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ABSTRACT

A Framework that Explores the Cognitive Load of CS1 Assignments Using Pausing

Behavior

by

Joshua O. Urry, Master of Science

Utah State University, 2024

Major Professor: John Edwards, Ph.D.
Department: Computer Science

Pausing behavior in introductory Computer Science (CS1) courses has been related to

course outcomes and could be linked to a student’s cognitive load. Having an objective

measure of the cognitive load would be beneficial to CS1 instructors as it would help them

design assignments that are optimal for students’ learning. Two studies are presented in this

work. The first study uses Cognitive Load Theory and Vygotsky’s Zone of Proximal Devel-

opment as a theoretical framework and empirically analyzes keystroke latencies, or pause

times between keystrokes, with the goal of better understanding what types of assignments

need more scaffolding than others. The first study reports the characteristics of eleven as-

signments, introduces a method to analyze pausing behavior, and investigates how pausing

behavior changes with assignment characteristics (e.g., introducing new programming con-

structs, engaging creativity through Turtle graphics, etc). Evidence is found that pausing

behavior does change based on the assignment characteristics and that assignments with

particular characteristics, such as object-oriented principles, may be more likely to have

excessive demands on student working memory. The findings also suggest that assignment

completion time may not be an accurate measure of assignment difficulty. The second study

builds on the first by validating whether the keystroke latency analysis corroborates results
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with a validated self-report measure of cognitive load. The latency analysis does have a

relation to self-reported cognitive load, but not in the anticipated way. Short pauses have

a positive linear relation with Intrinsic and Germane Cognitive load (ICL and GCL), while

medium and long pauses have a negative linear relation. Furthermore, assignments that

take students longer to complete do have higher ICL and GCL scores. Further research is

needed to investigate the relation between keystroke latencies and cognitive load. However,

both studies show assignment differentiation in pausing behavior, which suggests keystroke

latency comparisons between assignments warrant more investigation.

(62 pages)
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PUBLIC ABSTRACT

A Framework that Explores the Cognitive Load of CS1 Assignments Using Pausing

Behavior

Joshua O. Urry

Pausing behavior in introductory Computer Science (CS1) courses has been related to

a student’s performance in the course and could be linked to a student’s cognitive load, or

assignment difficulty. Having an objective measure of the cognitive load would be beneficial

to course instructors as it would help them design assignments that are not too difficult.

Two studies are presented in this work. The first study uses Cognitive Load Theory and Vy-

gotsky’s Zone of Proximal Development as a theoretical framework to analyze pause times

between keystrokes to better understand what types of assignments need more educational

support than others. The first study reports the characteristics of eleven assignments, intro-

duces a method to analyze pausing behavior, and investigates how pausing behavior changes

with assignment characteristics (e.g., introducing new programming constructs, engaging

creativity through Turtle graphics, etc). Evidence is found that pausing behavior does

change based on the assignment type and that assignments with particular characteristics

that cause students to break code into many small portions, and tie it all back together,

may be more likely to have excessive demands on student working memory. Evidence is

also found that assignment completion time may not be an accurate measure of assignment

difficulty. The second study builds on the first study by validating whether the keystroke

latency analysis corroborates results with a self-report questionnaire of cognitive load. The

latency analysis does have a relation to self-reported cognitive load, but not in the manner

anticipated. A higher proportion of shorter pauses is related to a higher cognitive load

score, meaning students who spend more time typing have a higher cognitive load. Further-

more, assignments that take students longer to complete do have higher levels of cognitive
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load. Further research is needed to investigate the relation between keystroke latencies and

cognitive load. However, both studies show assignment differentiation in pausing behavior

between assignments, which suggests keystroke latency comparisons between assignments

warrant more investigation.
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CHAPTER 1

INTRODUCTION

Multiple psychological theories have helped guide and improve educational processes,

such as Cognitive Load Theory and Vygotsky’s Zone of Proximal Development. These

theories have also been applied to Computing Education Research (CER) and may especially

apply to introductory Computer Science (e.g., CS1) classes. Learning to program requires

substantial working memory allocation. Instructors need to ensure that students have the

necessary scaffolding to accomplish tasks that are just outside of their ability (i.e., the

Zone of Proximal Development) so that their working memory is not overloaded, disabling

learning and prompting disengagement. The concepts learned in CS1 courses will contribute

to mental models of Computer Science that students will carry throughout their careers, so

a CS1 instructor must be cognizant of assignments that cause students to feel overwhelmed

and disengaged. An objective measure of pausing behavior would help instructors identify

such assignments and provide the necessary scaffolding.

It is a temptation for instructors and students to judge the difficulty of an assignment

by how long it takes for students to complete it. Doing this fails to take cognitive load and

frustration into account. I suggest that it is important to find measures of difficulty that say

meaningful things about student experience beyond time spent. Recently, there have been

studies in CER that have examined the length of student’s pauses between keystrokes (i.e.,

latencies), their effect on course outcomes, and their relation to a student’s cognitive load

(1; 2; 3). Given this, latency analysis could be used as an objective measure of a student’s

cognitive load. Much of the past research on this topic has focused on shorter pauses,

such as milliseconds between keystrokes. There has been little research that has focused

on longer latencies (e.g., minutes) when the probability of a student being disengaged is

higher.
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Additionally, no known studies have incorporated latency analysis to compare assign-

ments in a CS1 course. There is a need to examine assignments through the lens of a theory,

such as cognitive load theory, or the Zone of Proximal Development (ZPD), to guide the

improvement of assignments. It is a common belief that programming assignments that

take students a long time to complete are likely to have the most cognitive load and in-

stances of disengagement. Operationalizing latency analysis to signify the cognitive load of

an assignment could validate whether this is a correct assumption.

Two studies are reported in this paper. The first was previously published (4) and

introduces a measure of assignment pausing behavior by analyzing student latencies in a

CS1 course. It looks at the proportion of pauses of different lengths, including short pauses

(0 - 45 seconds), medium pauses (45 seconds – 6 minutes), and long pauses. Short pauses

could represent a low cognitive load, while medium pauses could represent a high cognitive

load. Long pauses are where a student is more likely to be disengaged (5), which could

be caused by a working memory overload. The distributions of these pause lengths are

compared between assignments to first, establish that student behavior, as measured by

keystroke latency distribution, varies between assignments and second, to discover what

assignments may require more scaffolding.

The second study acts as a follow-up to the findings of the first study by using a

validated self-report questionnaire (6) to measure students’ cognitive load. Keystroke data

is collected as well, and the results of the two measures are compared to examine whether

further evidence is found that the proposed framework using keystroke latencies could be

used as an objective measure of cognitive load. The assignment completion time is also

compared to the cognitive load scores to see if longer assignments cause more cognitive

load. The research questions in this paper are:

RQ1 : Are assignments different from each other in student pausing behavior?

RQ2 : What types of assignments cause students to take the highest proportion of longer

pauses?

RQ3 : Does student pausing behavior correlate with student self-reported cognitive load?
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RQ4 : Do assignments that have a longer completion time also have a higher cognitive load?

