2013

Riverside Ranch Landscape Performance Benefits Assessment

Bo Yang
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/laep_facpub

Part of the Landscape Architecture Commons

Recommended Citation
Yang, Bo, "Riverside Ranch Landscape Performance Benefits Assessment" (2013). Landscape Architecture and Environmental Planning Faculty Publications. Paper 142.
https://digitalcommons.usu.edu/laep_facpub/142
Riverside Ranch

Landscape Performance Benefits

- Sequesters 43 tons of carbon annually in the 453 trees on the property, approximately the same amount of CO2 released by burning 4,372 gallons of gasoline.
- Provides suitable habitat for two trout species through a series of created ponds and wetlands. Water quality testing showed temperature, pH, and alkalinity to be within suitable ranges.
- Stores all water rights volumes, 3.25 acre-ft, on-site, which can be released to augment the nearby Roaring Fork River when needed. This is equivalent to 1.5 Olympic-size swimming pools.
- Reuses nearly 8,000 cubic yards, or 95%, of material excavated from ponds to re-contour the site, obviating the need to import fill and saving on disposal, purchasing, and transportation costs.
- Prevented 42 cubic yards of asphalt from entering the local landfill by using a recycled asphalt paving mix to create the access driveways.
- Prevented over 430 cubic feet of wood from entering the local landfill by purchasing reclaimed wood instead of new lumber to reconstruct the facades on the historic buildings. This was estimated to reduce greenhouse gas emissions by 10 metric tons of carbon dioxide equivalent.
- Rehabilitated five historic structures along Highway 82 in Pitkin County, including one eligible for the National Register of Historic Places. Only 6 historic sites are on the National Register along this highway, the area’s major thoroughfare.

Overview

Riverside Ranch was one of the first homesteads built in Colorado’s Roaring Fork River Valley in the 1880s. The project site was a stop for the railroad and stage coaches travelling to nearby Aspen and a successful agricultural and ranching operation for decades. In the mid-twentieth century, the site transitioned into use as an asphalt mixing plant for the Colorado Department of Transportation. When the landscape architect began work, the site was essentially a brownfield in need of rehabilitation as it was host to multiple rundown historic buildings and remnants of the asphalt plant. The design team reconstructed the landscape to create a private residential property, incorporating native vegetation with year-round visual interest and reclaimed materials to tie the site to its heritage. A riparian corridor stores water on-site, releases it on demand for downstream users per state requirements, improves water quality, and provides habitat for multiple trout species. The historic structures were restored and reconfigured to create a visual amenity, forming a quadrangle in a manner reminiscent of the site’s past.

Sustainable Features

- This six-acre property, situated in the riparian corridor between a busy highway and an alpine river, features 1.4 acres of created wetlands and a quadrangle bordered by restored historic buildings that, though not inhabited, function as a cultural and visual enhancement.
- Designers rehabilitated and restored five historic ranch buildings and placed them around a central lawn. Using reclaimed materials and historically sensitive techniques, the plan removed hazards due to structural instability and helped to preserve the site’s cultural heritage.
- The three created ponds and a 1/3-mile stream alignment allow homeowners to catch and
release fish several times per month when in residence.

- The system of wetlands created on the site, complete with nearly 1/3 acre of riparian plantings, provide trout and water fowl habitat and augment water volumes in the Roaring Fork River. Designers selected wetland plantings for their water inundation suitability, aesthetics, habitat enhancement and availability. Deep wetland plants include Softstem Bulrush (Scirpus validus) and Beaked Sedge (Carex rostrata), stream-edge vegetation includes Scouring Rush (Equisotum hyemale) and Creeping Spikerush (Eleocharis palustris), and wet meadow plantings include Nebraska Sedge (Carex nebrascensis), Mertens Rush (Juncus mertensianus) and Halls Rush (Juncus Hallii).

