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ABSTRACT

Advancing Game Development and Al Integration: An Extensible Game Engine with

Integrated AI Support for Real-World Deployment and Efficient Model Development

by

Ryan Anderson, Master of Science

Utah State University, 2024

Major Professor: Mario Harper, Ph.D.
Department: Computer Science

In pursuit of advancing the field of game development and artificial intelligence (AI),
this thesis proposes the creation of Acacia, an innovative and extensible game engine featur-
ing integrated Al support. Acacia supports dual-flagging mechanisms, allowing developers
to apply Reinforcement Learning (RL) algorithms and designate entities for RL analysis
based on both game state and perceived "reward” criteria. Additionally, developers have
precise control over components that are made visible to the RL algorithm, such as only
those visible within the camera focus. This granularity refines Al interactions to align with
real player behavior. A customizable plugin was developed to enhance flexibility, integrating
the ability to implement RL algorithms easily into the game.

As a tangible showcase of Acacia’s capabilities, the thesis includes the development
of three distinct games spanning various genres, each leveraging the Al plugin. The pri-
mary objective is to establish an extensible game engine capable of constructing any 2D
game with inherent RL support. Beyond this, Acacia seeks to reduce the limitations of
existing solutions, such as Unity, by embracing ML framework agnosticism. Unlike Unity,

which confines developers to its particular ML library (Unity RL), Acacia accommodates
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frameworks like PyTorch or Tensorflow, as well as fostering adaptability to emerging ML
frameworks.

The importance of this project is highlighted by the common challenge of deploying
Unity ML algorithms outside the Unity environment, such as in robotics and simulation
environment applications. Acacia aims to provide a practical solution, allowing developers
to simulate scenarios within the engine and deploy their trained algorithms in real-world
applications.

Furthermore, Acacia’s architecture enables the creation of multiple instances of the
same virtual world, incorporating the capability to disable rendering of all of them at
once. In scenarios where rendering is enabled for numerous instances, the system can
be utilized to render only a single instance among hundreds, preventing undue strain on
system resources. This approach leads to accelerated training times, simulating hundreds
of hours within a fraction of the conventional timeframe, markedly enhancing the efficiency
of ATl model development within the game engine. Acacia is open-source and available at

https://github.com/sonorousduck/Acacia.

(60 pages)
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PUBLIC ABSTRACT

Advancing Game Development and Al Integration: An Extensible Game Engine with
Integrated AI Support for Real-World Deployment and Efficient Model Development

Ryan Anderson

This thesis introduces Acacia, a game engine with built-in artificial intelligence (AI)
capabilities. Acacia allows game developers to effortlessly incorporate Reinforcement Learn-
ing (RL) algorithms into their creations. By tagging game elements to convey information
about the game state or rewards, developers gain precise control over how RL algorithms
interact with their games, mirroring real player behavior or providing full knowledge of the
game world.

To showcase Acacia’s versatility, the thesis presents three games across different genres,
each demonstrating the engine’s Al plugin. The goal is to establish Acacia as a preferred
resource for creating 2D games with RL support without confining developers to specific
machine-learning libraries, ensuring adaptability to current and emerging frameworks.

A key advantage of Acacia is its flexibility in deployment, addressing common challenges
encountered in other simulators like Unity. Unlike Unity’s confined ML library, Acacia
enables developers to deploy trained models beyond the simulation environment, even onto
real-world objects such as robots.

Moreover, Acacia’s architecture facilitates efficient training by enabling multiple in-
stances of the same virtual world and smart rendering optimization. This strategic approach
accelerates training times, allowing for hundreds of hours of simulation within a fraction
of the usual timeframe, significantly enhancing Al model development efficiency within the

game engine.
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CHAPTER 1
INTRODUCTION

This thesis presents the development of Acacia, an extensive 2D game engine equipped
with built-in reinforcement learning (RL) capabilities that offer easy extensibility and de-
ployment in and beyond the gaming environment. The core focus of this research is to
demonstrate the ability of Acacia to integrate RL algorithms seamlessly into the developed
games. Three distinct games were created to demonstrate the engine’s capabilities utilizing
Acacia’s reinforcement learning features.

Game engines constitute various modular components essential for game creation.
Some components include physics engines, collision detection systems, audio processors,
sprite renderers, font renderers, animation controllers, and particle effect generators. The
principle of modularity is critical in the construction of game engines, as it ensures flex-
ibility and minimizes dependencies between different subsystems. Adopting this modular
approach, Acacia employs the Entity-Component-System (ECS) architecture throughout
its design. ECS was first developed by Looking Glass Studios in their 1998 first-person
stealth video game, Thief: The Dark Project. The initial ECS has been slightly modified
for many engines, such as Unity, Unreal Engine, and Acacia, to allow for scripting, which
is not part of a pure ECS architecture. However, scripting allows for quick prototyping of
mechanics and easy extensibility over that of its pure counterpart.

Reinforcement Learning (RL), a subset of machine learning, has garnered significant
attention since the emergence of Deep-Q Networks in 2013. [1]. This learning paradigm
mimics human decision-making processes, where an agent evaluates actions based on re-
ceived rewards or penalties. Such a process exists in video game mechanics such as scoring
systems, where players are rewarded for achieving specific objectives, impacting their game-
play. RL has applications in diverse domains ranging from games like Go [2] and DOTA

2 [3] to complex real-world tasks like robotics [4-6] and energy management control [7].
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Chapter Three of this thesis delves specifically into RL’s application in energy management
control by presenting a paper published at the IEEE International Conference on Intelligent
Transportation Systems (ITSC), showcasing its versatility and potential beyond traditional

gaming contexts.



CHAPTER 2
GAME ENGINE

2.1 Entity-Component-System Architecture

The underlying paradigm of this game engine’s architecture is the Entity-Component-
System (ECS). This paradigm is a versatile data-oriented framework that emulates an
object-oriented approach, offering flexibility and modularity. This architecture enables de-
velopers to build game entities by attaching specific data components to each one, defining
their final behavior, and maintaining clean separation between various aspects of game
development.

Consider a scenario where a developer aims to create a dynamic game entity influenced
by physics with a designated position on the screen and a unique sprite associated with it.
Leveraging the ECS architecture, the developer assembles this entity by attaching specific
components, namely the Transform (Position), RigidBody (Physics Enabled), and Sprite
components. These components, when combined, encapsulate the entity’s characteristics
and attributes, such as its position, physical properties, and visual representation.

The advantage of ECS is shown through the cooperation between components and
systems. Once the entity is constructed with its components in place, specialized systems,
such as the Physics System and Rendering System, take charge of their respective responsi-
bilities. The Physics System ensures precise position updates, while the Rendering System
handles the rendering of the entity’s sprite at the correct screen location. This modular ap-
proach not only simplifies game development but also minimizes interdependence between
different systems, promoting a well-organized and scalable codebase.

Furthermore, to augment this robust ECS foundation, a scripting system was inte-
grated. Although not a conventional component of an ECS architecture, the scripting

system adds an extra layer of flexibility and ease for game designers. This scripting system
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enables the creation of custom behaviors for entities without necessitating the develop-
ment of dedicated systems for each unique case. It allows designers to inject custom logic,

enabling entities to exhibit unique actions, interactions, and responses.

