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A Rose by any other name Rose-Fowler-Vaserberg theory

would smell as sweet...

In search of Rose found
the Holy Grail zero x-ray
of the radiography
Videcon...
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What Is Radiation Induced Conductivity (RIC)?
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Presenter
Presentation Notes
As materials are bombarded with a flux of high energy radiation, the large energy is shared with many bound (valence) electrons within the material, that are excited into higher energy levels (black dots) – thereby facilitating their mobility.  The conductivity of the material is therefore enhanced by the radiation energy, rather than by direct charge deposition.  



Radiation Dose Dependence of Conductivity

e The RIC versus radiation
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Curve Segment Type of Radiation Energy Dose Rate Mode
1 X-rays 250 keV 0.13 rad/s steady state
2 X-rays 15 to 30 keV 1 to 400 rad/s steady state
3 y-rays 1.17and 1.33 MeV 200 to 3500 rad/s steady state
4 pulse reactor
neutrons and y-rays mixed 6.5 X 10't0 3.8 X 10° R/s 13 ms pulses
5 electrons 30 MeV S X 107 to 7 X 107 rad/s

4.5 us pulses
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Presentation Notes
Analogy:  Filling traps????

Figure 3.  The radiation-induced conductivity versus radiation dose rate for polyethylene terephthalate.  Exposure is from a variety of different species of radiation, as noted in the table.  The dose rate is in rad/sec, reflecting the energy deposition rate.  [after Campbell, 1983].
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RIC Dependence on Temperature
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Presentation Notes
In reality, when the radiation is turned on, a finite period is required for the measured conductivity to approach the equilibrium radiation induced conductivity.
Similarly, when the radiation is turned off, the measured conductivity also takes a finite amount of time to decay to the material’s initial (zero dose rate) conductivity.



Instrumentation

ldaho Accelerator Center RIC Chamber



Radiation Induced Conductivity Measurements

RIC chamber uses a combination of charge
injected by a biased surface electrode with
simultaneous energy injection by a pulsed
penetrating electrons.
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Instrumentation

USU Cryostat RIC Chamber



AFRL RIC Cryostat Chamber

High Faraday Cup Z
Energy Translation Stage
Electron

Gun

USU Closed Cycle He
Cryostat




AFRL RIC Cryostat Chamber Cut Away Diagram

Faraday Cup Z Translation Stage
High Energy Electron Gun USU Closed Cycle He Cryostat

Gate Valve to Pumping System AFRL Bell Jar Chamber
Faraday Cup Assembly



AFRL RIC Closed-Cycle He Refrigerator Sample Stage Design

Cryo Sample Stage Assembly
Cut-Away Views

Expander Module

Cryo shroud

Shutter gear

assembly
Cryo Shroud Stage (~80 K)

Low T Stage (~30 K)

Sample block

3/1/2011 USUIWSTPhaseV-D 14
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Upper image shows cryostat mounted in USU Electron Emission Test Chamber.


AFRL RIC Closed-Cycle He Refrigerator Sample Stage Design

Multiple Sample
Holder

Samples Front Plate

Light spring
loaded rods PEEK screws

FrontSide View



AFRL RIC System Cryostat Block Diagram

JR Dennison

USU/AFRL RIC Cryostat System Block Diagram Kent Harliey |
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Complementary Responses to Radiation

9/24/12

Modified Joblonski diagram

* VB electrons excited into CB by the high
energy incident electron radiation.

* They relax into shallow trap (ST) states,
then thermalize into lower available long-
lived ST.

e Three paths are possible:

(i) relaxation to deep traps (DT), with
concomitant photon emission;

(ii) radiation induced conductivity (RIC),
with thermal re-excitation into the CB;
or

(iii) non-radiative  transitions or e-h*
recombination into VB holes.

High
Energy

LANL Seminar

Intersystem Crossings

m h'lﬂk EI:E--E DT

MNon-radiative processes
or ¢ h* recombination

Valence Band
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RIC Cryostat Measurements
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USU Materials Physics Group Capabilities

Facilities & Capabilities ¢ Four ultrahigh vacuum chambers for electron emission tests equipped with electron, ion,
and photon sources, detectors, and surface analysis capabilities.

Sample Characterization & Preparation e Two high vacuum chambers for resistivity tests.

* Bulk composition (AA, IPC). ¢ High vacuum chamber for electrostatic breakdown tests.

e Surface contamination (AES, AES mapping ESD).
e Surface morphology (SEM, optical microscopy).

