will review the substantial changes I have

made to the inner workings of the plugin since that paper’s publication. Finally, we will

review the addition of two new features that form the foundation of this literary work. The

changes that are most pertinent to this study are the addition of the “Delete History” and

“Check for Plagiarism” utilities.

3.2 Previous Plugin Versions

The ShowYourWork plugin consists primarily of the following two components, the

inner mechanisms required for the keystroke logging itself and a student facing UI designed

to allow students to “rewind” the history of their file and see all previous changes keystroke

by keystroke. The keystroke logging uses the event bus managed by the integrated develop-

ment environment to collect the keystrokes. Keystrokes were then written out to a comma

delimited file for storage. After using the plugin for multiple semesters, the EdwardsLab

determined that it needed to be more efficient. The plugin now uses an SQLite file to

store the keystrokes and has a more streamlined manner of collecting user events. While

updating the plugin to use SQLite instead of CSV files, the Edwards lab also rewrote the

main user interface. Originally, the plugin was built in the GUI library provided by the

JetBrains community, however, the plugin has now been translated to JetPack compose,

the new Android GUI application programming interface. The application now exists in a

more extensible state that will be conducive to future additions and changes.

10

3.3 Delete History

The last time a survey about ShowYourWork was administered, the majority of stu-

dents reported viewing the plugin as a positive thing, with 11 percent of students saying

that they forgot it was there at all [1]. While most students agreed that it was a good thing,

the number of students who felt the plugin was invasive was still significant at 6 percent [1],

with one student going as far as to say, “I did not like the plugin at all. I would have never

voluntary downloaded a key logger to my computer no matter what its intended purpose

was if it wasn’t a requirement for any of my assignments to get graded” [1]. Our hope was

that in implementing the delete history utility, we would decrease the proportion of students

who feel uncomfortable with keystroke logging. The primary purpose of this addition is to

enhance the student experience while using the plugin and protect their privacy, even if

that comes at the cost of losing some file history data that could be useful in other research

avenues. Within this section I will discuss a total of five algorithms. These are the simple

rewrite, masking, LCS, build edit list, and smart delete algorithms. Figure 3.1 shows a

reference of how those algorithms relate to one another.

Fig. 3.1: Relationships between the delete and masking algorithms.

11

I added a button titled “Delete History” to the ShowYourWork plugin. This button

allows users to remove the record of all keystrokes logged between two points in their file

history. The user selects the first point in their file history by dragging a slider back in time

to the moment they would like to delete from. The user then selects the “Delete History”

button and is presented with a second slider that they use to select the point in history

that they would like to delete to. Once the user clicks “Delete”, the keystrokes are deleted,

and an algorithm is run in order to reconcile the differences between the first state of the

file and the final state of the file. For example, if a file’s beginning state is the following:

def printNumber(x):

print(x)

print("The number is: ")

printNumber(4)

and ending state is:

def printNumber(x):

print(f"The best number is: {x}")

printNumber(4)

The algorithm determines what changes need to be made made to get from the first file

state to the second, and then add those changes synthetically to the keystroke history.

The changes made in reconciling a user’s history are flagged as “SYNTHESIZED” in the

database, to help the application determine which changes originated from the user and

which changes were created by the ShowYourWork plugin.

I have employed two different algorithms in order to reconcile the differences in file

states. The first algorithm, called the “smart delete” algorithm, is an algorithm that seeks

to fix the flaws in the original delete algorithm, which is called the “simple rewrite” method.

The original delete algorithm, or simple rewrite, was inspired by the code used to reconcile

differences between the code a student had written and the information in the keystroke

log. For example, if a student were to paste in a chunk of text and then quickly close the

12

application, the database writer may fail to save the information out to the database. In

this case, when the IDE reopens, the information in the database does not match the code

in the file. In order to rectify this, a single edit is inserted to the database, where the edit

consists of deleting all of the text in the last file snapshot and then inserting all of the text

that exists in the file as it stands. To better illustrate this point, consider the case where

the ShowYourWork plugin had a list of edits that would produce the following code:

def printNumber(x):

print(x)

Now, if a student were to quickly update their code to the following, the database may not

have time to save the edits:

def printTen():

print(2 * 5)

Now, in order to resolve the difference, a single edit would be added to the database where

the deleted string would be “def printNumber(x):\nprint(x)” and the inserted text would

be “def printNumber():\nprint(2 * 5)”, rather than a series of insertions and deletions.

Modeling this change in the database may look something like the table defined in the

following figure:

Insert Text Delete Text Index Edit Type

def printTen():\nprint(2 * 5) def printNumber(x):\nprint(x) 0 synthesized

Table 3.1: Simple Rewrite Method

This method preserves the code written by the student when the file history and the current

file do not match.

This process worked well until I began to prototype a masking algorithm that would

help protect student data. The algorithm would allow data sanitizers, researchers tasked

13

with replacing keystroke data containing identifying information with non-sensitive mate-

rial, to look at a student’s code, select text they would like to mask, and replace that text

with a mask character or a series of random characters. Random characters would produce

the best results, as a data sanitizer may see fit to mask a variable name, in which a chosen

mask character, such as “@”, would break the code’s functionality. This would step beyond

the bounds of data masking, as the goal would simply be to obfuscate any identifying or

personal information without altering the data in a compromising way.

The masking algorithm that I produced, together with Utah State University professor,

Joseph Ditton, uses two custom data containers called a “MaskObject” and a “Selection”,

respectively. A “MaskObject” is simply a pair of text, a string value, and index, an integer

value. An example of which may look something like “{text: ‘a’, index: 4}”. A “Selection”

is simply a list of “MaskObjects” constructed from a given string and a starting index. For

example, if given the string “code” and a start index of 2, the resulting selection would be

a list of the following mask objects: “{ text: ‘c’, index: 2 }, { text: ‘o’, index: 3 }, { text:

‘d’, index: 4 }, { text: ‘e’, index: 5 }”. The “edit” value that appears in the algorithm

represents a value in the database which stores logged keystrokes. For the sake of brevity,

“MaskObject” has been shortened to “mo” and “Selection” to s. The definition of the

rudimentary mask algorithm is on the subsequent page.

14

procedure Mask(s)

for each edit in edits (reversed) do

for each mo in s (reversed) do

if edit.deleteText is not empty then

if mo.index ≥ edit.sourceLocation then

mo.index← mo.index+ length(edit.deleteText)

end if

end if

if edit.insertText is not empty then

if mo.index = edit.sourceLocation and mo.text = edit.insertText then

edit.insertText ← random char from a-z or a masking character

toRemove.add(mo)

break

else if mo.index ≥ edit.sourceLocation then

mo.index← mo.index− length(edit.insertText)

end if

end if

end for

for each mo in toRemove do

remove mo from s

end for

if s is empty then

break

end if

end for

end procedure

15

The algorithm functions by using the current position of the characters that need to

be masked as a starting point to derive the original position in which the characters were

inserted. Beginning at the end of the edit history, one simply needs to iterate backwards

through the list of edits altering the index of the characters until they find an edit that

matches in both text and index. Take, for example, a small program that looks like “

a=(‘Caleb’) ”. Now consider what would happen to the edit history if a user were to

change the statement from an assignment statement to a print statement like the following:

“ print(‘Caleb’) ”. The following table demonstrates what the edit history may look like:

Insert Text Delete Text Index Edit Type

a 0 insert

= 1 insert

(2 insert

‘ 3 insert

C 4 insert

a 5 insert

l 6 insert

e 7 insert

b 8 insert

’ 9 insert

) 10 insert

a= 0 delete

print 0 insert

Table 3.2: Small Program Edit History

Now, suppose that a data sanitizer were to select the text “Caleb” for masking in the

final program, “ print(‘Caleb’) ”. The following selection list would be created from the

selection: [{ text: ‘C’, index: 7}, { text: ‘a’, index: 8 }, { text: ‘l’, index: 9 }, { text: ‘e’,

index: 10}, { text: ‘b’, index: 11}]. Now, we would simply iterate through the edits in the

edit history in reverse order and apply the changes specified in the algorithm.

