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ABSTRACT

IANOVA: Multi-Sample Means Comparisons for Imprecise Interval Data

by

Zac Rios, Master of Science

Utah State University, 2024

Major Professor: Yan Sun, Ph.D.
Department: Mathematics and Statistics

In recent years, interval data has become an increasingly popular tool to solve modern data

problems. Intervals are now often used for dimensionality reduction, data aggregation, privacy

censorship, and quantifying awareness of various uncertainties. Among many statistical methods that

are being studied and developed for interval data, the significance test is particularly of importance

due to its fundamental value both in theory and practice. The difficulty in developing such tests

mainly lies in the fact that the concept of normality does not extend naturally to interval data,

causing the exact tests to be hard to formulate. As a result, most existing works have relied on

bootstrap methods to approximate null distributions. However, this is not always feasible given

limited sample sizes or other intrinsic characteristics of the data. Asymptotic tests, on the other

hand, are good alternatives. In the literature, asymptotic tests for comparing means of one or two

sample data have been developed, which motivates the exploration of the multi-sample case. In this

thesis, we propose a novel asymptotic method for comparing multi-sample means with interval data

which turns out to be analogous to classical ANOVA. This procedure builds a test statistic based

on a ratio of between-group interval variance and within-group interval variance. We derive the

limiting distribution of this test-statistic under usual assumptions and mild regularity conditions.
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Simulation results with both discrete and continuous data further validate this result, and show

promising small sample performances. Finally, we apply our method to ground snow load interval

data, where we are able to detect interval mean differences across regions in Canada.

(55 pages)
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PUBLIC ABSTRACT

IANOVA: Multi-Sample Means Comparisons for Imprecise Interval Data

Zac Rios

In recent years, interval data has become an increasingly popular tool to solve modern data

problems. Intervals are now often used for dimensionality reduction, data aggregation, privacy

censorship, and quantifying awareness of various uncertainties. Among many statistical methods that

are being studied and developed for interval data, the significance test is particularly of importance

due to its fundamental value both in theory and practice. The difficulty in developing such tests

mainly lies in the fact that the concept of normality does not extend naturally to interval data

(due the range of an interval being necessarily non-negative), causing the exact tests to be hard

to formulate. In the literature, tests for comparing means of one or two sample interval data

have been developed, which motivates the exploration of the multi-sample case. In this thesis, we

propose a novel asymptotic (as the sample size goes to infinity) method for comparing multi-sample

means with interval data. This procedure builds a test statistic based on a ratio of between-group

interval variance and within-group interval variance. The theoretical results for this procedure are

derived. Simulation results with both discrete and continuous data validate our procedure, and show

promising small sample performances. Finally, we apply our method to ground snow load interval

data, where we are able to detect interval mean differences across regions in Canada.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1

Introduction

Interval-valued data has become increasingly popular over the past decades, owing

largely to its ability to help with modern data problems. These problems range from a need for data

aggregation or dimension reduction, to a greater awareness about uncertainty from various resources,

to necessary censoring of private information. Interval-valued data are commonly represented by

the associated lower and upper bounds, or centers and ranges alternatively, as opposed to single

numbers. This thesis aims to extend classical ANOVA tests for multi-sample means comparisons to

interval-valued data.The proposed tests are expected to provide meaningful inferences regarding the

means that aligns well with the nature of interval-valued data.

The probabilistic foundation for set-valued data analysis (with interval-valued data being a

special case) has been well-established for many years [1]. Many important properties of random

sets, such as mean, variance and covariance, have been rigorously studied [2]. These results paved

the way for many classical statistical methods to be extended to the domain of random sets. In the

past decades, numerous models and methods have been proposed for interval-valued data analysis,

often extensions of linear regression [3, 4, 5], but other methods like checking dependency [6, 7] and

kriging [8, 9] have been extended to the interval-valued case. This thesis particularly concerns the

testing of multiple interval-valued means.

Analogues to certain statistical tests for interval-valued data have already been developed.

In particular, analogues to one and two-sample t-tests were developed in Sun [10], where distance

metrics on random intervals were used to derive a closed form for comparing means of one and two

groups of intervals. There have also been fruitful results in the literature on the comparisons of multi-

sample means for intervals, typically done in the more abstract framework of fuzzy random sets. In

Montenegro et. al [11], hypothesis tests were constructed for normal fuzzy random variables, using
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both asymptotic and bootstrap methods. The theoretical results have thus far been fairly limited,

with most real problems relying on bootstrapping. In Gil et. al [12], a direct analog to ANOVA

was suggested using the same kind of ”between-group variance” and ”within group variance” as in

classical ANOVA. This paper utilized bootstrapping on simulated fuzzy random data, constructing

a limiting distribution from the data and finding those associated test statistics. In Colubi [13],

the authors worked specifically with intervals, due to their prevelance in real data. This paper also

used bootstrap methods, but worked with only the one sample case. This thesis focuses on random

intervals and constructs the ANOVA test by deriving the asymptotic null distribution, which allows

for direct inference on the observed data. This is particularly useful for small sample designs, where

bootstrapping may not be feasible.

To develop the test statistics and the associated null distribution, an essential task is to define

an appropriate distance for intervals. Several distance functions have been studied in the literature

for random sets (with random intervals being the one-dimensional special case) including the Haus-

dorff distance. Recent advances in the random sets theory shows that the L2 type distances derived

from embedding the space of compact convex sets KC(Rd) into the Banach space of continuous func-

tions is more preferred for statistical inferences (see Section 1.2 for details). As such, our ANOVA

test statistic is developed based on a generalized L2 metric in KC(R), referred to as the W-distance.

It has an analogous form to the standard ANOVA test statistic that follows an F distribution under

the null hypothesis with normal assumptions. For our test statistic, under mild assumptions, we

show that the asymptotic null distribution is represented as a linear combination of chi-squared

random variables with a certain correlation structure.This result is further validated by a system-

atic simulation that considers a wide range of distributions for (both the center and range of) the

intervals. Through simulation, we are also able to evaluate its small sample performance, which

becomes fairly accurate for group sizes of as small as 8. Finally, our real data results show similar

promise. We utilize a data set with intervals containing the maximum ground ratio (ratio between

maximal roof snow load and maximal ground snow load), and minimum ground ratio (ratio between

minimal roof snow load and maximal ground snow load). We use this snow load ground ratio (GR)

interval data to analyze the potential differences in GR between regions of Canada. For meaningful

partitions of the data, we are able to show a significant effect for the eco-region of the observation

on the GR interval. This interval analysis is compared to a classical ANOVA on this data, and

the benefits/drawbacks of each approach are discussed. In particular, the ability of interval-valued

ANOVA to detect different kinds of results shows merit in this analysis. These results provide jus-

tification for further investigation into the regional factors affecting GR, which have thus far been
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only sparingly considered.

The rest of the paper is organized as follows. Section 1.2 gives a brief review of the basics

of random sets theory. Section 2.1 extends the sums of squares decomposition result commonly

used in ANOVA to the interval-valued context, which is an important basis for developing a testing

procedure. This is followed by Section 2.2, which formulates the test under a standard hypothesis

testing framework, i.e. assumptions, hypotheses, statistics. Section 3.1 summarizes our simulation

results. Section 3.2 utilizes the proposed method to analyze a real data set, which builds on a

previously established result [9] to compare interval GR snow loads across different regions of Canada.

Finally, Section 4 makes a few final notes on a similar method (MANOVA) and briefly discusses

particularly relevant ideas for future research in interval data analysis.