¢ Ultrahigh vacuum chamber for pulsed electro acoustic measurements of internal charge
distributions.

Conduction Related Properties:

e Bulk & surface conductivity.

e High resistivity testing.

e (Capacitance, dielectric constant, charge decay
monitoring, and electrostatic discharge.

Electron Induced Emission:

e Total, secondary and backscattered yield vs. incident
energy and angle.

e Energy-, angle-resolved emission spectra.

e Cathodoluminescence

lon Induced Emission:
¢ Total electron and ion yield versus incident energy and
angle.

Photon Induced Emission:

o Total electron yield vs photon energy.

e Energy-angle resolved photoelectron yield cross-
sections.

Electron Induced Arcing:
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Presentation Notes
First, let me briefly describe the instrumentation used at USU to study electron emission from insulators.

Three vacuum chambers equipped with electron, ion, and photon sources, detectors, and surface analysis capabilities.  Extensive space environment simulation capabilities.

UHV chamber for electron, ion and photon electron emission yields and emission spectra.
UHV chamber for angle resolved emission spectra.
Charge Storage chamber for thin film insulator resitivity measurements. 

(Right) UHV chamber for electron, ion, and photon electron emission yields and emission spectra with extensive surface analysis capabilities.  (Top Left)  Sample stage visible through vacuum port.  (Bottom Left) Sample stage and retarding field detector.  Sample stage holds 11 samples that can be positioned before various sources and detectors and is detachable for rapid take out and changes.

Electron emission (yield) measurements are performed in a UHV chamber for cleanliness (< 10-8 Torr).

11-sample carousel allows multiple-sample measurements between vacuum breaks.
Hemispherical detector features an aperture for incident electron/ion admission, a fully-encasing hemispherical collector for full capturing of emitted electrons, a retarding-field grid (RFG) for emitted-electron energy discrimination.




Dark Current and Radiation Induced Conductivites

Slab (parallel plate capacitor) Model

Charge Absorption

Bethe Approximation:

Charge absorbed at single
(energy dependant) Range, R
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Presentation Notes
Figure XXXX.  Idealized RIC behavior with incident radiation.  High energy radiation beam is turned on at time ton and turned off at time toff.[1]
Realistic RIC behavior with incident radiation.  High energy radiation beam is turned on at time ton and the time dependence is modeled by Eq. (4).  The beam is turned off at time toff, and modeled.


USU Resisitivity Calculator Engineering Tool
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Presentation Notes

Figure 1. Mathcad engineering tooluser input interface. Required user inputs, highlighted in yellow, are limited to materialtype, electric field, temperature, absorbed dose rate and samplethickness. Conductivity fitting parameters and other materialsproperties such as dielectric constant and mass density are retrieved from an accompanying database file. 

Figure 6. Total conductivity and component conductivities as functions of F, T and D& from the engineering tool for low-density polyethylene (LDPE). (a-c) Total conductivity of LDPE as a function of F and T at: (a) low, D&􀃆0; (b) intermediate, D&= 5·10-3 Rad/s; and (c) high, D&= 0.27 Rad/s dose rates. (d-f) Individual components: (d) σTAH as functions of F and T; (e) σVRH as functions of F and T ; and (f) σRIC as a function of D& and T. σRIC is seen to dominate σTotal at low T, σTAH dominates at higher T and lower F, and σVRH dominates at higher T and higher F. To approximately match LDPE data, we have set σTAHo=1.4·10-10 (Ω-cm)-1, FA=9.5·108 V/m and TA=6626 K; σVRHo=1.0·10-10 (Ω-cm)-1, FV=6.9·1013 V/m and TV=1.0·108 K; and kRICo=1.8·10-14 (Ω-cm-Rad/sec)-1 and kRIC1=4.6·10-5 for TRIC=600 K. 
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Conductivity in Highly Disordered Insulating Materials
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Microscopic picture.

Figure.  The frequency dependence of the polarization or dielectric constant.  (bottom)  The dielectric constant decreases with increasing frequency of the applied electric field, as the response of the polarization mechanisms are unable to keep up with the more rapidly changing electric field.  Response times for typical materials are indicated in the graph.  (top)  Schematics of polarization mechanisms in order of decreasing response time, there are (a) distortions of the electron probability density around atoms, (b) distortion of the molecular charge density, (c) reorientation of dipolar moleculesto align opposite to the E-field, and (d) migration of charge to the material interfaces.  [After Figures ??? of Anderson.]
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Microscopic picture.