- Habitat structures created of geomembrane, boulders, logs, rebar stakes, cobble mix, sand and gravel mix include: riffles, weirs, glides, bend pools, deflectors, and overhang banks.

- Nearly 6 acres of invasive weed species, which were outcompeting native flora and covering the entire site, were removed and replaced with native plantings including tree species such as Quaking Aspen, Colorado Spruce and Cottonwoods.

- Nearly 2.5 acres of added native vegetation and subtle berming provide a visual buffer to unpleasant noise and views associated with the nearby five-lane Highway 82, which carries an average of 16,000 vehicle trips each day. This approach preserves views of the property's open space from the highway, which maintains the agricultural and pastoral feel that the open space parcels were required to retain.

- Recycled asphalt was incorporated into the road base for the new driveway, saving virgin material and diverting the old asphalt from a landfill.

- To reduce light pollution and glare, lighting is minimal and reserved only for locations where it is required for safety.

Challenge
Preserving historical character while addressing the more recent degradation of the property formed the principal design challenge. The foremost concern was the integration of randomly placed structures, including a dilapidated but distinguished ranch home and various sheds dating from the late 1800s. The design also needed to create an intimate and relaxing residential space with recreational opportunities for the client despite the property's frontage on a heavily-travelled highway. Furthermore, the site was legally required to provide a solution for on-site storage of river water that could be released when needed to augment the nearby Roaring Fork River.

Solution
The master plan for the site addressed these conflicting needs. The ramshackle structures were relocated to a more historically accurate and visually appealing setting on the property, reminiscent of colloquial farm layouts typical of early settlers in the American West. Buildings were restored with careful attention to construction techniques and materials used when the structures were initially built. As a result, the buildings formed a valuable landscape amenity for the client and preserved a slice of the region's history. Groupings of native trees and shrubs were added to create a visual separation from the highway, making the site feel like a private mountain retreat. The creation of a chain of ponds surrounded by a vibrant riparian area provides habitat for fish and native wetland species while also serving recreational and water storage needs.

Cost Comparison
- By limiting turf grass to just 0.57 acres or 11% of the total site area, the homeowners save an estimated $9,485 in annual maintenance costs compared to if the entire site were conventional lawn. This figure includes labor, fuel, and fertilizer costs.

Lessons Learned
- Designers originally conceived the historic buildings on site to be fully functional guest homes, but due to the extreme cost of restoring the structures to meet regulations for habitation, the large farmhouse was relegated to a visual rather than a habitable amenity.

- Working with the Colorado Department of Transportation proved critical to developing a buffer between the heavily travelled roadway and the property. Through collaboration, the design team was able to obtain permission to change the road embankment from a 2:1 grade to a more gentle slope that matched the grade on the rest of the site, thus creating an extra ten feet of space that provided a platform for a vegetation buffer. Re-contouring the road embankment to a more shallow grade, created a naturalized road edge and gained between 10 and 35 feet of additional space.

Project Team
Master Plan & Landscape Plan: Design Workshop, Inc.
Aquatic/Pond Consultants: Aqua Sierra, Inc.
Role of the Landscape Architect
The landscape architect led the design team and coordinated the contractors and consultants who assisted in the implementation of the site plan. Specifically, the landscape architect directed the placement of structures and buffers, selected the plant palette and assisted with the design of the riparian corridor.

Case Study Prepared By:
Research Fellow: Bo Yang, PhD, Assistant Professor, Utah State University
Research Assistant: Pamela Blackmore, BLA, Utah State University
Research Assistant: Chris Binder, MLA Candidate, Utah State University
Firm Liaisons: Allyson Mendenhall, Darla Callaway, and Richard Shaw, Design Workshop

References & Resources
Additional Images
Riverside Ranch
Methodology for Landscape Performance Benefits

- **Sequesters 43 tons of carbon annually in the 453 trees on the property, approximately the same amount of CO2 released by burning 4,372 gallons of gasoline.**

All the trees on site were counted. There are Ponderosa Pine, Narrowleaf Cottonwood, Quaking Aspen, Colorado Blue Spruce, Globe Willow, Douglas Fir and Lombardy Poplar on site. A random sampling of approximately one-third of the trees (30.68%) was measured (DBH at 4.5 ft from ground. http://fennerschool-associated.anu.edu.au/mensuration/dob.htm#bh).