1.2

Random Sets Preliminaries

Let K
(
Rd

)
or K denote the collection of all non-empty compact subsets of Rd. The Hausdorff

metric

ρH (A,B) = max

(
sup
a∈A

ρ (a, B) , sup
b∈B

ρ (b,A)

)
, ∀A,B ∈ K,

where ρ denotes the Euclidean metric, defines a metric in K
(
Rd

)
. K

(
Rd

)
is complete and separable

[14] as a metric space. In the space K, Minkowski addition and scalar multiplication can define a

linear structure:

A+ B = {a+ b : a ∈ A, b ∈ B} , λA = {λa : a ∈ A} , (1.1)

∀A,B ∈ K and λ ∈ R. K
(
Rd

)
, however, is neither a linear space or a vector space, as there is no

inverse element of addition.

Consider a probability space given by (Ω,L, P). A random compact set is a Borel measurable

function A : Ω → K, K being equipped with the Borel σ-algebra induced by the Hausdorff metric.

If A(ω) is convex almost surely, then A is called a random compact convex set [15]. Denote the

collection of all compact convex subsets of Rd as KC
(
Rd

)
or KC . Historically, random sets theory

has often focused on compact convex sets [16, 17, 18, 19]. When d = 1, KC(R) contains all the

non-empty bounded closed intervals in R. A Borel measurable function [X] : Ω → KC (R) is called

a random interval. The expectation of a random compact convex random set A is defined by the
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Aumann integral of set-valued function [17, 16] as

E (A) = {Eξ : ξ ∈ A almost surely} .

In the interval case, the Aumann expectation of [X] is given by

E ([X]) = [E
(
XL

)
, E

(
XU

)
]. (1.2)

For each X ∈ KC
(
Rd

)
, the function defined on the unit sphere Sd−1:

sX (u) = sup
x∈X

⟨u, x⟩ , ∀u ∈ Sd−1

is called the support function of X. Let S be the space of support functions of all non-empty compact

convex subsets in KC . Then, S is a Banach space equipped with the L2 metric

∥sX(u)∥2 =

[∫
Sd−1

|sX(u)|
2µ (du)

] 1
2

,

where µ is the normalized Lebesgue measure on Sd−1. Various embedding theorems [20, 21] show

that KC can be embedded isometrically into the Banach space C(S) of continuous functions on Sd−1,

and S is the image of KC into C(S). Therefore, ρ2 (X, Y) := ∥sX − sY∥2, ∀X, Y ∈ KC , defines an L2

metric on KC . ρH and ρ2 are known to be equivalent metrics, but ρH is less preferred for statistical

analysis for several reasons. Of note, Eρ2H (X, h(X)) is not minimized at h(X) = E(X). Particularly

the ρ2-metric for an interval [x] ∈ KC(R) is

∥[x]∥2 = ∥s[x](u)∥2 =
1

2

(
xL

)2
+

1

2

(
xU

)2
=

(
xC

)2
+
(
xR

)2
,

and the ρ2-distance between two intervals [x], [y] ∈ KC(R) is

ρ2 ([x], [y]) =

[
1

2

(
xL − yL

)2
+

1

2

(
xU − yU

)2] 1
2

=
[(
xC − yC

)2
+
(
xR − yR

)2] 1
2

.
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The ρ2-distance can be generalized to the ρW-distance [22] as

ρW ([x], [y]) =

{∫
[0,1]

[
f[x](λ) − f[y](λ)

]2
dW(λ)

} 1
2

, (1.3)

where f[x](λ) = λxU + (1 − λ)xL, ∀λ ∈ [0, 1], and W is some non-degenerate symmetric measure on

[0, 1]. The ρW-distance has an advantage over ρ2 with its flexibility to assign weights to the points

in the interval. In particular, this can be interpreted as a probability distribution for a random point

inside the interval. On the other hand, it can be shown that

ρ2W ([x], [y]) =
(
xC − yC

)2
+
(
xR − yR

)2 ∫
[0,1]

(2λ− 1)
2
dW(λ).

Notice that ω =
∫
[0,1]

(2λ− 1)
2
dW(λ) ∈ [0, 1] is a constant determined by W. Thus, the ρW-

distance can also be interpreted as choosing a weight for
(
XR − YR

)2
in calculating the L2 distance.
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CHAPTER 2

SUM OF SQUARES AND TEST FORMULATION

2.1

Sum of Squares for Intervals

Throughout this thesis, I will denote by [x] = [xL, xU] a bounded closed interval, where xL and

xU are the associated lower and upper bounds, respectively. Alternatively, [x] can also be represented

by its center and radius (half-range), denoted by xC and xR, respectively. Capital letters denote

random elements, so a random interval which takes values in KC(R) is denoted by [X]. Bolded

letters denote vectors. For example, [x] = [[x1], · · · , [xp]]T denotes a p-dimensional hyper interval.

Additionally, the ith group mean and overall means for both the center and radius will be denoted

by x̄i· and x̄··, respectively. The jth individual observation for the ith group is denoted xij.

We would like to show that an error decomposition similar to that of ANOVA can be reason-

ably applied to interval data. Consider defining the error using the w-distance for a given interval

as follows:

(xCij − x̄C·· )
2 +ω(xRij − x̄R··)

2 (2.1)

This lends itself well to a similar formulation for sum of squares total, as seen in classical ANOVA

SST =

k∑
i=1

ni∑
j=1

(xCij − x̄C·· )
2 +ω(xRij − x̄R··)

2 (2.2)

=

k∑
i=1

ni∑
j=1

(xCij − x̄C·· )
2 +

k∑
i=1

ni∑
j=1

ω(xRij − x̄R··)
2

We want to show that this total error can be similarly decomposed into orthogonal components

associated with treatment/error effects. For ease of formulation, the following two terms are further
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defined:

SSTC =

k∑
i=1

ni∑
j=1

(xCij − x̄C·· )
2

SSTR =

k∑
i=1

ni∑
j=1

ω(xRij − x̄R··)
2

SST = SSTC + SSTR (2.3)

Taking a look at SSTC first:

SSTC =

k∑
i=1

ni∑
j=1

(xCij − x̄C·· )
2

=

k∑
i=1

ni∑
j=1

[(xCij − x̄Ci·) + (x̄Ci· − x̄C·· )]
2

=

k∑
i=1

ni∑
j=1

[(xCij − x̄Ci·)
2 + 2(xCij − x̄Ci·)(x̄

C
i· − x̄C·· ) + (x̄Ci· − x̄C·· )

2]

We are most interested in the middle term here, which can be rewritten after distributing the sum

through as follows:

k∑
i=1

ni∑
j=1

2(xCij − x̄Ci·)(x̄
C
i· − x̄C·· ) = 2

k∑
i=1

(x̄Ci· − x̄C·· )

ni∑
j=1

(xCij − x̄Ci·)

The inner summation is 0, since it calculate the sum of the deviations from the group mean:

ni∑
j=1

(xCij − x̄Ci·) = 0

This implies that the entire middle term is also 0, leaving us with:

SSTC =

k∑
i=1

ni∑
j=1

[(xCij − x̄Ci·)
2 + (x̄Ci· − x̄C·· )

2]

=

k∑
i=1

ni∑
j=1

(xCij − x̄Ci·)
2 +

k∑
i=1

ni(x̄
C
i· − x̄C·· )