2.2 Graphics

The graphics module within the engine has been designed to offer adaptability, al-
lowing it to seamlessly integrate with a wide range of rendering systems. Its architecture
is centered around predefined functions such as Draw, DrawAnimation, DrawString, and
Drawlnstanced, each of which must be defined as part of the graphics API. Draw defines
the functionality of drawing simple and typical sprites, whereas DrawAnimation allows the
drawing of layered images, which are used for animations. DrawString allows for the com-
plicated procedure of drawing strings to the screen, which difficulty arises in the different
sizes of each character, based on the font that is used. Drawlnstanced allows the same sprite
to be drawn more than once, specified by an offset. Instance drawing is much more efficient
than regular drawing since the data is passed only a single time to the GPU for each batch
draw. In particular, the particle system takes advantage of this, as it draws thousands of
the same object every frame.

In the current implementation, each of these "draw” functions collects the necessary
information and inserts objects into a drawing queue based on a specified drawing layer.
This layered approach ensures that objects are rendered in the correct order, providing a
visually cohesive output.

Upon completing all drawing calls, a final draw call is executed, orchestrating the
rendering of all layers in a synchronized manner. Furthermore, a dynamic layer has been
integrated into the system, allowing for in-between-layer drawing. This feature is particu-
larly valuable when characters traverse a scene, dynamically positioning themselves in front
of or behind objects depending on their relative positions. This dynamic layer is imple-
mented as a priority queue, sorted by layers, guaranteeing precise rendering between the
primary layer renderings as shown in Figure 2.1.

One of the key strengths of this graphics module is its inherent agnosticism toward
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the rendering backend engine in use. By defining these core functions, the engine can
accommodate rendering engines beyond the default OpenGL implementation. This forward-
looking approach enables future developers to create custom graphics libraries tailored to

specific needs or to leverage alternative rendering technologies.

Fig. 2.1: Demonstration of dynamic layers. In this case, the rendering layer cannot be
predetermined to render the player in front of some objects and behind other objects based
on position. The dynamic layer allows for objects, such as players, to be rendered behind
and in front of objects based on criteria a developer creates (In this case, rendering position
is based on the player’s Y position.)

The graphics module represents a cornerstone of the engine’s versatility and extensibil-
ity. Its ability to adapt to various rendering systems and its intelligent layer management
system ensure that game developers can deliver visually pleasing and immersive experiences

easily and precisely.

2.3 Particle System

Rendering particles in games can pose significant efficiency challenges, especially when
managing large quantities of particles, ranging from tens to tens of thousands within a
single particle effect. For instance, consider the scenario where 100 particles are generated
per frame, with initial average render times depicted in Table 2.1

One of the most significant optimizations involved implementing instanced drawing, a



Debug Mode | Release Mode
Particle Renderer 12,273 us 3409 us
Particle System 95 us 26 us

Table 2.1: Average render times before optimization.

Debug Mode | Release Mode
Particle Renderer 350 us 190 us
Particle System 95 us 26 us

Table 2.2: Average render times after implementing instanced drawing,.

technique that efficiently renders multiple entities with a single render call, thereby opti-
mizing CPU and GPU communication. By utilizing the same vertices for all particles and
specifying only the necessary offsets for each instance, a notable performance boost was
achieved, as demonstrated in Table 2.2.

Furthermore, to enhance developer accessibility, a variety of generic particle emitter
shapes were introduced, including cones, circles, rectangles, and more. These emitters
offer options for randomization of start and end speeds, sizes, colors, and alphas, with the
Particle System optimizing performance by only updating relevant information when in

use. Incorporating these randomizations, including linear interpolation between values, the

system was stress-tested with 48,500 particles, yielding the results depicted in Table 2.3.

2.4 Audio System

The audio system was designed as a modular system to allow customizability for the
priority of sound effects. Utilizing SDL Audio as the backend, a developer can allocate
sound effect buffers upon creation of the game. Each sound effect buffer is given a certain
designation- UI, Entity, or music. Per SDL Audio specifications, only a single music buffer

is allowed to be playing at one time, but the other sound effect buffers can have up to as

Debug Mode | Release Mode
Particle Renderer 2666 us 211 us
Particle System 3123 us 674 us

Table 2.3: Average rendering and updating times for 48,500 particles.
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many channels as a device can support. This sound effect buffer designation system allows
a developer to assign priority to certain sound effects based upon the quantity of buffers
designated to the category. For example, if an audio device can handle 256 channels and
the game has many entities playing sounds at one time, the developer may want to have
a guaranteed sound effect for important Ul alerts or effects that convey meaning. This
flexibility gives developers more choice on priorities of sound effects, which may vary from

game to game.

2.5 Input System

The custom input system serves as a pillar for versatile control across various plat-
forms, including mouse and keyboard, controllers, and Al input systems. Its architecture
is designed to allow developers to map controls to specific in-game functions, promoting
accessibility and adaptability.

At its core, the system operates through the utilization of lambda functions defined
by the developer. These functions serve as the bridge connecting player actions with cor-
responding in-game actions. For instance, in one of the developed games demonstrated in
subsection 4.5.2, Crypt, players can flip gravity, enabling traversal on both the ground and
the ceiling. To achieve this, the developer defines a ”flipGravity” function, which acts as a
central hub for all inputs associated with this mechanic.

To further enhance flexibility, a separate structure is employed to map control inputs to
their respective functions. This decouples functionality from direct key bindings, allowing
for effortless input binding and remapping. It ensures that players can tailor their control
schemes to their preferences without being confined to predefined keybindings.

The true power of this input system emerges from its agnostic nature, accommodating
various input devices seamlessly. Whether players opt for traditional mouse and keyboard
setups, use diverse controllers with varying layouts, or when the game is controlled by

Al-driven input, the system remains adaptable and efficient.



2.6 Collision Detection

Collision detection is a well-studied issue in game engine design, robotics, CAD soft-
ware, and various other fields. [8-12] It plays a crucial role in ensuring the realism and
interactivity of virtual worlds. As the complexity and quantity of objects increase, the
computational cost of collision detection per frame also increases significantly. To address
this, numerous algorithms have been developed to reduce the number of objects checked for
collisions per frame. Some of these algorithms include KD-Trees, Uniform Grids, Spatial
Hash Maps, and Quadtrees in 2D, with Octrees being a common choice in 3D environments.
Each of these algorithms presents distinct advantages and disadvantages, depending on the
specific requirements of the application, but they all offer substantial improvements over

the brute force O(n?) method.

2.6.1 Uniform Grids

-
=
@b 9 O
]
\\\\

Fig. 2.2: A representation of a uniform grid. The left side represents the world partition
and the right side depicts the grid locations checked for potential collisions when examining
the red circle’s position. This reduces the potential collision count from 6 to 3, leading to
computational savings.
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Uniform grids are one of the most simple yet effective collision detection algorithms in
2D. In this approach, the world space is partitioned into a grid of uniform cells, with the
cell size configurable by the developer. Each entity in the world is placed into the grid cell
corresponding to its position. During collision detection, the system only needs to look up
the grid cells that intersect with the object’s location, significantly reducing the number of
potential collisions to check (see Figure 2.2).

Uniform grids excel in scenarios with rapid object movement or evenly distributed
objects. However, they may struggle when objects are densely clustered, as it can result in
situations where the O(n?) worst-case scenario is approached.

In Acacia, uniform grids are utilized for 2D games due to their quick construction time
and flexibility. An optional Quadtree implementation is also available, allowing developers

to choose the collision detection method that best suits their project’s needs.

