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ABSTRACT 

Composite Feature-Based Face Detection Using Skin Color Modeling  

and SVM Classification 

by 

Swathi Rajashekar, Master of Science 

Utah State University, 2012 

Major Professor: Dr. Xiaojun Qi 
Department: Computer Science 

 

This report proposes a face detection algorithm based on skin color modeling and 

support vector machine (SVM) classification.  Said classification is based on various face 

features used to detect specific faces in an input color image. A YCbCr color space is 

used to filter the skin color pixels from the input color image. Template matching is used 

on the result with various window sizes of the template created from an ORL face 

database. The candidates obtained above, are then classified by SVM classifiers using the 

histogram of oriented gradients, eigen features, edge ratio, and edge statistics features.  
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CHAPTER 1 

INTRODUCTION 

In recent years, research on face recognition has rapidly increased in the fields of 

computing and neuroscience. The potential for applications in computer vision 

communication and automatic access control is enormous [2]. Face detection is an 

important part and the first step for face recognition. The purpose of face detection is to 

localize and extract the face region from the background. However, there are lots of 

challenges involved in face detection, as the human face has a high degree of variability 

in appearance, illumination, distance from the image device, occlusion, rotation of head 

in different places, facial expression, and many more. 

Face detection techniques can be roughly classified into four categories [8, 10], 

namely, skin color model-based approaches, template matching-based approaches, 

feature-based approaches, and statistical model-based approaches.  Usually, face 

detection techniques integrate some or all of the four approaches to achieve high face 

detection accuracy and a low false detection rate.  Here, we briefly explain each of the 

four approaches. 

1.1 Skin Color Model-Based Approaches 

Skin color model-based approaches build a skin color model using Gaussian 

normal distribution since color is one of the most widely used visual features in face 

detection.  Specifically, said models convert the color image into an appropriate color 

space, such as HSV, YCbCr, or YIQ, to find skin color.  These color spaces are more 

robust to the lighting conditions than the RGB color space and therefore are suitable for 
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face detection under different illuminations.  The mean and covariance matrix of the skin 

color are then computed from the skin colors.  Finally, the results of this computation are 

used to find the likelihood that each pixel in the input image is, indeed, a skin color. 

1.2 Template Matching-Based Approaches 

Template matching based approaches are commonly used to obtain regions with 

the highest potential to be faces.  These methods perform pixel intensity comparison 

between a predefined template image and sub-regions of the image. A face template 

expresses a general appearance of a face and is related to face shapes [3].  Generally, 

averaging grayscale faces from a set of training images creates the grayscale face 

template.  This template is matched with the potential candidates in sub-regions using 

normalized correlation. A predefined threshold is finally used to decide if the candidate is 

a face or a non-face. 

1.3 Feature-Based Approaches 

Feature-based approaches build upon explicit knowledge wherein features 

representing a face as defined by the designer are first extracted from images [4]. Face 

detection is thus achieved by verifying that with a certain degree of confidence. the 

features extracted from an image represent a face.  Representative features are eigen 

features, Haar-like features, and edge features.  In the following, we briefly explain each 

feature. 

Eigenfaces have long been used for face detection and recognition purposes.  

Principal component analysis (PCA) is performed on a set of training face images to 

obtain the eigen vectors, which are called as eigenfaces.  The projections of the mean 
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adjusted face images along the eigen vectors are used as the eigen features for training 

and classification purposes. 

Haar-like features are the digital image features used in object recognition. Viola 

and Jones [9] were the first to use Haar wavelets as a basis for developing Haar-like 

features.  A Haar-like feature considers adjacent rectangular regions at a specific location 

in a detection window, sums up the pixel intensities in these regions, and calculates the 

difference between them.  This difference is then used to categorize subsections of an 

image. Given that in all faces the region of the eyes is darker than the region of the 

cheeks, a common Haar-like feature for face detection is a set of two adjacent rectangles 

that lie above the eye and the cheek region. The position of these rectangles is defined 

relative to a detection window that acts like a bounding box to the face. A window of the 

target size is moved over the input image, and the Haar-like feature is calculated for each 

subsection of the image.  This difference is then compared to a learned threshold to 

separate non-faces from faces. The key advantage of a Haar-like feature over most other 

features is its calculation speed, since a Haar-like feature of any size can be computed in 

a constant time by using integral images.  The integral images can be defined as two-

dimensional look up tables in the form of a matrix with the same size of the original 

image. Each element of the integral image contains the sum of all pixels located on the 

upper-left region of the original image.  This integral image uses only four lookups to 

compute the sum of rectangular areas in the image, at any position or scale. 

Edge features are used to compute the edges of the image.  The canny edge 

detector, Roberts edge detector, and Sobel edge detector are commonly used to extract 
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edge features.  These edges normally represent the contour lines of the face, including 

eyes, eyebrow, lips, nose, and face boundary. 

