Effects of Temperature and Radiation Dose on Radiation Induced Conductivity

JR Dennison
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Condensed Matter Physics Commons

Recommended Citation
https://digitalcommons.usu.edu/mp_presentations/170

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Effects of Temperature and Radiation Dose on Radiation Induced Conductivity

J.R. Dennison

Materials Physics Group
Physics Department, Utah State University
A Rose by any other name would smell as sweet...

In search of the Holy Grail of the Videcon...

Rose found zero x-ray radiography ...

Rose-Fowler-Vaserberg theory
What Is Radiation Induced Conductivity (RIC)?

- conduction electrons
- holes
- empty traps
- filled traps
- radiation filled traps

Uniform Trap Density

\[\Delta(T) \to 1 \]

\[k(T) \to k_{RICo} \]

Exponential Trap Density

\[\Delta(T) \to \frac{T_c}{T + T_c} \]

\[k(T) \to k_{RIC1} \left[2 \left(\frac{m_e k_B T}{2 \pi \hbar^2} \right)^{3/2} \left(\frac{m_e m_h}{m_e m_e} \right)^{3/4} \right]^{\frac{T}{T + T_c}} \]

\[\sigma_{RIC}(T, D) = k_{RIC}(T) \cdot D^{\Delta(T)} \]
 Radiation-induced conductivity (RIC) is proportional to dosage to the Δ power:

$$\sigma_{RIC}(D) = k \cdot \left(\frac{D}{D_0} \right)^\Delta$$

To first order, this does not depend on T or on the incident radiation species, just energy flux.

- The RIC versus radiation dose rate for polyethylene terephthalate (Mylar) [Campbell].
- The exponential fit over 10 orders of magnitude for five different studies implies that RIC is largely independent of the beam energy and type of radiation used.
- Only the amount of energy being deposited determines the magnitude of RIC.

<table>
<thead>
<tr>
<th>Curve Segment</th>
<th>Type of Radiation</th>
<th>Energy</th>
<th>Dose Rate</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X-rays</td>
<td>250 keV</td>
<td>0.13 rad/s</td>
<td>steady state</td>
</tr>
<tr>
<td>2</td>
<td>X-rays</td>
<td>15 to 30 keV</td>
<td>1 to 400 rad/s</td>
<td>steady state</td>
</tr>
<tr>
<td>3</td>
<td>γ-rays</td>
<td>1.17 and 1.33 MeV</td>
<td>200 to 3500 rad/s</td>
<td>steady state</td>
</tr>
<tr>
<td>4</td>
<td>pulse reactor</td>
<td>mixed</td>
<td>6.5 x 10^4 to 3.8 x 10^6 R/s</td>
<td>13 ms pulses</td>
</tr>
<tr>
<td>5</td>
<td>neutrons and γ-rays</td>
<td>30 MeV</td>
<td>5 x 10^7 to 7 x 10^9 rad/s</td>
<td>4.5 μs pulses</td>
</tr>
</tbody>
</table>
RIC Dependence on Temperature

Family of curves of ρ_{RIC} vs dose rate at various temperatures. Fits are simple power law fits.

$$\sigma_{RIC}(T, D) = k_{RIC}(T) \cdot D^{\Lambda(T)}$$

Kapton$^{\text{TM}}$ (polyimide)
RIC Dependence on Temperature

T dependence of RIC coefficients k (Above) and Δ (Right) with $k_0 = 1.5 \cdot 10^{-16}$ $(\Omega \text{-cm-Rad/s})^{-1}$, $k_1 = 7.0 \cdot 10^{-29}$ $(\Omega \text{-cm-Rad/s})^{-1}$ and $T_c = 230$ K.
RIC Is Time Dependant

Initial RIC

\[B_{on}(t, \lambda(D,T)) = 1 - e^{-(t-t_{on}) \cdot \lambda(D,T)} \]

Dose Dependent Equilibrium RIC

\[\sigma_{RIC}(T,D) = k_{RIC}(T) \cdot D^{\Delta(T)} \]

Persistent RIC

\[B_{off}(t,T,k(T)) = \frac{1}{1 + k(T) \cdot \frac{t - t_{off}}{T}} \]
Instrumentation

Idaho Accelerator Center RIC Chamber
Radiation Induced Conductivity Measurements

RIC chamber uses a combination of charge injected by a biased surface electrode with simultaneous energy injection by a pulsed penetrating electrons.