2.6.2 Spatial Partitioning Trees

Ymx X12 X32
O 0) Xmn, Xmx, Ymn, Ymx; X00
5 ¢
Q O
Yo1 o O
O Fan
0]
) P
@)
Ymn
Xmn X02 X00 X22 Xmx

Fig. 2.3: A representation of a KD-Tree. The left side represents the world partition and
the right side is the data structure that is formed. This splits the world depending on the
entities found in every frame.
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Spatial Partitioning Trees, such as KD-Trees, divide the world space into regions and
recursively subdivide them into smaller regions. KD-Trees, for instance, split the space
along hyperplanes, creating a hierarchical structure (see Figure 2.3). This hierarchical or-
ganization facilitates efficient collision checks, as the KD-Tree only needs to inspect objects
within its partition and neighboring partitions. Additional research has been done to im-

prove computational efficiency and other speedups. [13-18]

2.6.3 Quadtrees

O World
O O
O
EOOE
AlB
C|D o e 9 @ @ @
O C) K
o L OOE®

Fig. 2.4: A representation of a quadtree. The left side represents the world partition and the
right side is the data structure that is formed. This allows quick traversal to find potential
neighbors with which to compare.

Quadtrees, similar to KD-Trees, break the world space into partitions. However, as
indicated by the name, it breaks the world into four parts, rather than the two half-spaces
that the KD-Tree does. This allows for areas that contain more entities to be much more
granular while leaving the overall world partitions where few entities exist simple. A repre-
sentation of this is found in Figure 2.4.

Quadtrees offer efficient collision detection with an insertion time of O(log(N)), where
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N represents the number of nodes being inserted into the tree. Building a complete Quadtree
takes O(N * log(N)) time. Collision detection based on the Quadtree then requires O(N x*
log(N)) for construction and searching each frame. It is important to note that the worst-
case scenario of a quadtree is O(N?). However, this is extremely rare and is typically not
a concern in practice.

Quadtrees are well-suited for managing data in sparse data scenarios. Acacia’s imple-
mentation includes both dynamic and static Quadtrees, optimizing collision detection for
moving and static game objects, respectively.

Collision detection is a critical aspect of game engine development, and choosing the
right algorithm depends on the specific requirements of the game and its environment.
Whether opting for uniform grids, spatial partitioning trees like KD-Trees, Quadtrees, or
other algorithms not mentioned here, each approach offers advantages and trade-offs that

should be carefully considered.

2.7 Value of Acacia

The goal of developing Acacia is to provide an extensible 2D engine to improve devel-
opment in RL by enabling easy integration with PyTorch and TensorFlow, and the myriad
other support libraries within the Python ML ecosystem. Building the Acacia engine offers
distinct advantages over utilizing Unity RL, particularly in the realm of RL integration.
While Unity provides a robust environment for game development and includes its Unity-
ML solution for RL, several limitations hinder its effectiveness in certain contexts.

One significant drawback of Unity RL is its limited flexibility when it comes to export-
ing models outside of the Unity environment. This constraint poses challenges for scenarios
where deploying trained models into real-world applications is necessary. Unlike Acacia,
which prioritizes extensibility and integration with popular deep learning frameworks like
PyTorch and TensorFlow, Unity RL’s ecosystem can be restrictive in terms of interoper-
ability.

Moreover, Unity’s primary focus lies in 3D game development, and while it does sup-

port 2D games and simulations, its features are not as tailored or optimized for this specific
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domain compared to Acacia. This lack of specialization can lead to inefficiencies and com-
plexities when implementing 2D simulations, especially when coupled with RL algorithms.

Furthermore, Unity’s learning curve can be steep, particularly for developers primarily
focused on RL implementation. The complexities of the Unity environment, coupled with
the intricacies of RL algorithms, can pose significant challenges for developers aiming to
leverage RL in their Unity projects.

In contrast, Acacia is purpose-built with a focus on simplicity, extensibility, and com-
patibility with RL methodologies. By providing a dedicated 2D engine that seamlessly
integrates with popular deep learning frameworks, Acacia empowers developers to create

and deploy 2D simulations with RL capabilities more efficiently and effectively.

2.8 Reinforcement Learning Use Cases

A significant application of our work in RL was published at the International Confer-
ence on IEEE Intelligent Transportation Systems (ITS) Conference, the premier conference
in ITS. This research addresses a critical challenge in the realm of sustainable transporta-
tion: optimizing electric vehicle (EV) charging infrastructure to mitigate month-to-month
charging costs. A Python simulation (which laid some groundwork for this project) was
developed to simulate and assess charging limits imposed on EV charging equipment. RL
was used to devise strategies that minimized charging expenses for consumers while im-
proving the utilization of charging resources, promoting efficiency and sustainability in EV
adoption.

However, the existing simulation framework presents notable limitations, particularly
in its visualization capabilities, spatial awareness of vehicle parking, and integration with
more reinforcement learning (RL) methodologies. These shortcomings hinder the simula-
tion’s ability to fully leverage the power of RL algorithms, which excel in learning optimal
decision-making strategies in complex, dynamic environments. Acacia can provide a solu-
tion that enhances the simulation’s effectiveness in modeling real-world scenarios accurately.
Improving simulation capabilities to adapt and learn from experience dynamically can sig-

nificantly improve the reduction of charging costs.
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Acacia is further showcased by three new examples that leverage integrated reinforce-
ment learning. Using the Gymnasium API, these examples demonstrate how developers
can standardize environments to behave like common gaming environments, facilitating
seamless integration with RL algorithms. This highlights Acacia’s adaptability and em-
powers developers to harness the potential of RL across diverse applications, from gaming
simulations to real-world problem-solving in transportation systems.

This research addresses the specific challenges within EV charging infrastructure op-
timization and exemplifies the broader potential of reinforcement learning in transforming
and optimizing complex systems. By bridging the gap between theoretical advancements
in RL and practical applications through Acacia, this work contributes to the advancement

of many fields in diverse domains.
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CHAPTER 3
Save Money, Get Charged: Facility-Tied Energy Management with Unknown and
Unscheduled EV Charging

Energy Management Systems (EMS) are crucial for maintaining economically viable
and consistent energy usage, particularly for facilities with flexible power loads. With the
increase in the availability of electric vehicles (EVs), EMS must balance internal building
usage with Electric Vehicle Supply Equipment (EVSE) charge management. Many current
EMS balancing of EVSE loads is done through a simple interface (often provided by the
manufacturer of the EVSE units) which simply caps the maximum allowed charge rate (cur-
tailment). Loads from EVSEs are generally not anticipated by the EMS (as EV operators
at facility-tied EVSE units typically do not schedule a charger), with a power tolerance
used to justify a safe curtailment.

Our work details the development of an EVSE management-enabled EMS that changes
curtailment throughout the day in anticipation of EV users that may charge their vehicles.
This EMS module utilizes the Open Charge Point Protocol (OCPP) protocol and reduces
operating costs while ensuring EV operators have a full charge within their charging window.
While the addition of an EVSE control module increases the complexity of the EMS, cost
spikes in facility operation from short-term, large-power EV charging events (which can
occur at any time) are largely mitigated.

The EVSE-management EMS module is demonstrated in the Electric Vehicle and Road-
way Research (EVR) facility with the primary objective of reducing energy costs incurred
by its significant power needs. The pricing mechanism for the EVR power is based on
the peak energy usage observed by the utility provider in the current billing month. Tests
consider two DC fast-charge EVSE units (ABB Terra HP Chargers), capable of delivering
350KWh, with many electric vehicles capable of drawing a load ranging from 5-300 kW.