For the first edit in the history, we have an edit consisting of the text “print”, at index

0, and the edit is of type insert. Reviewing the algorithm, we begin iterating over the

16

selection list in reverse order as well and see that the initial mask object { text: ‘b’, index:

11 } has a higher index than that of the edit to which it is being compared. This means

that we need to decrease the index of this mask object by the length of the inserted text,

“print”, which in this case, is 5. The resulting mask object would be { text: ‘b’, index: 6 }.

We now proceed to perform this operation to each of the object in the selection list, as all

indices in the list are over 0. The resulting selection list would be: [{ text: ‘C’, index: 2},

{ text: ‘a’, index: 3 }, { text: ‘l’, index: 4 }, { text: ‘e’, index: 5}, { text: ‘b’, index: 6}].

The next iteration of the algorithm would happen with a delete edit that consists of

the text “a=” at index 0. We would once again iterate over the selection list in reverse

order making any changes specified in the algorithm. In this case, we would start with the

edit { text: ‘b’, index: 6 } and see that the index of the mask object is greater than that

of the edit. Differently than last time, however, we are dealing with a delete edit, meaning

that we need to increase the index of the mask object by the length of the edit text rather

than decreasing in. This particular case would require that we decrease the index of the

mask object by the length of the string “a=”, which is 2, resulting in { text: ‘b’, index: 8

}. After iterating through the rest of the selection list, the result would be: [{ text: ‘C’,

index: 4}, { text: ‘a’, index: 5 }, { text: ‘l’, index: 6 }, { text: ‘e’, index: 7}, { text: ‘b’,

index: 8}].

Now, we consider the next edit in the history which is inserts ‘(’ at index 10. Iterating

over the selection list reveals that all mask objects have an index that is less than 10,

meaning no changes need to be made. Similarly, for the iteration with the insert edit at

index 9 with text “ ’ ”, the index is higher than that of any item in the mask list, meaning

that, once again, no changes need to be made. The next edit in the history inserts the text

‘b’ at index 8 of the file. Upon iterating through the selection list this time, we see that

the mask object { text: ‘b’, index: 8} matches the edit’s text and index. This means that

the mask object in our selection list is pointing to this edit in the file history, and that a

masking operation needs to be performed. We generate a random character, in this case ‘z’

and replace the inserted text in the file resulting in an edit with insert text ‘z’ at position 8.

17

The mask object { text: ‘b’, index: ‘8’ } would then be removed from the selection and the

process would continue. The subsequent iterations may result in ‘e’ being masked with ‘q’,

‘l’ being masked with ‘r’, ‘a’ being masked with ‘w’, and ‘C’ being masked with ‘m’. Now,

the selected occurrence of the word “Caleb” in the file history would be masked, the final

program would read “ print(‘mwrqz’) ”, and the edit table would look like the following:

Insert Text Delete Text Index Edit Type

a 0 insert

= 1 insert

(2 insert

‘ 3 insert

m 4 insert

w 5 insert

r 6 insert

q 7 insert

z 8 insert

’ 9 insert

) 10 insert

a= 0 delete

print 0 insert

Table 3.3: Small Program Edit History After Mask

It is important to note that this algorithm is still in its infancy and is not intended to

serve as a polished solution to the selection based masking problem. It is included here to

demonstrate the work I completed on the masking problem and to help illustrate the need

for a delete operation that functions differently from the “Simple Rewrite Method”. An

ideal, selection based, masking algorithm would not only cloak characters at their insertion

point, but also their deletion point, if one exists. While the following algorithm fails to do

the latter, it would not be difficult to extend in order to accomplish this. Another of the

algorithm’s primary deficiencies happens when multi-character inserts contain the text that

needs to be masked. In such cases, the algorithm fails to find the character that needs to

be masked, as it does not iterate through inserted strings to perform character by character

operations, rather, it considers inserts and deletes holistically. This is to say, that, for

18

example, if a single insert generated by a paste event contained the text “My university id

is: abc123”, and a user decided to mask “abc123”, the algorithm would fail to mask it. If

a user were to paste “My university id is: ” and then proceed to type ‘a’, ‘b’, ‘c’, ‘1’, ‘2’,

and ‘3’, the algorithm would successfully detect and mask the identifying information. The

algorithm would simply need to iterate over each character in the insert and delete text,

treating them as individual edits with single character text fields and unique indices, in order

to be able to mask text that appears inside of paste events. Further work and discussion

on the masking problem lies outside of the purview of this research, but it is important to

note that if the suggested changes to the masking algorithm were implemented, the simple

rewrite method would disrupt the masking functionality when used to delete a section of

file history. The reason for this lies in how the enhanced masking algorithm, with the

functionality of masking specific characters in multi-character inserts, finds the characters

that it needs to mask. Take, for example, a program that looks like the following:

print(‘Caleb’)

print(10)

A subsection of its history may look like:

If a student decided to delete the history of edits that were recorded when they typed

out “ print(10) ”, the file history would be updated to look like the following:

If a data sanitizer were to mask the occurrence of the word “Caleb” that appears in

the final file, only the final line would be changed, producing the following history:

Note that only the final line of the edit history is altered. The word “Caleb” still appears

in the file history and has only been masked up to the point that the delete operation took

place. This means an individual masking data would have to mask the instance of “Caleb”

both before and after the delete event to ensure that all instances of the word would be

masked. Not only is this tedious, but also error prone, as a masker may fail to notice that a

delete event occurred in a student’s history, and thus fail to mask the file correctly. In order

to counteract this, I developed the “smart delete” algorithm, which takes a more granular

and manual approach to editing the file history.

19

Insert Text Delete Text Index Edit Type

...

C 7 insert

a 8 insert

l 9 insert

e 10 insert

b 11 insert

’ 12 insert

) 13 insert

\n 14 insert

p 15 insert

r 16 insert

i 17 insert

n 18 insert

t 19 insert

...

Table 3.4: Simple Program Edit History

Insert Text Delete Text Index Edit Type

...

C 7 insert

a 8 insert

l 9 insert

e 10 insert

b 11 insert

’ 12 insert

) 13 insert

print(‘Caleb’)\nprint(10) print(‘Caleb’) 0 synthesized

Table 3.5: Simple Program Edit History After Deletion

The smart delete algorithm functions by comparing the history of a file at the two states

between which a student wants to perform a delete operation. The algorithm performs a

string comparison and determines the minimum number of single character edits required

to get from the starting state of the file to the ending state. Taking less than or equal to the

same number of edits that a user took to produce the same file history is important because

using more edits would result in a state where the subsequent edits in the database need to

be reindexed. This is time consuming and would require the application to stop the user

from continuing to make edits. Thus, the single character edits are then compressed into

20

Insert Text Delete Text Index Edit Type

...

C 7 insert

a 8 insert

l 9 insert

e 10 insert

b 11 insert

’ 12 insert

) 13 insert

print(‘xdfge’)\nprint(10) print(‘Caleb’) 0 synthesized

Table 3.6: Simple Program Edit History After Deletion

the longest possible multi-character edits to ensure that the total number of synthesized

edits is equal to or less than the number of edits originally taken to produce the second file

state from the first. In exceedingly rare situations, the smart delete algorithm may fail to

produce a list of edits that is the same length or shorter than the original set of edits. This

will be discussed after the algorithm’s definition.