Sample stack cross section

RIC Chamber

Top view of samples on window
Instrumentation

USU Cryostat RIC Chamber
AFRL RIC Cryostat Chamber Cut Away Diagram

- High Energy Electron Gun
- Faraday Cup Z Translation Stage
- Gate Valve to Pumping System
- Faraday Cup Assembly
- USU Closed Cycle He Cryostat
- AFRL Bell Jar Chamber
AFRL RIC Closed-Cycle He Refrigerator Sample Stage Design

Cryo Sample Stage Assembly
Cut-Away Views

- Expander Module
- Cryo shroud
- Cryo Shroud Stage (~80 K)
- Low T Stage (~30 K)
- Sample block
- Sample shutter
- Shutter gear assembly
AFRL RIC Closed-Cycle He Refrigerator Sample Stage Design
Complementary Responses to Radiation

Modified Joblonski diagram

- VB electrons excited into CB by the high energy incident electron radiation.
- They relax into shallow trap (ST) states, then thermalize into lower available long-lived ST.
- Three paths are possible:

 (i) relaxation to deep traps (DT), with concomitant photon emission;
 (ii) radiation induced conductivity (RIC), with thermal re-excitation into the CB; or
 (iii) non-radiative transitions or e⁻-h⁺ recombination into VB holes.
RIC Cryostat Measurements

RIC current vs 295 K<T<38 K at constant Dose Rate

RIC current vs Dose Rate at 40 K

Fused silica
Room T RIC Cryostat System Results

Fitting parameters

\[k_p = (2.0 \pm 0.3) \times 10^{-15} \text{(ohm-cm-rad/sec)}^{-1} \]
\[\Delta = 1.01 \pm 0.03 \]

Saturation for high dose rate

Fused silca
USU Materials Physics Group Capabilities

Facilities & Capabilities

Sample Characterization & Preparation
- Bulk composition (AA, IPC).
- Surface contamination (AES, AES mapping ESD).
- Surface morphology (SEM, optical microscopy).

Conduction Related Properties:
- Bulk & surface conductivity.
- High resistivity testing.
- Capacitance, dielectric constant, charge decay monitoring, and electrostatic discharge.

Electron Induced Emission:
- Total, secondary and backscattered yield vs. incident energy and angle.
- Energy-, angle-resolved emission spectra.
- Cathodoluminescence

Ion Induced Emission:
- Total electron and ion yield versus incident energy and angle.

Photon Induced Emission:
- Total electron yield vs photon energy.
- Energy-angle resolved photoelectron yield cross-sections.

Electron Induced Arcing:

- Four ultrahigh vacuum chambers for electron emission tests equipped with electron, ion, and photon sources, detectors, and surface analysis capabilities.
- Two high vacuum chambers for resistivity tests.
- High vacuum chamber for electrostatic breakdown tests.
- Ultrahigh vacuum chamber for pulsed electro acoustic measurements of internal charge distributions.
Dark Current and Radiation Induced Conductivities
Slab (parallel plate capacitor) Model

Charge Absorption

Bethe Approximation:
- Charge absorbed at single (energy dependant) Range, R

Surface Potential
- **No Dissipation:**
 \[V_s(t) = \frac{J_B R}{2 \varepsilon_o \varepsilon_r} t \]
- **Dissipation:**
 \[V_s(t) = \frac{J_B R}{2 \varepsilon_o \varepsilon_r} \left[\frac{1}{t} + \frac{2}{\tau_{DC}} + \frac{2}{\tau_{RIC}} \right]^{-1} \]
- **Decay Time:**
 \[\tau_{DC} = \varepsilon_o \varepsilon_r / \sigma_{DC} \]