The novelty of this research is that it compares the pausing behavior of students be-

tween assignments and provides instructors with a possible measure of cognitive load, as well

as an indication of what assignments may require improved scaffolding. It also seeks to vali-

date that measure. This knowledge will help instructors reduce the amount of overwhelmed

and disengaged students and provide improved foundational instruction in Computer Sci-

ence.

My contributions are:

1. An empirical framework for exploring Cognitive Load Theory and the Zone of Proxi-

mal Development in CS1 assignments.

2. A possible alternative way of describing assignments based on student pausing behav-

ior during assignment completion.

3. Evidence that pausing behavior is related to cognitive load.

The findings of this study are that assignments differ in their pausing behavior. Fur-

thermore, assignments that require CS1 students to implement programs where multiple

files are tied together in a ”main” file, such as object-oriented programming constructs

(OOP), have the highest proportion of longer pauses. Additionally, the second study fails

to provide evidence that the proposed latency analysis for pausing behavior correlates with

the students’ self-reported cognitive load in the way expected (i.e., more long pauses are

related to more cognitive load). Instead, it is found that more short pauses are related

to more cognitive load. So, while the relation was not in the expected direction, there is

evidence that latency analysis could be a useful tool in analyzing cognitive load, though

further research is needed to confirm this.

It is also found that, while assignments with longer pauses do not necessarily take longer

for students to complete, students’ cognitive load scores have a strong linear relation with

assignment completion time. This means that they perceive that assignments that take a

long time to complete are causing them more cognitive load. This could just be confirming
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the long-standing belief mentioned previously, that longer assignments are harder, or at least

that they are perceived as being harder. Future work could incorporate a real-time measure

of cognitive load to examine further if this is true. Overall, this thesis finds evidence that

pausing behavior changes with assignment type and that latency analysis could provide an

indication of cognitive load. These findings are beneficial to CS1 instructors as they could

help them identify what assignments could be improved with more scaffolding.
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CHAPTER 2

RELATED WORK

2.1 Cognitive Load Theory and Zone of Proximal Development

Our work is based on two prominent psychological theories, Cognitive Load Theory

and the Zone of Proximal Development (ZPD). Cognitive Load Theory suggests that the

cognitive load (e.g., working memory allocation) required to learn material differs if the

task is a biological primary or biological secondary task (7). Biological primary tasks in-

clude skills that are necessary for survival, such as learning to speak a native language, and

learning happens without much cognitive effort. Biological secondary skills have not his-

torically been necessary for survival and require more cognitive effort and working memory

allocation from the learner (7; 8). Furthermore, a learner only has so much room in their

working memory. If they try to learn a task that has too high of a cognitive load, their

working is overwhelmed, and learning is frustrated (8).

Cognitive load has been traditionally broken out into three types: Intrinsic (ICL),

Germane (GCL), and Extraneous (ECL) (6; 9; 10). ICL deals with the cognitive load of

the material/task itself, while GCL encompasses the load required for the learner’s con-

struction of schemas, and ECL encompasses the load caused by the presentation of the

material/task (9). All three types of cognitive load are important in learning, and there

have been measures created that attempt to quantify each type of load (6). As such, Cog-

nitive Load Theory is used to inform educational processes. Cognitive Load Theory has

been applied to learning academic subjects in a second natural language (11; 12), as well

as technology-assisted learning (13; 14).

Cognitive Load Theory could apply especially to CER (15; 16), where students learn

new programming languages, interact with technology, and apply mathematical concepts.

All of these are biological secondary skills. Learning a programming language is like learning
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a second natural language because students need to both learn the syntax of a programming

language and the constructs behind the syntax. The syntax of a programming language has

been referred to as “extraneous cognitive load” since it is necessary for programming, but

not usually the main focus of computer science education (17). Edwards et al. found that

teaching students the syntax of a programming language before the problem-solving aspects

of programming (e.g., a “syntax-first” pedagogy) leads to improved course outcomes. This

is because students are freed of the “extraneous cognitive load” of the syntax and have more

room in working memory for the higher-level constructs of computer programming (18; 19).

Studies of visual/block-based languages, with which syntactic errors are not possible, have

similar findings (20).

The Zone of Proximal Development (ZPD) is a concept in educational psychology that

was created by Lev Vygotsky (21). It refers to the area where a learner cannot accomplish a

task alone and needs the guidance (e.g., scaffolding) of a more experienced peer or educator.

This zone is where learning occurs (21). The ZPD, particularly the concept of scaffolding,

has been commonly used as a framework for general education (22), as well as in computer

science education (23; 24). The relation between scaffolding and cognitive load in CER

was shown when Stachel et al. found that students who used a scaffolding tool in a CS1

lab assignment had lower levels of self-reported cognitive load, and received higher grades

(25). Overall, it is crucial for CS1 assignments to have the optimal amount of scaffolding

to prevent a student from having a cognitive overload.

2.2 Pausing behavior

In this research, cognitive load and ZPD are operationalized by analyzing students’

pausing behavior in CS1 assignments. Pausing behavior has been analyzed in multiple

contexts. For example, O’Brien analyzed pauses in post-editing machine translation and

found that pauses vary across individuals, and do provide some indication of cognitive

processing (26). In the context of academic writing, Révész et al. found evidence that

the length of a pause in a writing task was related to the complexity of the task and

the subsequent performance on the task (27). Furthermore, Borst et al. argued that the
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disruptiveness of an interruption depends on the complexity of the task, how long the

disruption is, and when the interruption occurs (28). Lee et al. suggested that pausing

increases a learner’s overall cognitive load because the learner stimulates additional cognitive

processes during a pause (29).

Keystroke analysis has been shown to be a useful tool in analyzing students’ program-

ming processes, as it provides more information than an assignment submission (30). Some

of the important data provided by keystroke analysis are keystroke latencies (i.e., the elapsed

time between keystrokes). We use keystroke latencies as our measure of pausing behavior

in this study. Keystroke latencies have been used to examine pausing behavior in CER in

multiple studies (1; 2; 3; 31). Leinonen et al. found that keystroke latency patterns can

show how much programming experience a student has, which could help create tailored

learning experiences for students (31). A tailored learning experience could be thought of

as the correct amount of scaffolding to keep a student in the ZPD. Many of the studies

incorporating latencies have examined their relation with course outcomes, and provide

evidence that students who take a higher proportion of longer pauses tend to have worse

course outcomes (1; 2; 3). Leppänen et al. studied how students pausing behavior while

typing, and how they spaced out their assignments, affected course outcomes. It was found

that students who spaced out their work over multiple days tended to have higher exam

scores compared to those who did not, while students who had more latencies that were a

few minutes long tended to perform worse on exams. The researchers also suggest that a

higher number of pauses in programming may suggest a higher cognitive load because the

student is unable to retain all of the necessary information in working memory and has to

search for other material (1).