This short-duration and high-power event is concerning to the facility (particularly during
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peak load times, Figure 3.1) as it can more than triple the monthly power costs in a final
bill.

Due to EVSE hardware and communication capabilities, this EMS operates under the
assumption that EVSE units may only be curtailed before a charge event is initialized.
Once a vehicle is connected to the EVSE, curtailment cannot be modified for the duration
of that charge session. The inability to change the delivered power in session requires the
EMS to predict power needs and constantly alter curtailments, as EV charge events are
not known in advance. The EMS can respond to emergencies or significant energy loads by
terminating power delivery to EVSE units during a charge event. This emergency stop is
implemented but has not been used.

The original EVR EMS logic and communication lacked the ability to respond to EVSE-
related power events. This research details the methods of extending the EMS capabilities
to continuously forecast overall energy usage, which informs a predictive agent that sets
curtailment limits on all facility-connected EVSE units. This EVSE-predictive EMS module
has alleviated significant power events from exceeding peak draws while continuing to allow
EV operators using the EVSE units to have a full charge upon vehicle use, reducing the

ancillary costs of facility power.

3.1 Foundational Algorithms

3.1.1 Facility Associated Energy Management Systems

Energy management systems are critical for many day-to-day operations and often
focus on the reduction of costs while ensuring power is available to all services. Facility
EMS, in particular, is flexible in responding to smart grids as demonstrated in cases of
industrial and academic use [19] and in intelligent machine-learning-driven peak-shaving
[20,21]. Facility EMS is a critical infrastructure for initiatives toward zero and nearly zero-
energy buildings, because facility usage is a significant source of emissions [22] and is often

managing the point of charge for many EV operators [23,24].



16

50 4

40 -

30 4

Power (KW)

20

10 4

timestamp

Fig. 3.1: Example of a peak load event at the Electric Vehicle and Roadway Research Facility
(EVR). Utility charges for the facility power are based on the maximum recorded power
draw during the 1-month billing period. During peak times, uncontrolled EV charging
events can easily add significant costs. The EMS EVSE module is designed to curtail
efficiently, predict, and respond to these high-cost events while allowing vehicles to charge
without interruption.

EVs fundamentally regulate internal power needs through an onboard Battery Man-
agement System (BMS), with some BMS able to communicate to remote devices [25,26]
via cloud interface, giving additional data feeds to a facility EMS. Current research ex-
plores many potential avenues for peak-shaving with considerations of associated EVSE
units [27, 28], however, many of these lack a facility implementation or require Vehicle to
Grid (V2G) communication. The EVSE EMS module developed does not require V2G
and is reliably demonstrated in the USU Electric Vehicle Roadway (EVR) facility through
integration into the facility EMS.

The EVR is designed for the development of technology for dynamic in-road charging,

MegaWatt wireless, and fast inductive charging. With the presence of these high-power
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Fig. 3.2: Electric Vehicle and Roadway Research Facility (EVR) and the ABB DC-Fast
Charge EVSE units. The EVSE EMS module was developed based on the needs of the EVR
facility. This tool was successfully deployed on hardware and integrated with the existing
EMS services. Some data collection and logging of full-facility energy usage, charging data,
and solar information were conducted as part of the development.

events regularly occurring, the EVR routinely draws significant grid power. These draws
must balance the associated solar production and battery storage reserves, taxing the capa-
bilities of a complex facility EMS. Without V2G communication or a schedule of EVSE use,
the six EVSE units installed at the EVR can burden the EMS tremendously, particularly
the two DC Fast-Charge EVSE units. The EVR EMS must consider the possibility of an
EV charge event suddenly occurring, and the magnitude and duration of this event. A
learning approach using transformers is employed to correctly and efficiently ensure power

needs do not cause peak infringement.

3.1.2 Transformers

Transformers are a sequence-to-sequence machine learning algorithm and have recently
garnered much attention for their performance compared to other architectures in various
domains, such as language modeling and general sequence prediction [29] [30] [31]. Trans-
former architectures include some of the most advanced Al toolsets, including ChatGPT [32]
and BERT [33], both excellent language models. Transformers learn through masking infor-

mation in a given sequence and predicting the masked value, which is excellent for predicting
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energy usage. This masking then shifts, and it continues to predict one more value until
it hits an End of Sentence token (EOS token), which indicates that the model can stop
predicting. A second loss function is added to concurrently predict the ordering of the
predicted value, which allows it to sequence correctly. Without this, it would become an
assortment of unordered, but relatively correct, predictions. The general architecture can
be seen in figure 3.3.

This kind of sequence-to-sequence generation is powerful and has been shown to pro-
duce more accurate results than LSTM architectures for sequence generation in speech
applications [34] as well as train substantially faster [30], making it the AI model of choice.
Many current approaches in energy prediction for EMS still rely on LSTM and similar archi-
tectures [35,36]. In the energy prediction implementation of this research, energy typically
follows a sporadic and seemingly sinusoidal wave, with the largest peaks occurring during
the day. However, these peaks are seemingly stochastic in occurrence, preventing simple
learning methods from fitting the energy usage. Thus, a transformer is well-suited to create

a more accurate energy usage model.

3.1.3 Bayesian Updating

To accurately predict the probable time required for a charge, it is necessary to predict
the starting SOC for the vehicle batteries. Determining the state of charge (SoC) of a
vehicle that could potentially connect is conducted through a Naive Bayes model. Bayesian
updating is a simple but powerful idea that relies on previous experience to build out a
probability distribution and is widely used in EV battery technology for predictions of
health, degradation, and charge profiles [37-39]. The Naive Bayes model is defined simply

as:

P(H|D) = 7P<HI>DI(3[<)I)’|H>

where P(H) is our prior (a likely distribution of SoC), P(D|H) is the probability of an SoC
given the likely distribution of SoCs, and P(D) is the probability of a vehicle of a given

SoC. Bayesian Updating allows us to keep collecting data and modifying our posterior,
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Fig. 3.3: Structure of the transformer architecture used in the EVSE EMS module develop-
ment. Transformers leverage multi-head attention to parse historical sequence information
allowing learning to be more resilient against ”forgetting” as it generates new sequences of
information. This provides an advantage in EMS applications over similar tools, such as
LSTMs, for sequence generation.

P(H|D) while retaining our old data to inform our updates. Bayesian methods allow for
value prediction without needing the vast quantity of data that a typical machine-learning
algorithm requires. As new data is collected, Bayesian methods can also continually update

at a cheaper computational cost.

3.2 EVSE Aware EMS Module Implementation

3.2.1 Enmergy Usage Prediction

We implemented a transformer for sequence generation of energy usage based on the
previous seven hours of energy usage history. Seven hours was chosen as an optimal time
window based on a grid-based parameter search. The seven hours of operating data are

binned and averaged into segments of ten minutes, associated with the billing time cycle of
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the utility provider. The transformer outputs the energy usage forecast for the next three
hours at ten-minute intervals. This is compared with observed data for the subsequent
three hours, as seen in figure 3.4.

The transformer employed has eight encoder and decoder layers, eight attention heads,
a sequence length of 40 values (corresponding to the seven hours of input data), a learning
rate of 0.001, and utilized an SGD optimizer. A grid search was performed over all the
parameters mentioned above to tune the transformer hyperparameters. The resulting energy
usage predictor plays a vital role in the module as it serves as our energy forecast estimate

to inform our decisions and act as curtailment safeguards.

