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is tuned by the conventional equation in [4]: 
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Figure 4. A LCL load resonant converter. 

Here C1s is a series tuning capacitor to reduce the reactance 

of the pickup to a desired operating value. For this system, 

phase shift control or symmetric voltage cancellation (SVC) 

[5] is used to directly control the track current (I1) with one 

control variable (σ). To determine the track current under 

SVC, and assuming fundamental mode analysis, the following 

equation is used: 

   
 √    
   

   (
 

 
) 

(3) 

The maximum obtainable track current can be determined 

when σ is set to 180º. For the LCL converter, the 

specifications in Table I are calculated according to the design 

equations. The reflected impedance of a fully tuned parallel 

resonant tank [9] is given by: 

   
    

  
  

  

    
(       ) 

(4) 

It should be noted from (4) that a constant reflected 

capacitive reactance is in series with the track inductor and 

one method to directly compensate for this in the design [5] is 

to short the secondary pickup inductance with its series tuning 

capacitor (C2s). This gives a new operating range of (161-

172uH). The system is ideally designed for 200mm and the 

inductance of 168uH is used in determining X1. 

As the coupling changes in the system, a complex 

phenomenon of variations in both Zr and ∆L1 will occur. This 

will cause the bridge current Ib to increase beyond its nominal 

value. The general form of Ib in an LCL network [4], can be 

written as: 

   
(   ) 

  
 (        ) 

(5) 

When the system is allowed to change its coupling by 100% 

(kmax=200%kmin), the reflected impedance would change by 4 

times according to (4). However during this coupling change, 

I1 and (Vab)1 is controlled to be inversely proportional to the 

coupling change with a variation of 2 times [29], hence the 

maximum Ib must be at least 2 times the minimum. With 

variations in the primary self-inductance of the pad, the bridge 

current inductor is designed to handle 42A, which is 2.5 times 

the minimum current. 
TABLE I. Design Parameters For LCL Converter. 

Parameter Value Parameter Value 

Vdc 400V C1s 663nF 

X1 9.21Ω L1 (Figure 3) 177-188uH 

I1_max 39A L1_short 161-172uH 

Lb 73.3uH ω 1.257x105 rad/s 

C1 885nF   

C. Secondary Parallel Pickup with Decoupling Control 

A well-known parallel pickup with decoupling control [1, 2, 

29-31], shown in Figure 5, is chosen for the receiver circuit for 

the following reasons: 

�x The parallel resonant circuit acts as a current source under 

steady state conditions [29], and would be ideal for charging 

most types of batteries. 

�x The decoupling controller is easy to use and can regulate 

the output voltage of the pickup to any desired value by 

simply controlling the duty cycle of the switch Sb [1]. In 

addition, the secondary side control acts as a protection feature 

to the batteries if the wireless communications link is 

temporarily not operational. 

�x Operating the decoupling controller switch at high 

switching frequencies will produce a reflected impedance to 

the primary (Zr) that is constant, and current drawn from the 

power supply will ideally have minimal EMI compared to 

slow switching operation.  

 
Figure 5. Parallel Pickup with decoupling circuit. 

Here, the open circuit voltage from first principles is given 

by: 
          (6) 

And if the battery can be modeled as an equivalent DC 

resistance under steady state, then the output power is given 

by a well-known relationship [29]: 

         (   )     
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where 
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Q2v defined in (8), is different from the Q2 used in (1). Q2 is 

the overall quality factor of the secondary resonant circuit and 

can be defined as the product of the voltage Q (Q2v) and 

current Q (Q2i) [2]. The key part of the design strategy is to 

choose an L2eq in (9) that will meet the maximum power 

requirements in (7). The design parameters are shown in Table 

II. The Voc parameter is not given here, since it is dependent 

on the coupling condition and primary track current used. The 

main purpose of Ldc is to keep the rectifier current continuous 

and the guidelines to choosing it can be found in [32].  
TABLE II. Design Parameters For IPT Pickup. 

Parameter Value Parameter Value 

Vout 300V Ldc 550uH 

X2 10.6 Ω Iout 0-17A 

C2 745nF C2s 666nF 

L2 177-188uH   

III. HIGH EFFICIENCY DUAL SIDE CONTROL 

One critical aspect of the inductive charging system is to 

control the power (or current) used to charge the on-board 







 8 

The operating waveforms are shown in Figure 14 and 

Figure 15 for the two coupling conditions of k=2kmin and 

k=1.14kmin. At the maximum of 5kW, the duty cycle is set to 

zero and the RMS waveforms are much higher than at 2kW. 