These measurements were entered into the tree benefit calculator (http://www.treebenefits.com/calculator/). The values were averaged and extrapolated to represent all the trees on site.

The aggregate amount of atmospheric carbon reduction was 85,592 lb. 85,592 lb / 2,000 lb per ton = 42.796 tons.

The amount of carbon dioxide released by burning a gallon of gasoline was found here: (http://www.epa.gov/cleanenergy/energy-resources/refs.html), which is 0.00892 metric tons per gallon of gasoline.

0.00892 metric tons = 19.67 lbs per gallon of gas. This is confirmed by the 19.64 lbs CO2 per gallon of gas reported from the U.S. Energy Information Administration (http://www.eia.gov/tools/faqs/faq.cfm?id=307&t=11).

43 tons = 86000 lbs. 86000 / 19.67 = 4372.14 gallons of gasoline.

Limitation

1) The tree survey did not measure each individual tree but rather a sampling of approximately 1/3 of the trees. A survey that took into account the exact DBH of each tree would likely prove more accurate.

- **Provides suitable habitat for two trout species through a series of created ponds and wetlands. Water quality testing showed temperature, pH, and alkalinity to be within suitable ranges.**

The landscape architect worked with an aquatic consultant to create a riparian system to provide year-round trout habitat. Three ponds and one-third of a mile of stream course were created. Lake aeration, a bacterial injection system, vegetation cover, dead tree trunks, weirs and other structures were added to facilitate the function of rainbow trout and brown trout habitats.

Many factors are important for creating a successful trout habitat. Data were obtained by performing on-site analysis and also by taking water samples which were tested at the Utah Water Research
Laboratory. On a visit to the site on June 19, 2013, water temperature, alkalinity, pH and hardness were measured in six different locations using an aquarium thermometer and test strips. Testing locations are shown in Figure 1 and correspond with inlet and outlet of each pond.

![Figure 1. Water quality sample locations at Riverside Ranch.](image)

Measurements were taken from the furthest downstream position first, working upstream, to ensure the disturbed pond bottom did not impact water quality tests. The results are presented in Table 2.

Table 2. Water quality test results

<table>
<thead>
<tr>
<th>Location</th>
<th>TSS (mg/L)</th>
<th>Temperature (°F)</th>
<th>pH</th>
<th>Alkalinity (ppm)</th>
<th>Hardness (ppm)</th>
<th>Time of sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>69.50</td>
<td>7.4</td>
<td>80</td>
<td>168.01</td>
<td>12:53 pm</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>68.00</td>
<td>7.5</td>
<td>80</td>
<td>167.69</td>
<td>1:01 pm</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>66.00</td>
<td>7.7</td>
<td>100</td>
<td>162.63</td>
<td>1:09 pm</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>66.00</td>
<td>7.6</td>
<td>80</td>
<td>125.51</td>
<td>1:15 pm</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>66.00</td>
<td>7.6</td>
<td>70</td>
<td>162.51</td>
<td>1:19 pm</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>66.00</td>
<td>7.5</td>
<td>90</td>
<td>165.11</td>
<td>1:30 pm</td>
</tr>
</tbody>
</table>

These results can be compared with recommended levels seen in Table 3. A comparison reveals that all samples were within suitable ranges.