1.4 Statistical Model Based Approaches 

Statistical model-based approaches use a statistics-based classifier, such as a 

support vector machine (SVM), to classify the candidate region as a face or a non-face.  

Specifically, the SVM trains a classifier by solving the optimization problem to decide 

which instances of the training data set are support vectors.  These support vectors are the 

necessarily important instances to form the SVM classifier [6].  The learned SVM 

classifier is further employed in any classification task. 
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CHAPTER 2 

RELATED WORK 

Much work has been done, and many approaches have been proposed to perform 

face detection.  Here, we briefly review several such works that are closely related to the 

proposed work. 

Alajel et al. propose a face detection algorithm [1] using skin color modeling and 

the modified Hausdorff distance.  They first calculate the probability of a pixel as being a 

skin color based on the mean and the covariance matrix of learned skin colors.  A 

predetermined threshold is used to further decide skin color pixels.  The authors then 

perform a series of morphological operations to remove the noise and separate potential 

face candidates.  Finally, they apply a template-based object classifier to classify the skin 

color candidates as a face or a non-face using the modified Hausdorff distance, which is 

computed on the Sobel edges of the template and the potential face candidates. A 

predetermined threshold is also applied to decide whether the skin color candidate is a 

face or a non-face.  Their experimental results on 160 images with 109 faces show a 

correct detection rate of 87.5% and a false detection rate (error rate) of 4.59%. 

Li et al. [7] propose a novel face detection method by combining the skin color 

detection and an improved AdaBoost algorithm.  They first apply the commonly used 

skin color model and the morphological operations to detect the significant skin color 

features in the images. This step functions as a filter to narrow the search space and speed 

up the detection of faces from complex background. They then extract simple rectangular 

features, called Haar features [9], to represent each candidate patch.   They finally apply 

an improved AdaBoost algorithm to find the face candidates within each patch.   The 
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original AdaBoost algorithm [9] constructs a strong classifier as a linear combination of 

weak classifiers. It is a self-adaptation iterative algorithm. Specifically, it selects the most 

important features from a big feature candidate set and makes a weak classifier for the 

selected features. It then combines the multiple weak learners to construct a strong 

learner.   

Li et al. improve the original AdaBoost algorithm by first categorizing the 

training sample set as face and non face images with values of 1’s and 0’s, respectively.  

A normalized weight is assigned to each training sample based on the category. For each 

feature, this improved AdaBoost algorithm trains its weak classifier to determine its 

threshold and offset. After all the weak classifiers are determined, the weak classifier 

with the minimum error rate is considered to update weights of the training samples and 

build a strong classifier. A cascade of such strong classifiers is finally used to quickly 

eliminate the background area.  Their experimental results on 66 images with 350 faces 

show a correct detection rate of 92.86% and a false detection rate of 1.5%. 

Kherchaoui and Houacine [10] use the Gaussian mixture-based skin color model 

together with geometrical face characteristics to detect faces.  They consider detected 

skin regions as face candidates based on a set of geometrical constraints.  For example, 

they use the number of holes in the connected region as one of the verification steps, as a 

face admits non-skin color pixels only at eye and mouth regions.  In addition, they use the 

region orientation, region size, and the region dimension ratio [10] to filter out the non-

face.  To this end, they consider the candidate as a potential face if the ratio of width and 

height of a region is in the range 0.8 to 1.8.  Finally, they apply template matching to 

reach the final decision depending on the cross-correlation-based similarity between the 
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candidate face region and the face template, which is created by averaging multiple 

grayscale faces.  Their experimental results on 182 faces of GTAV database show a 

correct detection rate of 79.11% including correct partial detection and a false detection 

rate of 21.42%. 

Shavers et al. [11] present a face detection algorithm based on SVMs. Support 

vectors, the archetypes for face and non-face images, are generated, and the λ coefficients 

for these support vectors are determined from a set of training images using the 

multiplicative update algorithm [12]. The SVM algorithm, which is now programmed 

and trained according to the support vector archetypes, maps the test images into a higher 

dimension transform space wherein a hyperplane decision function is constructed. The 

hyperplane decision function is based on the polynomial kernel function with degree one. 

The decision function is constructed equidistance between support vector archetypes to 

give an optimal hyperplane decision function.  The aforementioned SVM is applied to a 

20×20 window of pixels (400 dimension vector) extracted from the 80% of the Olivettie 

Research Lab (ORL) face training images and tree, door, window non-face training 

images and to learn the optimal hyperplane decision function for the face classification.  

Their experimental results on the remaining 20% ORL face images show a correct 

detection rate of 95%.  Further, they do not report any false detection rate. 