The primary “Smart Delete” algorithm has requires the definition of two other algo-

rithms, an slightly altered version of the longest common subsequence algorithm, which

will be shortened to LCS, and another algorithm that has been deemed the “Build Edit

List” algorithm, which forms a list of single character edits from the table produced by the

LCS algorithm. Finally, the “Smart Delete” method is responsible for calling the LCS and

Build Edit List algorithms and then compressing and reindexing the list of edits produced

by Build Edit List into multi-character edits. The algorithm definitions are as follows:

21

function LCS(str1, str2)

Create the table lcsTable to store the LCS.

for i← 1 to length(str1) do

for j ← 1 to length(str2) do

if str1[i− 1] = str2[j − 1] then

lcsTable[i][j]← lcsTable[i− 1][j − 1] + 1

else

lcsTable[i][j]← max(lcsTable[i− 1][j], lcsTable[i][j − 1])

end if

end for

end for

lcsLength← lcsTable[length(str1)][length(str2)]

lcs← an empty list

i← length(str1), j ← length(str2)

while i > 0 and j > 0 do

if str1[i− 1] = str2[j − 1] then

Append str1[i− 1] to lcs

i← i− 1

j ← j − 1

else if lcsTable[i− 1][j] > lcsTable[i][j − 1] then

i← i− 1

else

j ← j − 1

end if

end while

Reverse lcs to get the correct order.

return lcs

end function

22

function BuildEditList(str1, str2, lcs)

editList← empty list

i← 0

j ← 0

for k in 0 to lcs.length - 1 do

while i < str1.length and str1[i] ̸= lcs[k] do

editList.add(TempEditFromDelete(i, deleteText = str1[i].toString()))

i← i+ 1

end while

while j < str2.length and str2[j] ̸= lcs[k] do

editList.add(TempEditFromDelete(j, insertText = str2[j].toString()))

j ← j + 1

end while

i← i+ 1

j ← j + 1

end for

while i < str1.length do

editList.add(TempEditFromDelete(i, deleteText = str1[i].toString()))

i← i+ 1

end while

while j < str2.length do

editList.add(TempEditFromDelete(j, insertText = str2[j].toString()))

j ← j + 1

end while

return editList

end function

23

For the definition of “Smart Delete”, “it” will stand for insert text, “dt” will stand for delete

text, and “sl” will stand for source location

function SmartDelete(str1, str2)

originalEdits← LCS(str1, str2)

editList← BuildEditList(str1, str2, originalEdits)

offset← empty map

i← 0

prevEdit← null

currentEdit← editList[0]

while true do

totalOffset← 0

for (offsetKey, offsetValue) in offset do

if offsetKey ≤ currentEdit.sl then

totalOffset← totalOffset+ offsetValue

end if

end for

if currentEdit.dt ̸= null then

currentEdit.sl← currentEdit.sl+ totalOffset

end if

if !offset.containsKey(currentEdit.sl) then

offset[currentEdit.sl]← 0

end if

if currentEdit.it ̸= null then

offset[currentEdit.sl]← offset[currentEdit.sl] + 1

else

offset[currentEdit.sl]← offset[currentEdit.sl]− 1

end if

if i ̸= 0 then

24

if prevEdit.it = null and currentEdit.it = null then

if prevEdit.sl = currentEdit.sl then

prevEdit.dt← prevEdit.dt+ currentEdit.dt

editList.remove(currentEdit)

currentEdit← prevEdit

i← i− 1

end if

else

if prevEdit.it ̸= null and currentEdit.it ̸= null then

if prevEdit.sl + length(prevEdit.it) = currentEdit.sl then

prevEdit.it← prevEdit.it+ currentEdit.it

editList.remove(currentEdit)

currentEdit← prevEdit

i← i− 1

end if

end if

end if

end if

i← i+ 1

if i < length(editList) then

prevEdit← currentEdit

currentEdit← editList[i]

else

break

end if

end while

return editList

end function

25

The practical implementation of these algorithms has a final step in which there is a

check to ensure that the number of edits created by the smart delete algorithm does not

exceed the number of edits taken to get from a starting file state to a final file state. In

the rare case that the smart delete algorithm proposes a list of edits that is longer than the

existing list of edits, the ShowYourWork plugin defaults to using the simple rewrite method.

Using a combination of the smart delete and simple rewrite methods helps to mitigate the

negative effects that simple rewrite has when it comes to masking while ensuring that

student code is not lost in a delete operation.

Now that I have defined the algorithms, I will proceed to demonstrate some concrete

examples of the algorithm in process by showing what the output values for each step of

the algorithm would be:

1. Simple insert changes.

To demonstrate this, suppose that a student wants to delete all edits from the file

history that take the file from its starting state of:

print("Hello")

To the ending state:

print("Hello world")

This change could have been produced in a number of ways including the student

typing ‘ ’, ‘w’, ‘o’, ‘r’, ‘l’, ‘d’ character by character, or simply as a result of the

student pasting the text “ world”. Upon running the smart delete algorithm, we

would see first that the output of the LCS function would be the array of characters

that make up the shared text between the two file states.

[‘p’, ‘r’, ‘i’, ‘n’, ‘t’, ‘(’, ‘"’, ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘"’, ‘)’]

26

Next, the “build edit list” portion of the algorithm would run taking the longest

common subsequence produced by the LCS function and the two file states as inputs.

This portion of the algorithm would yield the initial list of single character edits that

would be required to get from the starting file snapshot to the final file snapshot. The

output of “build edit list” in this case is the following list of edits:

[

{index: 12, insert: ‘ ’},{index: 13, insert: ‘w’},

{index: 14, insert: ‘o’},{index: 15, insert: ‘r’},

{index: 16, insert: ‘l’},{index: 17, insert: ‘d’}

]

This list is now fed to the rest of the “smart delete” algorithm in order to produce a

list of condensed edits by finding subsequent insertions and deletions and combining

them into single edits when possible. The final result of the entire process, in this

case, would the single edit:

[{index: 12, insert: ‘ world’},]

The algorithm recognized that a space being inserted at index 12 directly followed by

a ’w’ inserted at index thirteen could be combined into a single, multi-character insert

starting at index 12. It proceeds to do this with the remaining edits produced by

“build edit list” until the smallest possible list of edits that can resolve the differences

between the starting file snapshot and the ending file snapshot has been formed.

2. Simple delete changes.

For this series of edits, suppose that a student wants to delete all edits from the file

history that take the file from its starting state of:

a = 5

27

print(a)

To the ending state:

a = 5

As we have already established the manner through which the algorithm functions,

we will simply show what the output of each step would be. First, the LCS function

would produce the following array of characters:

[‘a’, ‘ ’, ‘=’, ‘ ’, ‘5’]

Next, the “build edit list” function would create the list of single character edits.

[

{index: 5, delete: ‘\n’},{index: 6, delete: ‘p’},

{index: 7, delete: ‘r’},{index: 8, delete: ‘i’},

{index: 9, delete: ‘n’},{index: 10, delete: ‘t’},

{index: 11, delete: ‘(’},{index: 12, delete: ‘a’},

{index: 13, delete: ‘)’}

]

Finally, the “smart delete” algorithm would finish the process by combining these

edits into multi-character changes:

[{index: 5, delete: ‘print(a)’}]

28

3. Complex insert and delete changes.

This would be the most common use case of the delete functionality within the

ShowYourWork plugin, and also the most difficult. This use case helps demonstrate

the process of combining sequential single character edits of the same type into single

multi-character edits more clearly. We begin with the program:

print(‘My name is Caleb’)

And we will end with the program:

print(‘His name isn’t Caleb’)

The LCS portion of the algorithm would produce the following list:

[

‘p’, ‘r’, ‘i’, ‘n’, ‘t’, ‘(’, ‘’", ‘ ’, ‘n’, ‘a’, ‘m’, ‘e’, ‘ ’,

‘i’, ‘s’, ‘ ’, ‘C’, ‘a’, ‘l’, ‘e’, ‘b’, ‘’", ‘)’

]

This list would then be fed to “build edit list”, which gives use the following list of

edits:

[

{index: 7, delete: ‘M’},{index: 8, delete: ‘y’},

{index: 7, insert: ‘H’},{index: 8, insert: ‘i’},

{index: 9, insert: ‘s’},{index: 18, insert: ‘n’},

{index: 19, insert: ‘’’},{index: 20, insert: ‘t’}

]

29

Finally, these edits would be combined into larger edits by the “smart delete” algo-

rithm producing the final list of edits:

[

{index: 7, delete: ‘My’},{index: 7, insert: ‘His’},

{index: 18, insert: ‘n’t’},

]

This case helps to illustrate that by combining sequential single character edits into

multi-character edits, we are able to create the smallest series of edits to get from the

starting file snapshot to the ending file snapshot without simply deleting all of the text

and pasting in the new file contents. Note that the final edits need to be performed

sequentially, just like a file history produced by manually typing and deleting code.

This is to say that the indices of subsequent operations in the list of edits depend on

the edits prior to them being performed. The final insert happens at index 18, but

the text ‘n’t’ would need to be inserted at index 17 if performed first. The final list

of edits shows 18 as the index for this insertion, because the insertion of ‘His’ has

added an additional character to the string proceeding the location of the final insert.

To reiterate, the idea behind this algorithm was to allow the program to resolve the

changes between two file snapshots using the smallest possible number of organic changes,

with organic meaning simple inserts and deletes, such as the ones students may produce.