Four Predictions of Energy Usage
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Fig. 3.4: Comparisons of energy prediction cases. Four energy usage predictions are shown,
contrasting the real usage against transformer predictions over a three-hour window.

3.2.2 Battery State of Charge Prediction

The EVSE EMS module assumes a vehicle may plug in during the immediate following
timestep and the module estimates the SoC of that vehicle based on three general distribu-
tions where data could be drawn from: mostly charged, partly charged, and barely charged.
While prior researchers tend to show EV charging into two distinct categories (20%-80%,
80%-100%) [40], we chose three classifications to be defined by charges at < 95%, < 75%,
and < 50%, respectively as this was more in line with observed data from charge events at

the EVR facility. Each of these bins was then represented by its own distribution for which
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the likelihoods are then computed and used to normalize the distributions.

For the initial generation of this non-standard distribution, we used data collected over
the past ten months of charging data at the EVR along with the data on the cars that have
charged.

Battery SoC likelihood is characterized by one of the three possible sub-distributions.
From facility data, we see that the primary SoC profile of vehicles when connecting is
heavily skewed towards being mostly charged. This is likely due to the workplace nature of
the facility and the relatively small commutes experienced by many EV operators using the
EVSE units. The separation of historical data into three distributions was able to better

fit and explain the charging SoC profiles (Figure 3.5).

Generated vs. True Distribution of Data

Combined Distribution for all 3 bins True distribution of data
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Partially Charged
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Fig. 3.5: Estimations of SoC prior to a charge event starting. 1,000,000 random samples
were generated from three distributions representing three classes of people operating their
EVs at different SoCs before charging.

To verify our findings, both the original data and a modeled distribution formed from
1,000,000 samples were graphed. As seen in figure 3.5, these results show that the non-
standard distribution describes the original distribution well. This enables us to pull from
the non-standard distribution in real-time to predict what battery SOC any EV may be at

and effectively update and adapt to new information from future vehicles.



22

3.2.3 Car Prediction

Estimation of the total battery capacity of incoming vehicles is accomplished by visual
identification to determine the make/model of the car and expected battery by a lookup
table. This visual identification model is practically implemented through security camera
footage. (We note that the security camera footage does not show if a vehicle is or will
connect to a charger, only that it enters the parking area.) If a vehicle is unable to be
identified as an EV, an average battery capacity of 86kWh is assumed based on observed
vehicle models at the facility.

Battery capacity is estimated through a car identification model built using two image
datasets. The first dataset is a larger, general dataset of cars, VMMRdb [41]. The other
is a smaller hand-created dataset, which compiled several images of newer electric vehicles
and their battery information, as VMMRdb was released in 2016 and lacked many models
of electric vehicles. This smaller hand-created dataset allows the model to classify newer
electric vehicles in a "new EV” category, denoting vehicles of battery capacity averaging
86kWh. The intention is to allow the model to collect "new EV” images for hand labeling to
improve the quality of the small newer electric vehicle dataset in the future while allowing
the VMMRdb dataset to be more versatile for our use.

The vehicle identification model was trained on both datasets to recognize cars using
transfer learning using the Regnet [42] model. Training on this combined custom dataset
yielded a model with a 90% identification accuracy, with an F1 score of about 0.9, as seen
in figure 3.6. This level of accuracy is suitable for the EMS to leverage this tool in use for

battery capacity prediction.

3.2.4 Battery Charging Simulation 4+ Curtailment Setting

After the battery SOC, vehicle model, battery capacity, and energy forecast is gener-
ated, all derived information is given to a DeepQ reinforcement learning agent (DQRL) that
determines the final curtailment. The agent’s reward structure is designed to receive a -1
reward for every timestep of 10 minutes that the car is charging and a -100 for any infringe-

ment of the current peak. The intention behind this is to incentivize the agent to charge as



23

RegNet: VMMRdb

Accuracy over Epochs F1 Score over Epochs
0.9 0.9 1
0.8 - 0.8 -
0.7 -
0.7 1
0.6
> 0.6 1
w
o — 0.5+
S 0.5 .
< 0.4
0.4
0.3 -
0.3 - 0.3 4
0.2 A 0.1
T T T T T T T T T T
] 20 40 60 80 0 20 40 60 80
Epochs Epochs

Fig. 3.6: Training performance of the EV detection and identification model. Accuracy and
F1 are shown over the 80 training epochs, attaining 90% accuracy on validation data and
a test accuracy of 87%.

quickly as possible for increased EV operator satisfaction while preventing the peak from
being exceeded. The DeepQ algorithm was preferred over a simpler Monte Carlo algorithm
as the DQRL algorithm can also serve as an error adjuster, making it more resilient to
unpredictable price shifts. As the transformer will not perfectly predict the 3-hour forecast,
the DQRL agent began to learn the discrepancy between the forecast and the amount that

it should curtail.

3.3 Software Implementation

Next, curtailment on the actual EVSE was necessary in order to employ these al-
gorithms. A standard protocol was utilized, called Open Charge Point Protocol (OCPP).
OCPP defines a generic standard allowing easy integration into various chargers with differ-
ent functionalities. One such functionality is the ability to curtail the chargers. However, as
previously mentioned, in-charge curtailments are not currently possible on the ABB EVSE
equipment at the EVR. As such, we used ” Overall Curtailments,” which curtails the power
available for the charger prior to a charge session commencing. Further, we can specify

more granular details, such as which side of a charger should be curtailed (if there is more
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charger_profile_data = {’connectorld ’: 0,
"chargingProfileld ’: 0,
"stackLevel : 0,
"chargingProfilePurpose ’: ’TxDefaultProfile ’,
"chargingProfileKind ’: ’Absolute 7,
"chargingSchedule ": {
"duration ’: 60000,
"startSchedule ’: datetime.utcnow (),
"chargingRateUnit ’: "W’ ,
"chargingSchedulePeriod ': [{
"startPeriod ': 0,
"limit : 20000}]}}

Fig. 3.7: OCPP command that is then sent to a REST API which records all curtailments.
The OCPP websocket queries the REST server every few seconds to look for commands it

should apply. This command would set the curtailment to 20 kW and have a duration of
60,000 seconds.

than one port per charger), curtailment durations, and start times (see figure 3.7).
As seen in figure 3.8, the curtailments on the chargers are correctly functioning and

curtailing to specified amounts.

3.4 Simulation Experiments

We test the capabilities in a simulation sandbox server where it is possible to know
all details of a charging EV. To introduce uncertainty in the simulation (to better reflect
reality), battery capacity prediction from the vehicle identification model, is set to underper-
form using an accuracy of 80%, reflective of fielded implementation. If the predictor failed
to identify the charging vehicle correctly, incorrect information about battery capacities
would be used in the DQRL. Battery SOC prediction leveraged the Naive Bayesian updater
based on historical data to populate random SoCs. The simulated battery capacity and
SoC were combined with the predicted energy usage (transformer model) and the DQRL to
set the curtailment which would reward fast EV charging while attempting to honor peak
constraints. Facility energy usage was taken directly from historical energy usage data at
the EVR. This was to enable the simulation to test peak infringements and subsequent costs

(in USD) based on real billing data.
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Fig. 3.8: Energy usage at the EVR and curtailments on the DC-Fast Charge units installed
at the EVR facility. As solar generation provides negative power during peak solar, available
power to chargers increases, raising the curtailment (blue).