Energy Absorption

Continuous Slow Down Approximation:
- Energy absorbed uniformly up to Range, R

Absorbed Dose Rate (J/kg-s):
- **Dose Rate:**
 \[\dot{D} = \frac{J_B E_B}{q_e \rho_m} R \]
- **RIC:**
 \[\sigma_{RIC}(D) = k_{RIC} \cdot \dot{D} \]
- **Decay Time:**
 \[\tau_{RIC} = \varepsilon_o \varepsilon_r / \sigma_{RIC} \]
USU Resistivity Calculator Engineering Tool

This Mathcad worksheet calculates the resistivity of JWST spacecraft materials as a function of electric field (E), temperature (T), and adsorbed dose rate (D) based on parametrized, analytic functions used to model an extensive data set taken by the Utah State University Materials Physics Group.

1. Physical Constants and Units

Select Material from pull down box:

Low Density Polyethylene (LDPE)
Kapton HN
Kapton E
Kapton FN (616)
PFA (Teflon)
PEF (Teflon)
PTFE (Teflon)
ePTFE (expanded PTFE or OORS2a)
ETFE (Teflon)

Enter T, E and D to evaluate resistivity at:

\[E_{\text{ev}} = 10^6 \text{ V m}^{-1} \]
\[T_{\text{ev}} = 330 \text{ K} \]
\[D_{\text{ev}} = 0.03 \text{ Rad sec}^{-1} \]
Enter sample thickness:\n\[d_{\text{ev}} = 25 \mu\text{m} \]

2. Input data from Excel file

List Materials Related Properties Used in Resistivity Calculations

Material name: Material_name = "Kapton HN (Kapton)"

Relative dielectric constant: \(\varepsilon_r = 2.400 \)
Electrostatic breakdown field strength and voltage:
\[E_{\text{bnd}} = 2.700 \times 10^2 \text{ V m}^{-1} \]
\[V_{\text{bnd}} = E_{\text{bnd}} d_{\text{ev}} = 6750 \text{ V} \]
Fraction of breakdown voltage applied:
\[E_{\text{ev}} E_{\text{bnd}}^{-1} = 0.37\% \]

Figure 1. Mathcad engineering tool user input interface.
Conductivity in Highly Disordered Insulating Materials

\[\sigma(t) = \sigma_{DC} + \sigma_{Polarization}(t) + \sigma_{Diffusion}(t) + \sigma_{Dispersion}(t) + \sigma_{Transit}(t) + \sigma_{RIC}(t) \]
Conductivity in HDIM--Polarization

\[\sigma(t) = \sigma_{DC} + \sigma_{Polarization}(t) + \sigma_{Diffusion}(t) + \sigma_{Dispersion}(t) + \sigma_{Transit}(t) + \sigma_{RIC}(t) \]

Polarization

\[\sigma_{Pol}^0 e^{-t/\tau_{Pol}} \]
Conductivity in HDIM—Drift and Hopping Conduction

\[
\sigma(t) = \sigma_{DC} + \sigma_{Polarization}(t) + \sigma_{Diffusion}(t) + \sigma_{Dispersion}(t) + \sigma_{Transit}(t) + \sigma_{RIC}(t)
\]

\[
\sigma_{Diff}^{-1} = \frac{2 \cdot n(T) \cdot \nu \cdot a \cdot e}{E} \exp \left[\frac{-\Delta H}{k_B \cdot T} \right] \sinh \left[\frac{\varepsilon \cdot E \cdot a}{2 \cdot k_B \cdot T} \right]
\]