Edwards et al. examined keystroke latencies across different programming languages

and spoken languages. They found that small latencies (e.g., under 750 milliseconds) were

mildly related to exam performance (2). Shrestha et al. conducted a study focused on CS1

student pausing behavior. Similar to previous studies, they found that students who pause

more often tend to have worse course outcomes, and those who take more long pauses do
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worse than those who take a higher number of shorter pauses. Cluster analysis found two

groups of students regarding pausing behavior. One that takes fewer mid-to-long pauses

and one that takes more (3). Overall, these studies provide evidence that pausing behavior

does influence CS1 course outcomes and could signify a higher cognitive load. However,

no known study has looked at differences in pausing behavior between assignments in CS1

courses. This study will build on the previous research by examining differences in pausing

behavior between assignments.

2.3 Engagement during programming

Keystroke latencies have also recently been used to predict student engagement during

programming assignments. Edwards et al. used a PyCharm plugin to occasionally ask

students if they were working on their assignment after a pause in keystrokes (32). Based

on the data from the student responses, the researchers created a regression model to predict

the probability that a student was on-task (e.g., engaged) based on the elapsed time since

their last keystroke. Among other findings, it was shown that students worked on their

assignments for about eight minutes before becoming disengaged (32).

Hart et al. built on the regression model by incorporating a larger sample size, error

analysis, and other techniques to provide more reliable results (5). It was discovered that a

threshold of five minutes could be used as a generalization for whether a student is engaged

in a programming assignment, which can aid in calculating assignment completion time

from a student’s total keystroke latencies. Notably, using the enhanced regression model,

students have an 81% chance of being on task after a 45-second latency and a 52% chance

of being on task after a 6-minute latency (5). These will be used as thresholds for medium

and long pauses, respectively, in our study.

Engagement, or time-on-task, has been shown to be an important factor in course

outcomes (33), but we also incorporate it in the current study because of the implications for

cognitive load and ZPD. Medium pauses, which still have a high probability of engagement,

may indicate a high cognitive load without a working memory overload. Conversely, longer

pauses, coupled with a lower probability of engagement, may indicate a working memory
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overload resulting in the loss of engagement. It is in these instances where more scaffolding

may be necessary to help students stay in the ZPD.

2.4 CS1 Assignments

While there have not been any known studies examining the pausing behavior be-

tween assignments in a CS1 course, there have been multiple studies examining what

makes a good programming assignment, or how to improve programming assignments

(34; 35; 36; 37; 38; 39). Layman et al. argued that programming assignments should

be meaningful (i.e., they should relate to real-life problems) (37). Stevenson and Wag-

ner similarly suggested that students will work harder if an assignment involves real-world

problems and solutions, focuses on topics from class, and is challenging and interesting (38).

Garcia noted that the presentation of an assignment is important and that design patterns

(e.g., context, assignment descriptions, and hints) provide scaffolding that allows students

to independently learn (39). Kussmaul also addressed scaffolding methods for multiple CS1

assignments (40). Kinnunen and Simon examined how CS1 assignments affect some cog-

nitive processes of students by studying how programming experiences during assignments

affect a student’s perceived self-efficacy (41).

Pausing behavior and assignment design have been shown to be important factors in a

student’s experience in a CS1 course. As such, it is important to examine both factors to

learn if different constructs presented in assignments require more scaffolding. Pausing be-

havior differences in assignments could provide CS1 instructors with additional information

on how to improve design patterns. Furthermore, it is worth noting the dearth of research

on CS1 assignment design principles that incorporate cognitive load theory, which has been

shown to be influential in education (see Section 2.1). While some studies do investigate

scaffolding in CS1 assignments, there are still further applications for the ZPD in this con-

text. The current study will add to the previous research on CS1 assignments by providing

objective data to identify what assignments could cause a high cognitive load, or a working

memory overload, rather than just making recommendations to improve assignments.
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CHAPTER 3

METHODS

3.1 Study 1

3.1.1 Data and experiment design

The first study introduces the framework and analyzes the differences in keystroke

latencies between assignments in a CS1 course to determine which assignments may have

the highest cognitive load and need more scaffolding. The programming language taught in

the course was Python. A public keystroke dataset is used that was released in 2022 (42). It

was collected at Utah State University in 2021, deidentified, and made available for public

use with the oversight of their IRB. The dataset contains over 2 million keystrokes from 44

students across 8 assignments. We excluded students who had less than 1000 keystrokes

across all assignments from analyses and only examined ”file edit” events. The final sample

size was about 900,000 keystrokes from 43 students. The dataset also contains files for

the academic information of students in the course, due dates for the assignments, and the

assignment descriptions (43). However, the keystroke and assignment description files are

the only files used in this study. See Edwards et al. (42) for further details on the data

and data collection process.

The general experiment design is as follows: First, we examined the assignment de-

scriptions (included with the dataset (43)) and broke out the assignments by task. Then,

we separated the latency counts for each assignment into three bins (i.e., short, medium,

and long pauses). Finally, we applied statistical and visualization techniques to compare

the pausing behavior between assignments.

3.1.2 Assignment breakout

Of the 8 programming assignments that had data collected, 2 were dropped from
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this study. One was the last assignment in the course, which only 23 of the 43 students

completed. The instructor dropped one assignment from a student’s grades, so students

may have chosen to drop the last assignment. The second assignment that was dropped

had a mean keystroke count of 999.3 with a standard deviation of 1679.3. I was unsure of the

cause of the unusually high variability, so this assignment was dropped as well. Additionally,

one student was dropped from a repeated-measures ANOVA because they only had three

keystrokes for one of the assignments in the test.

Of the six remaining assignments, multiple included two to three tasks. Each task

involved different requirements and sometimes more advanced programming than the other

task(s) included in the same assignment. While programming constructs may build upon

each other in subsequent tasks, each task requires students to create new files and write new

code. As such, we broke up the tasks and treated them as separate assignments. The rest

of study 1 will present data on 11 assignments. This allowed for more detailed analyses of

what programming constructs affect student pausing behavior. Table 3.1 shows a summary

of the programming concepts throughout assignments.

3.1.3 Latency binning

To compare the pausing behavior between assignments, three bins of elapsed time

since the previous keystroke are created. The bins are empirically based rather than equal

frequency or equal interval. Pauses of length 0 - 45 seconds (bin 1) are referred to as short

pauses, those of length 45 seconds to 6 minutes (bin 2) as medium pauses, and over 6

minutes (bin 3) as long pauses. I opted for these bins, rather than using equal interval

width or equal frequency discretization, because of the practical significance. The majority

of latencies for any assignment are less than a couple of seconds 4.10. This means that equal

frequency bins would be seconds apart, with the last bin containing all of the medium-long

pauses. This method would likely not be informative about the cognitive load, or just

practically informative, for each assignment. Likewise, equal interval binning would be

somewhat arbitrary.

The bin sizes are based on the regression model for student engagement by Hart et al.
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(5). Given the elapsed time since the previous keystroke, the model predicts the probability

that a student is engaged, or on task. The model predicts that students have an 81% chance

of being on task at 45 seconds and a 52% chance of being on task at 6 minutes. I use 45

seconds as the upper threshold of the first bin (short pauses) so that the first bin represents

the proportion of time students are most likely on task and who may have a relatively

small cognitive load. 6 minutes is used as the upper threshold of the second bin (medium

pauses), which represents pauses where students have a chance of being disengaged but

could also be pausing to review notes, search Stack Overflow, etc. This bin could represent

a high cognitive load with a lower chance of a working memory overload. Finally, bin 3

(long pauses) represents pauses where students may be more likely to be disengaged and

experience a working memory overload.