The EV charging profile during the charge session was assumed to be a generally
linear battery charging curve, with a 90% efficiency. Lithium-Ion batteries typically operate
at 99% charge efficiency [43], the simulation assumes a lower battery efficiency due to
potential degradation, thermal effects, and other possible unknown factors to build a more
conservative estimator. The simulation ran in increments of 10-minute timesteps, with

reports generated when a peak was exceeded during a charge session.

3.5 Results

Vehicle charging simulations were run 10,000 times with the average charging time
required, the number of times that the charge exceeded the given peak, and the average
peak infringement recorded. Peaks were assigned to values between 60-160 kW for each

iteration. The EVSE EMS module was compared with a classical static curtailment of
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Table 3.1: Results from a randomly generated peak from 60-160kW of 10,000 simulations

Curtailment Average Time % Exceeding Peak Average  Amount
Exceed Peak

Static: 50 kW 28.81 minutes 0% 0kW

Static: 100 kW 16.85 minutes 36.3% 61.646 kW

Static: 150 kW 13.54 minutes 100% 200.828 kW

Static: 200 kW 12.69 minutes 100% 251.285 kW

EVR EMS 21.40 minutes 7.4% 6.29 kW

low (50kW), medium (100kW), high (150kW), and extremely high curtailments (200kW)
as a comparison metric. The results of two separate tests (with and without full vehicle
knowledge) can be seen in table 3.1.

Peak infringements increase as the static curtailment limits are raised, as expected. The
EVSE EMS module is able to increase the charge completion time by 26% (uncertain vehicle)
or 38% (known vehicle). The peak power is exceeded in 7.4% (uncertain vehicle) and 12.3%
(known vehicle) of the 10,000 simulated charge sessions. The module’s average amount of
exceeded power remains far higher, which has uncertain vehicle identification with a 6.29
kW average peak infringement compared to 0.953 kW seen in the known vehicle model.
The difference between correctly identifying the vehicle translates to a $66.52 difference in
price.

Benchmark implementation of a simple 50 kW static and permanent curtailment is
able to keep operating costs at the EVR to $345.60 on months with lower use and high
solar generation. Without any curtailment or control strategies implemented, the costs of
operation at the EVR can rise in similar months to as much as $834.72, with peak loads
hitting 67kW. Our EVSE EMS module does add $74.75 to the operating bill but ensures
that multiple vehicles are able to charge, which the simple 50kW static curtailment was

unable to accomplish.

3.6 Conclusions and Future Work
The EVR EMS module is shown to reduce the charging time of EVs by 24-38% com-

pared with a base 50kW static curtailment, while dramatically reducing the peak infringe-
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Table 3.2: Results from a randomly generated peak from 60-160kW of 10,000 simulations
with known car information

Curtailment Average Time % Exceeding Peak ~ Average  Amount
Exceed Peak

Static: 50 kW 28.79 minutes 0% 0kW

Static: 100 kW 17.09 minutes 36.8% 6.989kW

Static: 150 kW 13.57 minutes 100% 59.154kW

Static: 200 kW 12.8 minutes 100% 119.995kW

EVSE EMS 17.92 minutes 12.3% 0.953kW

ment compared to a similar charge-time static curtailment of 100kW. If incoming vehicles
are correctly identified by security camera footage upon entering the facility parking, the
average peak infringement is only 0.953kW, equating to a $11.84 increase in the monthly
bill. However, unlike baseline cases, all EVs were able to receive a full charge prior to vehicle
use.

We note that the peak limits, data for training, and implementation software are specif-
ically targeted for the USU EVR facility. The developed code and methods are sufficiently
portable to other EMS systems integrated with an EVSE to be valuable in other system
integrations, available at https://github.com/DIRECTLab/Predictive-EMS. Ongoing tasks
will add several lower power EVSE units of different makes and models to demonstrate the
robustness of the EVR EMS module to heterogeneous communication and control frame-
works.

Additional work in creating a more capable EVR EMS module is ongoing. Future
improvements include the refinement of the vehicle detection model, especially for newer
electric vehicles due to their increased battery and charge capacities. Our car detection
and segmentation model will naturally improve unknown cars that are classified manually.
Increased image sets will be leveraged to train improved vision models to better recognize
unknown cars. Additionally, sufficient data on specific vehicles are beginning to allow
battery charge profile predictions. This will enable a more precise understanding of EV

power needs and charge times, further reducing the average peak exceeded power.
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CHAPTER 4
REINFORCEMENT LEARNING

As demonstrated, reinforcement learning’s capacity for optimization and capability to
decrease charging costs in electric vehicle charging is relevant and advantageous in various
domains. Thus, reinforcement learning support was developed and integrated into Acacia

to allow for flexible visualization and simulation capabilities with powerful RL functionality.

4.1 Deep Q Networks (DQN)

Deep Q Networks (DQNs) were the first major development in deep reinforcement
learning, created in 2013. [1] Unlike Q-Tables, which learn to map a position in the world to
a certain action, it replaces this ”Q-Table” with a network as the function approximation
instead.

DQNs are suitable for tackling problems with discrete spaces. One of the most well-
known RL environments where DQNs excel is CartPole. For an example shown on CartPole,
a video has been provided at this link https://youtu.be/i-9bcXxmézo. In these scenarios,
the agent learns to map an observation to a certain action, leading to an optimal or poor
outcome. Because the DQN algorithm is an offline policy, it then uses these observations,
rewards, and next-state observations, to build a memory bank or experience replay. Using
this experience replay, it learns to associate good and bad actions with the state observation
the agent is in. Using these associations, it then chooses an action to solve the problem.
After building up the experience replay, the algorithm uses its experiences to update the

Q-Table as shown in equation 4.1.

Q(st,ar) < Q(st,a¢) + a[Reg1 + ymazy Q(se1,a") — Q(st, ar)] (4.1)

After updating the Q-Table, it then uses equation 4.2 to update the neural network

weights to minimize the loss between the target and Q(s,a). [44] [45]


https://youtu.be/i-9bcXxm4zo
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Li(0;) = Eamnl(yi — Q(s,0;6;))] (4.2)

where

Y; = Ealww [’f‘ + ’ymaxa/Q(s', a'; 01'_1‘575 = S, At = CL] (43)

One characteristic of DQNs is the algorithm is greedy. They will always take the best
action for the state that they are in. This, however, presents an issue when the algorithm
is first starting to train. Since the algorithm does not know the pairing of the state of the
world and the rewards, the greedy algorithm would not know which action is truly the best
to take and will take the same action no matter what. To mitigate this, an epsilon is used,
which controls how often the agent takes a random action instead of what it considers to
be the best action possible. This allows it to create this memory of what actions truly lead
to the best action, given the state.

The major downside of this epsilon, however, is if the agent happens to not encounter
a state while it is still exploring, it will still run into the memory issue. The agent will then
act as if it knew the best action, without the knowledge of what the best actions are. This

problem, among others, is what the following algorithm aims to improve on.