\[
\sigma_{hop}(E, T) = \frac{2 \cdot n(T) \cdot \nu \cdot a \cdot e}{E} \exp \left[\frac{-\Delta H}{k_B \cdot T} \right] \sinh \left[\frac{\varepsilon \cdot E \cdot a}{2 \cdot k_B \cdot T} \right]
\]

\[
\varepsilon_n\sigma
\]

\[
Boltzmann
\]

\[
Mott
\]

\[
\text{Transition}
\]

\[
\text{Boltzmann}
\]

\[
\text{Mott}
\]

\[
\frac{1}{T}
\]
Temperature Dependence of Hopping Conductivity

At high temperatures, the conductivity is proportional to a Boltzmann factor, with trap depth ΔH:

$$\sigma(T) \propto \exp\left[-\frac{\Delta H}{k_B \cdot T}\right] \quad \text{or} \quad \rho(T) \propto \exp\left[\frac{\Delta H}{k_B \cdot T}\right]$$

At low temperatures, the variable-range hopping conductivity is proportional to a Mott factor:

$$\sigma(T) \propto \exp\left[-\frac{1}{k_B \cdot T^{1/4}}\right] \quad \text{or} \quad \rho(T) \propto \exp\left[\frac{1}{k_B \cdot T^{1/4}}\right]$$
Conductivity in HDIM—E-Field Dependence of Hopping Conductivity

At low field, the conductivity is independent of E-field:

$$\rho_{\text{hop}}(T) \bigg|_{\text{low } E} \rightarrow \left[\frac{n(T) \cdot v \cdot a^2 \cdot e^2}{k_B \cdot T} \right]^{-1} \exp \left[\frac{\Delta H}{k_B \cdot T} \right]$$

At high field, the potential wells distort. Poole-Frenkle theory predicts:

$$\rho(E;T) = \rho_0(T) \exp \left[-\frac{\beta \cdot E^{0.5}}{k_B \cdot T} \right]$$
Diffusive and Dispersive Transport

\[\sigma(t) = \sigma_{DC} + \sigma_{Polarization}(t) + \sigma_{Diffusion}(t) + \sigma_{Dispersion}(t) + \sigma_{Transit}(t) + \sigma_{RIC}(t) \]

\[\sigma^0_{Disp} t^{-(1-\alpha)} + \sigma^0_{Transit} t^{-(1+\alpha)} \]

\[I(t) \sim \begin{cases} t^{-(1-\alpha)}, & t < t_T \\ t^{-(1+\alpha)}, & t > t_T \end{cases} \]

- Photoconductivity experiment on semiconductors by Pfister and Sherr
- Amorphous Selenium
- Dispersive transport causes unique shape in log-log graph
- Hopping and trapping mechanisms responsible for dispersive transport
- Dispersive transport results from wide range of hopping times, e.g. from range of ΔH and a
- ‘Universality’ a result of dispersive transport
- Note transit times in ms
Normal vs. Dispersive Transport

I/t Curves

Pulse Propagation

Theory

RIC and Defect Density of States
A Materials Physics Approach to the Problem

Measurements with many methods...

Interrelated through a...

Complete set of dynamic transport equations

\[J = q_e n_e(z,t) \mu_e F(z,t) + q_e D \frac{d n_{tot}(z,t)}{dz} \]

\[\frac{\partial}{\partial z} F(z,t) = q_e n_{tot} / \varepsilon_0 \varepsilon_r \]

\[\frac{d n_{tot}(z,t)}{dt} = \mu_e \frac{\partial}{\partial x} [n_e(z,t)F(x,t)] - q_e D \frac{\partial^2 n_e(x,t)}{\partial x^2} = N_x - \alpha_{ev} n_e(z,t) n_{tot}(x,t) - \alpha_{ev} n_e(z,t) n_h(z,t) \]

\[\frac{d n_h(z,t)}{dt} = N_{ex} - \alpha_{ev} n_e(z,t) n_h(z,t) \]

...written in terms of spatial and energy distribution of electron trap states
A Focus on Defect Densities

What is required is knowledge of:

- Defect (trap) spatial distribution (density)
- Defect energy distribution (DOS)
- Types of charge carriers (e.g., e\(^-\) or h\(^+\))
- Occupation of defect states by charge carriers
- Transition frequencies (lifetimes)
- Complete set of dynamic transport equations

\[
J = q_e n_e(z, t) \mu_e F(z, t) + q_e D \frac{dn_{tot}(z, t)}{dz}
\]

\[
\frac{\partial}{\partial z} F(z, t) = q_e n_{tot}/\varepsilon_0 \varepsilon_r
\]

\[
\frac{\partial n_{tot}(z, t)}{\partial t} - \mu_e \frac{\partial}{\partial z} [n_e(z, t)F(z, t)] - q_e D \frac{\partial^2 n_e(z, t)}{\partial z^2} = N_{ex} - \alpha_{er} n_e(z, t)n_{tot}(z, t) + \alpha_{et} n_e(t)[N_t(z) - n_t(z, t)]
\]

\[
\frac{dn_h(z, t)}{dt} = N_{ex} - \alpha_{er} n_e(z, t)n_h(z, t)
\]

\[
\frac{dn_t(z, \varepsilon, t)}{dt} = \alpha_{et} n_e(z, t)[N_t(z, \varepsilon) - n_t(z, \varepsilon, t)] - \alpha_{te} n_e \exp \left[-\frac{\varepsilon}{kT} \right] n_t(z, \varepsilon, t)
\]
Disorder introduces localized states in the gap

A quantum mechanical model of the spatial and energy distribution of the electron states

Tunneling Between Traps—and Mott Anderson Transitions

Anderson transition between extended Bloch states and localized states caused by variations in well depth affects tunneling between states.

Mott transition between extended Bloch states and localized states caused by variations in well spacing which affects tunneling between states.

Synergistic Models of Electron Emission and Transport Measurements of Disordered SiO$_2$

Look at measurements of fused quartz (a-SiO$_2$) from a synergistic microscopic, defect state perspective

used as coverglass, optical elements, and insulator
Putting the Pieces Together

Focus on DOS:

• *Synthesis of results* from different studies and techniques

• *Development of overarching theoretical models* allow extension of measurements made over limited ranges of environmental parameters to make predictions for broader ranges encountered in space.

<table>
<thead>
<tr>
<th>Band</th>
<th>Peak</th>
<th>Peak</th>
<th>FWHM</th>
<th>Defect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1.93±0.01 eV</td>
<td>663±3 nm</td>
<td>42 nm</td>
<td>NBOHC</td>
<td>[16,20,23]</td>
</tr>
<tr>
<td>Green</td>
<td>2.48±0.03</td>
<td>506±7</td>
<td>68</td>
<td>ODC</td>
<td>[17,23]</td>
</tr>
<tr>
<td>Blue</td>
<td>2.76±0.03</td>
<td>450±5</td>
<td>11</td>
<td>Surface</td>
<td>[18-20,23]</td>
</tr>
<tr>
<td>UV</td>
<td>4.97</td>
<td>275</td>
<td>50</td>
<td>ODC</td>
<td>[17-20,23]</td>
</tr>
</tbody>
</table>
Optical Band Gap—Disordered SiO_2

Optical Transmission Data:
- Direct band gap ~ 8.9 eV
- Additional steps in transmission in 1-4 eV range

$E_{\text{gap}} = 8.9$ eV
Conductivity vs Temperature

\[\sigma_{\text{hop}}(E, T) = \left[\frac{2 \cdot n(T) \cdot v \cdot a \cdot e}{E} \right] \exp \left[\frac{-\Delta H}{k_B \cdot T} \right] \sinh \left[\frac{\varepsilon \cdot E \cdot a}{2 \cdot k_B \cdot T} \right] \]

Yields:

Defect energy, \(E_d \) and
Trap density, \(N_T \)

\(E_{\text{d}} = 1.08 \text{ eV} \)