Table 3. Suitable water quality parameters for trout. Adapted from (Boren, Baker, Cowley, & Hurd, 2003)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.5-8.5</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>10-400 ppm</td>
</tr>
</tbody>
</table>
Water temperature is one of the most critical factors for trout survival. Research indicates that rainbow trout survive in temperatures ranging from 33-78 degrees Fahrenheit, with optimum growth occurring between 50-55 degrees. Brown trout survive in 33-72 degrees Fahrenheit with optimum growth between 48-55 degrees Fahrenheit (Boren, Baker, Cowley, & Hurd, 2003). While the temperatures were outside the optimum range, all temperatures were within the suitable range. It is important to note that the samples were taken near the edge of the pond, in shallow water which represents the worst case scenario. Also, water temperature increased two degrees over the length of the stream course, suggesting that these shallow waters have a significant impact on raising the water temperature.

In addition to the tests above, researchers on-site were able to visually confirm the presence of trout in each of the ponds, a further indication of the success of the design to provide adequate habitat to sustain the fish.

Limitations:
1) The data gathered represents a single sample on a sunny June day. More samples on other dates would need to be tested to give a better idea of year-round suitability.
2) The aquarium test strips used did not have very precise scales and some judgment was left to researchers.

- **Stores all water rights volumes, 3.25 acre-ft, on-site, which can be released to augment the nearby Roaring Fork River when needed. This is equivalent to 1.5 Olympic-size swimming pools.**

Many areas in the western United States govern water use to ensure that upstream users do not infringe on the rights of downstream users by allowing landowners the access to and use of certain volumes of water commonly referred to as water rights. In Colorado, a water right gives you right to use water; it does not let you own the actual drops of water. In addition, referred to as the Prior Appropriation Law, individuals who used the water first have the senior rights to the use of the water. If you do not use your water rights, (and for a “beneficial use”), you lose your rights to the water. http://www.coloradotu.org/ctucoldwater/wp-content/uploads/2011/09/Basic-Water-Law-Simplified.pdf

Riverside Ranch has ample water rights, but is required to store this water on site or risk losing the privilege of its use which could result in a lack of water for irrigation or other purposes that may arise in the future. In addition, an easement was placed on the ranch requiring that water for surrounding properties be stored on site as well. This easement necessitated the storage of up to 2.5 acre feet of water on site. Original submissions of impoundment permits to the Office of the State Engineer Division of Water Resources by the landscape architect states the capacity of each pond as follows:

<table>
<thead>
<tr>
<th>Pond</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0.15 acre feet</td>
</tr>
<tr>
<td>#2</td>
<td>1.6 acre feet</td>
</tr>
<tr>
<td>#3</td>
<td>1.5 acre feet</td>
</tr>
<tr>
<td>Total</td>
<td>0.15 + 1.6 + 1.5 = 3.25 acre feet</td>
</tr>
</tbody>
</table>

Riverside Ranch
LPS Methodology Page 3 of 8
An Olympic swimming pool (164 ft X 82 ft X 6.6 ft) holds 2,500 cubic meters of water. 3.25 acre feet = 4,008.8 cubic meters. 4,008.8 / 2,500 = 1.6

- Reuses nearly 8,000 cubic yards, or 95%, of material excavated from ponds to re-contour the site, obviating the need to import fill and saving on disposal, purchasing, and transportation costs.

Roger Neal of High Country Engineering performed the cut and fill calculations through two different methods.

Method 1, the grid method: applying a five-foot grid system over the site to calculate the volume.
Method 2, the composite, or triangulation network method: triangulating lines between contours to calculate the volume.

Table 1. Cut and fill analysis using two methods (Source: High Country Engineering, 2002)

<table>
<thead>
<tr>
<th>Method</th>
<th>Cut (yds)</th>
<th>Fill (yds)</th>
<th>Net (yds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grid</td>
<td>7,832</td>
<td>7,441</td>
<td>391 (cut)</td>
</tr>
<tr>
<td>2. Composite</td>
<td>7,858</td>
<td>7,516</td>
<td>342 (cut)</td>
</tr>
<tr>
<td>Average</td>
<td>7,845</td>
<td>7,478.50</td>
<td>366.5 (cut)</td>
</tr>
</tbody>
</table>

366.5 / 7,845 = 0.0467 or 4.6%. 100 – 4.6 = 95.4% of the cut was reused on site.