4.2 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) works differently than a DQN by acting in proba-
bilities to take certain actions, given a state. [46] PPO was preceded by Trust Region Policy
Optimization (TRPO) which was significantly more complicated than DQN but guaranteed
monotonic improvement with little tuning of hyperparameters. [47] PPO, which built on
TRPO and simplified its loss function, relied on the basic idea that the algorithm has a
policy, and based on the reward signal, you calculate the loss based on a gradient. The loss

functions are shown in equation 4.4

LCLIP+H+V —_ LCLIP + hH — ULV (44)
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where
LtCLIP(@) — i, [min(p(0)As, clip(pe(0),1 — €, 1 + €) Ay)] (4.5)
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LY = Ey[(Vio(se) — V/*9)?] (4.7)

where h and v are weighting factors for H (the Entropy bonus) and LY, and e is defined
as a small hyperparameter that controls how large of an update the policy is allowed to
receive per update. [48]

These loss functions remove the incentive to update the policy too much in a single
iteration, which can be an issue in online learning. If a large return is returned for an action
in a certain state, the algorithm is not guaranteed that the next time the same reward will
be given. As an example, suppose the agent is a goalie in a soccer match. If the goalie
dives to the left given the state of all the players, it may block the goal one time, but the
next time the ball might go to the right instead. The algorithm, then, should not assume
that the reward will always be the same, which helps with the stability of the algorithm.
Furthermore, we want to take the lower bound of what we know is possible for the amount
of modifying the policy. If we are conservative with updates, we avoid a higher risk of

instability in the algorithm.

4.3 Python Scripting

To facilitate framework agnosticism, Python was integrated as a scripting language
for Acacia. PyTorch has an API for using its framework directly from C++, however,
Tensorflow has less support, as well as potential new frameworks in the future that may or
may not have C++ integration.

For each game, there is upfront work to pass the state, rewards, and actions back and
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forth between the Python interpreter and Acacia. This requires the developer to define the
classes that will make up these three elements, which then allows the Python interpreter
to embed these classes into itself and use them. This also allows Python to pass back an

action object that the engine can then interpret and use.

4.4 Parallel Instances of an Environment

In the realm of reinforcement learning, the agent undergoes a learning process akin to
that of a human player, gradually refining its strategies through trial and error within the
game environment. However, as the agent becomes more proficient, its progress can slow
due to infrequent failures. To expedite this learning curve, a technique known as parallelized
training is employed. This involves creating multiple instances of the game environment,
each running independently. By decoupling rendering from the training process, significant
resources are freed up which allows for more instantiations of numerous environments con-
currently. Consequently, the agent can undergo training across a multitude of scenarios
simultaneously, accelerating the learning process. What might have taken weeks or months
to train in a single environment can now be accomplished in a matter of seconds, enabling
agents to rapidly evolve their skills and strategies. This parallelized training approach not
only optimizes training time but also enhances the agent’s adaptability and robustness by

exposing it to a diverse range of scenarios and challenges.

4.5 Developed Games

4.5.1 Brick Breaker

Brick Breaker is a classic arcade-style game that challenges players to control a paddle
and bounce a ball to achieve the highest score possible. The objective is to break the bricks
arranged at the top of the screen using the bouncing ball. While the traditional version of
the game features multiple levels, the example discussed here was intentionally designed as
a single level to showcase the engine’s capabilities and its compatibility with reinforcement

learning techniques.
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W Brick Breaker

Fig. 4.1: An image of the Brick Breaker main game screen. Points are earned for destroying
bricks and the game is terminated when the ball goes out of the screen on the bottom side.
The red represents the walls (including the bottom wall that is used for termination criteria)

To accumulate points in Brick Breaker, players must destroy the bricks. A substantial
score bonus is awarded for successfully clearing all bricks from the game screen. Addition-
ally, an element of unpredictability adds to the gameplay, as some bricks may randomly
release power-ups when broken. These power-ups temporarily increase the player’s paddle
size, providing an advantage for a short period.

The simplicity of the game’s action space makes Brick Breaker an ideal testbed for re-
inforcement learning experiments. Players have only a few possible actions at their disposal:
moving the paddle left or right, launching the ball if it is still connected to the paddle, or
taking no action. This control scheme facilitates the development and evaluation of rein-
forcement learning algorithms within the game environment, making it a valuable tool for
research and experimentation. An example of the game is given in Figure 4.1.

Brick Breaker has a relatively simple state space. To reduce the observation space, the
paddle position, ball position, and ball direction are given as the state space. The state

space is a vector of shape (6,1). The action space consists of 4 discrete actions. Either the
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40 points

20 points

10 points

Fig. 4.2: Depicted are the values for breaking each brick. The first two rows (purple) are
worth 10 points, increasing from there to the last row (blue) worth 40 points.

paddle will move to the left, move to the right, do nothing, or shoot the ball. If the ball
isn’t attached to the paddle, shooting the ball does nothing. This allows the algorithm to
control when and where to release the ball. Upon release, the ball will travel directly up
before bouncing and changing directions slightly based on the bounce off of the paddle.

During the development of the algorithm, several different reward structures were
tested. One of the reward structures rewarded points for breaking bricks, as well as for
the time that the ball spent alive. Figure 4.2 gives a representation of the point values that
bricks have and were used throughout each of the reward structures.

Another reward structure rewarded the direct behavior of bouncing the ball off of the
paddle. The idea was that rewarding the algorithm for bouncing the ball would incentivize
the algorithm to keep the ball alive, which would naturally increase the score from break-
ing bricks that a player would regularly experience. However, from each of these reward
structures, the one that did the best was the simplest. Simply rewarding the player based
on brick destruction incentivized the agent to keep the ball alive for as long as possible as

well as get as many points as it could.
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Fig. 4.3: BrickBreaker’s tensorboard visualization of training curves. The left figure indi-
cates the episode’s mean length and the right figure indicates the episode’s mean reward.
The increase in reward and length indicates training.

A demonstration of the playing ability of the agent is found at the following YouTube
link: https://youtu.be/eXrTgITTCJg, with the corresponding training curves found in
Figure 4.3. Training was accomplished, as indicated by the graphs and visualizations,
however, improvements can be further developed by augmenting the state that it receives
and allowing for more training time. It performs much better than a random agent, but

there is room for improvement.

4.5.2 Crypt

Crypt originated as a game jam project, created collaboratively by myself and two
colleagues during the HackUSU event in 2022. Originally developed within the Unity game
engine, the decision to re-create the same game within Acacia served two key purposes.
First, it served as a valuable test of the engine’s adaptability, demonstrating its ability to
replicate diverse game experiences. Second, it provided a means to validate the implemen-
tation of essential engine features that are commonly used in game development.

Crypt is a side scroller that allows the player to flip gravity as they run and defeat
monsters. The game’s scoring system is multifaceted, combining the distance the player can
cover with their ability to eliminate monsters. Additionally, there are two types of monsters:

birds that fly into the player and explode, inflicting substantial damage but are weak and


https://youtu.be/eXrTgITTCJg

Fig. 4.4: An image of Crypt on the main gameplay screen. Points are earned by defeating
monsters and running further distances. The bats deal 1 damage each hit and the birds
deal 3 damage but die on impact. Termination is based on the life count being reduced to
zero (Loss), or if the entirety of the stage is run (Victory).

relatively low-scoring monsters (worth 10 points), and bats, which pursue the player, shoot
at them, and are worth significantly more points (worth 30 points). An example of the
game is given in Figure 4.4.