2

This form of the equation decomposes all of the error we see with regard to the center of the interval

into a treatment component and a random error component. Staying consistent with notation, we
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could say that:

SSTC = SSEC + SSTrC (2.4)

The process for the ”range” error component is similar, and shown quickly below:

SSTR =

k∑
i=1

ni∑
j=1

ω(xRij − x̄R··)
2

= ω

k∑
i=1

ni∑
j=1

(xRij − x̄Ri·)
2 +ω

k∑
i=1

ni(x̄
R
i· − x̄R··)

2

SSTR = ωSSER +ωSSTrR (2.5)

Finally, we can show that:

SST =

k∑
i=1

ni∑
j=1

(xCij − x̄C·· )
2 +ω(xRij − x̄R··)

2

=

k∑
i=1

ni∑
j=1

(xCij − x̄C·· )
2 +

k∑
i=1

ni∑
j=1

ω(xRij − x̄R··)
2

= SSTC + SSTR

SST = SSEC + SSTrC +ωSSER +ωSSTrR (2.6)

Thus completes the error decomposition for interval valued data, using the w-distance. This provides

solid justification to approach IANOVA similarly to classical ANOVA.

2.2

Test Formulation

2.2.1

Assumptions

Our assumptions are consistent with those of point valued ANOVA, with two notable excep-

tions. The assumptions are, namely:

• All observations are independent of one another

• Equal variances for both the center and radius in each group

• Equal correlation between the center and radius in each group
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Our first two assumptions are functionally the same as ANOVA, with a natural extension to interval-

valued data. If the observations are not independent of each other, we are naturally unable to

distinguish between error, dependence, and treatment effect. Our intervals must also have equal

variances across groups. This is necessary to have a manageable limiting distribution for our test

statistic under the null hypothesis. While this assumption does not provide a convenient cancellation

as in standard ANOVA, it allows us to meaningfully analyze the convergence of our test statistic.

Our final assumption is similarly important for our limiting distribution. An equal correlation across

groups lets us preserve the relationship between our chi-square random variables, and simplify our

final form. Without the previous two assumptions, we run into the problem of having far too

many parameters, and an intractable limiting distribution. Of note, the common assumption of

normality in ANOVA is missing from our list. It is not reasonable to assume normality for the

interval-valued case, as the radius is necessarily not normal by definition. This is also the purpose

of constructing a limiting distribution, rather than an exact one. The structure of intervals lends

itself better to utilizing the central limit theorem, rather than assuming an exact distribution. With

these assumptions in mind, we are able to construct hypotheses for our test.

2.2.2

Hypotheses

Assuming observing g independent samples of i.i.d. random intervals:

[Xij] = [XL
ij, X

U
ij] = [XC

ij − XR
ij, X

C
ij + XR

ij],

i = 1, · · · , g,

j = 1, · · · , ni,

where ni is the size of the ith sample and
∑g

i=1 ni = N. The interval-valued observations within

each sample are assumed to be independent from an underlying distribution with a unique mean

and common variance-covariance. It can be conveniently described by the joint distribution of the

center and radius as, ∀i:

XC
ij

XR
ij

 i.i.d.
∼ F


µC

i

µR
i

 , Σ =

 σ2
C σCR

σCR σ2
R


 , j = 1, · · · , ni, (2.7)
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where µC
i , σCR ∈ R, µR

i , σ
2
C, σ

2
R > 0. It follows that the population mean for the ith group is

E ([Xij]) = [µC
i − µR

i , µ
C
i + µR

i ] := [µi].

Our null hypothesis is that the group means are uniformly the same, which is stated as

H0 : [µ1] = [µ2] = · · · = [µg]. (2.8)

The corresponding alternative hypothesis is

HA : [µi] ̸= [µj] for some i, j. (2.9)

2.2.3

Test Statistic

Our test statistic will compare quantities similar to how ANOVA does.

F =
MSTr

MSE
=

SSTr/df1

SSE/df2
=

(SSTrC + SSTrR)/df1
(SSEC + SSER)/df2

=

∑g
i=1 nidw(X̄i·, X̄··)

2/(g− 1)∑g
i=1

∑n
j=1 dw(Xij, X̄i)2/(N− g)

=

∑g
i=1 ni((X̄

C
i· − X̄C

·· )
2 +ω(X̄R

i· − X̄R
··)

2)/(g− 1)∑g
i=1

∑n
j=1(X

C
ij − X̄C

i·)
2 +ω(XR

ij − X̄R
i·)

2(N− g)

Intuitively, this compares how different the averages of our groups are to the average of our entire

sample, over how different individual intervals are from their group average. Large values of our

test statistic imply that most of our variance is attributed to how different groups are from other

groups, while small values imply that most of our variance is attributed to how different our groups

are within themselves. We will first show the weak convergence of the numerator in Theorem 2.2.1,

then the convergence in probability of the denominator in Theorem 2.2.2.

Proofs of Convergence

Theorem 2.2.1. Assume the interval-valued ANOVA model (2.7). Under the null hypothesis (2.8),

the numerator of our test statistic converges in distribution to a weighted sum of correlated chi-
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squared random variables:

g∑
i=1

ni

[
(X̄C

i· − X̄C
·· )

2 +ω(X̄R
i· − X̄R

··)
2
] D−→ σ2

Cχ
2
C(g− 1) +ωσ2

Rχ
2
R(g− 1). (2.10)

Proof. Denote

SC =

g∑
i=1

ni

(
X̄C
i· − X̄C

··
)2

, SR =

g∑
i=1

ni

(
X̄R
i· − X̄R

··
)2

. (2.11)

Consider separately the two statistics:

WC =

g∑
i=1

ni

(
X̄C
i· − µC

i

)2
, WR =

g∑
i=1

ni

(
X̄R
i· − µR

i

)2
. (2.12)

Under the null hypothesis, we have

WC =

g∑
i=1

ni

(
X̄C
i· − X̄C

·· + X̄C
·· − µC

i

)2
=

g∑
i=1

ni

[(
X̄C
i· − X̄C

··
)2

+
(
X̄C
·· − µC

i

)2
+ 2

(
X̄C
i· − X̄C

··
) (

X̄·· − µC
i

)]
=

g∑
i=1

ni

(
X̄C
i· − X̄C

··
)2

+

g∑
i=1

ni

(
X̄C
·· − µC

)2
+ 2

(
X̄·· − µC

) g∑
i=1

ni

(
X̄C
i· − X̄C

··
)

= SC +N
(
X̄C
·· − µC

)2
,

Since the cross-term is 0. Similarly,

WR = SR +N
(
X̄R
·· − µR

)2
.

Thus, we obtain

WC +ωWR =
(
SC +ωSR

)
+N

[(
X̄C
·· − µC

)2
+ω

(
X̄R
·· − µR

)2]
. (2.13)

Now, under the null hypothesis that µC
i ≡ µC, µR

i ≡ µR, i = 1, 2, . . . , g, we have

√
N

X̄C
·· − µC

X̄R
·· − µR

 =
1√
N

g∑
i=1

ni∑
j=1

XC
ij − µC

XR
ij − µR

 D→ N (0, Σ) , as N → ∞
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By the continuous mapping theorem:

N
[(
X̄C
·· − µC

)2
+ω

(
X̄R
·· − µR

)2] D→ Z2
0,C +ωZ2

0,R ∼ σ2
Cχ

2
C(1) +ωσ2

Rχ
2
R(1),

where [Z0,CZ0,R]
T ∼ N(0, Σ), and χ2

C(1) and χ2
R(1) are correlated chi-squared distributions with one

degree of freedom.