Figure.  The frequency dependence of the polarization or dielectric constant.  (bottom)  The dielectric constant decreases with increasing frequency of the applied electric field, as the response of the polarization mechanisms are unable to keep up with the more rapidly changing electric field.  Response times for typical materials are indicated in the graph.  (top)  Schematics of polarization mechanisms in order of decreasing response time, there are (a) distortions of the electron probability density around atoms, (b) distortion of the molecular charge density, (c) reorientation of dipolar moleculesto align opposite to the E-field, and (d) migration of charge to the material interfaces.  [After Figures ??? of Anderson.]
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Microscopic picture.

Figure.  The frequency dependence of the polarization or dielectric constant.  (bottom)  The dielectric constant decreases with increasing frequency of the applied electric field, as the response of the polarization mechanisms are unable to keep up with the more rapidly changing electric field.  Response times for typical materials are indicated in the graph.  (top)  Schematics of polarization mechanisms in order of decreasing response time, there are (a) distortions of the electron probability density around atoms, (b) distortion of the molecular charge density, (c) reorientation of dipolar moleculesto align opposite to the E-field, and (d) migration of charge to the material interfaces.  [After Figures ??? of Anderson.]




Temperature Dependence of Hopping Conductivity

Boltzmann

proportional to a Boltzmann factor, with

At high temperatures, the conductivity is {ois
(i)/
trap depth AH:

Transition

o(T) oc exp| — AH or p(T) ocexp AH
kg - T kg - T

At low temperatures, the variable-range
hopping conductivity Is proportional to a
Mott factor:

1 or p(T)cexp 1

o(T) oc exp

kg T /% kg T%
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Analogy:  Shaking the bucket (hourglass) to get the water (sand) to fall out faster

There is also a weak temperature dependence on the number of occupied traps.


B
Conductivity in HDIM—E-Field Dependence of Hopping Conductivity
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Analogy:  Increasing the water line (to increase pressure pushing water out of holes. 


Diffusive and Dispersive Transport

e Photoconductivity
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Normal vs. Dispersive Transport
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Normal transport occurs when the current travels as a pulse. 
An I/t curve is very step-like.
The pulse is somewhat dispersed as it travels, but it remains a) a pulse, and b) Gaussian in shape 
In hopping conductivity, you would get this with a single delta ‘h’ and ‘a’
In dispersive transport, dispersion occurs to a much greater degree.
In fact, the peak of the pulse does not really move as the electrons are dispersed through the material, just the position of the charge centroid
Thus an I/t curve of dispersive transport starts high and has a long low tail. 
In hopping conductivity, this behavior results from a large distribution of delta h and a.



Theory

RIC and Defect Density of States



A Materials Physics Approach to the Problem

Measurements with many methods...
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A Focus on Defect Densities

What is required is knowledge of:
e Defect (trap) spatial distribution (density)
e Defect energy distribution (DOS)
» Types of charge carriers (e.g., e or h¥)
* Occupation of defect states by charge carriers
e Transition frequencies (lifetimes)
e Complete set of dynamic transport equations

] = qene(z, )p.F(z,t) + qepw

)
aF(Z, t) = qeNyor/€o€r
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72
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Disorder introduces localized states in the gap
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The effects of disorder on the crystalline DOS.   (a) The DOS diagram for a simple crystal potential.  When the potentials of the wave functions are disturbed a spread of potentials is created of width W.  This leads of a spreading of the states at or near the CB edge into the gap, as shown in (b).  When strong disorder is introduced the concept, of CB or VB edges are no longer valid. The CB and VB edges are replaced with the disordered counterpart, the mobility edges.  (c) Periodic potential and resulting DOS distribution, with width W.  (d) Anderson model with random potentialadded to potential well depth and the resulting DOS distribution with wider width W
amorphous semiconductors:  there exists a “mobility edge” that separates delocalized (high mobility) and localized (low mobility) electron states in the valence (VB) and conduction (CB) bands
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Figure 5.13 One-electron night-binding picture for the Andersan transition, When
the width B of the disorder exceeds the overlap bandwidth 8, disorder-induced localiza-
tinn takes place.

Anderson transition between extended
Bloch states and localized states caused
by variations in well depth affects
tunneling between states.
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Figure 5.12 Schematic picture for the Mot transition. When the electron hand-
wirth # is decressed (hy increased arom-atom separation) sufficiently to be smaller than
the intrasite electran—-electron energy U, correlation-induced localization twhes place,

Mott transition between extended Bloch
states and localized states caused by
variations in well spacing which affects
tunneling between states.

