Utah State University DigitalCommons@USU

Presentations

Materials Physics

5-16-2017

Effects of Temperature and Radiation Dose on Radiation Induced Conductivity

JR Dennison Utah State Univesity

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Condensed Matter Physics Commons

Recommended Citation

JR Dennison, "Effects of Temperature and Radiation Dose on Radiation Induced Conductivity," Invited Talk, Sandia National Laboratories: Electronic, Optical and Nano Materials Division, Albuquerque, NM May 16, 2017.

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Sandia National Laboratories Albuquerque, NM May 16, 2017

Effects of Temperature and Radiation Dose on Radiation Induced Conductivity

J.R. Dennison

Materials Physics Group Physics Department, Utah State University

A Rose by any other name would smell as sweet...

Rose found zero x-ray radiography

Rose-Fowler-Vaserberg theory

What Is Radiation Induced Conductivity (RIC)?

Ę

Uniform Trap DensityExponential Trap Density $\Delta(T) \rightarrow 1$ $\Delta(T) \rightarrow \frac{T_c}{T + T_c}$ $k(T) \rightarrow k_{RICo}$ $k(T) \rightarrow k_{RIC1} \left[2 \left(\frac{m_e k_B T}{2\pi\hbar^2} \right)^{3/2} \left(\frac{m_e^* m_h^*}{m_e m_e} \right)^{3/4} \right]^{\frac{T}{T + T_c}}$ $\sigma_{RIC}(T, D) = k_{RIC}(T) \cdot D^{\Delta(T)}$

Radiation Dose Dependence of Conductivity

				•
Curve Segment	Type of Radiation	Energy	Dose Rate	Mode
1 2 3 4	X-rays X-rays γ-rays pulse reactor	250 keV 15 to 30 keV 1.17 and 1.33 MeV	0.13 rad/s 1 to 400 rad/s 200 to 3500 rad/s	steady state steady state steady state
5	neutrons and γ -rays electrons	mixed 30 MeV	6.5×10^4 to 3.8×10^6 R/s 5 $\times 10^7$ to 7 $\times 10^9$ rad/s	13 ms pulses 4.5 μ s pulses

RIC Dependence on Temperature

Kapton[™] (polyimide)

Family of curves of ρ_{RIC} vs dose rate at various temperatures. Fits are simple power law fits.

 $\sigma_{RIC}(T,D) = k_{RIC}(T) \cdot D^{\Delta(T)}$

RIC Dependence on Temperature

— Fit to Delta at RT

400

- Other Data Sets
- ▲ ▲ USU Data

RIC Is Time Dependant

Initial RIC

$$B_{on}(t,\lambda(D,T)) = 1 - e^{-(t-t_{on})\cdot\lambda(D,T)}$$

Dose Dependent Equilibrium RIC

$$\sigma_{RIC}(T,D) = k_{RIC}(T) \cdot D^{\Delta(T)}$$

Persistent RIC

Instrumentation

Idaho Accelerator Center RIC Chamber

Radiation Induced Conductivity Measurements

RIC chamber uses a combination of charge injected by a biased surface electrode with simultaneous energy injection by a pulsed penetrating electrons.

Sample stack cross section

RIC Chamber

Top view of samples on window

Instrumentation

USU Cryostat RIC Chamber

AFRL RIC Cryostat Chamber

High Energy Electron Gun

Faraday Cup Z Translation Stage

USU Closed Cycle He Cryostat

AFRL RIC Cryostat Chamber Cut Away Diagram

AFRL RIC Closed-Cycle He Refrigerator Sample Stage Design

Ę

AFRL RIC Closed-Cycle He Refrigerator Sample Stage Design

AFRL RIC System Cryostat Block Diagram

JR Dennison Kent Hartley Ver. 1.0 10/01/12

Complementary Responses to Radiation

<u>RIC Cryostat Measurements</u>

Room T RIC Cryostat System Results

Dose Rate (Rad/s)

Resistivity (ohm-om)

USU Materials Physics Group Capabilities

Facilities & Capabilities

Sample Characterization & Preparation

- Bulk composition (AA, IPC).
- Surface contamination (AES, AES mapping ESD).
- Surface morphology (SEM, optical microscopy).