Paul and Gavrilova [13] present a principal component analysis- (PCA) based 

modeling of the geometric structure of the face for automatic face detection.  They first 

perform Gaussian mixture-based skin color modeling to remove the background of the 

image from the skin regions.  They next apply a region-growing algorithm to generate 

black and white templates for skin regions.  Finally, they improve the performance of the 
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template matching by applying canny edge detection on the geometric structure model of 

the face candidate produced by PCA.  Specifically, they apply PCA to obtain the first K-

dominant principal components to project the skin regions.  They then reconstruct the 

skin regions using the first K-dominant principal component.  These reconstructed skin 

regions effectively reduce noise and balance the intensity of skin regions.  Finally, they 

apply the canny edge detector on the reconstructed skin regions to obtain the face 

boundary.  The obtained face boundary is further compared with the face boundary of the 

template after applying an oval shaped mask to decide whether the region is a face or a 

non-face based on a predetermined threshold.  Their experimental results on CIT, 

BaoFace, Essex, and Georgia Tech databases show a correct detection rate of 98.7%, 

97.1%, 97.1%, and 85.2%, respectively.  Moreover, they do not report the false detection 

rate. 

All these face detection algorithms are capable of detecting faces in their chosen 

images at a decent correct detection rate.  However, we observe that face detection 

algorithms [1, 7, 10, 12, 14] do not address the issues when the candidate patch contains 

multiple faces.   For example, Shavers et al. [11] exclusively use input images containing 

only one face for their experiments.  To address this problem and to improve overall face 

detection accuracy and efficiency, we propose a novel face detection technique 

integrating skin color modeling, template matching, feature extraction, and SVM 

classification.   

Firstly, the image is segmented based on a skin color model in the YCbCr color 

space.  Secondly, a series of morphological operations are further employed to remove 

small connected components that are unlikely to be a face, keep each candidate face 
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isolated, and connect the holes created inside a face for eyes and lips which are not of 

skin color.  Each resultant connected component is used as a mask to extract the potential 

candidate from the original image.  Thirdly, a novel template matching technique is 

applied on each resultant connected component to locate possible multiple faces within 

the connected component.  Fourth, a set of composite features, namely, eigen features, 

histogram of oriented gradients (HOG), and edge-based statistics, are extracted from the 

candidate faces remaining from the previous step.   Fifthly and finally, these features are 

further fed into the SVM to finally classify the candidate faces as true faces. 
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CHAPTER 3 

THE PROPOSED FACE DETECTION ALGORITHM 

The proposed face detection algorithm has four main components. 

• Skin color segmentation 

• Template matching 

• Feature extraction  

• SVM classification 

Figure 1 shows a block diagram of the proposed online face detection system.  In the 

following sections, I explain each component in detail. 

 

Figure 1: Block diagram of the proposed face detection system. 
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3.1 Skin Color Segmentation 

The skin color segmentation process filters out all the non-skin color from the 

input image, keeping only skin color, since a primary method of detecting faces is 

through their color.   This process has two prominent components, namely, 

• Skin color modeling and thresholding 

• Morphological enhancement 

3.1.1 Skin Color Modeling and Thresholding 

The input color image is typical in the RGB format. However, RGB components 

are subject to lighting conditions, and face detection may fail if, lighting conditions 

change.  As a result, we use Equation (1) to convert RGB components into YCbCr 

components for removing the effect of luminosity during our image processing process. 

Y = 0.299R + 0.587G + 0.114B 

Cb = -0.169R - 0.332G + 0.500B                                     (1) 

Cr = 0.500R - 0.419G - 0.081B 

In the YCbCr components, the luminance (brightness) information is contained in 

a Y component, and the chrominance information is contained in the Cb (blue) and Cr 

(red).  The Cb and Cr components are independent of luminosity and give a good 

indication on whether a pixel is part of skin or not.  In addition, the Cb and Cr values for 

various skin colors fall in the blue regions shown in Figure 2 [16].   
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Figure 2: Strong correlation between Cr and Cb values for skin pixels [16]. 

It is evident that background and faces can be distinguished by applying 

maximum and minimum threshold values for both Cb and Cr components. In our system, 

we consider a pixel to be skin, if its Cb and Cr values fall in the range shown below. 

100 <= Cb <=140 

140 <= Cr <= 165 

In other words, pixels whose intensities fall in the above range are marked as 1’s, and the 

other pixels are marked as 0’s.  A binary image with all skin color represented by a 1 is 

created.  However, other parts of the body, such as exposed arms, legs, and other skin 

color background objects can also be captured.  A post-processing step (e.g., 
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morphological enhancement) must be employed to extract all the skin objects separately 

for future classification. 

Figure 3 shows the output binary image after skin color modeling and 

thresholding.  We can clearly see that all the skin colors including the face, arm, and part 

of the brownish hair are marked with 1’s and non-skin colors are marked as 0’s.  These 

nonface parts are eliminated in a later process. 

 

                                  (a)                                               (b) 

Figure 3: Illustration of skin color modeling and thresholding: (a) Original color 
image; (b) Skin color modeling and thresholding result. 