3.1.4 Statistical and visualization techniques

Since assignments vary in total keystrokes required for completion (see Figure 4.1a),

comparing the raw keystroke counts in each pause length (i.e., short, medium, and long)

would not yield an accurate comparison. It would just show how long an assignment took.

For example, if one assignment had 3000 keystrokes with 10 long pauses and another as-

signment had 1500 keystrokes with 10 long pauses, a comparison of the raw counts of long

pauses would show that these assignments were similar. However, it would be noteworthy

that a student took just as many long pauses in an assignment that required only half the

code. So, the pause lengths are normalized across each assignment per student by dividing

the number of pauses in each bin by the total number of keystrokes. For example, if a stu-

dent completed an assignment with 3000 short keystrokes, 100 medium keystrokes, and 10

long keystrokes, we would characterize their pausing behavior with a 3-dimensional vector

[30003110 ,
100
3110 ,

10
3110 ] = [0.965, 0.032, 0.003]. This provides the proportion of latencies in each

pause length.

After the raw counts are normalized, we scale the proportions for the parallel coordinate

chart for visualization purposes, as over 90% of the latencies for every task are in the short

pause bin. For each pause length in each assignment, the median of the proportions across
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submissions is taken. Once the medians were collected for each assignment, I min-max

scale the values of each pause length between one and zero based on the other values in the

pause length across assignments. As such, the assignment that had the highest proportion

of pauses in a given pause length would be one, and the assignment that had the lowest

proportion in a pause length would be zero. See Figure 4.4. Only the normalized values

(before min-max scaling) were used in the ANOVA described in Section 4.1.3.
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A6 Y Y Y Y Y
A7 Y Y Y Y
A8 Y Y Y Y Y
A9 Y Y Y Y Y
A10 Y Y Y Y Y Y
A11 Y Y Y Y Y Y Y

Table 3.1: Comparison of task characteristics in study 1

3.2 Study 2

3.2.1 Keystroke data

The second study uses the same latency analysis techniques described above. However,

the data was collected in the Fall 2023 semester in one CS1 course at Utah State University

with the oversight of the IRB. The dataset for the second study contained over 800,000

keystrokes from 35 students (i.e., after removing a study that had less than 1000 keystrokes

and filtering for file events, as was done in the first study). Due to some issues with the

tool used to collect keystroke data, only 5 assignments are included in this dataset. The
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last assignment was dropped from the study, as part of the assignment required students to

search for bugs in the provided code and document what the bug was and how they fixed it.

This causes the latencies for this assignment to be significantly skewed, as students would

stop working in their IDE when they found a bug and document the findings elsewhere.

This made it appear that students were taking very long breaks when they were still working

on their assignments. Two of the remaining assignments have two tasks, so they are broken

up into two separate assignments, as was done in the first study, which leaves 6 assignments

for analysis. Table 3.2 shows the breakdown of task characteristics in the second study. The

assignments in study two are shown as ”T(task #)” to not be confused with the assignments

from study 1.
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T1 Y Y Y Y
T2 Y Y Y Y Y
T3 Y Y Y Y
T4 Y Y Y Y Y
T5 Y Y Y Y
T6 Y Y Y Y Y

Table 3.2: Comparison of task characteristics in study 2

3.2.2 Questionnaire data and experiment design

The second study adds a self-report questionnaire modified from the validated question-

naire created by Klepsch et al. (6) that students filled out after submitting each assignment.

See the appendix for a copy of the questionnaire A. The questionnaire contains 7 questions

that separate Intrinsic, Germane, and Extraneous Cognitive Load. Responses are given on

a 1 - 5 Likert scale (6). Each questionnaire was administered to students over Canvas after

they submitted their assignments. If an assignment had two tasks, an additional question

was added at the beginning of the questionnaire asking students which task they wanted
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to fill out the questionnaire for, as the proposed framework treats tasks as separate assign-

ments. In total, 26 students regularly filled out each questionnaire. To further explore how

the setup of each assignment affected the students’ cognitive load scores, the average final

code character length of the final submissions is gathered by first counting all of the ”In-

sert” events in the keystroke data and subtracting the ”Delete” and ”Revert” events. These

counts are then averaged by student. The ratio of starter code to final code characters is

then calculated.

After the data is gathered, latency binning is carried out the same way as described in

Study 1. Parallel coordinates charts are then created based on the values. The Cognitive

Load questionnaire is then scored by first taking the average of the student’s responses to

the questions for each type of cognitive load (see A for the breakdown of which questions

are Intrinsic, Germane, and Extraneous Cognitive load), then the student’s responses were

averaged per load type to produce an overall score for each assignment. The overall load

score was then correlated with the median bin proportion for each pause length and each

type of load to examine how they related. Additionally, the cognitive load scores are

correlated with the median assignment completion time to test whether assignments that

take longer are associated with more cognitive load.
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CHAPTER 4

RESULTS

4.1 Study 1

4.1.1 Descriptive statistics

Figure 4.1a shows the total keystrokes across the eleven assignments, while Figure

4.1b shows the total time students took to complete each assignment. For the most part,

these box plots match, but there are some minor differences (e.g., when comparing A6 -

A8 in each chart). Figure 4.2a shows the breakdown of the total latencies (e.g., pauses)

between assignments. The quartiles for these latencies fall between 0 and 2 seconds for

all assignments and show relatively little variation between assignments. Figure 4.2b shows

latencies with a lower threshold of 45 seconds (e.g., when students could have a higher chance

of being disengaged and could have a larger cognitive load). Assignments notably have

much more variability in this range. Assignment 7 has the most variability in thresholded

pauses, as well as the highest median latency, which could signify that it had the highest

cognitive load and potential for a working memory overload. The boxplots of the latencies

(i.e., Figures 4.2a and 4.2b) do not show outliers because there are many, due to the large

number of keystrokes. Table 4.1 shows pause length medians and inter-quartile ranges of

the latency counts in the short, medium, and long bins.

4.1.2 Parallel coordinates

Figures 4.3 - 4.7 show parallel coordinate charts that visualize the scaled short, medium,

and long pauses for each assignment. Figure 4.3 shows the chart with assignment labels.

Figures 4.4 and 4.5 compare the pausing behavior of different assignment characteristics.