Conduction Related Properties:

- Bulk & surface conductivity.
- High resistivity testing.
- Capacitance, dielectric constant, charge decay monitoring, and electrostatic discharge.

Electron Induced Emission:

- Total, secondary and backscattered yield vs. incident energy and angle.
- Energy-, angle-resolved emission spectra.
- Cathodoluminescence

Ion Induced Emission:

• Total electron and ion yield versus incident energy and angle.

Photon Induced Emission:

- Total electron yield vs photon energy.
- Energy-angle resolved photoelectron yield crosssections.

Electron Induced Arcing:

- Four ultrahigh vacuum chambers for electron emission tests equipped with electron, ion, and photon sources, detectors, and surface analysis capabilities.
- Two high vacuum chambers for resistivity tests.
- High vacuum chamber for electrostatic breakdown tests.
- Ultrahigh vacuum chamber for pulsed electro acoustic measurements of internal charge distributions.

Dark Current and Radiation Induced Conductivites

Slab (parallel plate capacitor) Model

Charge Absorption

Bethe Approximation:

Charge absorbed at single (energy dependant) Range, R

Surface Potential

 $V_{S}(t) = \frac{J_{B}R}{2\varepsilon_{a}\varepsilon_{r}}t$ **No Dissipation:**

Dissipation: $V_{S}(t) = \frac{J_{B}R}{2\varepsilon_{o}\varepsilon_{r}} \left[\frac{1}{t} + \frac{2}{\tau_{DC}} + \frac{2}{\tau_{RIC}}\right]^{-1}$ **RIC:**

Decay Time:

$$\tau_{DC} = \varepsilon_o \varepsilon_r / \sigma_{DC}$$

Energy Absorption

Continuous Slow Down Approximation:

Energy absorbed uniformly up to Range, R

Absorbed Dose Rate (J/kg-s):

D

Dose Rate:

$$= J_B E_B / q_e \rho_m R$$

 $\sigma_{RIC}(\dot{D}) = k_{RIC} \cdot \dot{D}^{\Delta}$

 au_{RI} **Decay Time:**

$$_{NC} = \varepsilon_o \varepsilon_r / \sigma_{RIC}$$

USU Resisitivity Calculator Engineering Tool

This Mathcad worksheet calculates the resistivity of JWST spacecraft materials as a function of electric field (E), temperature (T), and adsorbed dose rate (D) based on parameterized, analytic functions used to model an extensive data set taken by the Utah State University Materials Physics Group.

Figure 1. Mathcad engineering tool user input interface.

Conductivity in Highly Disordered Insulating Materials

Ē

Kapton[™] (polyimide)

 $\sigma(t) = \sigma_{DC} + \sigma_{Polarization}(t) + \sigma_{Diffusion}(t) + \sigma_{Dispersion}(t) + \sigma_{Transit}(t) + \sigma_{RIC}(t)$

Conductivity in HDIM--Polarization

L

Conductivity in HDIM—Drift and Hopping Conduction

Temperature Dependence of Hopping Conductivity

At high temperatures, the conductivity is proportional to a Boltzmann factor, with trap depth ΔH:

Ę

$$\sigma(T) \propto \exp\left[-\frac{\Delta H}{k_B \cdot T}\right] \quad or \quad \rho(T) \propto \exp\left[\frac{\Delta H}{k_B \cdot T}\right]$$

At low temperatures, the variable-range hopping conductivity is proportional to a Mott factor:

$$\sigma(T) \propto \exp\left[-\frac{1}{k_B \cdot T^{\frac{1}{4}}}\right] \quad or \quad \rho(T) \propto \exp\left[\frac{1}{k_B \cdot T^{\frac{1}{4}}}\right]$$

Conductivity in HDIM—E-Field Dependence of Hopping Conductivity

At low field, the conductivity is independent of E-field:

Ę

$$\rho_{hop}(T) \xrightarrow{low E} \left[\frac{n(T) \cdot v \cdot a^2 \cdot e^2}{k_B \cdot T}\right]^{-1} \exp\left[\frac{\Delta H}{k_B \cdot T}\right]$$