Then, define the 2g-dimensional statistic: i = 1, 2, . . . , g, we have

w =



√
n1(X̄

C
1· − µC

1 )

√
n1(X̄

R
1· − µR

1 )

...

√
ng(X̄

C
g· − µC

g )

√
ng(X̄

R
g· − µR

g)


Assume W.L.O.G., we notice ∀i,

w2i−1 =
√
ni(X̄

C
i· − µC

i )

=
√
ni

∑ni

j=1(X
C
ij − µC

i )

ni
=

1
√
ni

ni∑
j=1

(XC
ij − µC

i )

=
√
n1/ni

1
√
n1

n1∑
j=1

(XC
ij − µC

i ) +
1

√
ni

ni∑
j=n1+1

(XC
ij − µC

i )

and similarly,

w2i =
√
ni(X̄

R
i· − µR

i ) =
√

n1/ni
1

√
n1

n1∑
j=1

(XR
ij − µR

i ) +
1

√
ni

ni∑
j=n1+1

(XR
ij − µR

i )
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Thus, we have

w = diag{



1

1√
n1/n2√
n1/n2

...√
n1/ng√
n1/ng



} · 1
√
n1

n1∑
j=1



XC
1j − µC

1

XR
1j − µR

1

XC
2j − µC

2

XR
2j − µR

2

...

XC
gj − µC

g

XR
gj − µR

g



+



0

0

1√
n2

∑n2

j=n1+1(X
C
2j − µC

2 )

1√
n2

∑n2

j=n1+1(X
R
2j − µR

2 )

...

1√
ng

∑ng

j=n1+1(X
C
gj − µC

g )

1√
ng

∑ng

j=n1+1(X
R
gj − µR

g)


:= I · II+ III

By the multivariate CLT,

II
D→ N(0, Σw),

where

Σw =



Σ

Σ

. . .

Σ


is the 2g-dimensional block diagonal matrix. Additionally, by the assumption that ni/n1 → 1, i =

1, . . . , g, I → I2g and III
P→ 0. Therefore,

w
D→ N(0, Σw), as ni → ∞, i = 1, . . . , g

Then, by the continuous mapping theorem, we obtain

Wc +ωWR =

g∑
i=1

ni(X̄
C
i· − µC

i ) +ω

g∑
i=1

ni(X̄
R
i· − µR

i )

D→ g∑
i=1

Z2
i,C +ω

g∑
i=1

Z2
i,R, as ni → ∞, i = 1, . . . , g

where [Zi,C, Zi,R]
T ∼ N(0, Σ). It follows immediately that

Wc +ωWR D→ σ2
Cχ

2
C(g) +ωσ2

Rχ
2
R(g), as ni → ∞, i = 1, . . . , g
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Now, notice that under the null hypothesis

√
N(X̄C

·· − µC) = (
1√
N
)

g∑
i=1

ni(X̄
C
i· − µC)

= (
1√
N
)

g∑
i=1

ni(X̄
C
i· − µC

i )

=

√
n

N

g∑
i=1

ni(X̄
C
i· − µC

i )

√
ni

n

=

√
1

g

g∑
i=1

ni(X̄
C
i· − µC

i )

√
ni

n

and similarly,

√
N(X̄R

·· − µR) =

√
1

g

g∑
i=1

ni(X̄
R
i· − µR

i )

√
ni

n

where n =
∑g

i=1
ni

g
denotes the average sample size across groups. This shows that

√
N[X̄C

·· − µC, X̄R
·· − µR]T

converges jointly with w assuming ni’s tend to infinity at the same rate. It follows by the continuous

mapping theorem that

SC +ωSR = WC +ωWR −N[(X̄C
·· − µC) +ω(X̄R

·· − µR)] (2.14)

converges.

The last step is to show that [SC, SR] and [X̄C
·· , X̄

R
·· ] are asymptotically independent. Notice obviously

that

X̄C
i· − X̄C

·· , X̄R
i· − X̄R

·· , X̄C
·· , X̄R

··

are all asymptotically normal. It is therefore sufficient to show that ∀i = 1, . . . , g:

Cov(X̄C
i· − X̄C

·· , X̄
C
·· ) = Cov(X̄C

i· − X̄C
·· , X̄

R
··)

= Cov(X̄R
i· − X̄R

·· , X̄
C
·· ) = Cov(X̄R

i· − X̄R
·· , X̄

R
··) = 0
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The first covariance is computed to be

Cov(X̄C
i· − X̄C

·· , X̄
C
·· ) = Cov(X̄C

i· , X̄
C
·· ) − Var(X̄C

·· )

= Cov(

∑ni

j=1 X
C
ij

ni
,

∑g
k=1

∑ni

l=1 X
C
kl

N
) −

σ2
C

N

=
1

niN

ni∑
j=1

g∑
k=1

ni∑
l=1

Cov(XC
ij, X

C
kl) −

σ2
C

N

=
1

niN

ni∑
j=1

Cov(XC
ij, X

C
ij) −

σ2
C

N

=
niσ

2
C

niN
−

σ2
C

N

= 0

where we have assumed k = i, l = j from the third to the fourth line. Similarly

Cov(X̄R
i· − X̄R

·· , X̄
R
··) =

σ2
R

N
−

σ2
R

N
= 0

Cov(X̄C
i· − X̄C

·· , X̄
R
··) = Cov(X̄R

i· − X̄R
·· , X̄

C
·· ) =

σCR

N
−

σCR

N
= 0

Thus, [SC, SR] as a function of X̄C
i· − X̄C

·· and X̄R
i· − X̄R

·· , i = 1, . . . , g must be independent of [X̄C
·· , X̄

R
·· ]

asymptotically. By the uniqueness of the limit, we must have

SC +ωSR
D→ σ2

Cχ
2
C(g− 1) +ωσ2

Rχ
2
R(g− 1). (2.15)

as ni → ∞, i = 1, . . . , g. This completes the proof.

Theorem 2.2.2. Under the null hypothesis, the denominator of our test statistic converges in

probability to a linear combination of the population variances for the range and center.

1

N− g

g∑
i=1

ni∑
j=1

(XC
ij − X̄C

i·)
2 +ω

1

N− g

g∑
i=1

ni∑
j=1

(XR
ij − X̄R

i·)
2 P−→ σ2

C +ωσ2
R. (2.16)

Proof. Consider the denominator of our test statistic:

1

N− g
(

g∑
i=1

ni∑
j=1

(XC
ij − X̄C

i·)
2 +ω

g∑
i=1

ni∑
j=1

(XR
ij − X̄R

i·)
2) (2.17)
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First, we’ll distribute the 1
N−g

. Worth noting is that N =
∑g

i=1 ni

1

N− g

g∑
i=1

ni∑
j=1

(XC
ij − X̄C

i·)
2 +ω

1

N

g∑
i=1

ni∑
j=1

(XR
ij − X̄R

i·)
2

The two relevant assumptions for convergence are

• Equal variances between the groups (common assumption of ANOVA)

• Under the null hypothesis, all groups have the same mean center and radii

With these assumptions, and using the law of large numbers, each X̄i· converges in probability to

the same mean µ. This holds for both the center term and the radius term. We’ll work with just

the center term to demonstrate briefly. Working with what is inside the summation:

(XC
ij − µC + (µC − X̄C

i·))
2 = (XC

ij − µC)2 + 2(XC
ij − µ) · (µC − X̄C

i·) + (µC − X̄C
i·)

2

After distributing the j summation through, and doing some algebra we get:

(XC
ij − µC + (µC − X̄C

i·))
2 = (XC

ij − µC)2 + 2(XC
ij − µ) · (µC − X̄C

i·) + (µC − X̄C
i·)

2

1

N− g

g∑
i=1

n∑
g=1

(XC
ij − µC)2 − (X̄C

i· − µC)2

For the second term, the limit as n goes to infinity of Xi is µ, so that term goes to 0. The first term

is the definition of variance for Xij, which is identical for all i (equal variance assumption). More

explicitly, we can rewrite and simplify our form as follows:

1

N− g

g∑
i=1

ni∑
j=1

(XC
ij − µC)2 =

1∑g
i=1 ni − 1

g∑
i=1

ni∑
j=1

(XC
ij − µC)2

P−→ σ2
C (2.18)

A process that is essentially identical is used on the radius term, with the only exception being

making sure that ω is factored out. Given these proofs, we have:

1

N− g

g∑
i=1

n∑
j=1

(XC
ij − X̄i

C)2
P−→ σ2

C

1

N− g
ω

g∑
i=1

n∑
j=1

(XR
ij − X̄i

R)2
P−→ ωσ2

R
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Now an application of Slutsky’s theorem shows that:

1

N− g

g∑
i=1

n∑
j=1

(XC
ij − X̄C

i·)
2 +ω

1

N− g

g∑
i=1

n∑
j=1

(XR
ij − X̄R

i·)
2 P−→ σ2

C +ωσ2
R (2.19)

Hence the denominator, under certain conditions, converges to a linear combination of the population

variances for the range and center.

Final Results and Closed Form

With the convergence of both the numerator and the denominator, a straightforward appli-

cation of Slutsky’s theorem shows that:

∑g
i=1(ni((X̄

C
i· − X̄C

·· )
2 +ω(X̄R

i· − X̄R
··)

2))/(g− 1)∑g
i=1

∑n
j=1(X

C
ij − X̄C

i·)
2 +ω(XR

ij − X̄R
i·)

2/(N− g)

D−→ σ2
Cχ

2
C(g− 1) +ωσ2

Rχ
2
R(g− 1)/(g− 1)

σ2
C +ωσ2

R

or equivalently

∑g
i=1(ni((X̄

C
i· − X̄C

·· )
2 +ω(X̄R

i· − X̄R
··)

2))/(g− 1)∑g
i=1

∑n
j=1(X

C
ij − X̄C

·· )
2 +ω(XR

ij − X̄R
··)

2/(N− g)

D−→ ∑g−1
i=1 σ2

Cχ
2
C(1) +ωσ2

Rχ
2
R(1)/(g− 1)

σ2
C +ωσ2

R

This is the limiting distribution that we will use for our hypothesis tests. Of note, there are other

asymptotically equivalent choices for degrees of freedom, but the classical ANOVA choices avoid

bias and naturally improve small sample performance. Additionally, each interval is still considered

an independent piece of information. We lose 1 piece of information to calculate the grand interval

mean, and g pieces of information to calculate each groups interval mean, further justifying the use

of the same degrees of freedom from classical ANOVA. This distribution is fundamentally just a

linear combination of correlated chi-square distributions. χ2
C and χ2

R have correlation ρ2, where ρ is

the correlation between X̄C
i· − X̄C

·· and X̄R
i· − X̄R

·· (Theorem 4.0.1). The derivation of a closed form for

this kind of distribution has been done before [23], using the gamma and hypergeometric functions.

Due to the complicated nature of this closed form, we will instead simulate this distribution, and

further validate our theoretical results with various simulated examples.
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CHAPTER 3

SIMULATION AND REAL DATA

3.1

Simulation

To strengthen our theoretical results, we’ve also simulated data-sets and their theoretical

limiting null distributions. The simulated distributions below are constructed using 10000 simulated

data sets. From left to right, the approximate individual group size is increased to show how the

simulated distribution tends to its limiting distribution. The limiting distribution is constructed

using 100000 samples and overlaid onto the graphs in dark red.

3.1.1

Normal Data

Our first simulation is the simplest, where we use interval data that is simulated with a

normally distributed center and range (3 groups). Explicitly, the center is distributed N(50, 10),

while the radius is distributed N(20, 2). There is a weak positive correlation between the center and

range in our simulation (ρ = 0.2), and we will use an omega parameter of 1, essentially weighting the

center and radius term the same. The distribution for the numerator of our test-statistic is shown

first.
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Figure 3.1: Normal Numerator

The distribution of our numerator is essentially identical to it’s limiting distribution even for

smaller individual group sizes. This behavior is in line with our expectation, as the pieces of our

numerator are precisely normal regardless of sample size. A table for the results of the denominator

is shown below.

ni ≈ 3 8 15 30 ∞
Denominator Average 11.993 11.975 11.954 11.993 12
Denominator Standard Deviation 5.492 3.161 2.278 1.495 0

Table 3.1: Denominator Values - Normal

Here, we see the behavior of our denominator as N grows larger. We get less and less variance

in our simulations. This is again in line with our expectations. Finally, the distribution for the full

test statistic is shown below
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Figure 3.2: Normal Full Statistic

These distributions are quite close to each other, but the consequence of such a individual

group sample size can be seen in the top left. Additionally, different simulated critical values are

shown in the table below.

Critical Values α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 2.671 3.689 6.238
ni ≈ 8 2.270 2.923 4.664
ni ≈ 15 2.243 2.898 4.553
ni ≈ 30 2.145 2.730 4.208
Theory 2.123 2.703 4.125

Table 3.2: Critical Values - Normal

Here we see the critical values for every sample size behaving relatively similarly. The α = 0.01

critical value for ni = 3 is the furthest away from it’s theoretical value, but this is a fairly natural

result of the lower sample size and high α for that case. This deviation may lessen by simulating

more data. A similar table, where # of rejections out of 10000 samples, is shown below

# Rejections α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1548 972 375
ni ≈ 8 1163 625 167
ni ≈ 15 1132 619 158
ni ≈ 30 1018 516 108
Limit 1000 500 100

Table 3.3: Rejection Table - Normal
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The rejections show the somewhat unreliable nature of our test at very small sample sizes.

We are generally not conservative enough, rejecting the null hypothesis more than we should for

what the percentile of the data suggests. By the time we get to 15 though, we are quite close to

what we should be.

3.1.2

Uniform Data

Moving to a slightly more complicated example, our data for the next simulation comes from a

uniform distribution, where we are comparing four groups. Our center follows a uniform distribution

with minimum value 5 and maximum values 15. Our range also follows a uniform distribution with

minimum 1 and maximum 2. Our center and range for this sample are heavily correlated (ρ = 0.8).

Additionally, we are using an omega of 0.5, essentially underweighting the radius relative to the

center. Again, first the distribution of the numerator

Figure 3.3: Uniform Numerator

Though it’s somewhat hard to see, we are more prone to outliers in the smaller sample cases,

which does stand to reason. By the time we reach a sample size of 50, however, the limiting

distribution and the simulated distribution behave almost identically.
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ni ≈ 3 8 15 30 ∞
Denominator Average 8.400 8.337 8.376 8.370 8.375
Denominator Standard Deviation 3.015 1.542 1.057 0.679 0

Denominator Values -

Uniforml

The behavior is exactly the same as the normal case, as expected. Finally, the distribution

for the full test statistic is shown below

Figure 3.4: Uniform Full Statistic

This is a similar case to the numerator, but the outliers are now even more apparent, and we

again have a heavier right tails. These things have a fairly dramatic effect on the critical values, as

shown in the table below.