Figure 4.4 compares the pausing behavior of Turtle graphics-based assignments against all

other assignments. The Turtle graphic-based assignments (i.e., A4 – A6) share very similar
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Fig. 4.1: Boxplots of (a) total keystrokes per assignment in the first study and (b) total
completion time for each assignment.
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Fig. 4.2: Boxplots of (a) all latencies per assignment in the first study in seconds and (b)
latencies thresholded at 45 seconds per assignment. Outliers are not shown.
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Assignment Sample
Short Medium Long

Med IQR Med IQR Med IQR

A1 42 2841.5 2495.3 35.5 32.8 7.0 8.0

A2 40 2391.0 1051.8 16.5 11.5 4.0 5.0

A3 33 1690.0 2002.0 21 32.0 3.0 4.0

A4 34 2788.0 1679.3 28.0 29.3 9.0 7.0

A5 34 3788.5 1959.5 38.5 38.8 13.0 13.8

A6 31 2584.0 1744.5 24.0 20.5 6.0 8.0

A7 32 1311.5 1690.8 14.5 20.3 9.5 7.3

A8 30 1681.0 1766.0 26.0 17.8 11.5 6.5

A9 31 229.0 131.5 2.0 4.5 1.0 1.0

A10 30 1510.5 1224.8 12.0 11.0 2.0 2.0

A11 28 2395.5 2259.8 25.5 37.3 7.5 7.8

Table 4.1: Pause length medians and inter-quartile ranges for assignments in the first study.
Sample is the number of submissions.

latency patterns, even though Assignment 5 took students more keystrokes and time to

complete than the other graphic assignments (see Figure 4.1a).

Figure 4.5 compares the pausing behavior of assignments where a new construct was

introduced and assignments that did not introduce a new construct. For the most part,

assignments that introduce a new construct fall in about the middle of most pause lengths

with respect to their pausing behavior. This could be because most assignments that

introduce a new construct tend to be simpler so the student can learn the construct. The

exception is Assignment 8, which introduces lists. This assignment has the lowest proportion

of short pauses, and some of the highest medium and high pauses, signifying that students

took longer pauses for this assignment.

4.1.3 Assignment groups and pause length comparison

K-means clustering is performed on the scaled vectors of pause length counts to discover

if there were different groups of pausing behavior among assignments. The elbow method

is used to select the number of clusters. This is accomplished by plotting the number of

clusters against the model’s Sum of Squares Error (SSE) and looking for a K value where

the SSE sharply stops decreasing (e.g., the ”elbow”). 4.6 shows the plot. Though there

were multiple small ”elbows”, K was set as three. I felt two clusters did not break out
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Fig. 4.3: Parallel coordinates with assignment labels for the first study.
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Fig. 4.4: Parallel coordinates of graphics vs. non-graphics assignments in the first study.
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Fig. 4.5: Parallel coordinates of assignments with new vs known constructs in the first
study.

the assignments enough, and more than three clusters produced groups that did not have

enough discriminability. The cluster centers are reported in Table 4.2 and the groups are

visualized in Figure 4.7.

Group 1 has short and medium pause proportions that are about in the middle of

other assignments, and longer pauses on the lower end of the scaled values. As such,

while they may have a higher cognitive load that requires students to take some medium

pauses, they do not take many long pauses which could be caused by a working memory

overload. This could be the optimal group for keeping students in the ZPD. Group 2

includes assignments 7 and 8. This group is characterized by the smallest proportions of

short pauses and the largest proportions of long pauses. In other words, students are taking

more pauses over 6 minutes in these assignments than in other assignments. The common

attribute for assignment 7 and assignment 8 is that these assignments require students to

implement object-oriented programming (e.g., classes, objects, etc.; OOP) to accomplish

the assignment goals. Assignment 6 introduced classes, but the syntactical structure of the

class was provided for the students in the starter code. Students just had to fill in the

methods of the class with Turtle graphics code. Assignment 6 is a part of Group 1. Group
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Fig. 4.6: Number of clusters (K) vs. SSE.

3 includes assignments 2 and 10. This group has the highest proportions in short pauses

and the lowest proportions in medium and long pauses. Students do not take many breaks

in these assignments, and it is possible that these assignments are not likely to cause a

working memory overload.

To further test the first research question, which was whether assignments differed from

each other in their pausing behavior, a repeated measures ANOVA was rand for each pause

length between assignments 2, 4, and 8, which are representative of cluster Groups 3, 1,

and 2, respectively. I used a repeated-measures ANOVA because the same sample was used

for each of the three assignments in the test and the test distributions are normal (Table

4.3). Figure 4.8 shows the distributions of students’ proportion of pauses in each of the

pause lengths for each of the selected assignments. The test results are reported in Table

4.4. There was a statistically significant difference for each pause length, meaning that at

least one assignment significantly differed from the others in every pause length.

4.2 Study 2
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Fig. 4.7: Parallel coordinates of K-means groups.
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Cluster Asgmts Short Medium Long

Group 1 1,3,4,5,6,9,11 0.638177 0.429329 0.277252

Group 2 7,8 0.144536 0.742248 0.963668

Group 3 2,10 0.974385 0.062096 0.029890

Table 4.2: K-means Cluster Centers for short pauses, medium pauses, and long pauses

Assignment
Short Medium Long

χ2(2) P-value χ2(2) P-value χ2(2) P-value

A2 2.9 0.2 0.8 0.7 5.6 0.06

A4 2.3 0.3 2.5 0.3 2.6 0.3

A8 0.6 0.7 1.8 0.4 3.0 0.2

Table 4.3: D’Agostino-Pearson normality test results

4.2.1 Descriptive statistics and parallel coordinates

Similar to the first study, Figure 4.1a shows the total keystrokes across the 7 assign-

ments, while Figure 4.9b shows the total completion time. Figure 4.10a shows the total

latencies, while Figure 4.10b shows latencies thresholded at 45 seconds. Figure 4.11 shows

the averaged scores for each type of cognitive load (i.e., Intrinsic, Germane, and Extra-

neous). Notably, assignments 3 and 5 have slightly higher scores across all load types.

Additionally, Extraneous Load scores are lower across all assignments. Table 4.5 shows the

type of assignment, a short excerpt for each assignment, the length of the assignment de-

scription, the length of the starter code, the average length of the student submissions, and

the ratio of starter code to final submission. Figures 4.3 - 4.14 show variations of the parallel

coordinates charts of bin proportions for the assignments in the second study. Figure 4.3

shows the chart with the individual assignment labels. Figure 4.13 shows the comparison

of graphics vs game assignments in the second study (e.g., all assignments measured were

either Turtle graphics or a game). Noticeably, graphics assignments appear to cause more

Pause Length F Value P-value η2p 90% CI

Short Pauses 75.9 (2, 52) 3.8e−16 0.7 [0.6, 0.8]

Medium Pauses 44.7 (2, 52) 5.2e−12 0.6 [0.5, 0.7]

Long Pauses 42.9 (2, 52) 1.0e−11 0.6 [0.5, 0.7]

Table 4.4: Repeated-measures ANOVA results
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Fig. 4.9: Boxplots of (a) total keystrokes per assignment in the second study and (b) total
completion time.

medium and long pauses than games. Finally, Figure 4.14 shows the comparison of assign-

ments that focused on OOP principles (e.g., classes, methods, etc.) compared to those that

focused on functions. These were the main constructs in the assignments that were mea-

sured. OOP assignments had noticeable variability in the charts, but the assignment that

caused the most medium pauses and second-most long pauses was an OOP assignment.