At high field, the potential wells distort. Poole-Frenkle theory predicts:

$$\rho(E;T) = \rho_o(T) \exp\left[-\frac{\beta \ \mathrm{E}^{0.5}}{k_B \cdot T}\right]$$

Diffusive and Dispersive Transport

• Photoconductivity experiment on semiconductors by Pfister and Sherr

- Amorphous Selenium
- Dispersive transport causes unique shape in loglog graph
- Hopping and trapping mechanisms responsible for dispersive transport

• Dispersive transport results from wide range of hopping times, e.g. from range of ΔH and α

- 'Universality' a result of dispersive transport
- Note transit times in ms

Normal vs. Dispersive Transport

RIC and Defect Density of States

A Materials Physics Approach to the Problem

Interrelated through a...

Complete set of dynamic transport equations $J = q_e n_e(z,t) \mu_e F(z,t) + q_e D \frac{dn_{tot}(z,t)}{dz}$ $\frac{\partial}{\partial z} F(z,t) = q_e n_{tot} / \epsilon_0 \epsilon_r$ $\frac{\partial n_{tot}(z,t)}{\partial t} - \mu_e \frac{\partial}{\partial z} [n_e(z,t)F(z,t)] - q_e D \frac{\partial^2 n_e(z,t)}{\partial z^2} = N_{ex} - \alpha_{er} n_e(z,t) n_{tot}(z,t) + \alpha_{et} n_e(t) [N_t(z) - n_t(z,t)]$ $\frac{dn_h(z,t)}{dt} = N_{ex} - \alpha_{er} n_e(z,t) n_h(z,t)$ $\frac{dn_t(z,\epsilon,t)}{dt} = \alpha_{et} n_e(z,t) [N_t(z,\epsilon) - n_t(z,\epsilon,t)] - \alpha_{te} N_e exp \left[-\frac{\varepsilon}{kT} \right] n_t(z,\epsilon,t)$

Extended States Mobility Edge Disordered Localized States Mobility Edge Extended States

...written it terms of spatial and energy distribution of electron trap states

A Focus on Defect Densities

What is required is knowledge of:

- Defect (trap) spatial distribution (density)
- Defect energy distribution (DOS)
- Types of charge carriers (*e.g.*, e⁻ or h⁺)
- Occupation of defect states by charge carriers
- Transition frequencies (lifetimes)
- Complete set of dynamic transport equations

$$J = q_e n_e(z,t) \mu_e F(z,t) + q_e D \frac{dn_{tot}(z,t)}{dz}$$

$$\frac{\partial}{\partial z} F(z,t) = q_e n_{tot} / \epsilon_0 \epsilon_r$$

$$\frac{\partial n_{tot}(z,t)}{\partial t} - \mu_e \frac{\partial}{\partial z} [n_e(z,t)F(z,t)] - q_e D \frac{\partial^2 n_e(z,t)}{\partial z^2} = N_{ex} - \alpha_{er} n_e(z,t) n_{tot}(z,t) + \alpha_{et} n_e(t) [N_t(z) - n_t(z,t)]$$

$$\frac{dn_h(z,t)}{dt} = N_{ex} - \alpha_{er} n_e(z,t) n_h(z,t)$$

$$\frac{dn_t(z,\varepsilon,t)}{dt} = \alpha_{et} n_e(z,t) [N_t(z,\varepsilon) - n_t(z,\varepsilon,t)] - \alpha_{te} N_e exp \left[-\frac{\varepsilon}{kT} \right] n_t(z,\varepsilon,t)$$

Disorder introduces localized states in the gap

Nobel Prize 1977 to Sir Nevill Mott and P.W. Anderson, Electronic Structure of Disordered Systems

Tunneling Between Traps—and Mott Anderson Transitions

Figure 5.13 One-electron tight-binding picture for the Anderson transition. When the width W of the disorder exceeds the overlap bandwidth B, disorder-induced localization takes place.

Anderson transition between extended Bloch states and localized states caused by variations in well depth affects tunneling between states.

Figure 5.12 Schematic picture for the Mott transition. When the electron bandwidth *B* is decreased (by increased atom-atom separation) sufficiently to be smaller than the intrasite electron-electron energy *U*, correlation-induced localization takes place.

Mott transition between extended Bloch states and localized states caused by variations in well spacing which affects tunneling between states.