 

3.1.2 Morphological Enhancement 

We perform a series of morphological operations as a post-processing step to 

extract all the skin objects separately for future classification.  Figure 4 summarizes all 

the components in the process.  In the following, I explain each component in detail. 
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Figure 4. Block diagram of morphological enhancement.  

Flood Fill Operation.  We perform a flood-fill operation on the binary image to 

fill the holes created inside the face region, because of the eyes and lips as shown in 

Figure 3 or the holes created at the boundary after applying the dilation operation.  These 

holes tend to separate all the objects from each other and therefore should be removed.  

Dilation Operation. We apply dilation operation on the binary images with 

holes, using a disk structuring element of radius of 1.  This operation fine-tunes the 

boundary of the regions by connecting small breaks and enlarges the shapes a bit for 

further processing.  

Remove Small Regions. We remove the areas whose area is less than 200 pixels 

since they are too small to be a face region. 

Opening Operation. We apply an opening operation using a disk structuring 

element of size 3 to remove connections between closely connected regions if any. 
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Connected Component Labeling. We apply the connected component labeling 

algorithm to obtain a separate component for each object.  Ideally, we expect that each 

connected component contains at most one face.  However, it is possible that the 

connected component may contain two or more faces in them.  This issue  is addressed in 

the template matching process later on. 

Figure 5 shows the intermediate results for the morphological enhancement on the 

image shown in Figure 3(b).  The results of the last three steps are omitted since they are 

the same as the results shown in Figure 5(c).   

   

      (a)                                             (b)                                               (c) 

Figure 5: Intermediate morphological enhancement Results. (a) Holes removing 
results; (b) Dilation results; (c) Small components removal results. 

 

3.2 Template Matching 

Template matching performs a pixel intensity comparison between a predefined 

template image and sub-regions of the image. Template matching can be performed using 

convolution or correlation. In our algorithm, we use correlation to match the template 
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image and the candidate of interest.  

We use the ORL face database [17], which contains all grayscale faces, to obtain 

a grayscale face template by averaging all the face images in the database. In this ORL 

database, we have faces with different expressions, different illuminations, and different 

orientations. There are ten different images for each of 40 distinct subjects. The size of 

each image is 192×168 pixels with 256 gray levels. The grayscale face template image 

created from the ORL face database is shown in Figure 6. 

 

Figure 6: Grayscale face template created from ORL face database. 

Correlation is a measure of the degree to which two variables agree, not 

necessarily in actual values but in general behavior. The two variables are the 

corresponding pixel values in two images: grayscale face template and the sub-region of 

the input image. Correlation between the template and the sub-region of the input image 

(i.e., skin color patch) is calculated using Equation (2). 

       (2) 

where, 
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• x is the template gray level image 

•  is the average grey level in the template image 

• y is the source image section 

•   is the average grey level in the source image 

• N is the number of pixels in the section image with N equaling the template 

image size 

• cor is the correlation value between –1 and +1, with larger values representing 

a stronger relationship between the two images. 

Since a patch (e.g., the minimum bounding box to cover the connected 

component) may contain multiple faces and the size of the faces may vary significantly in 

the input images, we perform the correlation operation on the patch iteratively with six 

different scaled grayscale face templates.  Specifically, the template sizes are varied from 

90×79, 80×70, 70×61, 60×52, 50×43, to 40×35, maintaining the same ratio of rows to 

columns (192:168) as the grayscale face template. Figure 7 summarizes the algorithmic 

view of this operation. 

 

 

 

 

 

Figure 7: Algorithmic view of the iterative template matching process. 

Scale the grayscale face template of size 112×92 to the size of 90×79 
While the height of the patch > 90 pixels and the height of scaled template > 30 pixels 
     Position the left corner of the grayscale face template at each pixel within the patch 
     Compute the correlation value at each pixel using Equation (2) 
     Find the maximum correlation value MaxCor within the patch 
     Record the location (Xmax, Ymax) with MaxCor 
     If MaxCor > threshold (e.g., 0.32) 
         The box of the same size as the investigated grayscale face template, whose left corner  
         starting at (Xmax, Ymax) is considered containing a potential face 
         Set all values in the box as -1’s to make this box unlikely chosen in the next iteration 
     Else  
         Reduce the template height by 10 pixels while keeping the same aspect ratio 
     Endif 
  Endwhile 
ile 
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                    (a)                                   (b)                                     (c) 

Figure 8: Illustration of iterative template matching results.  (a) Original patch 
obtained from the skin color modeling and thresholding; (b) The candidate box 

obtained by matching with the 1st scaled template of 90×79; (c) The candidate box 
obtained by matching with the 2nd scaled template of 80×70. 

 

 

  

Figure 9: Two face candidates obtained from iterative template matching.  