4.2.2 Latencies vs. cognitive load

To test whether the latency analysis in the framework developed in the first study was

an accurate measure of cognitive load, the median proportion in each bin was correlated

with the scores for each type of load. The scatterplot matrix in 4.15 shows scatterplots for

each bin and load type combination. Notably, there is a positive correlation between the

pause proportions in the short bin and negative correlations with the medium and long bins

for Intrinsic and Germane Cognitive Load. This is contrary to the conclusions drawn in the

first study. The Pearson R correlation coefficients, as well as the corresponding P-values,

are given in Table 4.6. None of the tests were statistically significant, but the relation

between long pauses and intrinsic load was trending significance.
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Fig. 4.10: Boxplots of (a) all latencies in seconds and (b) latencies thresholded at 45 seconds
in the second study.
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T1 Graphics A program that prompts the user for
some information and then draws a
chessboard according to their speci-
fications.

675 400 1753 0.21 0.9923

T2 Graphics A program that takes user input,
and then draws a pattern with dif-
ferent shapes and colors.

779 1379 1873 0.74 0.9909

T3 Game A game where a character moves
around to collect treasures all while
avoiding a dangerous bomb. Stu-
dents could choose the look and feel.

1126 1206 3863 0.31 0.9912

T4 Graphics A class that works with the given
starter code where a drawn face
changes emotions based on a user
click.

414 715 904 0.79 0.9902

T5 Game A game where the player attempts to
either catch or kill critters. The stu-
dents can choose whatever critters
and tools they would like, as long as
the game follows the same technical
premise.

1313 1224 3281 0.37 0.992

T6 Game Students create a program that has
them and a friend racing all over
the city of “Crashtropolis”. Speed
and sharp turns are the name of
the game. So is crashing into walls
and getting zapped by lasers. The
requirements for the program are
looser than others.

1210 1159 5034 0.23 0.9937

Table 4.5: Assignment type, excerpt from the assignment description, description length in
words, starter code length in characters, the average length of code submitted in characters,
and the starter code to submitted code ratio for each assignment.
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Fig. 4.12: Parallel coordinates with assignment labels for the second study.
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Fig. 4.13: Parallel coordinates of graphics vs. game assignments in the second study.
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Fig. 4.14: Parallel coordinates of object-oriented programming (OOP) tasks vs. tasks
focusing on functions in the second study.

Pause Length Load Type R P-value

Short Pauses Intrinsic 0.62 0.19

Short Pauses Germane 0.73 0.1

Short Pauses Extraneous 0.19 0.72

Medium Pauses Intrinsic -0.55 0.26

Medium Pauses Germane -0.67 0.14

Medium Pauses Extraneous 0.21 0.68

Long Pauses Intrinsic -0.76 0.08

Long Pauses Germane -0.71 0.11

Long Pauses Extraneous 0.02 0.97

Table 4.6: Pearson R correlation coefficients and P-values for each bin and load type
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Fig. 4.15: Scatterplot matrix of the median proportion of bin counts (columns) and the
scores for each type of cognitive load (rows).
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Fig. 4.16: Scatterplot of completion time and load scores.

4.2.3 Completion time and starter code ratio vs. cognitive load

One of the observations in the first study was that assignment completion time may

not be related to the cognitive load of an assignment. To test this, the median assignment

completion time was also correlated with the cognitive load scores. The scatterplots of

completion time and each time of load are given in figure 4.16. Completion time had a

significant relation with Intrinsic Cognitive Load (r = 0.94, p = 0.006 ) as well as Germane

Cognitive Load (r = 0.87, p = 0.03 ), but not with Extraneous Cognitive Load (r = 0.08, p

= 0.88 ). These results suggest that completion time is related to a student’s self-reported

Cognitive Load.

In addition to the correlation with assignment completion time, the starter code to

submitted code ratio was also correlated with the load scores ad-hoc to see what relation

an assignment’s starter code ratio had with cognitive load. Figure 4.17 shows that a higher

starter code ratio lowers Intrinsic and Germane Cognitive Load. Starter code ratio had a

significant relation with Germane Cognitive Load (r = -0.87, p = 0.03 ) and a relation that

was trending significant with Intrinsic Cognitive Load (r = -0.78, p = 0.006 ), but not with

Extraneous Cognitive Load (r = 0.22, p = 0.68 ).
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CHAPTER 5

DISCUSSION

5.1 Assignment pausing behavior differentiation

My first research question is: Are assignments different from each other in student

pausing behavior? Differences in pausing behavior can be seen in the parallel coordinates

charts. In addition to these visual measures, K-means clustering and the repeated-measures

ANOVA also provide evidence that assignments in CS1 are different in their pausing be-

havior. This could suggest that different assignments cause different cognitive loads.

As reported in Section 4.1, Figure 4.4 shows that all of the Turtle graphics assignments

(i.e., assignments 4, 5, and 6) share a strikingly similar pattern of scaled pauses across the

three pause lengths. These assignments involved more creativity and less use of unfamiliar

programming language constructs. This is seen in their pausing behavior. They all have a

relatively high proportion of short pauses and middle to lower proportions of medium and

long pauses. This signifies that, relative to other assignments, students tend to spend more

time engaged with the assignment and do not have as high of a chance of being disengaged or

experiencing a working memory overload. This similarity in pausing behavior is noteworthy,

given that assignment 5 has the highest median keystroke count and total completion time

out of all assignments (Figure 4.1a). Since this assignment took students a long time to

complete, one might assume that it also had a high cognitive load. However, assignment

5 still shares similar pausing behavior to assignments 4 and 6, which have considerably

lower median keystroke counts and time spent. Graphics assignments also show similar

pausing characteristics in the second study. Figure 4.13 shows a little more variability

than study one, but graphics assignments tend to have more medium and long pauses than

assignments where students create a game. This suggests that students take more breaks

when completing graphics assignments in the second study.
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Assignment differentiation is also seen in assignments that present new constructs vs.

assignments that do not 4.5. Assignments that present new constructs generally have a

low proportion of long pauses. This could signify that students are not experiencing a

working memory overload. Assignments that present a new construct tend to provide more

scaffolding to help the student learn the construct. The exception is assignment 8, which

presents lists. However, we believe this is due to the other characteristics of assignment

8, namely its focus on OOP because a similar assignment (i.e., assignment 7) has similar

pausing behavior. Additionally, the other assignments that involve lists do not share a

similar pattern with assignment 8. It is also noteworthy that assignment 1, which introduces

loops, and assignment 3, which introduces functions, have the second and third highest

scaled values of medium pauses. Loops and functions were some of the first programming

concepts taught to students. As such, the higher medium pause values for these assignments

could be caused by students still learning the syntax of the language, which produces ECL

(17; 19). Overall, the parallel coordinate charts suggest that assignments differ in their

pausing behavior.

