Utah State University DigitalCommons@USU

Research on Capitol Hill

Browse Undergraduate Research Events

2-7-2022

Altered Neural Drive From an ACL Injury May Lead to Re-Injury

Hunter Horsley Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/roch

Part of the Kinesiology Commons

Recommended Citation

Horsley, Hunter, "Altered Neural Drive From an ACL Injury May Lead to Re-Injury" (2022). *Research on Capitol Hill.* Paper 143. https://digitalcommons.usu.edu/roch/143

This Poster is brought to you for free and open access by the Browse Undergraduate Research Events at DigitalCommons@USU. It has been accepted for inclusion in Research on Capitol Hill by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

The big impact of musculoskeletal injuries

- Sport and tactical athletes (i.e., military, police, firefighters) commonly suffer musculoskeletal injury, and must undergo a long recovery process.
- **Risk of re-injury** of an ACL tear, after an initial ACL injury, is as high as 75%.
- The study of why re-injury rates are so high is the next step to build rehabilitation efforts to reduce the risk of re-injury.

Testing movement in the lab

- Created a task to mimic unexpected switch in action
- Goal of evaluating movement strategy and reaction time.
- Force participates to inhibit a common action to start a new one, similar to a **cutting maneuver**.
- **Test both** the injured and uninjured limbs of those who have torn their ACL to evaluate limb deficit.

First experiment of its kind

- This study is first to observe, in parallel, changes in neural drive and performance post-musculoskeletal injury.
- We use transcranial magnetic stimulation (TMS) to observe strength of neural drive from the brain to the leg immediately prior to performance.

People with ACL injuries may be less effective at reacting

- Hypothesis: subjects in the ACL group will be less effective at inhibiting action, specifically when acting upon reaction.
- Effectiveness reflected by **descending neural drive**.
- If a link is found, it will be fundamental in how we **rehabilitate** these injuries in the future.

UtahStateUniversity

Altered neural drive from an ACL injury may lead to re-injury

Placement of TMS coil

The TMS coil is placed over the motor cortex prior to each trial.

Groups

ACL	VS.	Con
Subjects ages 18-		Subjects
35, recovered		35 that a
from an ACL tear		and mate
and continue to		ACL subj
be active.		attribute

Student Researcher: Hunter Horsley

Hometown: Logan, UT

Leaning/blindfolded

The subject is in a forward lean and blinded as the blocks change.

Three major comparisons

Preparation

trol ages 18are active ch the ject's

PS.

Proactive VS.

Subject can see

surroundings

before being

released and

step.

forced to take a

Reactive

Subject can not see surrounding until 400 ms before being released and forced to take a step.

Personal sports injury got me interested in sports medicine Kinesiology major, emphasis in exercise science My desire to become an orthopedic surgeon led me to this project

Unblindfolded/released

After vision, they will be released and forced to take the available step.

Go

VS.

Task

Subject will be instructed to expect to take a right or left step. 75% this will be accurate.

Inhibit

Subject will have to inhibit and take the opposite step instructed 25% of the time.

All work funded by the National Athletic Trainers' Association Research and **Education Foundation**

Faculty Mentor | Dr. Anne Beethe