 

Figure 8 demonstrates the template matching result for one single patch with 

multiple faces. Figure 9 shows the face candidates corresponding to the two candidate 

boxes. 
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3.3 Feature Extraction 

Four kinds of complementary features are extracted from the candidates obtained 

from iterative template matching. We consider four main features of face, namely,  

• Histogram of oriented gradients (HOG) features 

• Eigen features 

• Edge ratio 

• Edge statistics 

3.3.1 HOG Features 

HOG features [5], which describe an object’s appearance and shape by the 

distribution of intensity gradients or edge directions, have recently been widely used for 

object, pedestrian, and face detection. These features count the occurrences of gradient 

orientation in localized portions of a given image.  First, local histograms of image 

gradient orientations in a dense grid are computed.  This grid divides the image into small 

uniformly spaced special regions called cells.  Second, accumulate a local 1D histogram 

of gradient directions or edge orientations over all pixels in each cell to form the HOG 

representation. Third, the local responses are contrast normalized by normalizing all the 

cells using the accumulated local histogram over slightly larger regions called blocks. 

Referred as HOG descriptors, these normalized descriptor blocks are invariant to 

illumination or shadowing.  The step-by-step process of computing HOG features 

follows: 

1) Compute the gradient values by simply applying the 1-D centered, point-discrete 

derivative mask in one or both of the horizontal and vertical directions. 
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Specifically, this step requires filtering the color or intensity data of the image 

with the following filter kernels: [-1 0 1] and [-1 0 1]T. 

2) Create the cell histograms by casting the weighted vote of each pixel on an 

orientation-based histogram channel established on the values found in the 

gradient computation. The cells themselves can either be rectangular or radial in 

shape, and the histogram channels are evenly spread over 0 to 180 degrees or 0 to 

360 degrees, depending on whether the gradient is unsigned or signed. 

3) Locally normalize the gradient strengths to account for changes in illumination 

and contrast by grouping the cells together into larger, spatially connected blocks.  

The HOG descriptor is then the vector of the components of the normalized cell 

histograms from all of the block regions. These blocks typically overlap, meaning 

that each cell contributes more than once to the final descriptor. 

In our implementation, we consider 3×3 cell blocks and 4 histogram bins for each 

block, thus having a 36×1 HOG feature for each input candidate patch.  That is, the 

histogram for each cell block is normalized before putting it to the HOG feature vector. If 

‘H’ is a 4×1 non-normalized histogram vector obtained for a given cell block, the 

normalized histogram is computed by Equation (3), 

                                        NormalizedH = H (k) / (norm (H) + e)                                    (3) 

where,  

• k ranges from 1 to 4, which are the bin numbers 

• norm(H) is a function that calculates vector norm for the histogram vector 

• e is some very small constant. 
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Appending all the normalized histogram for each bin gives us the 36-dimensinoal 

(3×3×4) HOG features. 

 3.3.2 Eigen Features 

We first scale the faces in the ORL database to the size of 40×35 since our 

minimum dimension of the candidate patch would be 40×35.  We also scale all the face 

candidate patches to 40×35 before calculating its eigen features. The steps for computing 

the eigen features for an input candidate patch are summarized below. 

1) Convert each scaled face image in the ORL dataset to a column vector of size 

1400×1.  Denote all face images as D = {x1, x2, x3 … xM}, where x1 represents the 

column vector of the first face image and M is the total number of images in the 

ORL dataset. 

2) Compute the mean face µ of size 1400×1 and the covariance matrix C of size 

1400×1400 by Equation (4). 

                                                                         (4)                               

 

3)   Compute the covariance matrix C’s eigen values (e.g., λk’s) and corresponding 

eigenvectors (e.g., uk’s) using Equation (5).  

                      (5) 

4) Construct the matrix U=[u1 u2 ... uk] using k dominant eigen vectors.  Specifically, 

u1, u2, and uk, respectively, represent the eigenvectors of the k largest values λ1, 
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λ2.... λK, where λ1>λ2>....> λK.   These eigenvectors are mutually orthogonal and 

span a k-dimensional subspace called principal subspace.  

5) Compute the eigen features of the scaled candidate patch by Equation (6) 

                                                   Eigen = UT (x - µ)                                                 (6) 

where x represents the column vector of the scaled candidate patch, µ represents 

the mean face, UT is the transpose of the matrix U, and Eigen represents the eigen 

features of the scaled candidate patch, which is a k×1 vector.  

It should be noted that steps 1 through 4 are computed offline.  The matrix U 

computed at step 4 and the mean face are stored in a file and loaded to compute the eigen 

features during the online face detection process.  In our implementation, we choose 12 

important eigenvectors to create the matrix U.  Thus, the eigen feature is a 12×1 vector. 

3.3.3 Edge Ratio 

To compute this feature, we extract edges using the canny edge detector on the 

converted grayscale patch.  We then divide the edge image into 4×4 non-overlapping 

blocks and compute the ratio of the edge pixels in each of the 16 blocks.  This feature is a 

16×1 feature vector and captures the edge distribution in each block.  Edge ratio is an 

important feature since the edges for non-faces vary greatly compared to those of faces. 