R. Zallen, The Physics of Amorphous Solids, (John Wiley and Sons, Inc. 1983).

Nobel Prize 1977 to Sir Neville Mott and P.W. Anderson, Electronic Structure of Disordered Systems
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Here’s a graphical illustration of what we mean by well depth or energy-disorder.  The lower part of the diagram shows a random distribution of energies – the W corresponds to the width of the distribution of site energies.  In the Anderson model, this W must be much larger than the renormalized resonance integral (which you might remember as being closely tied to the probability of tunneling between sites).  By renormalized, I mean that the electron-phonon interaction has been included in the resonance integral.  
One tricky part of using the anderson model for hopping systems…and one reason I’m not included a lot of the mathematics, is that disregarding higher orders of ‘perturbation’ in the Hamiltonian isn’t sufficient.  At least second order terms need to be kept to handle the hopping Hall effect and antisymmetric terms in the conductivity tensors.  The time dependence of the electronic wave function and Hamiltonian become complex as well, with the probabilities determined not only by the balance of particles hopping out and particles hopping in, but also by the evolution of the time integral.  This essentially means that the system has a memory.  You’ll hear this characteristic referred to as Non-Markovian.  
Interestingly enough, in the limit of long time scales – the memory of the initial state is lost, so it’s a short-term memory function, retaining just enough information to evolve.  Aren’t you glad I’m not showing you that? 

Here’s a generic wave transmission example – where the thickness of the wall correlates with the height of the potential.  If the barrier is ‘thick’ enough, the transmitted part decays completely.



Synergistic Models of Electron Emission and
Transport Measurements of Disordered SiO,

Look at measurements of fused quartz (a-SiO,) from a synergistic
microscopic, defect state perspective

Amorphous SiO,
(Glass)
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used as coverglass, optical elements, and insulator



Putting the Pieces Together

Focus on DOS:

 Synthesis of results from different
studies and techniques

* Development of overarching
theoretical models allow extension
of measurements made over
limited ranges of environmental
parameters to make predictions for
broader ranges encountered in
space.
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Optical Band Gap—Disordered SiO2

Ece —

t

E..p =8.9€eV

Optical Transmission Data:

* Direct band gap ~8.9 eV

* Additional steps in transmission
in 1-4 eV range

Valence Band
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Zerodur sample transmittance over valid data range. Percent transmision versus photon energy, semilog plots. 
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Conductivity vs Temperature
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Defect energy, E,
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Data were acquired as a function of temperature at fixed voltage (usually 100 V and 1000 V).  Data were acquired from ~130 K to ~360 K.  At low T we lost the current signal in the noise.  The signal was recovered as the sample warmed.  For the most part, the data followed the sample standard theory for thermally assisted conduction in extrinsic semiconductors as the SiC data (see below). 
One issue that we have been concerned with is whether the sample was in voltage (diffusive) equilibrium as the temperature was increased.  We investigated this in several ways.  For example, the heating run was usually followed by a cooling back to room temperature.  We looked for hysteresis in the resistivity versus T curve.  There was clear evidence that there was some hysteresis.  However, it appears to be a relatively small effect, except perhaps at the lowest temperature (where our current limit gives us problems as well—see below).  We are continuing our analysis to quantify this effect. 



Conductivity Modes vs Time
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· Dark current or drift conduction—Defect density, NT, and Ed≈1.08 eV

· Diffusion-like and dispersive conductivity—Energy width of trap distribution, α 

· Radiation induced conductivity—Shallow trap density and εST

· Polarization—Rearrangement of bound charge,   and   

· AC conduction—Dielectric response, 


Surface Voltage Charging and Discharging
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Fesp Breakdown: Dual (Shallow and Deep) Defect Model

Yields: - FESD=zo:z MV/m at RT
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Complementary Responses to Radiation: RIC and CL

Modified Joblonski band diagram

* VB electrons excited into CB by the high energy
incident electron radiation.

 They relax into shallow trap (ST) states, then
thermalize into lower available long-lived ST.

 Four paths are possible:

(i) Remain in (short lived) shallow traps

(i) Non-radiative transitions or e-h* recombination
into VB holes;

(il)Radiation induced conductivity (RIC), with
thermal re-excitation into the CB or;

(iv)Relaxation to deep traps (DT), with
concomitant photon emission.