While this algorithm performs flawlessly in almost every situation, I have identified a single

instance in which it fails to make the edits in the simplest way possible. Thus, the catch

to verify that the algorithms edits can fit in the index of the edits of the first file snapshot

and the index of the edits of the final file snapshot is necessary. This is not to say that

there are not more instances where the algorithm fails to perform as expected, only that

this is an instance of which I am aware. In the following case, it would be possible for the

student to produce a list of edits shorter than that created by the “smart delete” algorithm.

30

I will begin by providing a concrete example, and then I will seek to generalize. Take the

following to be the starting file snapshot:

‘# ABCD CDEF GHIJ’

The final snapshot is:

‘# CDEF GHIJ’

To the casual observer, it is simple to see that the quickest possible way to get from the

first file state to the second, is simply to delete ‘ABCD ’, resulting in only a single edit

being written to the database. However, in this case, the final output of the algorithm is

the following:

[{index: 2, delete: ’AB’},{index: 4, delete: ’ CD’},]

The algorithm first deletes the characters ‘AB’, resulting in the string ‘ CD CDEF GHIJ’,

it then proceeds to delete the space and the ‘CD’ that is adjacent to ‘EF’, allowing the

first appearance of ‘CD’ to remain. To generalize, the algorithm produces an extra edit

any time a portion of string is deleted that terminates with the starting portion of the next

string. Other examples of this would be:

1. ‘XYZ YZA RST’ to ‘YZA RST’

2. ‘Caleb leb’ to ‘leb’

3. ‘print int’ to ‘int’

Given the data on how students have chosen to utilize the delete tool, which I will discuss

later on, I find this instance to be somewhat of a nonissue. It would be highly unlikely that a

student would write code following the shortest possible route to produce a given program.

Students typically delete large swaths of changes, many of which would contain multiple

deletions and insertions that could happen in a smaller, more compressed fashion. This is a

result of students typically writing code character by character, and not pasting complete

portions of text into their program. This means that many sequential single character edits

31

would be taking place between almost any two file snapshots, resulting in a larger set of

indices to work with in the database. While it is improbable that students would produce

such a program and then delete the file history between two snapshots that would result

in the aforementioned issue to take place, it is not impossible. For this reason, I preserved

the simple rewrite method in the code of ShowYourWork and employ it any time that the

smart delete algorithm fails to produce a small enough list of edits to fit within the space

provided by the delete.

Now, having defined the manner in which the delete feature functions, it is of worth

to mention that allowing users to delete their file history, much, if not all of the keystroke

data we wish to collect is at risk. If a student decides to delete all of their history on every

assignment, we have one less piece of data that could be used to analyze student coding

patterns. In addition to this, one of the purposes of ShowYourWork is to serve as a deterrent

for cheating and as a method to detect plagiarism; allowing users to delete any record of

their wrongdoings may render the plugin ineffectual. That being said, we did not see abuse

of the “Delete History” feature in this study, nor did most of the students report that they

even used it at all.

3.4 Check for Plagiarism

The second change of note to the show your work plugin is the addition of a “Check for

Plagiarism” button that students may use at any time to analyze their code. The “Check

for Plagiarism” button is a utility to help students preemptively speak with an instructor if

they have made changes to their file that may seem incriminating and explain the manner in

which they approached the assignment. A student can receive two responses upon clicking

on the “Check for Plagiarism” button:

1. “There are no concerns in your edit history!”, if the plugin does not find evidence of

plagiarism.

2. “There are one or more concerns in your edit history. We recommend that you meet

with the instructor.”, if the plugin finds evidence of plagiarism.

32

In either case, I have added “Note: This tool is not perfect and should not be used as

definitive proof.” to the end of the message. I added this footnote in order to assuage

students fears in the case that they have not plagiarized, but the plugin detects evidence

that they have. This also serves as a reminder, to any instructors that open up student file

history using the plugin, that our methods for detecting plagiarism are fallible. There are

two main methods through which we determine if evidence of plagiarism is present.

The first method is to analyze the student’s file history for any “large paste” events.

Any paste that incorporates the newline character is considered to be a “large paste”. The

algorithm that performs this operation searches through the file history in reverse order

until it comes across a large paste event. Upon finding a large paste event, the algorithm

looks through all cut operations prior to that event to see if the source of the pasted text is

the file itself. If there are any cut operations in the file history prior to the large paste event

that have matching text, the event is considered a nonissue and is not counted as evidence of

plagiarism. If no cut operations are found, the algorithm uses all previous edits to build the

file up until the point at which the paste event was detected. Then, the algorithm proceeds

to reverse the edits performed to the file and at each iteration of the file, the algorithm looks

for text matching the large paste event. This is done in order to detect text that may have

been copied from the file itself, but not removed like in the case of a cut operation. Because

copied text may have been written over the course of many keystrokes, it is important that

the algorithm checks each file state prior to the paste event. If text matching the paste event

is found at a previous point in the file, the large paste event is not counted as evidence of

plagiarism. However, if there is no such text in the file history, this means that the text

in the paste event originated from an external source. This could come from a myriad of

sources that would not be plagiarism, such as another IDE that a student prefers to use, an

assignment description, or another document written by the student. However, this could

also be text that was found on a website, generated by a language model, or copied from

another student. As there is no way to determine the origin of the text without invading

student privacy and students are expected to write all of their own code, the large paste

33

event is deemed as evidence of plagiarism. This, of course reiterates the importance of the

note displayed to the user stating that the “Check for Plagiarism” tool is not perfect.

The second manner through which the plugin detects plagiarism is by looking at the

proportion of keystrokes that resulted in text being inserted and text being deleted. A

recent analysis of keystroke data performed by the EdwardsLab yielded the information

that “58% of characters entered into a source code file are eventually deleted” [11]. Because

the proportion of deletions to insertions is so high, a check on this proportion has been

added. If less than 10 percent of recorded operations are deletions, the plugin determines

that the file history contains evidence of plagiarism. There is a threshold, however, of 200

keystrokes, meaning that regardless of the proportion of insertions to deletions, if a file

contains less than 200 keystrokes, this manner of detecting plagiarism is not used. I added

this check to counteract the students who recognize that large paste events are flagged as

evidence of plagiarism and begin typing out, character by character, work that they did not

produce. Students who are copying information from another source rather than producing

it themselves will have a much lower ration of deletions to insertions in their file history.

The algorithm is defined on the following page. Once again, “deleteText” has been

shortened to “dt”, “insertText” to “it”, “editType” to “et”, and “sourceLocation” has been

shortened to “sl”.

34

function fileContainsEvidenceOfCheating

numInserts← 0

numDeletes← 0

hasEvidence← false

for (index, edit) in edits do

if edit.it ̸= null then

if edit.it.contains(“\n”) and edit.it ̸= “\n” and edit.et ̸= “Synthesized” then

prevEdits← edits with a smaller timestamp than edit

possibleCuts← prevEdits with non-empty deleteText

pasteCount← 0

for possibleCut in possibleCuts do

if possibleCut.dt ̸= edit.it then

pasteCount← pasteCount+ 1

end if

end for

state← snapshot of file at index

copyCount← 0

if not state.contains(edit.it) then

for e in prevEdits.reversed() do

if e.dt ̸= “” then

stateSub← state.substr(0, e.sl)

state← stateSub+ e.dt+ state.substr(e.sl)

end if

if e.it ̸= “” then

state← state.substr(0, e.sl) + state.substr(e.sl + e.it.length)

end if

if not state.contains(edit.it) then

copyCount← copyCount+ 1

35

end if

end for

end if

if pasteCount = possibleCuts.size and copyCount = prevEdits.size then

hasEvidence← true

break

end if

end if

if edit.it ̸= “” then

numInserts← numInserts+ 1

end if

end if

if edit.dt ̸= “” then

numDeletes← numDeletes+ 1

end if

end for

if numDeletes/(numDeletes+ numInserts) < 0.1 and edits.size ≥ 200 then

hasEvidence← true

end if

if hasEvidence then

Show the “Evidence found” message

else

Show the “No evidence found” message

end if

Show the “This tool is not perfect” message

end function

36

Although I discuss student perception of the tool in a following section, it is important

to note here that this algorithm has one, simple, defining assumption. In order for this

algorithm to work, we assume that the students taking the introductory Computer Science

course at Utah State University are not provided with source code from their instructor.