In Crypt, the state space is more complicated than Brick Breaker. In Brick Breaker,
the agent doesn’t need to know where the bricks are, since by chance it will most likely
hit the bricks if it keeps the ball alive. However, in Crypt, since enemies are not always
present, knowing the enemies’ positions is important to keep itself alive. Thus, the state
in the Crypt is a vector of shape (44, 1) which contains the player’s position, the aiming
cursor position, the position of five enemies, and the position of five of the bullets that are
on the screen (both the enemies’ and the player’s bullets). The reward is based on what a
real player’s reward would be. Reward is given for the distance that the player can run, as
well as small rewards for killing enemies. The exploding birds are worth 10 points, since
they only take one hit to destroy, whereas the bats are worth 30 points since they have

more health (taking three hits to destroy). If the player manages to complete the game,
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Fig. 4.5: Crypt’s tensorboard visualization of training curves. The left figure indicates
the episode’s mean length and the right figure indicates the episode’s mean reward. The
increase in reward and length indicates training.

a bonus is given. Another reward structure that was attempted was giving a diminishing
reward based on player health. However, this felt extraneous as it might reward or punish
certain behaviors because it happened to get hit when it performed a potentially good
action. Thus, by allowing the player’s death to stop increasing the reward, rather than
punishing for damage, it would allow the agent to still incentivize avoidance of damage.
Demonstrations of the agent playing can be found here: https://youtu.be/IIR1GGWr_pA
with the training curves shown in Figure 4.5.

As observed in the video, the agent typically learned to shoot straight in front of itself
and flip gravity to hit areas in the middle of the screen. There are a few instances of
targeted aiming, but typically this was the observed behavior. For future improvements,
punishments for low accuracy can be implemented to allow the agent to be more accurate

and intelligent with its behavior.

4.5.3 SpaceGuy

SpaceGuy is a game originally created by Jeffrey Anderson in Unity (Github link:
https://github. com/foggeydoughtnut/SpaceGuy-Unity). With his permission, as well
as it being open source, this became the final game implemented in Acacia. Among the

three games developed, SpaceGuy was the most intricate.


https://youtu.be/IIRlGGWr_pA
https://github.com/foggeydoughtnut/SpaceGuy-Unity

38

Fig. 4.6: An image of SpaceGuy in gameplay. Three different enemy types are depicted,
with the main player in the middle of the screen. The smaller enemies are weaker, move
faster, and hit for less impact. The bigger enemies move much slower, deal three damage
per hit instead of one, and have significantly more health. The last enemy is the spawner,
which spawns little enemies when the player is within its range. The gameplay is terminated
when your health runs out, or upon defeating a main boss, which requires finding a key to
unlock the door to fight.

SpaceGuy is a top-down shooter adventure, in which the player commands a spacecraft
equipped with two firing methods. The first is a laser weapon, which can be fired contin-
uously and has unlimited ammunition. This weapon is the weakest but ensures that the
player is never left without a means of defense.

Additionally, the player has a missile launcher, which provides the player with a cache
of six powerful missiles, which are refreshed on death, or upon picking up missile resupply
cache powerups. These powerups are found throughout the game world.

As players navigate the game environment, they will encounter various upgrades that
enhance their ship’s capabilities. These upgrades include a multishot spread weapon, a
rapid-fire weapon, missile refills, health potions, and speed boosts. These enhancements
are critical in the goal of exploring the game world, finding the boss key, and eventually
destroying the level’s boss. An example of SpaceGuy is given in Figure 4.6.

SpaceGuy is the most complicated and unique out of all the games developed as it
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requires the player to navigate the world. This navigation can’t be directly rewarded, as
the player needs to find the key before progressing to the boss room. However, much like a
regular player, the Al doesn’t know that there exists a key or boss room and must stumble
upon it by accident. To help it have the chance to ever find the key, when the key is
within camera viewing distance, its state position is included in the agent’s received state.
Much like Crypt, other received states include the player’s position and rotation and enemy
locations that are within the camera view.

The reward structure is purely based on enemy kills in SpaceGuy, with the boss being
worth significantly more than any other enemy in the game. There are two regular enemy
types, along with a spawner. The spawner rewards the Al (or player) 30 points and spawns
the weakest enemy type whose point value eventually diminishes to zero points. Without
this reduction in point value, an agent would conceivably learn to allow the spawner to
infinitely spawn enemies and the player could just increase their points based on those
enemies. The weakest enemies are worth 10 points, and the larger and more dangerous
enemies are worth 70 points. In SpaceGuy, the player also has three lives, with 10 health
each life. For each lost life, the player receives a negative 100-point deduction. This is to
highly discourage deaths, however slight damage here and there doesn’t have a direct effect
on its behavior.

Just like the previous two games, demonstrations can be found at the following link:
https://youtu.be/gegD1gcCAz87si=j1Lu70MUSy7iBINZ with the corresponding training
curves shown in Figure 4.7

Future improvements for SpaceGuy require first, millions of iterations of training to
beat the game. Due to the large world that a player can traverse, a significant amount of
time is required for the agent to consistently behave in a good manner, as well as recognize
the importance of the key and navigate subsequently to the goal. This can be reinforced
by rewarding the Al based on its distance to the key, and then to the distance to the boss

room, which is another avenue of potential future improvements for beating the game.


https://youtu.be/gegD1gcCAz8?si=j1Lu7OMU5y7iB9NZ
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Fig. 4.7: SpaceGuy’s tensorboard visualization of training curves. The left figure indicates
the episode’s mean length and the right figure indicates the episode’s mean reward. The
increase in reward and length indicates training.

4.6 Conclusions and Future Work

Acacia stands as a versatile game engine with remarkable adaptability, capable of
accommodating a wide array of 2D simulation environments. By implementing Python
scripting capabilities and built-in support, alongside example scripts for popular machine
learning frameworks like PyTorch and Stable Baselines3, Acacia facilitates seamless training
of simulations. The engine’s ability to generate multiple instances of the same world enables
automated simultaneous training of numerous agents. Acacia also ensures compatibility
with vectorized environments (such as those utilized in Stable Baselines), along with other
frameworks supporting multi-agent training.

The primary contribution of this thesis lies in simplifying the training process within a
simulation environment, supporting both Python and C++4 as scripting languages. Lever-
aging Python scripting and the engine’s design akin to a Gymnasium-style API, users can
harness a multitude of common reinforcement learning libraries. This flexibility extends
to the choice of machine learning frameworks, enabling easy access to trained models out-
side the simulation environment. This capability holds significant potential, allowing for
the training of agents within the simulated environment and subsequent deployment onto
real-world systems, such as robots and transportation.

Another significant contribution of Acacia lies in its status as an open-source, highly
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adaptable game engine. By adhering to the ECS design paradigm, Acacia offers develop-
ers the flexibility to modify underlying modules, tailoring them to meet specific project
requirements. This modular approach not only facilitates customization but also promotes
code reusability and scalability, enabling developers to create complex and unique game
experiences with ease.

The open-source nature of Acacia (https://github.com/sonorousduck/Acacia) fur-
ther amplifies its value. By providing unrestricted access to the engine’s source code, devel-
opers can take ownership of their projects and shape them according to their vision. This
freedom to modify and extend Acacia’s capabilities allows for the creation of games and
simulations that precisely model specific requirements, rather than being constrained by a
rigid, pre-defined architecture.

Looking ahead, future development efforts will focus on enhancing the engine’s physics
engine to better simulate real-world scenarios, particularly in the realm of robotics de-
velopment. Additionally, ongoing research will explore utilizing Acacia as a platform for
simulation demonstration and training, offering improved visualization and encapsulation
compared to traditional Python-based simulations. This approach underscores Acacia’s
commitment to advancing not only game development but also broader applications in

simulation and training across various domains.


https://github.com/sonorousduck/Acacia
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