We choose the Canny edge detector to extract edges since it uses a multi-stage 

algorithm to detect a wide range of edges in the image. The Canny edge detector 

generally achieves good detection by marking as many real edges in the image as 

possible and reducing the false edges created by the image noise.  
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3.3.4 Edge Statistics 

The edge statistics feature contains the statistics of the edge information. Edges 

are significant features in classifying faces and non-faces, so this component is important. 

To compute this edge statistics feature, we first apply the vertical Sobel edge detector as a 

filter to obtain a filtered patch that contains the first derivative changes along the vertical 

direction.  We next compute the mean and standard deviation of the filtered patch.  

Similarly, we apply the horizontal Sobel edge detector as a filter to obtain a filtered patch 

that contains the first derivative changes along the horizontal direction.  We then compute 

the mean and standard deviation of the filtered patch.  Finally, we include the entropy of 

the Canny edge image.  In total, we extract 5 values for the edge statistics feature vector.  

The vertical Sobel edge detector is shown in the following matrix:  

 

The horizontal Sobel edge detector is shown in the following matrix 

 

3.4 Support Vector Machine (SVM) Classification 

Support vector machines are a set of related supervised statistical learning 

methods that analyze data and recognize patterns.  They are typically used for 

classification (machine learning) and regression analysis. Vapnik invented the original 

SVM algorithm, and the current standard incarnation (soft margin) was proposed by 



24	
  
	
  

	
  

Cortes and Vapnik [18]. 

The standard SVM is a non-probabilistic binary linear classifier.  It uses a set of 

training samples marked as belonging to one of two categories to build a model that 

predicts whether a new sample falls into one category or the other.  Intuitively, an SVM 

model finds a clear gap that is as wide as possible to separate training samples into two 

categories. New samples are then predicted to belong to a category based on which side 

of the gap they fall on.  More formally, an SVM constructs a hyperplane or set of 

hyperplanes in a high-dimensional space for classification, regression, or other tasks. A 

good separation is achieved by the hyperplane that has the largest distance to the nearest 

training data points of any class (so-called functional margin), since in general the larger 

the margin the lower the generalization error of the classifier.   Figure 10 shows the 

support vectors for the linearly separable samples.  These support vectors are decided by 

three samples on the dashed line.  The solid line represents the hyperplane for the 

decision function. 

 

Figure 10: SVM for the linearly separable samples. 
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However, it often happens that the samples in the original dimensional space are 

not linearly separable. As a result, SVM schemes apply the kernel trick to map samples to 

a higher dimensional space such that the newly mapped samples are linearly separable.  

Figure 11 demonstrates this idea. The kernel trick ensures that cross products of two 

newly mapped samples may be computed easily in terms of the two samples in the 

original space.  Thus, the computational load is reasonable.  

 

 

Figure 11: Non-linearly separable samples vs. linearly separable  
higher-dimensional samples. 

 

Soft-Margin SVMs are commonly used to further allow mislabeled samples [18].  

That is, if no hyperplane exists that can split the "yes" and "no" examples, the Soft 

Margin method will choose a hyperplane that splits the samples as cleanly as possible, 

while still maximizing the distance to the nearest cleanly split samples. Figure 12 

illustrates the basic idea of the soft-margin SVMs. 
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Figure 12: Illustration of soft-margin SVMs. 

The soft-margin SVMs enforce the following two constraints to accommodate the 

mislabeled samples:  

  

Here, Xi is a p-dimensional feature vector (i.e., the input to the SVM), ci  is either 1 or -1 

indicating the class (face or non-face) to which Xi belongs, ξI is a slack variable that 

measures the degree of misclassification of the datum Xi.  The optimization becomes a 

trade-off between a large margin and a small error penalty.  If the penalty function is 

linear, the optimization problem becomes: 
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where, C is the trade-off parameter between a large margin and a small error penalty.  

The two constraints along with the above objective can be solved using Lagrange 

multipliers.  Its dual optimization problem becomes: 

 

In this form, it is clear that the key advantage of a linear penalty function is that the slack 

variables vanish from the dual problem, with the constant C appearing only as an 

additional constraint on the Lagrange multipliers. 

In our system, SVM is trained with 607 face patches and 424 non-face patches. 

These are obtained by applying iterative template matching on ORL face database images 

and many other images, which were not used for initial testing of the algorithm.  For all 

these face and non-face candidate patches, we extract 69 features as described in Section 

3.3 to form the input to the SVM.  To enforce the kernel trick, we use a quadratic kernel 

function to map training samples in 69 dimensions to a higher dimension.  We 

experiment on different values of C to decide on the best configuration for training the 

SVM.  Figure 13 shows the block diagram of the offline training process. 