When k=2kmin, the bridge current is much higher than 

k=1.14kmin, because a higher current is required to compensate 

for the low AC input voltage (Vab)1 from the H-bridge, which 

is limited by the low conduction angle of the LCL converter to 

reduce primary track current shown in (3). Note that for 

optimal efficiency control outlined in Section III.A, a 2kW 

power corresponds to a duty cycle of around 0.4.  

 
Figure 14. (Top) P=2kW, (Bottom) P=5kW @ v=172mm h=0mm. Top to 
bottom trace, Ib (Figure 4), I1 (Figure 4), I2 (Figure 5), and Vs (Figure 5) 

(inverse of duty cycle). k=2.0kmin.  

 
Figure 15. (Top) P=2kW, (Bottom) P=5kW @ v=246mm h=0mm. Top to 

bottom trace, Ib (Figure 4), I1 (Figure 4), I2 (Figure 5), and Vs (Figure 5) 

(inverse of duty cycle). k=1.14kmin. 

C. Practical controller implementation 

To practically implement this system, the controller block 

diagram shown in Figure 16 is used. The duty cycle D is used 

as the primary control variable (inner loop) and the conduction 

angle σ is constantly updated to keep the output power (or 

current) in regulation (outer loop).  

 
Figure 16. Controller block diagram for optimal efficiency. 

The equivalent load resistance of the battery can be easily 

determined by measuring the battery voltage and the charging 

current. These two sensors are necessary for safety reasons 

when charging large batteries for EVs, hence no additional 

hardware is needed. To determine the coupling coefficient, 

observer equations can be directly used to predict its operating 

value. Firstly, the track current can be determined, perhaps 

through measurement using a current transformer (CT). 

However, if the PFC stage can maintain a constant 400V DC 

bus during operation, it is possible to directly estimate I1 using 

(3) without any extra CT. By using the estimated track current, 

M (and k) can be directly determined when Vdc, Vout and Iout 

are is measured. The equation that links them together is: 

  
√     

   

   

      
      (  ⁄ )

     
(24) 

Figure 17 shows that the mutual inductance (or coupling) 

can be determined without much error over a wide range of 

load and duty cycle conditions. 

Estimates of the system parameters in Table III are required 

for optimal efficiency control using (23). It is possible during 

manufacturing to directly measure the ESR and forward 

voltage values of each component and then program the 

controller for each unit with the measured parasitic values. 

The potential danger of this technique is that the ESR of the 

two IPT pads can vary if stray metal objects are bought into 

close proximity during operation. There are several ways to 

accurately detect pad ESR during operation; however, this 

problem is outside the scope of this paper. 

Alternatively, by installing an input voltage and current 

sensor before the LCL converter with a nominal added cost, 

the input power can be measured directly. With access to the 

input and output power of the system, the efficiency can be 

determined and the optimum can be found by searching for the 

peak. This is the practical implementation approach taken in 

this paper for the closed loop controller. Although it can be 

argued that measuring efficiency in this way is not very 

accurate, the general trend can still be determined using 

sensors that have 1% measurement error. The peak of the 

function shown in Figure 8 can be tracked quite accurately. 
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In this paper, transient analysis or operation is not shown, as 

transient performance for inductive charging systems can 

generally be neglected. The battery usually takes hours to 

charge. Once parked, the coupling is fixed; hence the system 

can be treated with very long time constants. This 5kW IPT 

system takes a few seconds to reach its optimal charging state; 

however, this is negligible compared to the overall charging 

cycle. 

 
Figure 17. Coupling coefficient estimation using (24). Blue trace is for 

k=2kmin (M=60μH) and Red trace is for k=1.14kmin (M=34.2μH) 

IV. CONCLUSION 

This paper outlines the design and implementation of a 

practical 5kW EV inductive charging system with a grid to 

battery efficiency of more than 90% at a range of operating 

heights from 175-265mm. In addition, the high efficiency is 

maintained operating with horizontal misalignment for driver 

parking tolerances. A new control strategy of achieving the 

most optimal efficiency during operation is derived and 

compared to conventional primary and secondary side control. 

Under lighter load conditions, an efficiency improvement of 

up to 7% is possible when using the newly proposed control 

scheme. 
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