

Pre-launch Calibration of the Landsat Data Continuity Mission Thermal Infrared Sensor

B. N. Wenny¹, K. Thome², D. Reuter², M. Montanaro¹, Z. Tesfaye³, A. Lunsford⁴, and R. Smith² 1) Sigma Space Corp., 2) NASA/Goddard Space Flight Center, 3) Millennium Engineering and Integration Co., 4) Catholic University

Abstract

The Thermal Infrared Sensor (TIRS), designed and built at NASA Goddard Space Flight Center (GSFC), is one half of the two-sensor Landsat Data Continuity Mission (LDCM) platform. TIRS data will extend the data record for thermal observations from the heritage Landsat sensors, dating back to the launch of Landsat 4 in 1982. TIRS will operate independently from the Operational Land Imager (OLI) however, the data streams will be merged into a single data product. The two-band (10.8 and 12.0 µm) pushbroom sensor with a 185 km wide swath and 100 m spatial resolution uses a staggered arrangement of quantum well infrared photodetector (QWIPs) arrays. Regular views of an on-board variable temperature blackbody source and deep space via a rotating scene select mirror will be used to track the on-orbit performance of TIRS. During the instrument development stage, extensive thermal-vacuum chamber testing of the flight sensor was conducted using a custom-built calibration system with a NISTtraceable blackbody source. These measurements were used to calibrate and characterize the radiometric, spectral, and spatial performance of the instrument. Results of the pre-launch testing are presented in addition to the lessons learned.

Pre-launch Calibration System

- All thermal vacuum acceptance testing performed at NASA GSFC • Calibration sources (radiometric and spatial) located inside the
- chamber
- NIST calibrated cavity blackbody used for NIST traceability
- Calibration Equipment custom built by ATK

- Provides full-field, full-aperture calibration
- 16" Diameter source (Flood Source)
- Target Source Module (GeoRad Source)
- Blackbody
- 13" square steering mirror system
- All reflective, off-axis parabaloid collimator
- Precision linear stages to move sources
- Cooled enclosure over entire system
- Monochromator (spectral source)