After training SVM with the training samples, the trained SVM can be used 

directly to classify each candidate patch as a face or a non-face.  To this end, we extract 

69 features for each candidate patch and feed these features into the trained SVM for the 

classification task. 
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Figure 13: The block diagram of the offline Training process.  
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CHAPTER 4 

EXPERIMENTAL RESULTS 

Various experiments have been performed on a set of images to test the proposed 

face detection algorithm.  Specifically, we choose 56 images with 258 faces for our 

experiments.  These images belong to different categories, covering most scenarios in 

digital photographs.  The following summarizes each category together with the number 

of test images in it.  It should be noted that several images may belong to multiple 

categories. 

• 32 images with multiple faces 

• 24 images with single face 

• 10 images with multiple faces that are close to each other 

• 22 images with multiple faces that are far apart from each other 

• 15 images with varied background 

• 12 images with faces wearing spectacles 

• 2 images with faces in less light 

In our experiments, the total number of faces in all test images was 258.  None of 

the faces were rejected from the skin color modeling and thresholding.  The total number 

of non-faces falsely detected as faces from template matching was 369.  The template 

matching also missed 15 faces out of 258 faces.  Figure 14 and Figure 15 show the 

detected candidate faces after applying template matching and SVM classification on an 

image with multiple faces close to each other, respectively.  It should be noted that there  
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Figure 14: Candidate patches detected after template matching 

 

Figure 15: Final classified faces after SVM classification. 
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are a lot of connected skin color components after applying skin color modeling and 

thresholding.  As a result, we do not show the results at this stage. 

Figure 14 clearly shows that many of the non-face regions such as the hands and 

background were detected as faces during template matching.  Three of the faces were 

missed during template matching. This is because those faces were partially covered by 

other faces that were detected.  This partial covering makes detection of the covered faces 

difficult. Figure 15 clearly shows that all faces at the template matching stage are kept, 

and many of the non-faces detected as faces at the template matching stage are removed 

by SVM classification.  

Figure 16 and Figure 17 show the template matching and SVM classification 

results for an image with an intricate background of a lot of skin color pixels, 

respectively. This test image also has a person wearing spectacles.  

 

Figure 16: Candidate patches detected after template matching. 



32	
  
	
  

	
  

 

Figure 17: Final classified faces after SVM classification. 

Figure 18 and Figure 19 show the template matching and SVM classifier output 

for an input image having multiple faces of different race, as well as having and an 

intricate background. We can see that a multiple number of non-faces are falsely detected 

as faces in template matching. But the SVM classifier does a great job in classifying 

them. 

As mentioned in Chapter 3, our face detection algorithm uses four kinds of 

features, namely, HOG features, eigen features, edge ratios, and edge statistics, for SVM 

training and classification.  We ran different experiments to summarize the performance 

under different features.  The following summarizes those experiments. 

First, we ran an experiment to decide whether normalized eigen features should 

be used in face detection since the other three features are in the range of [0, 1].  Table 1 

compares face detection performance using eigen features combined with the three other 

features and normalized eigen features combined with the three other features. In Table 1, 

we also compare the face detection performance using 12 normalized eigen features and 

25 normalized eigen features together with the other three features. 
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Figure 18: Candidate patches detected after template matching. 

 

Figure 19: Final classified faces after SVM classification. 
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Table 1: Comparison of Face Detection Performance Using Different Eigen Features 
Along with HOG, Edge Ratio and Edge Statistics. 

Feature No. of 
Features TP TN FP FN Precision Detection 

Rate % 

False 
Detection 
Rate % 

Eigen 12 236 22 11 358 95.55 91.47 2.98 
Normalized 

Eigen 12 236 22 9 360 96.33 91.47 2.44 

Normalized 
Eigen 25 236 22 9 360 96.33 91.47 2.44 

 

The terms in Table 1 are explained below. 

• True positive (TP) is the number of faces that are detected from the algorithm. 

• True negative (TN) is the number of faces that are not detected. 

• False positive (FP) is the number of non-faces falsely detected as faces. 

• False negative (FN) is the number of non-faces rejected from the classifier. 

• Accuracy shows the proportion of true results, both true positives and true 

negatives, as computed as below 

 

• Precision or positive prediction value is defined as the proportion of the true 

positives against all positive results. It is computed by 

 

• Detection rate gives us a percentage of faces correctly detected. 
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• False detection rate shows the percentage of non-faces falsely detected as face.  

 

Table 1 clearly shows that the normalized features achieve better results.  Since 

25 normalized eigen features achieve the same performance as the 12 normalized eigen 

features, we use 12 normalized eigen features in our face detection. 