R. Zallen, *The Physics of Amorphous Solids*, (John Wiley and Sons, Inc. 1983).

Nobel Prize 1977 to Sir Neville Mott and P.W. Anderson, *Electronic Structure of Disordered Systems*

Synergistic Models of Electron Emission and Transport Measurements of Disordered SiO₂

Look at measurements of fused quartz (a-SiO₂) from a synergistic microscopic, defect state perspective

used as coverglass, optical elements, and insulator

Putting the Pieces Together

Focus on DOS:

• Synthesis of results from different studies and techniques

• Development of overarching theoretical models allow extension of measurements made over limited ranges of environmental parameters to make predictions for broader ranges encountered in space.

Band	Peak	Peak	FWHM	Defect	Ref.
Red	1.93±0.01 eV	663±3 nm	42 nm	NBOHC	[16,20,23]
Green	2.48±0.03	506±7	68	ODC	[17,23]
Blue	2.76±0.03	450±5	11	Surface	[18-20,23]
UV	4.97	275	50	ODC	[17-20,23]

Optical Band Gap—Disordered SiO₂

Ē

Conductivity vs Temperature

Ē

Conductivity Modes vs Time

- Dark current or drift conduction—Defect density, N_T , and $E_d \approx 1.08 \text{ eV}$
- Diffusion-like and dispersive conductivity—Energy width of trap distribution, α
- Radiation induced conductivity—Shallow trap density and ε_{ST}
- Polarization—Rearrangement of bound charge, $\epsilon_r^{\infty} \epsilon_o$ and τ_{pol}
- AC conduction—Dielectric response, ϵ_r (ν) ϵ_o

Surface Voltage Charging and Discharging

- Uses pulsed non-penetrating electron beam injection with no bias electrode injection.
- Fits to exclude AC, polarization, transit and RIC conduction.

• Yields N_T, E_d, α , ε_{ST}

Instrumentation

Discharge

100

150

F_{ESD} **Breakdown: Dual (Shallow and Deep) Defect Model**

Breakdown field measurements:

$$N_{def} \Delta G_{def} = \frac{\mathcal{E}_0 \mathcal{E}_r}{2} \cdot (F_{ESD})^2$$

Endurance time measurements:

$$t_{en}(F,T) = \left(\frac{h}{2k_bT}\right) \exp\left[\frac{\Delta G_{def}(F,T)}{k_bT}\right] \operatorname{csch}\left[\frac{F^2 \varepsilon_0 \varepsilon_r}{2k_BT N_{def}(F,T)}\right]$$

Complementary Responses to Radiation: RIC and CL

Cathodoluminescence Emission Spectra

Cathodoluminescence—Defect Origins for DOS's

Based on peak positions for similar disordered SiO₂ samples at room temperature.

Sahl identified 1.98 eV peak as from nonbridging oxygen hole center.

Trukhin identified 2.48 eV and 4.51 eV peaks as from an oxygen deficient center.

Electron Emission Studies and DOS

Ę

Putting the Pieces Together

Focus on DOS:

• Synthesis of results from different studies and techniques

• Development of overarching theoretical models allow extension of measurements made over limited ranges of environmental parameters to make predictions for broader ranges encountered in space.

Band	Peak	Peak	FWHM	Defect	Ref.
Red	1.93±0.01 eV	663±3 nm	42 nm	NBOHC	[16,20,23]
Green	2.48±0.03	506±7	68	ODC	[17,23]
Blue	2.76±0.03	450±5	11	Surface	[18-20,23]
UV	4.97	275	50	ODC	[17-20,23]

USU Materials Physics Group

(Back row Left to Right) Ben Russon, Heather Zollinger, Zack Gibson, Matthew Robertson, Jordan Lee, David King

(Front row Left to Right) Justin Christensen, Alexandra Hughlett, Alex Souvall, Greg Wilson, Allen Andersen, JR Dennison, Windy Olsen

(Not pictured) Brian Wood, Vladimir Zavyalov, Jodie Gillespie, Jonh Mojica Decena, Katie Gamaunt, Davis Muhwezi, Tyler Kippen

USU MPG Webpage

http://digitalcommons.usu.edu/mp/

J. R. Dennison received the B.S. degree in physics from Appalachian State University, Boone, NC, in 1980, and the M.S. and Ph.D. degrees in physics from Virginia Tech, Blacksburg, in 1983 and 1985, respectively. He was a Research Associate with the University of Missouri—Columbia before moving to Utah State University (USU), Logan, in 1988. He is currently a Professor of physics at USU, where he leads the Materials Physics Group. He has worked in the area of electron scattering for his entire career and has focused on the electron emission and conductivity of materials related to spacecraft charging for the last two decades.