\(E_{\text{gap}} = 8.9 \text{ eV} \)
Conductivity Modes vs Time

\[\sigma(t) = \sigma_{DC} \left[1 + \frac{\sigma_{AC}(\nu)}{\sigma_{DC}} + \frac{\sigma_{\text{pol}}}{\sigma_{DC}} e^{\frac{t}{\tau_{\text{pol}}}} + \frac{\sigma_{\text{diffusion}}}{\sigma_{DC}} t^{-1} + \frac{\sigma_0}{\sigma_{DC}} t^{(1-\alpha)} + \frac{\sigma_0}{\sigma_{DC}} t^{(1+\alpha)} + \frac{\sigma_{\text{RIC}}}{\sigma_{DC}} \left(1 - e^{-\frac{t}{\tau_{\text{RIC}}}} \right) \left(1 + \frac{t - t_{\text{off}}}{t_{\text{on}}} \right)^{-1} \right] \]

- Dark current or drift conduction—Defect density, \(N_T \), and \(E_r \approx 1.08 \) eV
- Diffusion-like and dispersive conductivity—Energy width of trap distribution, \(\alpha \)
- Radiation induced conductivity—Shallow trap density and \(\varepsilon_{ST} \)
- Polarization—Rearrangement of bound charge, \(\varepsilon_r \), \(\varepsilon_0 \) and \(\tau_{\text{pol}} \)
- AC conduction—Dielectric response, \(\varepsilon_r (\nu) \varepsilon_0 \)
Surface Voltage Charging and Discharging

- Uses pulsed non-penetrating electron beam injection with no bias electrode injection.
- Fits to exclude AC, polarization, transit and RIC conduction.
- Yields N_p, E_d, α, ε_{ST}

Charging

$$\sigma(t) = \sigma_0 \left\{ 1 + \left[\frac{\sigma_0^{\text{diffusion}}}{\sigma_0} \right] t + \left[\frac{\sigma_0^{\text{dispersive}}}{\sigma_0} \right] t^{(1-\alpha)} \right\}$$

Discharge

$$V(t) = V_o \ e^{-t\sigma(t)/\varepsilon_0 \varepsilon_r}$$

$$\approx V_o \left[1 - \left(\frac{\sigma_0 t}{\varepsilon_0 \varepsilon_r} \right) \right] \left\{ 1 + \left[\frac{\sigma_0^{\text{diffusion}}}{\sigma_0} \right] t^{-1} + \left[\frac{\sigma_0^{\text{dispersive}}}{\sigma_0} \right] t^{-(1-\alpha)} \right\}$$
F_{ESD} Breakdown: Dual (Shallow and Deep) Defect Model

Yields:

Ratio of Defect energy to Trap density, \(\Delta G_{\text{def}} / N_T \)

Separate these with T dependence

\(\Delta G_{\text{def}} = 0.97 \text{ eV} \)
\(N_T = 1 \cdot 10^{17} \text{ cm}^{-3} \)

Breakdown field measurements:

\[
N_{\text{def}} \Delta G_{\text{def}} = \frac{\varepsilon_0 \varepsilon_r}{2} \cdot (F_{\text{ESD}})^2
\]

Endurance time measurements:

\[
t_{\text{en}}(F, T) = \left(\frac{h}{2 kbT} \right) \exp \left[\frac{\Delta G_{\text{def}}(F, T)}{kbT} \right] \text{csch} \left[\frac{F^2 \varepsilon_0 \varepsilon_r}{2 kbT N_{\text{def}}(F, T)} \right]
\]

F_{ESD}
- 20±2 MV/m at RT
- 27±2 MV/m at 157 K
- 19.0±0.6 MV/m at RT and 142 K (irradiated)