In addition to visually separating the data through parallel coordinates, K-means clus-

tering found three groups of assignments that differ in their pausing behavior (Figure 4.7

and Table 4.2). The first group included most assignments evaluated in this study. Students

took fewer breaks in these assignments. This group could signify the “normal” cognitive

load for a CS1 assignment. Relative to other assignments, students spend most of their time

engaged with their assignment, but may occasionally take a break in the medium or long

pause range. Group 2 includes assignments 7 and 8, which could have the highest cognitive

load. This group’s cluster centers show students take a higher proportion of medium and

long pauses when compared to other assignments. The characteristics of this group are

discussed in detail in the next subsection, but both assignments require students to imple-

ment OOP more than other assignments. The number of scaled long pauses in this group

suggests that these assignments have more pauses where students are disengaged than all

other assignments. This could be caused by a working memory overload. Because of this, it
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is possible that these assignments did not provide enough scaffolding to keep students in the

ZPD. The third group discovered by K-means also contains two assignments, assignments

2 and 10. These assignments have the highest scaled value of short pauses and the lowest

value of medium and long pauses. These assignments could have a light cognitive load and

are where students are the least likely to become disengaged. Neither of these assignments

introduced anything new, so it is possible that students did not have to spend a lot of time

thinking about the assignment. The three groups discovered by k-means clustering have

clear visual distinctions in pausing behavior.

The final test to tell if there was a differentiation between pausing behavior in assign-

ments was a repeated-measures ANOVA between assignments 2, 4, and 8 (i.e., groups 3,

1, and 2, respectively). This test found a difference across all pause lengths between these

assignments. This test statistically confirmed that CS1 assignments do differ from each

other in their pausing behavior.

5.2 Assignments that cause long pauses

Our next research question is What types of assignments cause students to take the

highest proportion of longer pauses? Assignments 7 and 8 (i.e., group 2) in the first study

have the highest scaled value of long pauses (e.g., the cluster center is at .97). Assignment

8 also has the highest value of medium pauses. The higher occurrence of medium and long

pauses in these assignments could signify an increase in students’ overall cognitive load, as

suggested by Lee et al (29). The higher number of medium pauses could be caused by a lack

of room in a student’s working memory, which prohibits them from storing the necessary

information to continue with the assignment, forcing them to search other material (1).

Additionally, the relatively extreme proportion of long pauses signifies that students could

be spending more time being disengaged in these assignments (5), which could be caused

by a working memory overload and frustration, which stops learning (8).

Assignments 7 and 8 are similar in many ways. Both assignments involve creating a

virtual environment where users enter input into a program to interact with virtual pet-

s/beings (e.g., users can feed the pet, or ask to see the dimensions of a virtual being). The
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students must implement OOP methods to complete these assignments by creating classes

for the pet/being that include multiple modules and functions. Students also need to con-

sider how user input will affect the various aspects of the class, such as a timer that keeps

track of the “age” of the pet/being. Other aspects of OOP, such as private data or operator

overloading, are applied in these assignments. Students create a “main” file to tie together

all of their other code in a program that asks for input from the user, who can interact with

the pet/beings until they quit.

Assignments 6 and 11 in the first study also implement classes but do not have as

high proportions of medium and long pauses. Assignment 6 included starter code that took

care of the structure of the class. Students just had to fill in the Turtle graphics code.

Assignment 11 also had starter code provided, but students still had to create some of the

structure of the class. Since assignment 11 does not have as many long pauses as assignment

7 or 8, it is possible that it was not as intricate, or students had sufficient practice with

classes by this assignment. Interestingly, Assignment 4 (i.e., ”T4”) in the second study

is the same as Assignment 6 in the first study, but T4 had the most medium pauses and

second most long pauses. This could be because of the change in assignment structure.

Both of the descriptions for the assignments in group 3 (i.e., assignments 7 and 8 in the

first study) specifically mention that the assignment involves multiple tasks or problems,

and one of the keys to completing the assignment is to break the assignment down into

smaller pieces. These assignments have starter code and detailed assignment descriptions

to help provide scaffolding to the students as they create the different classes. However,

given the pausing behavior shown in our analyses, it is possible that the scaffolding is not

enough and students fail to stay in the ZPD. However, assignments that deal with OOP

varied in pausing behavior, as shown in Figure 4.14.

The assignment that caused the most long pauses in the second study is assignment 1

(i.e., ”T1”). This was assignment 4 in the first study. Again, while the same assignment

fell in the middle of the medium and long pause bins in the first study, it had the most long

pauses in the second. This could be because of the reorganized assignment structure again,
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or the relatively fewer assignments that were measured in the second study. This assignment

asked students to incorporate functions from a separate file into a main file to draw a

chessboard. Students figuring out how to incorporate code from other modules/classes may

be what causes more medium and long pauses. Further research is needed to solidify this,

but these results show that assignments asking students for an intricate implementation

taking code from other files result in the highest proportions of long pauses.

5.3 Pausing behavior vs. self-reported cognitive load

The third research question is Does student pausing behavior correlate with student self-

reported cognitive load? Figure 4.15 shows that IL and GL have a positive linear relation

with short pause proportion and a negative linear relation with the medium and long bin

proportions. However, these correlations are not statistically significant, but the relation

between ICL and long bin proportion is trending significance. ECL does not have a linear

relation with any of the bins. These results are different than expected after the first

study. The assumption was that the more medium and long pauses an assignment caused,

the higher the cognitive load. However, these results show that assignments that cause

students to spend fewer breaks have higher self-reported levels of cognitive load.

This is an interesting finding, and further research is needed to validate it. This suggests

that breaks, or medium and long pauses, are not due to a cognitive overload. It could just

be that the assignment is not engaging enough for the student, or the pauses are just

students looking in other sources for assignment help. Or students couldn’t simply be more

distracted by outside events in these assignments. It is also possible that there could be

biases introduced in self-reports. Students were asked to report their perceived cognitive

load after assignment completion. One issue with self-reports is that they are usually not

in real-time (the questionnaire for this study was not) and students may have different

interpretations of the scale (44). It is possible that there could be other methods used to

measure cognitive load, such as physiological data (45). However, it is significantly more

difficult to get physiological data, and self-report questionnaires are still used widely and

accepted by many, particularly with measuring abstract constructs such as cognitive load
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(46; 47)

Overall, student self-reported cognitive load does not correlate with the proposed frame-

work using latency analysis, at least what was originally expected. However, this may not

invalidate the proposed framework. It could just need further exploration to know what

pauses mean. Just tweaking the framework to say that more medium and long pauses cor-

respond to less cognitive load would make the two measurements agree. It could be that

assignments already do a good job of keeping students in the ZPD, so the assignments with

more shorter pauses have the optimal amount of cognitive load to keep students engaged.

Although, since the correlations were not significant in this study, further research is needed

to confirm this.

5.4 Assignment completion time vs. self-reported cognitive load

The final research question is Do assignments that have a longer completion time also

have a higher cognitive load? As mentioned at the start of this thesis, it is a common

belief that assignments that take longer are harder. The proposed framework in the first

study suggested that this may not always be the case. However, Figure 4.16 shows strong

positive linear relations between ICL and assignment completion time, as well as GCL

and assignment completion time. The relations are both statistically significant. ECL and

assignment completion time do not have a significant relation. However, this is likely due

to assignment four in the second study (i.e., T4), which took the least amount of time to

complete, but that the highest ECL score. This assignment had the highest ratio of starter

code (see Table 4.5). So, it is likely that students needed to spend a significant amount

of time understanding the starter code, even though the assignment didn’t take that long,

relatively. This would explain the higher ECL score, as ECL deals with characteristics that

are not directly related to the task, such as assignment design.

