10-12-2018

Charging Effects of High Voltage Probe Pulse on Pulsed Electroacoustic Measurements

Zachary Gibson
Utah State University

JR Dennison
Utah State University

Erick W. Griffiths
Box Elder Innovations

Lee Pearson
Box Elder Innovations LLC

Anthony Pearson
Box Elder Innovations LLC

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations
Part of the *Condensed Matter Physics Commons*

Recommended Citation
https://digitalcommons.usu.edu/mp_presentations/164
Charging Effects of High Voltage Probe Pulse on Pulsed Electroacoustic Measurements

Zack Gibson
Graduate Student
Material Physics Group, Utah State University
APS 4CS October 2018
Overview

• Pulsed Electroacoustic (PEA) Method
• Importance of PEA
• Charging
• Potential Problem
• Measurements
• Conclusions
What is PEA?

How it works:
- Pulsed voltage probes embedded charge
- Time of flight indicates position of charge

Benefits:
- Nondestructive measurement
- Low cost
- High resolution

Limitations:
- Instrumentation bandwidth
- Electronics for higher resolution are costly

L. Pearson (2017)
Importance of PEA

Spacecraft Charging
• A majority of space environment-induced failures are due to spacecraft charging
• Length scales from 1-100’s of µm

Applications:
• HV power cabling insulation
• HV devices and switches
• Electrostatic charging in accelerators and plasma chambers
• Plasma deposition
• Thin film dielectrics
• Electron microscopy and spectroscopy
• Photoconductive devices/sensors
• Inferring defect states in materials
• **Spacecraft charging**
• Anything that has a stored charge
Our PEA System

Specs:
- 0-10 kV DC voltage
- 0.5-5 ns pulse width
- 1-2 kV reference voltage
Charging

• Electrode Charging

• Electron Irradiation
The Problem: Charging from the probing pulse?

Electrode charging from high voltage probe pulses?
• Can we measure the charging (if any) caused from the HV pulses?

This presumably depends on
• Electric field applied to the sample (amplitude of signal)
• Length of time applying electric field
Measurements

- Material used for tests are 250 μm thick polymethylmethacrylate (PMMA)
- New sample used for each measurement
- Various pulse generator settings were used with and without DC bias

<table>
<thead>
<tr>
<th>Measurements taken</th>
<th>Amplitude (V)</th>
<th>Pulse Width (ns)</th>
<th>Pulse Rate Frequency (Hz)</th>
<th>Length of Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 kV DC Bias</td>
<td>1000</td>
<td>0.5</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>8 kV DC Bias</td>
<td>1500</td>
<td>2.5</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>8 kV DC Bias</td>
<td>2000</td>
<td>5</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>No DC Bias</td>
<td>1000</td>
<td>0.5</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>No DC Bias</td>
<td>1500</td>
<td>2.5</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>No DC Bias</td>
<td>2000</td>
<td>5</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>No DC Bias</td>
<td>2000</td>
<td>5</td>
<td>20</td>
<td>20 hours</td>
</tr>
</tbody>
</table>
8 kV DC Bias: 1000 V 0.5 ns 20 Hz for 30 minutes

Charging is apparent near the HV electrode peak

Flipped the sample over
8 kV DC Bias: 2000 V 5 ns 20 Hz for 30 minutes

Charging is apparent near the ground electrode peak

Flipped the sample over
8 kV DC Bias: 2000 V 5 ns 20 Hz for 30 minutes (#2)

Charge is again apparent near the ground electrode peak

Flipped the sample over
No DC Bias: Continuous measurements for 30 min

1000 V 0.5 ns 20 Hz Pulse

1500 V 2.5 ns 20 Hz Pulse

2000 V 5 ns 20 Hz Pulse

No apparent charging after 30 minutes on any pulse setting
No DC Bias: 2000 V 5 ns 20 Hz for 20 hours

Still no apparent charging after 20 hours of continuous measurements at the max settings of pulse generator.
Conclusions

• No measurable charging due to probing pulse
• Charge packet is either negative near ground electrode or positive near HV electrode

Future work:
• Apply DC bias without taking measurements and compare to samples probed while charging
• Investigate effects causing positive/negative charge packets
Questions?