Critical Values α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 2.851 4.041 8.106
ni ≈ 8 2.324 2.969 4.722
ni ≈ 15 2.215 2.848 4.290
ni ≈ 30 2.106 2.609 3.775
Theory 2.081 2.595 3.794

Table 3.4: Critical Values - Uniform

There are fairly major deviations from the critical values given in the limiting distribution,

although only really in the ni ≈ 3 case.
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# Rejections α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1713 1177 564
ni ≈ 8 1292 746 241
ni ≈ 15 1189 646 166
ni ≈ 30 1039 514 97
Limit 1000 500 100

Table 3.5: Rejection Table - Uniform

Same thing here as the normal case, we only really get reliable starting around ni ≈ 15. This

example in particular is highly prone to outliers in the smaller sample cases.

3.1.3

Gamma Data

For another more complicated example, we will use gamma distributed data. There are

now 5 groups, a correlation of 0.5, and an omega of 1. The center is gamma distributed with mean

parameter 5 and dispersion parameter 2, while the radius is gamma distributed with mean parameter

10 and dispersion parameter 1. Numerator distribution shown below.

Figure 3.5: Gamma Numerator

Here, the numerators are pretty distinct from one another, with the small sample case having

an earlier mode and a slower decay than the large sample case and the limiting distribution. However,
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it only takes a sample size of about 15 to be very close to the limiting distribution. Denominator

results:

ni ≈ 3 8 15 30 ∞
Denominator Average 150.121 149.161 150.061 150.332 150
Denominator Standard Deviation 95.445 59.371 44.066 30.301 0

Table 3.6: Denominator Values - Gamma

This is a much higher variance example than the previous ones, but the same general idea

holds.

Figure 3.6: Gamma Full Statistic

The distributions on top are somewhat distinct from the ones on bottom. They have heavier

right tails and are more prone to outliers. Critical values are listed below.

Critical Values α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1.945 2.487 4.082
ni ≈ 8 1.816 2.211 3.097
ni ≈ 15 1.776 2.124 2.940
ni ≈ 30 1.773 2.080 2.880
Theory 1.776 2.111 2.855

Table 3.7: Critical Values - Gamma

These critical values are in line with what we would expect from looking at the graphs.

Generally the critical values for the simulated data are still larger than that of the theoretical
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critical values. They do get much closer as the sample size increases though.

# Rejections α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1299 787 317
ni ≈ 8 1080 594 158
ni ≈ 15 1001 508 119
ni ≈ 30 993 469 106
Limit 1000 500 100

Table 3.8: Rejection Table - Gamma

The rejections are similar, but are even more accurate than the previous cases by the time we

get to ni ≈ 15

3.1.4

Poisson Data

Our next example will extend these results to discrete data. Our center will be Poisson

distributed with λ = 1, while our radius will be Poisson distributed with λ = 15. Here, we’ll use a

strong negative correlation of -0.75, an omega of 0.9, and 5 groups.

Figure 3.7: Poisson Numerator

The distribution of the numerators look fairly similar, with the main difference between them
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being the somewhat smoother nature of the larger sample cases, and fewer extreme values.

Denominator results:

ni ≈ 3 8 15 30 ∞
Denominator Average 14.492 14.519 14.478 14.476 14.5
Denominator Standard Deviation 5.852 3.383 2.428 1.630 0

Table 3.9: Denominator Values - Poisson

The same general idea continues to hold here.

Figure 3.8: Poisson Full Statistic

For our full statistic, the small sample cases are distinctly heavier tailed than our ”approx 30”

and our limiting case. This is also clear in the critical values table, shown below:

Critical Values α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 2.409 3.145 5.216
ni ≈ 8 2.086 2.603 3.739
ni ≈ 15 1.977 2.455 3.425
ni ≈ 30 1.926 2.353 3.295
Theory 1.917 2.329 3.252

Table 3.10: Critical Values - Poisson

These heavy tails are apparent in the consistent overestimation of our critical values. They do

all remain relatively close to each other, but there would be cause for some hesitancy in evaluating

the α = 0.01 critical value for small sample sizes.
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# Rejections α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1659 1083 451
ni ≈ 8 1247 736 209
ni ≈ 15 1096 600 137
ni ≈ 30 1010 521 107
Limit 1000 500 100

Table 3.11: Rejection Table - Poisson

Once again, it takes until about an individual group sample size of about 15 to behave well

enough.

3.1.5

Bernoulli Center, Gamma Radius

Our second to last example will continue to extend these results to discrete data. Our center

will be Bernoulli distributed with p = 0.6, while our radius will be Gamma distributed with shape

parameter 0.5 and rate parameter 1. Here, we’ll use a positive empirical correlation of 0.25, an

omega of 0.8, and 5 groups.

Figure 3.9: Bernoulli Numerator

The main difference between the numerators is an earlier peak and slightly slower drop off in
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the small sample case.

Denominator results:

ni ≈ 3 8 15 30 ∞
Denominator Average 0.638 0.637 0.643 0.641 0.65
Denominator Standard Deviation 0.380 0.234 0.176 0.119 0

Table 3.12: Denominator Values - Bernoulli, Gamma

We get fairly accurate with our variance estimation quite quickly.

Figure 3.10: Bernoulli Full Statistic

The full statistic dies down slower for small samples. The critical values and rejection tables

are shown below:

Critical Values α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1.994 2.484 3.892
ni ≈ 8 1.757 2.109 2.944
ni ≈ 15 1.726 2.023 2.776
ni ≈ 30 1.726 2.027 2.747
Theory 1.738 2.058 2.762

Table 3.13: Critical Values - Bernoulli, Gamma
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# Rejections α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1424 920 358
ni ≈ 8 1040 556 140
ni ≈ 15 976 462 106
ni ≈ 30 976 460 100
Limit 1000 500 100

Table 3.14: Rejection Table - Bernoulli, Gamma

In this case, our values and rejections are actually generally slightly more conservative for the

ni ≈ 15, 30 cases, while the same pattern as before holds for the other sizes.

3.1.6

A Counterexample of Cauchy Data

Our final simulation provides an example of how our theorem breaks when assumptions are

not met. The Cauchy distribution lacks a mean, a finite variance, and even a well defined notion

of correlation. All of these things pose significant problems for our theoretical results, and thus are

a great way to check its ability to fail. Our simulation uses the Cauchy for both the center and

radius. Our center uses location parameter 5 and scale parameter 10, while the radius uses a location

parameter of 100, and a scale parameter of 2. We also simulate these using an intended ρ of 0.5.

Our limiting distribution cannot be simulated with a theoretical mean, variance, and correlation, so

we instead use the sample results for these parameters to simulate our limiting distribution. This

obviously isn’t perfectly reliable, but is as close as we can get to trying to capture the limiting

behavior with our theory. For this example, we also use ω = 1 and g = 5. The results for our full

statistic are shown in Figure 3.11.
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Figure 3.11: Cauchy Full Statistic

The behavior of our simulated datasets/statistics is clearly not in line with the theoretical

results, and there is no sign of convergence to our theoretical results as N increases, unlike our

other examples. While there are convergence results for the Cauchy distribution, the large sample

behavior is totally unable to be captured by the central limit theorem, and therefore our results.