Even though T4 had a higher amount of medium and long pauses, it did not have the

highest levels of self-reported cognitive load, aside from ECL. This does not support the

observation in the first study. However, this could also be because students were judging

cognitive load mainly on completion time as they reflected on the assignments. Overall, as-
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signments that have a longer completion time do have higher levels of self-reported cognitive

load.

It is also noteworthy that the starter code to finished code ratio of an assignment has

a significant negative relation with ICL and GCL (see Figure 4.17). This suggests that the

more starter code a student is given, the less cognitive load they will have. This could be

because students have to keep less information in their minds during assignments that have

a higher starter code ratio than others and it is easier for them to stay in the ZPD with the

extra scaffolding. Thus, instructors can provide more starter code if students are struggling

with an assignment.

5.5 Threats to validity

There are several threats to the validity of this study. One is the relatively small

sample size. The data for each study is only from one class, that was taught in Python. It

is possible that different instructors, assignment setups, and programming languages would

yield different pausing behavior across constructs. Additionally, the assignments in the

two studies did not exactly match up, so it is not possible to draw direct comparisons.

There was also not as much data collected in the second study due to an error in the tool

used for data collection. This could also be affecting the analyses and the ability to find

statistically significant relations. Next, while breaking out the tasks in each assignment

did provide a more detailed view of pausing behavior by assignment construct, some tasks

did have the same due date. The students’ time management of when they completed

all the tasks could have led some to be fatigued when completing the final task of the

whole assignment, which may have affected their pausing behavior. The results of the

self-report questionnaires were also given after assignment completion, as discussed above

in Section 5.3, which could provide different results than if they were given in real time.

Finally, our comparisons of assignment pausing behavior are all relative. We scale the

pause length counts based on the other assignment pause length counts. It is possible that

the addition of different assignments would change the scaled values, and that students

would have different self-reported values with a different combination of assignments, as
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they would compare different assignments. In the second study, we only collected data

on 6 assignments which started about halfway through the course. Missing the beginning

assignments when students were very first learning the program could leave out important

comparisons in analysis, particularly in the parallel coordinate charts.
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CHAPTER 6

CONCLUSION

This thesis has presented two studies. The first presents an empirical framework for

using student pausing behavior to describe the possible cognitive load of eleven assignments

in a CS1 course indicating which assignments could need more scaffolding. The second study

tests the framework on 6 assignments from another CS1 course, with the addition of a self-

report questionnaire to measure cognitive load. This section summarizes the findings from

each of our research questions and discusses future work.

RQ1: Are assignments different from each other in student pausing behavior? Differ-

ences in student pausing behavior can be seen when comparing Turtle graphics and non-

Turtle graphics assignments (Figures 4.4 and 4.13) as well as in assignments that present

new constructs and those that do not (Figure 4.5). Turtle-graphics assignments share

strikingly similar pausing behavior, even though keystroke count and completion time vary

between these assignments. With one exception, assignments that present new constructs

do not have a high number of long pauses. This could be because these assignments are

generally easier to help a student grasp a new concept. Additionally, K-means clustering

discovered three groups of assignments (Figure 4.7). A repeated-measures ANOVA showed

a statistical difference between a representative assignment from each of the three groups

in all of the pause length proportions (i.e., short, medium, and long; Table 4.4). Overall,

these results provide evidence that CS1 assignments are different from each other in student

pausing behavior.

RQ2: What types of assignments cause students to take the highest proportion of longer

pauses? The k-means cluster analysis in the first study (see Table 4.2) found a group of

two assignments that had a relatively low proportion of short pauses, a higher proportion of

medium pauses, and a considerably higher proportion of long pauses. The higher proportion

of medium and long pauses indicates that students take more breaks relative to other
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assignments. The assignments in this group share similar attributes. They both require

students to implement detailed implementations of object-oriented programming (OOP)

principles, such as classes, methods, private data, etc. These assignments have the highest

proportion of long pauses. Long pauses are where students are more likely to be disengaged

(5). The assignments that had the highest amount of long pauses in the second study

were assignments 1 and 4 (i.e., T1 and T4 4.12). These assignments did not necessarily

require students to carry out detailed OOP implementations. Rather, they just had to

incorporate functions or classes from a separate file into a main file. So, it could just be the

compartmentalization of code that causes long pauses, rather than specific OOP tasks.

RQ3: Does student pausing behavior correlate with student self-reported cognitive load?

In short, student pausing behavior may correlate with self-reported cognitive load, just not

as was expected after the first study. As shown in Figure 4.15, Intrinsic and Germane

Cognitive Load (ICL and GCL) had a positive linear relation with pauses 45 seconds in

length or less (e.g., short pauses) and a negative linear relation with pauses from 46 seconds

to 6 minutes (e.g., medium pauses) and pauses over 6 minutes (e.g., long pauses). This

means that the more short pauses a student took, the more likely they were to have higher

ICL and GCL scores, while the more medium and long pauses they took, the lower the

ICL and GCL scores. However, these relations were not statistically significant, so further

research is needed to validate this relation. Additionally, Extraneous Cognitive Load (ECL)

had no practical or significant relation with pause length.

RQ4: Do assignments that have a longer completion time also have a higher cognitive

load? Self-reported levels of ICL and GCL do have a strong, significant linear relation with

assignment completion time (See Figure 4.16). There is not a significant relation with ECL.

This does not provide evidence that harder assignments do not necessarily take longer. It

does confirm that assignments that take longer are perceived by students as having a higher

cognitive load.

There is evidence that a relation exists between pausing behavior and cognitive load,

though it is not yet known how to explain the relation. Gaining an understanding of the
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underlying factors will at least benefit instructors in assignment design and could lead to

new insights into cognition. The findings also suggest that there may be a difference between

perceived cognitive load after the fact, and actual cognitive load, as assignments that took

the longest to complete in the second study had the highest ICL and GCL scores.

Future work will include more than six assignments so that a richer comparison can

be drawn between assignments. This would allow a deeper dive into the relation between

pausing behavior and cognitive load to confirm if more short pauses correspond with higher

levels of cognitive load. Additionally, it will be beneficial to examine other real-time mea-

sures of cognitive load or give the questionnaire during the assignment so that results do

not rely on student recall.
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APPENDIX A

Cognitive Load Questionnaire

The following questionnaire was given to students after each assignment in the second

study to measure the intrinsic, extraneous, and germane cognitive load. This measure was

adapted from the measure created and validated by Klepsch et al.(6). The questions are as

follows:

1. This assignment required me to keep many things in mind simultaneously.

2. This assignment was very complex.

3. This assignment required me to stay highly engaged.

4. This assignment required me to think intensively about what things meant.

5. It was exhausting to find the pertinent information for this assignment.

6. The design of this assignment was inconvenient for learning.

7. It was difficult to recognize and link crucial information for this assignment.

The questions measure different types of cognitive load. Questions 1-2 measure ICL, ques-

tions 3-4 measure GCL, and questions 5-7 measure ECL. Each question was answered on a

Likert scale of 1 (Strongly Disagree) to 5 (Strongly Agree).

1 - Strongly Disagree

2 - Disagree

3 - Neutral

4 - Agree

5 - Strongly Agree
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