Given the stringent definition of plagiarism in this course, that each student must entirely

write their own code, getting nothing from external sources, I neglected to take into account

that for many assignments, instructors would provide their students with starter code.

Because of this, if students used the starter code provided by the instructor, their work

would be marked as having evidence of plagiarism, as a large paste event to create the

starter code would be the first edit in every file history. I regret to say that my failure

to account for this may have impacted the survey results and students’ sentiments toward

the ShowYourWork plugin this semester. This tool should only be employed, as is, in

environments where students will write the entirety of their code. Simple modifications to

the algorithm should allow for situations in which starter code is provided.

3.5 Survey

The administered survey for this research is an expanded version of the survey admin-

istered by Hart et al. [1]. The original survey was designed to collect student opinions about

the ShowYourWork plugin and a few pieces of demographic information. As the purpose

of the plugin has not changed, rather only new features have been added to enhance user

privacy, it is appropriate to administer the same survey. The survey was administered over

Qualtrics, the same avenue through which it was administered previously. I added the

following questions regarding the delete history and check for plagiarism utilities:

• I think the delete history tool enables students to cheat more easily [strongly disagree

to strongly agree]

• I felt more comfortable with my keystrokes being logged knowing that I could, at any

time, delete my history. [strongly disagree to strongly agree]

37

• I used the delete history tool on the ShowYourWork Plugin [yes/no]

If yes:

– I used the ShowYourWork delete history feature:

∗ 0 times

∗ 1-3 times

∗ 4-10 times

∗ More than 10 times

– The ShowYourWork delete history feature was useful. [strongly disagree to

strongly agree]

– Why did you use the delete feature? [optional question, textbox]

• Please share any additional thoughts or insights you have about the delete history

feature. [textbox]

• I used the check for plagiarism tool on the ShowYourWork Plugin [yes/no]

If yes:

– I used the ShowYourWork check for plagiarism feature:

∗ 0 times

∗ 1-3 times

∗ 4-10 times

∗ More than 10 times

– The ShowYourWork check for plagiarism feature was useful. [strongly-disagree

to strongly agree]

– The ShowYourWork check for plagiarism feature gave me a better understanding

of what plagiarism looks like [strongly disagree to strongly agree]

– Do you feel like the ShowYourWork check for plagiarism feature accurately as-

sessed your work? [yes/no]

38

∗ Please explain: [textbox]

• Please share any additional thoughts or insights you have about the “check for pla-

giarism” feature.

In order to avoid priming the subjects by asking their feelings towards the new fea-

tures of ShowYourWork before they submit their answers for the other survey questions, I

administered the survey as it was administered the first time. Upon completing the original

survey, the subject advances to a new section of the survey, from which they cannot return

to their answers in the original survey. The new section is comprised of the questions that

pertain to the new tools. In cooperation with course instructors, I offered fifteen points of

extra credit to any student who participated. We provided an alternative route to secure the

extra credit points to students who decided not to participate in the survey. The complete

survey can be found in appendix A.

3.6 Coding

After I administered survey, I created a code book for the open ended questions. The

following list contains each question along with the associated codes:

1. Please share any additional thoughts you have about the ShowYourWork plugin.

• Not useful

• Buggy

• Useful/good idea

• Encouraged original work

• Did not know about it/Did not understand how to use it

• Forgot about it

• Worried about plagiarism

2. Why did you use the delete feature?

• Did not use it

39

• Restore old code

• Remove code

• Just to test it out

3. Please share any additional thoughts or insights you have about the delete history

feature.

• Hard to use

• Did not know about it

• Defeats the purpose

• Like knowing that it is there

4. (In relation to the preceding question, “Do you feel like the ShowYourWork check for

plagiarism feature accurately assessed your work?”) Please explain

• Worked Ok

• False Positive

• Did not know about it/did not use it

5. Please share any additional thoughts or insights you have about the check for plagia-

rism feature.

• Useful/Good Idea

• Did not work/Bad execution

• Did not know about it/did not use it

I created the codebook by analyzing the first ten responses to each question. After I

finished the codebook, two separate individuals from the EdwardsLab coded every response

to each of the five free response questions. Once all questions were coded, the codes were

compared using Cohen’s kappa to determine inter-rater reliability [12]. The following table

shows the Cohen’s kappa value for each question:

40

Question kappa

Please share any additional thoughts you have about
the ShowYourWork plugin.

0.7935

Why did you use the delete feature? 0.9556

Please share any additional thoughts or insights you
have about the delete history feature.

0.7365

(In relation to the preceding question, “Do you feel
like the ShowYourWork check for plagiarism feature
accurately assessed your work?”) Please explain

0.8746

Please share any additional thoughts or insights you
have about the check for plagiarism feature.

0.7496

Collectively Assessed 0.8285

Table 3.7: Kappa values determined from coding results for each question. The final score
reflects an aggregate Cohen’s kappa value where all questions are evaluated together.

As each Cohen’s kappa value demonstrated at least a substantial strength of agreement,

with some even reaching almost perfect agreement, we determined to move forward and

analyze the data with the codes assigned by the researchers [13].

CHAPTER 4

OUTCOMES AND ANALYSIS

4.1 Introduction

This section seeks to provide an overview and analysis of the collected data. I will

begin by reviewing the background of the students from the survey administered for this

paper and drawing comparisons between these students and the ones who participated in

the research previously performed by Hart et al. [1]. I will continue by reviewing the survey

responses that discuss the delete history and check for plagiarism features. Finally, I will

look at the students’ perception of the ShowYourWork plugin as a whole.

4.2 Survey Results

The purpose of the addition of the delete history and check for plagiarism tools was

to protect user privacy and enhance their experience. Although we did not expect that

a substantial proportion of the subjects would use the delete history functionality, we did

expect that its presence in the tool will decrease the proportion of students who feel uncom-

fortable with keystroke logging. We also anticipated that the proportion of students who

believe that ShowYourWork will deter plagiarism will decrease, due to this functionality. In

addition to this, we expected that students would respond with “agree” or “strongly agree”

to the question “I think the delete history tool enables students to cheat more easily”.

As there has not been any instances of students receiving immediate feedback concern-

ing whether their file history contains evidence of plagiarism or not, we had little expecta-

tions for the results of the section of the survey concerning the check for plagiarism tool.

This portion of our research was exploratory and is anticipated to lead to new avenues of

research. We hope to take the results of the check for plagiarism section to enhance the

algorithms that are being used to detect cheating and tune them to student’s needs and

42

data.

We will analyze the questions in the following order:

1. Questions pertaining to a student’s background.

2. Questions pertaining to the Delete History feature.

3. Questions pertaining to the Check for Plagiarism feature.

4. Questions pertaining to the ShowYourWork plugin as a whole.

Only the results of the first two sections will be compared to survey results from a previous

semester (Spring 2022), as the final two sections were new to this semester’s survey.

4.2.1 Student Background

In the student background section of the survey, I highlight a few questions. In figure

4.1, we can see that the distribution of experience for incoming students was largely similar

to that of the previous year.

Fig. 4.1: How much computer programming experience did you have before taking CS 1400?

43

This shows a level of consistency between the data points collected in 2022 and those

collected in this survey.

Fig. 4.2: How much computer programming experience did you have before taking CS 1400?

In figure 4.2, we do not see a large variation in student responses from year to year. While

this normally would not be very noteworthy, other than to help reinforce the previous year’s

data, it is interesting to see little or no change given the students’ responses to specific

questions later on in the survey. This graph indicates that student’s perceived personal

performance was unaffected by the changes made in the ShowYourWork plugin.

Another question of interest, in figure 4.3 deals with the duration of time that passed

before students forgot about the plugin.

44

Fig. 4.3: I forgot about the ShowYourWork plugin

The responses in figure 4.3 seem to indicate that more students forgot about the plugin

in the Fall 2023 semester than did in the Spring 2022 semester. While the data serves as

a strong indication that the new changes to the plugin were effective at decreasing anxiety,

this data may also be a result of many students reporting bugs with the plugin this semester.