Shown below are the results for critical values and number of rejections.

Critical Values α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 1.748 2.194 3.610
ni ≈ 8 1.583 1.905 2.696
ni ≈ 15 1.560 1.905 2.537
ni ≈ 30 1.550 1.851 2.426
Theory 1.843 2.221 3.045

Table 3.15: Critical Values - Cauchy

# Rejections α = 0.1 α = 0.05 α = 0.01

ni ≈ 3 847 486 171
ni ≈ 8 565 244 47
ni ≈ 15 514 216 35
ni ≈ 30 510 191 16
Limit 1000 500 100

Table 3.16: Rejection Table - Cauchy

Our simulated results are not consistent with our theoretical results, which is again in line
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with what we would expect.

3.1.7

Simulation Summary

The results from simulation validate our test. Even with distributions that are fairly different

from the normal distribution, we appear to converge quickly to the theoretical limiting distribution.

Explicitly, it appears to take until an individual group sample size of about 15 to have results that

are quite reliable, but we often have consistent results even around a sample size of 8. 3 is generally

too small for the central limit theorem to take over, which is in line with what we would expect.

These small sample results demonstrate the capacity for IANOVA to be used on smaller data sets.

The primary issue to be aware of is that the mistakes made in small sample cases are generally

not being conservative enough, i.e. the test finds significant results more often than the test should

find significant results. Ideally, we’d want to be making the opposite mistake, but practically, it

just means that we should be cautious when analyzing data with group sample sizes below 8, or

an overall sample size of less than 30. The limiting behavior is consistent with what was theorized,

with our large sample cases being very close to the theory. In cases where our results should fail,

they do, which further strengthens the validity of our theory.

3.1.8

Package

The simulation work above, and more generally the IANOVA procedure, have been docu-

mented and organized into an R package currently available on Github. All figures and results are

entirely reproducible with the scripts provided. Functions are provided within the package for ease

of use. sim data allows the user to simulate interval datasets from a few distributions, and returns

them in a way organized such that observe num and observe den can return the numerator and

denominator of the test statistic. Additionally sim theory num and sim theory den allow the user

to get the theoretical cutoffs for their data, which is useful when analyzing real data. The general

procedure for running IANOVA on real data is as follows:

1. Format the data to be a list, where each entry contains the interval data for one group (column

2 is centers, column 3 is radii).

2. Get the test statistic from observe num divided by observe den.

https://github.com/zac-d-rios/IANOVA
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3. Find the variance of the center and range (may be previously known, assumed, or empirical),

as well as the correlation.

4. Use these to get the theoretical limiting distribution from sim theory num divided by

sim theory den.

5. Compare your test statistic to the quantile of the limiting distribution appropriate for your

significance level.

A test statistic greater than your selected quantile means statistical significance at the 1−quantile

level. This would provide evidence that your interval means are different across groups. Alterna-

tively, a test statistic less than your selected quantile means a failure to reject the null hypothesis.

In that case, there would not be sufficient evidence of a difference in interval means across groups.

3.2

Real Data Analysis

3.2.1

Data

One key building design criteria is the weight, or load, of settled snow on the roof of a

structure. Current design snow load requirements for the United States are introduced in Bean et.

al [9]. These design requirements rely on an estimate of the ratio between the maximum observed

ground snow load and the maximum observed roof load, a ratio referred to hereafter as GR. This

GR information is obtained from a series of Canadian snow surveys. As might be expected, the

distribution of snow on a roof is rarely uniform, with blowing snow and/or complex roof geometries

creating pockets of heavier than average, or lighter than average, snow on the roof. This motivates

consideration of GR as an interval-valued ratio, denoted [GR min, GR max], or equivalently [GR C,

GR R]. This interval is constructed by determining the maximum max snow load on a roof divided

by the maximum ground load across the season. The minimum is constructed similarly, using the

smallest snow load measurement on the day that the maximum average roof load measurement

was observed. This interval characterization provides valuable information about the unbalanced

nature of the snow load, which may result in different failure modes than would happen in a uniform

loading scenario. In this paper, we are interested in determining if the GR interval ratio remains

constant across the geographical regions represented in the previously cited Canadian snow surveys

[24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. This question is explored using two different partitions of the
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data and results are compared to results obtained using standard ANOVA using the standard GR

measurements.

Figure 3.12 shows a map of the observations spread throughout Canada. In total, there are

81 observations in our data set. The center is represented by the color of the dot, while the range

is the size of the dot. Due to the imprecise geographic nature of the data, many points in major

cities overlap one another, but this graphic still provides information about the general location

of observations. Of note, but difficult to see in this graphic, our center and range are positively

correlated, with ρ = 0.821.

Figure 3.12: Locations of Observations

The distribution of points show a clear lack of balance between the northern and southern

provinces. This is reflective of the population distribution in Canada, and where we’re often inter-

ested in studying, but this isn’t to say observations in the northern portions of Canada wouldn’t be

worth further study.

3.2.2

Political Partition

We first partition observations by province. Specifically, we separate our observations into

five groups: British Columbia, The Great Plains Provinces (AB, SK, MB), Ontario, Quebec, and
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The Maritime Provinces (NB, PEI, LB, NS, NF). This provides a decent balance for our groups,

but it does omit five observations in the Northwest Territories. If we only had the provinces of

these observations, this would probably be the most reasonable way to separate them. This political

split is mostly motivated by accessibility; it’s easy to see why these observations should go together.

Legislative decisions are often made at this scale, which would be useful for updating building codes

to reflect differences in GR intervals between provinces. The shortcoming, of course, is that a

partition along these lines may fail to capture differences in GR interval that occur due to ecological

mechanisms. This shortcoming will be discussed in the next section, but this remains a justifiable

starting point. The box plots for the province groups are shown in Figure 3.13.

Figure 3.13: Box-plot of Province Partitioning

It’s difficult to discern any patterns in the box-plots, and our analysis also shows a lack of any

statistically significant differences in the groups. Our test-statistic for this partition is 0.730, whereas

the 95th quantile for our simulated limiting distribution is 2.263. This shows insufficient evidence to

suggest that the province has an effect on the GR interval. There are potentially meaningful splits

along province lines, but this partition does not appear to have any impact.

3.2.3

Ecological Partition

Our second partition separates observations based upon the Level I North American Ecore-

gions. Figure 3.14 shows the observations in each region [34]. Of note, due to a lack of observations

in some regions, 6 and 7 are combined, as are 9 and 5. 2 an 4 are also combined in the graphic.. Our

groups, broadly speaking, correspond to west coast forests and mountains, tundra/taiga, eastern



35

temperate forests, and the plains/northern forests regions.

Figure 3.14: Observations within their Eco-Regions

Splitting along these lines is more consistent with the problem at hand. The ecological con-

ditions are going to generally be more reflective of how snowfall works in a given region. Any of

the mechanisms that promote a roofs propensity for drifting should be better captured by the eco-

region the roofs fall in. Continuing with our analysis, Figure 3.15 shows the box-plots for our groups

partitioned by eco-region.

Figure 3.15: Box-plot of Eco-region Partitioning
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While there are again no clear pattern to the data, it looks possible that the Eco-Regions 6

and 7 have a higher center and lower range than average. Additionally, while we are not testing for

it, the variance of Region 2 appears to be lower than the other groups for both center and range.