"Complete" Breakdown ~2-4X this field

Based on first breakdown
RIC T-Dependence

Shallow Trap DOS Profile
Exponential DOS Below E_c

Effective Fermi Level
$E_F^{\text{eff}} = 24$ meV

Uniform Trap Density

Exponential Trap Density

$$\sigma_{RIC}(T, D) = k_{RIC}(T) \cdot D^{\Delta(T)}$$

$\Delta(T) \to 1$

$\Delta(T) \to \frac{T_c}{T + T_c}$

$k(T) \to k_{RICo}$

$k(T) \to k_{RIC} \left[\frac{2 \left(\frac{m^*_e \kappa B T}{2 \pi \hbar^2} \right)^{3/2} \left(\frac{m^*_e m^*_h}{m_e m_h} \right)^{3/4}}{T + T_c} \right]^{T/2T_c}$
Complementary Responses to Radiation: RIC and CL

Modified Joblonski band diagram

- VB electrons excited into CB by the high energy incident electron radiation.
- They relax into shallow trap (ST) states, then thermalize into lower available long-lived ST.

- Four paths are possible:
 (i) Remain in (short lived) shallow traps
 (ii) Non-radiative transitions or e⁻-h⁺ recombination into VB holes;
 (iii) Radiation induced conductivity (RIC), with thermal re-excitation into the CB or;
 (iv) Relaxation to deep traps (DT), with concomitant photon emission.
Cathodoluminescence Emission Spectra

Photon Emission Spectra
Peak Wavelength

Multiple peaks in spectra correspond to multiple DOS distributions

Peak positions \(\leftrightarrow\) Center of DOS
Peak amplitude \(\leftrightarrow\) \(N_T\)
Peak width \(\leftrightarrow\) DOS width
Cathodoluminescence—Defect Origins for DOS’s

Based on peak positions for similar disordered SiO$_2$ samples at room temperature.

Sahl identified 1.98 eV peak as from nonbridging oxygen hole center.

Trukhin identified 2.48 eV and 4.51 eV peaks as from an oxygen deficient center.
Electron Emission Studies and DOS

Electron Yield Curves

Electron Emission Spectra

Surface Voltage Decay Curves
Putting the Pieces Together

Focus on DOS:

- **Synthesis of results** from different studies and techniques

- **Development of overarching theoretical models** allow extension of measurements made over limited ranges of environmental parameters to make predictions for broader ranges encountered in space.

<table>
<thead>
<tr>
<th>Band</th>
<th>Peak</th>
<th>Peak</th>
<th>FWHM</th>
<th>Defect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1.93±0.01 eV</td>
<td>663±3 nm</td>
<td>42 nm</td>
<td>NBOHC</td>
<td>[16,20,23]</td>
</tr>
<tr>
<td>Green</td>
<td>2.48±0.03</td>
<td>506±7 nm</td>
<td>68</td>
<td>ODC</td>
<td>[17,23]</td>
</tr>
<tr>
<td>Blue</td>
<td>2.76±0.03</td>
<td>450±5 nm</td>
<td>11</td>
<td>Surface</td>
<td>[18-20,23]</td>
</tr>
<tr>
<td>UV</td>
<td>4.97</td>
<td>275 nm</td>
<td>50</td>
<td>ODC</td>
<td>[17-20,23]</td>
</tr>
</tbody>
</table>
USU Materials Physics Group

(Back row Left to Right) Ben Russon, Heather Zollinger, Zack Gibson, Matthew Robertson, Jordan Lee, David King

(Front row Left to Right) Justin Christensen, Alexandra Hughlett, Alex Souvall, Greg Wilson, Allen Andersen, JR Dennison, Windy Olsen

(Not pictured) Brian Wood, Vladimir Zavyalov, Jodie Gillespie, Jonh Mojica Decena, Katie Gamaunt, Davis Muhwezi, Tyler Kippen