Limitations
1) These calculations were based on the difference between existing and finished contours and may not include detailed volumes of topsoil displacement.
2) The numbers reflect the average of the two methods used to calculate cut and fill and thus are close approximations rather than exact figures.

- Prevented 42 cubic yards of asphalt from entering the local landfill by using a recycled asphalt paving mix to create the access driveways.

The total length of the driveways was assessed using AutoCAD construction files. Dimensions of the driveway were determined to be 1,512.81 ft in length and 12 ft wide. A construction detail obtained from the landscape architect indicates the depth of asphalt is 3 in. In Colorado, maximum allowable recycled asphalt pavement used in mixes cannot exceed 25%. (http://www.co-asphalt.com/documents/RAP_Brochure_all.pdf)

1,512.81 X 12 = 18,153.72 sf
18,153 X .25 ft = 4538.25 cu ft of total asphalt
4538 X 25% = 1134.5 cu ft of recycled asphalt = 42.02 cu yd

Limitation
1) It is unknown the actual amount of recycled materials used in the mix for the driveway, so the maximum recycled materials allowed was used in our calculations, which could be inaccurate. However, the highest percentage allowable was used because of the likelihood that the contractor wanted to reduce costs. As the following graph indicates, materials consume the majority of production costs associated with laying asphalt.
- Prevented over 430 cubic feet of wood from entering the local landfill by purchasing reclaimed wood instead of new lumber to reconstruct the facades on the historic buildings. This was estimated to reduce greenhouse gas emissions by 10 metric tons of carbon dioxide equivalent.

The square footage of the facades for all five historic structures was determined using a combination of AutoCAD drawings, on site observations and photographs of the property. The square footage of each façade was found to be:

Farmhouse: 1,262.42 sf
Shed #1: 369.93 sf
Caretaker Unit: 817 sf (Note: Shed #2 is known as the Caretaker Unit).
Shed #3: 500.5 sf
Shed #4: 493.62 sf

The total square footage of the facades is 1,262.42 + 369.93 + 817 +500.5 + 493.62 = 3,443.47 sf.

The facades were built with 2” X 4” pieces of lumber which have an actual thickness of 1.5” (or 0.125 ft).
0.125 X 3,443.47 = 430.43 cu ft of wood were used in the façade construction.

The average weight for pine timber used in construction was obtained from the American Wood Council (available from http://www.awc.org/pdf/WSDD/wsdd.pdf, page 9). The weight for Western White Pine is 27.2 lbs/cu ft. The volume of the wood is 430.43 cu ft and the total weight is 11,707.798 lb, or 5.85 tons.

Using the EPA’s Waste Reduction Model (WARM) calculator (http://epa.gov/epawaste/conserve/tools/warm/Warm_Form.html), the effect of recycling the 5.85
tons of wood compared to transportation to the local landfill (local landfill is 13.9 miles from the site on Highway 82 in Snowmass Village, Colorado) and subsequent decay was assessed. It was found that approximately 10 metric tons of carbon dioxide equivalent were saved.

Limitations

1) The method above took into account only lumber used in the construction of the building facades, not any of the materials needed to restore the interior of any of the structures.

2) Weight for lumber can vary immensely due to many factors including wood density, age, moisture content, etc. This method used a standard for wood weight that may vary from the actual weight of the wood used.

3) The WARM calculator produces an environmental value on the wood that has been recycled but does not produce such a value for the wood that the team was able to avoid purchasing by using recycled lumber.