It is possible that students simply gave up on using it and forgot about the plugin entirely

as a way to avoid dealing with the bugs. The bug issues may be a compelling source for

more students forgetting about the plugin, however the results of the question “I used the

ShowYourWork playback feature”, detailed in figure 4.4, help demonstrate that a larger

proportion of students interacted with the plugin in the Fall 2023 semester than in the

Spring 2022.

45

Fig. 4.4: I used the ShowYourWork playback feature

While the results that more students forgot about the plugin and more students interacted

with the plugin may seem counter intuitive, it indicates that students were able to interact

with the plugin to a degree that satisfied their curiosity, and then forget about it. The delete

history feature had the goal to decrease the anxiety that students felt about the plugin and

the keystroke logging process, and this data is an indication that this was the case.

4.2.2 Perception of the Delete History and Check for Plagiarism Features

The survey gave us a better understanding of how students feel about the delete history

feature. As previously stated, the entire second half of the survey was solely directed towards

these changes.

The first question that was given in this section of the survey was designed to determine

students’ feelings about cheating and the delete history feature. The results are shown in

figure 4.5.

46

Fig. 4.5: I think the delete history tool enables students to cheat more easily.

We can see that the results are fairly evenly distributed. There does not appear to be

a strong consensus among the students on this issue. Interestingly, the distribution of

responses to the question “I felt more comfortable with my keystrokes being logged knowing

that I could, at any time, delete my history” is almost identical to that of the previous

question.

47

Fig. 4.6: I felt more comfortable with my keystrokes being logged knowing that I could, at
any time, delete my history.

The number of people who used the delete history feature was very limited, and no one

reported using the delete history feature more than four times.

48

Fig. 4.7: I used the ShowYourWork delete history feature

We anticipated that the majority of students would not feel the need to use the feature

at all. We also anticipated that the delete history feature would act much like a placebo,

with the positive reactions to the feature mostly coming directly from the fact that it exists,

rather than a result of its use. This data does not reflect the true proportion of students who

would have used the feature, as many reported that they did not know about its existence.

When asked the reason behind using the delete feature, most of the students that used it

said they either used it to restore old code or to feel like they had a fresh start on a problem.

One student said, “I used it because I had started coding and decided to restart because I

felt I was going the wrong way. I didn’t want that first attempt to be shown.”

49

Fig. 4.8: Why did you use the delete feature?

Fig. 4.9: Please share any additional thoughts or insights you have about the delete history
feature.

50

Figure 4.9 shows the results to the open ended question, “Please share any additional

thoughts or insights you have about the delete history feature”. These results coincide with

what we have already established, students felt as though the delete history feature defeated

the purpose of the plugin. With comments like, “It was strange to include it”, “It could

probably make it easier to get away with cheating but I don’t know.”, and “I think it’s

useful to have but could kind of defeat the purpose of the program.”, it is clear to see that

students predominantly feel like the ShowYourWork plugin is designed to catch cheaters.

One of the positive responses under the “Like knowing that it’s there” section helps illustrate

that students recognize the delete history feature as a positive thing for privacy, while still

acknowledging that cheating would be an issue, “I like knowing that there is a possibility

to delete history in case I did get frustrated and keyboard smashed or wrote something I

didn’t mean. I can see how it could be used to cheat, but overall plagiarism can be caught

in other ways too”. To continue on the thought that privacy is important, another student

said, “I think it is good to have, because it allows for a little more privacy for when you a

make big mistake or something like that”. This helps demonstrate that, while the tool can

be used to remove evidence of plagiarism, students felt that it was important to be able to

remove evidence of messing up.

Moving into a discussion of the check for plagiarism feature, I reiterate that this tool

did not function as planned. This, however, has given us new insights into how this feature

might be implemented in the future, and also highlights the need to discuss how the checker

works with the students. Because of the stringent definition of plagiarism in the introductory

Computer Science course at Utah State University, which is “any code that was not written

by you is considered plagiarism”, I wrote the algorithm to detect any code that may not

have been written by the student. The obvious exception to this, of course, would be starter

code provided by the teachers themselves. I failed to consider that nearly all assignments

would contain one form of starter code or another, and thus the tool was rendered useless

at its intended purpose. All of this, however, is not to say that we did not learn from

the experience. In figure 4.10 we can see that nearly all students who used the check for

51

plagiarism feature reported that it gave false positives.

Fig. 4.10: (In relation to the preceding question, “Do you feel like the ShowYourWork check
for plagiarism feature accurately assessed your work?”) Please explain

The feedback on why the students felt that the checker was inaccurate is where the

valuable information resides. The following quote sums up the students’ overarching sen-

timent with brevity, “It is not always accurate and it is dangerous to accuse students of

plagiarism based on what a computer program says”. Many students reported that they felt

uncomfortable with the checker, not because it told them that they had evidence of plagia-

rism, but because it did not tell them what evidence it found. One student mentioned, “It

kept flagging me one the task 1 for assignment nine and for the life of me I couldn’t figure

out why or what it was flagging. It also flagged me on task three, but I wasn’t plagiarizing,

and I couldn’t think of a reason why it was flagging me. If it showed exactly what code was

being flagged or why, I think it would be a lot more useful.” Because the tool did not tell the

52

students what evidence it found, that left them to try and determine what it was checking

for on their own. Many students arrived at the correct conclusion, finding that the started

code was the source of the issue. However, a few students made comments indicating that

they believed their work was being compared to other students’ work in order to determine

possible sources of plagiarism. One student made the comment, “I never used it. However,

I think that in programming, that there are a lot of “right ways” to do certain things, and

so just because my code is the same as/similar to another code doesn’t necessarily indicate

plagiarism, but maybe there’s a way to do something that is better than any other way to

do it. But maybe I don’t understand the feature works or how it detects plagiarism.” This

response, and others like it help show that students believe that the plugin was making

extrinsic comparisons rather than simply performing an internal analysis of the code in the

file.

The tool may have been more well received if it had not only allowed for starter code,

but also if we had a chance to talk with the students about what the tool was doing.

An explanation, such as the following, may go a long way to help calm students fears

about this tool, “The check for plagiarism tool only looks at the file you are currently

editing, and will not compare your work to other peoples work. Beyond this, the check for

plagiarism tool does not consider any signs of deleted history as evidence when looking for

plagiarism. Finally, the tool allows you to use code that you have written within the file

itself. Meaning that if you wrote code on one line and copied it to the next, it will not count

that as plagiarism.” It is important to note that the explanation above mostly outlines

what the tool does not do, rather than delving into how the tool checks for plagiarism.

This was intentional but may not be the only way to go about informing the students

of this tool. We may see benefit in telling the students exactly what the tool is looking

for, which was large paste events not originating from the source code, and a proportion

of insertions to deletions. As stated in the previous works section, many students simply

do not understand what plagiarism looks like and do not cheat knowingly [5]. Providing

students with an instantaneous way of knowing whether what they did was right or wrong

53

could help prevent cases of plagiarism of this nature. In addition to an explanation of what

the tool is doing, it would also be beneficial, for the reasons listed above, to highlight what

the checker considered to be “evidence”. While this tool failed to complete the purpose we

had intended in this round of research, I recognize that were able to better understand how

students think because of it.

4.2.3 Perception of the ShowYourWork Plugin

The coded responses to the question “Please share any additional thoughts you have

about the ShowYourWork plugin” help to establish general trends in the perception of

the ShowYourWork plugin. Figure 4.11 shows the coded responses and the proportion of

responses that fell into each category.

Fig. 4.11: Please share any additional thoughts you have about the ShowYourWork plugin.

54

The most commonly cited topic in the responses to this question was that the plugin was

“buggy”. Through the course of this semester the plugin had to undergo substantial changes

that enhanced performance and made the plugin easier to use. Many of these changes

were forced to be released because the CS1400 classes elected to use the newest version of

PyCharm, which made significant changes to how plugins were developed. For a significant

portion of the semester, students who chose to use the plugins features had to deal with

issues such as PyCharm crashing while using the plugin, long load times for file history, and

file histories that did not reflect what students had written. Fixes for all of these issues are

now finalized and the majority of the bugs have been resolved. We hope that in gathering

future data we can avoid the problems we experienced this year by encouraging the classes

to use a version of PyCharm that supports the plugin.