USU MPG Webpage

http://digitalcommons.usu.edu/mp/
J. R. Dennison received the B.S. degree in physics from Appalachian State University, Boone, NC, in 1980, and the M.S. and Ph.D. degrees in physics from Virginia Tech, Blacksburg, in 1983 and 1985, respectively. He was a Research Associate with the University of Missouri—Columbia before moving to Utah State University (USU), Logan, in 1988. He is currently a Professor of physics at USU, where he leads the Materials Physics Group. He has worked in the area of electron scattering for his entire career and has focused on the electron emission and conductivity of materials related to spacecraft charging for the last two decades.
USU Space Survivability Test Chamber

Radiation Sources:
A High Energy Electron Gun
A’ Low Energy Electron Gun
B UV/VIS/NIR Solar Simulator
C H/IV Kapton Discharge Lamps
D Air Mass Zero Filter Set
E Flux Mask
F Sr90 Radiation Source

Analysis Components:
F UV/VIS/NIR Reflectivity Spectrometers
G IR Emissivity Probe
H Integrating Sphere
I Photodiode UV/VIS/NIR Flux Monitor
J Fused Silica Electron Flux Monitor
K Platinum Resistance Temperature Probe

Sample Carousel
L Samples
M Rotating Sample Carousel
N Reflectivity/Emissivity Calib. Standards
O Resistance Heaters
P Cryogen Reservoir

Chamber Components
Q Cryogen Vacuum Feedthrough
R Electrical Vacuum Feedthrough
S Sample Rotational Vacuum Feedthrough
T Probe Translational Vacuum Feedthrough
U Sapphire UV/VIS Viewport
V MgF2 UV Viewport
W Turbomolecular/Mech. Vacuum Pump
X Ion Vacuum Pump
Y Ion/Convector Pressure Gauges
Z Residual Gas Analyzer

Chamber Components:
α CubeSat
β CubeSat Test Fixture
γ Radiation Shielding
Δ COTS Electronics
ε Rad Hard Breadboard
η COTS Test Fixture
θ Electron Gun

Instrumentation (Not Shown):
Data Acquisition System
Temperature Controller
Electron Gun Controller
UV/VIS/NIR Solar Simulator Controller
FLU Nr Resonance Lamp Controller
Spectrometers and Reflectivity Source

Utah NASA Space Grant Consortium Faculty Research Infrastructure Award Program, “Space Survivability Test Facility for CubeSats, Components and Spacecraft Materials,” JR Dennison, (April 2016 to April 2017.)
Simulated Space Environment Fluxes

Electron Radiation
A high energy (~10-80 keV) and three lower energy (~10 eV to 5 keV) electron guns provide high electron fluxes.

Ionizing Radiation
A 100 mCi encapsulated Sr90 β-radiation source (~200 keV to >2.5 MeV) mimics high energy (~500 keV to 2.5 MeV) geostationary electron flux [2].

Infrared/Visible/Ultraviolet Flux
A commercial Class AAA solar simulator provides NIR/Vis/UVA/UVB electromagnetic radiation (from 200 nm to 1700 nm) at up to 4 times sun equivalent intensity.

Far Ultraviolet Flux
Kr resonance lamps provide FUV radiation flux (ranging from 10 to 200 nm) at 4X sun equivalent intensity. Kr bulbs have ~3 month lifetimes for long duration studies.

Temperature Control
Temperature range from 60 K [4] to 450 K is maintained to ±2 K [3]. This is achieved through cartridge heaters, and chilled fluid pumped through a cold plate.

Controlled Atmosphere and Vacuum
Ultrahigh vacuum chamber allows for pressures <10$^{-7}$ Pa to simulate LEO.

Video Discharge Monitoring
Using custom developed software, live video capture and processing of electrostatic discharge events allows for visual identification of discharge location and frequency.

Flexible Sample Mounting
A rotating graphite carousel, ensures uniform irradiation and allows for custom mounting of samples. Or a flange mounted fixture allows for electrostatic discharge testing. Radiation source to sample distance is adjustable.

Biological Testing
Biological samples, which are vacuum incompatible, can use a custom designed chamber with controlled atmosphere and temperature.