- **Rehabilitated five historic structures along Highway 82 in Pitkin County, including one eligible for the National Register of Historic Places. Only 6 historic sites are on the National Register along this highway, the area's major thoroughfare.**

The main house contains significant historical and architectural value. Built in 1887 of timbers that had been transported over Independence Pass by its original owner, Arthur B. Foster, the homestead was developed into a successful ranching operation. Jeremie J. Gerbaz, another prominent citizen of Pitkin County and former County Commissioner, constable for the district and school board member, purchased the property in 1898 and continued farming it until his death in 1947. Known as one of the earliest homesteads in the Roaring Fork Valley, the house has been quite well preserved, with only the porch removed from the north wall. It stands as a prime example of the late Victorian architectural style typical of residences of the successful ranchers in this area.

Eligibility for the National Register of Historic Places is indicated on the Historic Building Inventory Record submitted to the Colorado Historical Society Office of Archaeology and Historic Preservation (Project Name: Pitkin Reconnaissance Survey, 1999, SHF#98-02-084). This record indicates that research performed to determine the significance of the structures included an interview with Jeremie J. Gerbaz’s grandson. Suzannah Reid, AIA, a Pitkin County Historic Preservation Officer, concurs that the main house is eligible for the National Register. The now uninhabited structure was restored in a manner consistent with the Secretary of the Interior Standards for Rehabilitation, preserving its eligibility for the National Register.

Because of the site’s location next to a major thoroughfare, Highway 82, the structures are identifiable historic features for citizens of Pitkin County. They are landmarks that represent the agricultural heritage of this valley and each building embodies a separate, but integral piece of this history. GIS data were obtained from the National Park Service, U.S. Department of the Interior, National Register of Historic Places (http://nrhp.focus.nps.gov/natreg/docs/Download.html) that locates historic structures and sites. Data were last updated in 2007. Along Highway 82 through Pitkin County, there are six historic structures and sites along this road listed on the National Register.

Limitation

1) Eligible historic sites and structures are not indicated in the GIS data, so there is a likelihood that other eligible sites exist.
Methodology for Cost Comparison

- **By limiting turf grass to just 0.57 acres or 11% of the total site area, the homeowners save an estimated $9,485 in annual maintenance costs compared to if the entire site were conventional lawn. This figure includes labor, fuel, and fertilizer costs.**

A large portion of the site is covered in grass. 5.39 acres of this is non-mowed, non-fertilized native grass, and 0.57 acres is mowed, fertilized turf-grass. To compare annual maintenance costs associated with each type of grass, we used a method developed by Rosenberg et al (2011). Their method uses a spreadsheet they developed with approximations for maintaining specific aspects of a landscape.

Our method calculated the savings as a what-if scenario. Essentially, if all the 5.39 acres that are native grasses were instead planted as turf-grass, how much annual maintenance would be required? Our comparison analyzed the maintenance needs of all the grass as if it were all high-maintenance turf-grass. Then, the maintenance needs of only the 0.57 acres were calculated and the difference between the costs to maintain the two areas was determined. This result is the savings that are realized.

Factors that were considered in the comparison are fuel for equipment needed to mow and trim the lawn; fertilizer to maintain the turf-grass; and labor to perform all of the aforementioned maintenance activities.

The model assumptions include:
- Hourly labor rate: $40.00
- Cost of fuel / gallon: $4.67 (July 21, 2013 cost in Aspen, CO)
- Cost of fertilizer/lb: $0.30
- Size of mower used: 52-72” gasoline engine
- Size of trimmer: Gasoline-oil engine
- Conventional Maintenance (vs. intense maintenance)

Outputs of the model indicate that annual maintenance costs for the 5.39 acres if it were turf-grass would be $10,789; to maintain the 0.57 acres of turf grass annually requires $1,304.

$10,789 - $1,304 = $9,485
$9,485 / $10,789 = 88% annual savings in maintenance by using native grasses

Limitation

1) The model was developed and intended for use in Utah, thus costs and maintenance needs will be different in Colorado. Rates will also obviously fluctuate with different maintenance regimes, equipment used and products used. Because these factors are the same in each scenario, it is still effective in showing an approximation for the percentage of savings that can be realized by using native grasses.

References