USU Space Survivability Test Chamber

Radiation Sources

Ę

- A High Energy Electron Gun A' Low Energy Electron Gun
- B UV/NIS/NIR Solar Simulator
- C FUV Kapton Discharge Lamps
- D Air Mass Zero Filter Set
- E Flux Mask
- E' Sr⁹⁰ Radiation Source

Analysis Components

- F UV/VIS/NIR Reflectivity Spectrometers
- G IR Emissivity Probe
- H Integrating Sphere
- Photodiode UV/VIS/NIR Flux Monitor
- J Faraday Cup Electron Flux Monitor
- K Platinum Resistance Temperature Probe
- Z Residual Gas Analyzer

V MgF UV Viewport

X Ion Vacuum Pump

Sample Carousel

O Resistance Heaters

P Cryogen Reservoir

M Rotating Sample Carousel

Chamber Components

U Sapphire UV/VIS Viewport

Q Cryogen Vacuum Feedthrough R Electrical Vacuum Feedthrough

N Reflectivity/Emissivity Calib. Standards

S Sample Rotational Vacuum Feedthrough

T Probe Translational Vacuum Feedthrough

W Turbomolecular/Mech. Vacuum Pump

Y Ion/Convectron Pressure Gauges

L Samples

Chamber Components

🛚 CubeSat

- 6 CubeSat Test Fixture
- Radiation Shielding
- **∆** COTS Electronics
- 8 Rad Hard Breadboard
- η COTS Text Fixture
- 😔 Electron Gun

Instrumentation (Not Shown)

Data Acquisition System Temperature Controller Electron Gun Controller UV/VIS/NIR Solar Simulator Controller FUV Kr Resonance Lamp Controller Spectrometers and Reflectivity Source Utah NASA Space Grant Consortium Faculty Research Infrastructure Award Program, "Space Survivability Test Facility for CubeSats, Components and Spacecraft Materials," JR Dennison, (April 2016 to April 2017.

UNSGC 2016 Infrastructure Grant

Simulated Space Environment Fluxes

Electron Radiation

A high energy (~10-80 keV) and three lower energy (~10 eV to 5 keV) electron guns provide high electron fluxes.

Ionizing Radiation

A 100 mCi encapsulated Sr⁹⁰ β -radiation source (~200 keV to >2.5 MeV) mimics high energy (~500 keV to 2.5 MeV) geostationary electron flux [2].

Infrared/Visible/Ultraviolet Flux

A commercial Class AAA solar simulator provides NIR/Vis/UVA/UVB electromagnetic radiation (from 200 nm to 1700 nm) at up to 4 times sun equivalent intensity.

Far Ultraviolet Flux

Kr resonance lamps provide FUV radiation flux (ranging from 10 to 200 nm) at 4X sun equivalent intensity. Kr bulbs have ~3 month lifetimes for long duration studies.

Temperature Control

Temperature range from 60 K [4] to 450 K is maintained to ± 2 K [3]. This is achieved through cartridge heaters, and chilled fluid pumped through a cold plate.

Controlled Atmosphere and Vacuum

Ultrahigh vacuum chamber allows for pressures <10⁻⁷ Pa to simulate LEO.

Video Discharge Monitoring

Using custom developed software, live video capture and processing of electrostatic discharge events allows for visual identification of discharge location and frequency.

Flexible Sample Mounting

A rotating graphite carousel, ensures uniform irradiation and allows for custom mounting of samples. Or a flange mounted fixture allows for electrostatic discharge testing. Radiation source to sample distance is adjustable.

Biological Testing

Biological samples, which are vacuum incompatible, can use a custom designed chamber with controlled atmosphere and temperature.