Despite this, we were still able to get some wonderful feedback from students this

semester. As noted in the graph, many students felt like the plugin was a good idea and

that it helped to encourage original work with one student saying, “The plugin was very

useful while learning to code, especially when small mistakes are made often. The replay

feature was very helpful for me. I believe that it is a necessary requirement in order to

ensure original work”. Not all of the useful feedback was positive though. For example, one

student said, “Honestly I am sometimes insecure when coding because I don’t want it to

seem like I am dumb when I have to retry a code multiple times(I’m also not a cs major or

anything I took this class for fun). Show Your Work plug-in just made it a little scarier to

mess up even if it showed progress and learning”. Responses like this demonstrate a perfect

use case for the delete history feature and one of the reasons that I chose to implement it.

It was disheartening to see that many students, such as the one above, did not know about

the delete history feature and many students reported not understanding how the plugin

worked. Many of the responses to the free response questions mirrored the sentiment shared

in this student’s answer, “I did not know that there were features that I could have used and

wished that I knew that before now.” The fact that students simply didn’t understand how

to use the plugin surprised me, as I created an instructional video that detailed how to use

55

the features that the plugin offered. The instructors of the class also introduced the plugin

and discussed its use throughout the semester. In order to combat this problem, a more

comprehensive version of the instructional video should be made and and a greater effort to

discuss the plugins uses needs to be put forward. While the instructors are not responsible

for the plugin, nor should they feel obligated to discuss it in class, their help moving forward

will be instrumental in enabling the students to use the tools that we provide for them. It

would be beneficial to add a portion to the CS1400 syllabus that discusses the use of the

plugin and references places that students can go to learn more about how to use it.

As expected, less students reported feeling as though they would be caught if they

plagiarized in the Fall 2023 semester than in the Spring 2022 semester. In figure 4.12, we

see a massive drop in students who responded with “Strongly agree” to the question “I

believe that I would get caught if I plagiarized in CS 1400.”

Fig. 4.12: I believe that I would get caught if I plagiarized in CS 1400.

There can be multiple sources for this decrease. The addition of the delete history tool would

56

be one contributing factor, with another possible contributor to this being the advent and

rise of large language models. With more tools to facilitate cheating, it is likely that students

feel more capable of getting away with plagiarism than ever before, and this is shown figure

4.12. Beyond this, students seem to have less confidence in their instructors abilities to

detect plagiarism as well. In figure 4.13 we can see that the confidence that students have

in their instructor’s ability to detect plagiarism has also decreased.

Fig. 4.13: The CS 1400 instructor is capable of finding cases of plagiarism.

These results were expected and deemed an appropriate sacrifice in order to help students

feel more comfortable with the ShowYourWork plugin and the concept of keystroke log-

ging. Despite these changes, students still overwhelmingly report that they believe that the

ShowYourWork plugin helps instructors identify plagiarism more easily. This is shown in

figure 4.14.

57

Fig. 4.14: The ShowYourWork plugin that logs keystrokes would make it easier for the CS
1400 instructor to find cases of plagiarism.

Fig. 4.15: I think the ShowYourWork plugin was a good idea.

58

The final survey question that I address in this section is shown above in figure 4.15.

The results of the Fall 2023 survey show that less students thought the plugin was a good

idea than in Spring 2022. While this is true, it illustrates what I consider to be the most

important discovery of this survey. Students think that the addition of the delete history

feature decreased the effectiveness of ShowYourWork plugin as a method to deter and catch

instances of plagiarism. This is correct, however, the effectiveness of the plugin as a whole

has been increased. The sole purpose of the ShowYourWork plugin is not just to deter and

prevent plagiarism. While this is important, the primary purpose of the plugin is to increase

the quality of instruction at our university and enhance student experience. This is all to

be done without overstepping and invading the students’ right to privacy. We recognized

that students felt that the plugin was too invasive, and we responded by implementing the

changes outlined in this paper. Now the students report in larger numbers that the plugin

is not effective in accomplishing its purpose. This is simply because the students’ exposure

to the plugin is one dimensional. It is introduced as a tool to stop plagiarism, and that is

all they think of it.

Responses like to survey questions such as “I think that it works but at the end of the

day it can be turned off. If someone is really dedicated to cheating they could always write

up the code then rewrite it in the editor to make it look like it was done from scratch”

help demonstrate that the students understanding of the plugin only extends to plagiarism

detection. What needs to change, as a result of these findings, is how we present the plugin

to students. As students come to understand the purpose of the plugin in its entirety,

plagiarism detection and data collection, together, we expect that their perception of the

plugin will improve. The driving force behind ShowYourWork is a desire to help students

learn better, and that is what students need to understand in order to appreciate keystroke

logging and in order to clarify why we are willing to add a tool that seemingly helps cover

up plagiarism.

CHAPTER 5

DISCUSSION AND FURTHER RESEARCH

5.1 Threats to Validity

We recognize that our sample population is extremely limited in scope. The conclu-

sions about student attitudes towards plagiarism will be, in large part, limited to students

attending Utah State University. Beyond this, there are a number of factors that may influ-

ence students’ feelings towards the ShowYourWork plugin this semester. One of the most

prominent examples of this is that the two sections of Utah State University’s introductory

Computer Science course did not follow the same lesson plans and assignment structures.

One class followed the structure that was used in the semesters in which the survey was

previously administered, and one did not. In addition to this, the class that did not follow

the previous structure did not use the PyCharm IDE and ShowYourWork plugin for half of

the semester, opting to use another IDE instead.

Perhaps the most disappointing portion of this research is the failure of the check for

plagiarism utility. Closely behind this was the constant stream of bug reports that needed to

be addressed during the semester, resulting in frequent changes and updates to the plugin.

It is hard to know if students’ overall perception of the plugin has truly dropped because

of the changes that we have implemented this semester, or simply because they could not

get the program to run on their machine.

5.2 Further Research

While there is much work that still needs to be done as far as the ShowYourWork

plugin is concerned, the EdwardsLab has worked diligently to ensure that the next release

of the ShowYourWork plugin is stable and bug free. Repeating this survey in a subsequent

semester would be wise in order to validate the findings shown in this paper. This would

60

help to mitigate the effects that bugs have on the overall perception of the show your work

plugin and provide cleaner data and insights into students’ feelings about the delete history

and check for plagiarism features.

In addition to this, the check for plagiarism feature has many areas for improvement

and retesting. The algorithms used to check for plagiarism in the students’ code should

be revisited and tested for effectiveness on a previously collected student dataset before

being put to use on actual students again. These changes and studies would require a

significant amount of work and could be treated as the entire subject for a follow up paper.

After achieving accuracy in plagiarism detection within a real student dataset, it would

be good to update the tool to highlight the reasons that it flagged a student for evidence

of plagiarism. It would be interesting to keep track of these occurrences and look at the

frequency with which evidence of plagiarism is reported and how often the delete history is

used in conjunction with that report.

Finally, the most pertinent change to the ShowYourWork plugin is not an implementa-

tion detail, rather, a presentation detail. As previously stated, we need to do a better job of

explaining the purpose of this plugin to the students here at Utah State University. It would

be interesting to compare perceptions of the plugin between two groups, where one group is

told that the ShowYourWork plugin has the primary purpose of detecting plagiarism, and

another group is told that the plugin simply captures data for future research. This would

be possible to execute in a single semester, as multiple sections of the course are given at

Utah State University each semester.

5.3 Conclusion

Within this research we have sought to decrease student anxiety about keystroke logging

and enhance student privacy. We have accomplished the portion of our goal dealing with

student privacy, however, the overall perception of the ShowYourWork plugin this semester

was lower than that of previous semesters. We recognize that there was a myriad of factors

that affected the students perception of the plugin, such as frequent bugs and a poorly

implemented check for plagiarism tool. We have learned that students value privacy, but are

61

confused at the seemingly paradoxical addition of the delete history feature in an application

they perceive solely as a plagiarism detector. I conclude by saying that the most drastic

change in student perception of the ShowYourWork plugin will occur when we can effectively

communicate the altruistic goals of the plugin and its holistic function with the research

performed by the EdwardsLab.