High
Energy

Intersystem Crossings
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MNon-radiative processes
or ¢ h* recombination

Valence Band
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Cathodoluminescence Emission Spectra

Photon Emission Spectra
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Cathodoluminescence—Defect Origins for DOS’s
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Electron Yields (electron/electron)

Electron Counts dN/dE (arbitrary units)

Electron Emission Studies and DOS
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 Intrinsic yield measurements for insulators
 Surface voltage measurements (<0.1 V resolution 1-20 kV range)
 Low T resistivity and ESD (<100 K)
 Very low T electron emission/glow (<30 K)
 Luminescence (200 nm to 5000 nm)


Putting the Pieces Together

Focus on DOS:

 Synthesis of results from different
studies and techniques

* Development of overarching
theoretical models allow extension
of measurements made over
limited ranges of environmental
parameters to make predictions for
broader ranges encountered in
space.
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The Materials Physics Group has had an active research effort for the last dozen years studying spacecraft charging, the accumulation and dissipation of charge in materials resulting from their interaction with the space environment.  Our colloquium discusses this important practical application from a more basic science viewpoint, in terms of the interaction of energetic beams with materials and the transport of electrons through and out of the materials.  Ultimately we try to relate these processes to the exchange of energy from incident particles to electrons in the material at a basic quantum-level description of solid state interactions.  In particular, we will describe a number of experimental studies of electron emission and conduction from a wide array of materials.  Of particular interest are our most recent studies of charge accumulation and dissipation in highly insulating materials.  These studies involve novel techniques and instrumentation developed at USU to understand how internal distributions of accumulated charge effect subsequent electron emission and conductivity.


J. R. Dennison received the B.S. degree in physics
from Appalachian State University, Boone, NC, in
1980, and the M.S. and Ph.D. degrees in physics
from Virginia Tech, Blacksburg, in 1983 and 1985,
respectively. He was a Research Associate with the
University of Missouri—Columbia before moving to
Utah State University (USU), Logan, in 1988. He is
currently a Professor of physics at USU, where he
leads the Materials Physics Group. He has worked in
the area of electron scattering for his entire career
and has focused on the electron emission and
conductivity of materials related to spacecraft
charging for the last two decades.




USU Space Survivability Test Chamber

Radiation Sources
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Survivability Test Facility for CubeSats,
Components and Spacecraft Materials,” JR
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(RIGHT)  SST Chamber using UV/Vis/NIR Solar simulator to expose cubesat components.
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Simulated Space Environment Fluxes Electron Radiation
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A high energy (~10-80 keV) and three lower energy (~10 eV to 5 keV) electron guns
provide high electron fluxes.

lonizing Radiation

A 100 mCi encapsulated Sr% B-radiation source (~200 keV to >2.5 MeV) mimics high
energy (~500 keV to 2.5 MeV) geostationary electron flux [2].

Infrared/Visible/Ultraviolet Flux

A commercial Class AAA solar simulator provides NIR/Vis/lUVA/UVB electromagnetic
radiation (from 200 nm to 1700 nm) at up to 4 times sun equivalent intensity.
Far Ultraviolet Flux

Kr resonance lamps provide FUV radiation flux (ranging from 10 to 200 nm) at 4X sun
equivalent intensity. Kr bulbs have ~3 month lifetimes for long duration studies.
Temperature Control

Temperature range from 60 K [4] to 450 K is maintained to 2 K [3]. This is achieved
through cartridge heaters, and chilled fluid pumped through a cold plate.
Controlled Atmosphere and Vacuum

Ultrahigh vacuum chamber allows for pressures <107 Pa to simulate LEO.
Video Discharge Monitoring

Using custom developed software, live video capture and processing of electrostatic

discharge events allows for visual identification of discharge location and frequency.
Flexible Sample Mounting

A rotating graphite carousel, ensures uniform irradiation and allows for custom
mounting of samples. Or a flange mounted fixture allows for electrostatic discharge
testing. Radiation source to sample distance is adjustable.

Biological Testing

T T
2 3

H

i!!.’l 2

Wavelength (pm)

Biological samples, which are vacuum incompatible, can use a custom designed
chamber with controlled atmosphere and temperature.
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The SST chamber simulates several critical characteristics of the space environment: electron flux, ionizing radiation, photon flux, temperature and neutral gas environment.  Fig. 3 show representative electron spectral fluxes for several common environments and the solar UV/Vis/NIR. The energy range of electron, ionizing radiation, and photon sources are shown above these graphs.  

(Left). Representative space electron flux spectra for geostationary earth orbit, solar wind at the mean earth orbital distance, plasma sheet environment, maximum aurora environment, and low earth orbit.  (Right) UV/Vis/NIR solar spectrum. Energy ranges for electron and photon sources and the Sr90 beta radiation source are also shown. 
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