Second, we ran a series of experiments to compare face detection performance 

using different feature combinations.  In total, there are 15 possible combinations for the 

four kinds of features.  However, four of these combinations cannot be used for SVM 

learning due to their skewed distribution.  That is, support vectors cannot be computed 

for these four combinations.  Table 2 summarizes face detection performance for the 

remaining 11 combinations of features.  Here, ES represents edge statistics features, EIG 

represents normalized eigen features, and ER represents edge ratio features.  Table 2 

clearly show that using all four features gives us a good face detection rate and reduces 

false detection rate.  Specifically, our face detection algorithm using four features on 56 

images with 258 faces achieves a face detection rate of 91.47 and a false detection rate of 

2.44%.  Therefore, we consider all the four features in our further experiments. 

Third, we ran a series of experiments to compare face detection performance 

using different constant values of C for the SVM training and classification.  The results 

are shown below in Table 3.  Clearly, the SVM classifier with C being 8 achieves good 

results with a face detection rate of 91.47% and a false detection rate of 2.17%. 
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Table 2: Comparison of Face Detection Performance for Different Features. 

Feature No. Of 
Features TP TN FP FN Precision Detection 

Rate % 

False 
Detection 
Rate % 

HOG 36 216 42 26 343 89.26 83.72 7.05 
ES 5 2 256 0 369 100 0.77 0 

HOG, 
EIG 48 215 43 27 342 88.84 83.33 7.32 

HOG, 
ER 52 230 28 19 350 92.37 89.15 5.15 

HOG, 
ES 41 223 35 20 349 91.77 86.43 5.42 

EIG, 
ER 28 197 61 30 339 86.78 76.36 8.13 

HOG, 
EIG, 
ER 

64 233 25 12 357 95.1 90.31 3.25 

HOG, 
ER, ES 57 233 25 16 353 93.57 90.31 4.34 

HOG, 
EIG, 
ES 

53 228 30 16 353 93.44 88.37 4.34 

EIG, 
ER, ES 33 214 44 31 338 87.35 82.95 8.01 

HOG, 
EIG, 

ER, ES 
69 236 22 9 360 96.33 91.47 2.44 

 

 

Table 3: Comparison of Face Detection Performance Using Different C Values for 
SVM Training and Classification. 

C Value TP TN FP FN Precision Detection 
Rate % 

False 
Detection 
Rate % 

2^-1 235 23 8 361 96.71 91.08 2.17 
2^1 236 22 9 360 96.33 91.47 2.44 
2^3 236 22 8 361 96.72 91.47 2.17 
2^5 236 22 9 360 96.33 91.47 2.44 
2^7 236 22 9 360 96.33 91.47 2.44 

Default 
value 1 236 22 9 360 96.33 91.47 2.44 
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In summary, our extensive experiments show the best configuration for our 

proposed face detection algorithm is to use all four complementary features (i.e., HOG 

features, normalized eigen features, edge ratio features, and edge statistics features) and 

set the C value for SVM as 2^3.  This configuration achieves a high precision, while also 

maintaining a high detection rate and a low false detection rate. 

Finally, we used Google’s Picasa software to detect faces in our testing images.  

Five faces out of 258 faces were rejected, and 2 non-faces are detected as faces. 

Our proposed system was implemented using Matlab 2011(b) on a computer with 

Intel Core 2 Duo 2.93 GHz Processor, having 4GB of memory.  The running time to 

detect all faces in the three pictures as shown in Figures 15, 16, and 18 was 7.3, 25.1, and 

7.6 seconds, respectively. Each of these input images are of size 1071 X 1500, 720 X 

1342 and 400 X 600.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

We propose a novel face detection algorithm that seamlessly incorporates skin 

color modeling and thresholding, morphological enhancement, iterative template 

matching, feature extraction, and SVM classification to achieve decent face detection 

performance in a variety of images.  Specifically, the proposed method is effective in 

detecting faces from typical photographs having multiple faces, single faces, faces 

wearing spectacles, faces of different races, faces with less light, and faces very close to 

each other.  The experiments show that the proposed method outperforms the peer 

method [1], as our algorithm achieves a higher face detection rate and lower false 

detection rate.  Specifically, our method improves the peer method by improving the face 

detection rate by 3.97% and reducing the false detection rate by 2.42%.   Our 

experimental results on 258 faces using the best configuration show a face detection rate 

of 91.47% and a false detection rate of 2.17%.  The major contributions of this project 

are: 

• Employing the morphological enhancement operation to remove holes and 

separate a majority of adjacent objects. 

• Designing an iterative template matching algorithm to locate multiple faces in a 

candidate patch. 

• Designing two novel features, namely, an edge ratio feature and an edge statistics 

feature, to capture edge information in candidate patches. 

• Combining the two novel features with two commonly used features, the HOG 

feature and the Eigen feature, to achieve optimal features for face detection. 
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Future work may include: 

• Using more powerful and effective morphological enhancement to keep all the 

faces. 

• Using different template matching approaches to reject a majority of the non-

faces. 

• Using other optimal features to represent the candidate patches. 

• Using an AdaBoost classifier instead of SVM for the classification task. 
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