62

REFERENCES

[1] K. Hart, C. Mano, and J. Edwards, “Plagiarism deterrence in cs1 through
keystroke data,” in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, ser. SIGCSE 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 493–499. [Online]. Available:
https://doi.org/10.1145/3545945.3569805

[2] C. Syndergaard and J. Edwards, “A review of student attitudes towards keystroke
logging and plagiarism detection in introductory computer science courses,” In Review,
2023.

[3] R. Fraser and D. Cheriton, “Collaboration, collusion and plagiarism in computer sci-
ence coursework,” Informatics in Education, vol. 13, 09 2014.

[4] E. Roberts, “Strategies for promoting academic integrity in cs courses,” in 32nd Annual
Frontiers in Education, vol. 2, 2002, pp. F3G–F3G.

[5] E. M. Beasley, “Students reported for cheating explain what they think would have
stopped them,” Ethics & Behavior, vol. 24, no. 3, pp. 229–252, 2014. [Online].
Available: https://doi.org/10.1080/10508422.2013.845533

[6] T. B. Murdock and E. M. Anderman, “Motivational perspectives on student
cheating: Toward an integrated model of academic dishonesty,” Educational
Psychologist, vol. 41, no. 3, pp. 129–145, 2006. [Online]. Available: https:
//doi.org/10.1207/s15326985ep4103 1

[7] D. Callahan, The Cheating Culture: Why More Americans Are Doing Wrong to Get
Ahead. Orlando, Fla: Harcourt, 2004.

[8] A. Jordan, “College student cheating: The role of motivation, perceived norms, atti-
tudes, and knowledge of institutional policy,” Ethics Behavior - ETHICS BEHAV,
vol. 11, pp. 233–247, 07 2001.

[9] G. Whale, U. of New South Wales. Department of Computer Science, U. of New
South Wales. School of Electrical Engineering, and C. Science, Plague: Plagiarism
Detection Using Program Structure, ser. DCS report. School of Electrical Engineering
and Computer Science, University of New South Wales, 1988. [Online]. Available:
https://books.google.com/books?id=ONVXYgEACAAJ

[10] L. Yan, N. McKeown, M. Sahami, and C. Piech, “Tmoss: Using intermediate
assignment work to understand excessive collaboration in large classes,” in Proceedings
of the 49th ACM Technical Symposium on Computer Science Education, ser. SIGCSE
’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 110–115.
[Online]. Available: https://doi.org/10.1145/3159450.3159490

https://doi.org/10.1145/3545945.3569805
https://doi.org/10.1080/10508422.2013.845533
https://doi.org/10.1207/s15326985ep4103_1
https://doi.org/10.1207/s15326985ep4103_1
https://books.google.com/books?id=ONVXYgEACAAJ
https://doi.org/10.1145/3159450.3159490

63

[11] J. Edwards, K. Hart, and R. Shrestha, “Review of csedm data and introduction of two
public cs1 keystroke datasets,” Journal of Educational Data Mining, vol. 15, no. 1, p.
1–31, Mar. 2023. [Online]. Available: https://jedm.educationaldatamining.org/index.
php/JEDM/article/view/581

[12] M. Banerjee, M. Capozzoli, L. McSweeney, and D. Sinha, “Beyond kappa: A review of
interrater agreement measures,” Canadian Journal of Statistics, vol. 27, no. 1, pp. 3–23,
1999. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.2307/3315487

[13] J. R. Landis and G. G. Koch, “The measurement of observer agreement for
categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977. [Online]. Available:
http://www.jstor.org/stable/2529310

https://jedm.educationaldatamining.org/index.php/JEDM/article/view/581
https://jedm.educationaldatamining.org/index.php/JEDM/article/view/581
https://onlinelibrary.wiley.com/doi/abs/10.2307/3315487
http://www.jstor.org/stable/2529310

64

APPENDICES

65

APPENDIX A

End of Semester Survey

A.1 End of Semester Survey

Survey for Plagiarism Study - Fall 2023

Section 1 of the Survey

• Which ethnicities do you identify as? [Select all that apply]

– Asian

– Black or African American

– Native Hawaiian or Pacific Islander

– Hispanic or Latinx

– Middle Eastern

– Native American

– White or Caucasian

– Other (with a field to fill in)

• What is your gender?

– Man

– Woman

– Transgender

– Non-binary or agender

– Self-describe [answer]

66

– Prefer not to answer

• What is your age? [numerical input]

• How much computer programming experience did you have before taking CS 1400?

– 0 hours

– 1-5 hours

– 6-20 hours

– more than 20 hours

• What grade do you expect to get in CS 1400?

– A

– B

– C

– D

– F

• In CS 1400, plagiarism is defined as using someone else’s Python code as your own.

[The following questions are a five-point Likert-style scale of “strongly disagree” →

“strongly agree”]

• I was tempted to plagiarize in CS 1400 this semester.

• I believe that I would get caught if I plagiarized in CS 1400.

• If I copied someone else’s code, I would be capable of making it look like I didn’t copy.

• The CS 1400 instructor is capable of finding cases of plagiarism.

ShowYourWork Study

• I participated in the ShowYourWork research study this semester [yes/no]

67

• If yes:

– The ShowYourWork plugin that logs keystrokes makes it easier for the CS 1400

instructor to find cases of plagiarism.

– I would have been more tempted to plagiarize if I hadn’t been required to submit

the ShowYourWork log file.

– I forgot about the ShowYourWork plugin

∗ as soon as I installed it.

∗ within two weeks of installing it.

∗ within two months of installing it.

∗ I was always aware of the ShowYourWork plugin.

– I used the ShowYourWork playback feature

∗ 0 times

∗ 1-3 times

∗ 4-10 times

∗ More than 10 times

– The ShowYourWork playback feature was useful. [strongly disagree → strongly

agree]

– I think the ShowYourWork plugin was a good idea. [strongly disagree→ strongly

agree]

– Please share any additional thoughts you have about the ShowYourWork plugin.

[text box]

[End of the first section, upon passing from the first section to the second section,

students will not be able to return to the first section]

Section 2 of the Survey

68

• I think the delete history tool enables students to cheat more easily [strongly disagree

→ strongly agree]

• I felt more comfortable with my keystrokes being logged knowing that I could, at any

time, delete my history. [strongly disagree → strongly agree]

• I used the delete history tool on the ShowYourWork Plugin [yes/no]

– If yes:

∗ I used the ShowYourWork delete history feature:

· 0 times

· 1-3 times

· 4-10 times

· More than 10 times

∗ The ShowYourWork delete history feature was useful. [strongly disagree →

strongly agree]

∗ Why did you use the delete feature? [optional question, textbox]

– Please share any additional thoughts or insights you have about the delete history

feature. [textbox]

• I used the check for plagiarism tool on the ShowYourWork Plugin [yes/no]

– If yes:

∗ I used the ShowYourWork check for plagiarism feature:

· 0 times

· 1-3 times

· 4-10 times

· More than 10 times

∗ The ShowYourWork check for plagiarism feature was useful. [strongly dis-

agree → strongly agree]

69

∗ The ShowYourWork check for plagiarism feature gave me a better under-

standing of what plagiarism looks like [strongly disagree → strongly agree]

∗ Do you feel like the ShowYourWork check for plagiarism feature accurately

assessed your work? [yes/no]

∗ Please explain: [textbox]

∗ Please share any additional thoughts or insights you have about the ”check

for plagiarism” feature.

Completion Page

Thank you for participating in the survey. Please submit a screenshot of this page to the

“Plagiarism study” assignment in Canvas to receive the extra credit points.

	A Review of Student Attitudes Towards Keystroke Logging and Plagiarism Detection in Introductory Computer Science Courses
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	INTRODUCTION
	Organization of Thesis

	RELATED WORKS
	Introduction
	Psychology Behind Plagiarism
	Student Tracking Datasets
	Research Performed by the Edwards Lab

	IMPLEMENTATION METHODS
	Introduction
	Previous Plugin Versions
	Delete History
	Check for Plagiarism
	Survey
	Coding

	OUTCOMES AND ANALYSIS
	Introduction
	Survey Results
	Student Background
	Perception of the Delete History and Check for Plagiarism Features
	Perception of the ShowYourWork Plugin

	DISCUSSION AND FURTHER RESEARCH
	Threats to Validity
	Further Research
	Conclusion

	REFERENCES
	APPENDICES
	A End of Semester Survey
	End of Semester Survey