This more meaningful partition returns more meaningful results. Our null hypothesis for this test

is that GR interval mean is constant across regions, while our alternative is GR interval mean is

non-constant across regions. We use an α = 0.05 cutoff for this test. Our test-statistic for this

partition is 2.48, whereas the 95th quantile for our simulated limiting distribution is 2.46. For our

chosen α cutoff, these results are statistically significant. There is evidence to suggest GR interval is

non-constant across eco-regions. This is quite close to our cut-off, but this is likely due to relatively

few observations in our different looking groups (6 and 7), vs our similar groups (8, 5 and 9). It’s

possible that clearer patterns would emerge with a larger sample size, but these results show that

the GR interval with respect to Eco-Region would be worth investigating further.

3.2.4

Classical ANOVA

We now move to a classical ANOVA on the averages for GR. The average is point valued, and

thus we are able to use classical statistical methods. Box plots for both the political and eco-region

partition are shown below in Figures 3.16 and 3.17. a

Figure 3.16: Box-plot of Political Partitioning (Point-Valued)
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Figure 3.17: Box-plot of Eco-region Partitioning (Point-Valued)

In both cases, there does appear to potentially be a difference in the average based on the

groups. The differences in the political groups seem to be driven by British Columbia, while the

differences in the ecological groups are driven by the group containing eco-region 6 and 7. Of note,

eco-region 6 and 7 most strongly correspond to British Columbia, so this effect looks to be occurring

around the same place. Running the ANOVA, we have significant results for both partitions. Our

political split has an F-statistic of 3.982 and a p-value of 0.005, which are fairly strong results

indicating that the province has an effect on the average GR. Additionally, our ecological split has

an F-value of 6.180 and a p-value of 0.0008, which are highly significant results. It’s possible that

the province partition is capturing some of the eco-region effect, as there is a fair amount of overlap

between the two. Both these results suggest that assuming GR is constant across may regions may

not be well-founded in practice. The primary driver in the higher power of classical ANOVA relative

to IANOVA is likely the amount of data we had for each test. We have a larger sample size of GR

than we do GR intervals, stemming from average data being more available than min-max data. In

particular, the greater number of observations in the regions that seem notably different (Forested

Coast/Mountains), will naturally make those results more significant.

3.2.5

Discussion

When we pay attention to the ecological factors surrounding an observation, we become more

likely to reject the null hypothesis. This holds for both IANOVA and classical ANOVA, where
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the consistency is promising for our new method. Classical ANOVA is quite good at detecting

significant results for small samples, whereas IANOVA’s use of an asymptotic limiting distribution

means that it can run into problems with small sample size. We do not have significant results for

the province partition in the interval-valued case, while we do for the point-valued case. While we

do have significant results for the Eco-Region based partition, they are quite close to our α = 0.05

cutoff. This could be due to a lack of observations in some of our groups, which weakens the validity

of using an asymptotic limiting distribution. This example, however, really highlights the strength

of IANOVA. If we were just interested in how GR varies across regions, the ANOVA on averages

would be sufficient. If we are interested in how both GR and propensity for drifting vary across

regions, then the interval-valued approach is quite useful. Again, this provides extra information on

the stresses a roof might actually incur, given that some areas of the roof will experience greater

pressure. The use of IANOVA allows us to use this extra information, which can help illuminate

distinct and important results. The results of both analyses indicate a potential need to further

investigate the variance of GR across regions, and the drifting effect across regions.
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CHAPTER 4

CONCLUDING REMARKS

IANOVA provides another tool for interval valued data analysis, allowing for comparisons

across greater than two groups of intervals. This thesis provides theoretical justification for IANOVA,

proofs of important asymptotic results, simulations verifying those results, and a real data problem

where IANOVA provides some illuminating results.

The structure of interval data and the approach of our test lead to a fairly natural comparison

to Multiple ANOVA (MANOVA). Our interval data is represented by centers and radii, so we could

consider using MANOVA with center/radii as our dependent variables. There are a number of

similarities between the two procedures, and a few key differences. The assumptions between the two

are nearly identical, with the exception of MANOVA requiring normality for all dependent variables,

while IANOVA does not. This is a consequence of IANOVA being an asymptotic procedure, but it’s

worth noting that MANOVA is robust to non-normality for large sample sizes. MANOVA defines a

linear combination of the dependent variables and a generalization of the sum of squares, which serve

essentially the same purpose as the w-distance used to derive the test statistic of IANOVA. One of

the notable advantages of MANOVA is its flexibility in choice of a test statistic, but this comes with

the notable disadvantage that many of these statistics lack a straightforward distribution under the

null hypothesis. For IANOVA, our statistic develops from theoretical results and has a manageable

null distribution, while remaining reasonably flexible via the ω parameter. While either procedure

will likely provide functionally very similar results, the decision of which to use will depend on the

nature of your data, with IANOVA having a potentially stronger theoretical justification.

The work done here is by no means exhaustive, and there are a number of ways the IANOVA

procedure could be expanded and improved upon. Notably, IANOVA is not currently generalized

to account for multiple explanatory variables in the way a multi-way ANOVA procedure would.

Additionally, while we have always assumed equal variances across groups, it would be worthwhile

to explore building explicit tests for this assumption. Other statistical testing analogues like non-

parametric tests and contrasts could add important tools for interval data analysis. Finally, a more
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comprehensive comparison to MANOVA (e.g. power analysis) would provide valuable insight into

important differences between the two procedures. Interval data analysis is still a relatively new

field, and developing additional tools/methodologies strengthens the ability of practitioners to deal

with modern data problems.
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APPENDIX

Proof of Correlation

Theorem 4.0.1. Under the null hypothesis, the chi-square random variables in our limiting distri-
bution have correlation ρ2, where ρ is the correlation between X̄C

i· − X̄C
·· and X̄R

i· − X̄R
·· .

Proof. Let
U = X̄C

i· − X̄C
·· , V = X̄R

i· − X̄R
·· .

Under the null hypothesis, U and V are asymptotically bivariate normal, with µU = µV = 0, vari-
ances σ2

U, σ
2
V , and correlation ρ.

Let Z1, Z2 be independent standard normal random variables. We can define U and V as transfor-
mations of Z1, Z2 via the following

U = σUZ1

V = σV(ρZ1 +
√

1− ρ2Z2)

The covariance of U2 and V2 can thus be represented by

Cov(U2, V2) = Cov(σ2
UZ

2
1, σ

2
V(ρZ1 +

√
1− ρ2Z2)

2)

Properties of the covariance allow us to split this further into

Cov(U2, V2) = Cov(σ2
UZ

2
1, σ

2
V(ρZ1 +

√
1− ρ2Z2)

2)

= σ2
Uσ

2
V [Cov(Z

2
1, (ρZ1 +

√
1− ρ2Z2)

2)]

= σ2
Uσ

2
V [Cov(Z

2
1, ρ

2Z2
1) + Cov(Z2

1, (1− ρ2)Z2
2) + Cov(Z2

1, ρ
√

1− ρZ1Z2)]

= σ2
Uσ

2
V [2ρ

2 + 0+ 0]

Where we’ve used the independence of Z1 and Z2 and the moments of the standard normal distri-
bution to simplify. To get the correlation, we use

Corr(U2, V2) =
Cov(U2, V2)√
Var(U2)Var(V2)

=
2σ2

Uσ
2
Vρ

2√
2σ4

U2σ
4
V

=
2σ2

Uσ
2
Vρ

2

2σ2
Uσ

2
V

= ρ2
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