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Figure 1. (a) Location of the study area with rainfall stations, river gauging stations and observation 

wells; and (b) pumping wells in the unconfined aquifer (Aquifer-1) and confined aquifer (Aquifer-2) 

(modified from [62]). 
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2.2. Integrated Simulation-Optimization Framework

2.2.1. Overview

The presented integrated Simulation-Optimization methodology involves three computer models.
First, to enable predicting system response to changes in groundwater extraction is a Groundwater
Simulation Model (GSM). GSM provides the initial aquifer heads that exist, and the ability to quantify
head response to abstraction. Working with GSM, the Simulation-Optimization Groundwater Model
(S-OGM) develops surrogate simulators of head response to pumping, and then computes the spatially
distributed maximum groundwater extraction rates that will not cause saltwater intrusion from the
ocean. The soil and water Resource Optimization Module (ROM) uses those extraction rates as the
upper limits on groundwater abstraction while computing optimal cropping patterns and strategies
for the conjunctive of groundwater and surface water. Subsequent sub-sections provide more details.

2.2.2. Groundwater Simulation Model (GSM)

Figure 2 depicts a cross section of the study area. To simulate flow, this study employed the
calibrated MODFLOW-2005 groundwater simulation model reported previously [62]. The top-most
aquifer layer (Aquifer-1) is unconfined and underlain by a leaky confining layer. Immediately below the
confining layer is the confined Aquifer-2 layer, the major source of groundwater in the area. Aquifer-2
has thickness varying from 3.1 to 80.3 m and is underlain by impermeable clay or bedrock.
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Initial estimates of aquifer parameter values came from pumping-test data of 15 sites [64], and
other sources [62]. Model calibration and validation targets included observed groundwater-levels at
24 sites from 1997 to 2006, and 2007–2011, respectively Ref. [62]. The resulting calibrated and validated
parameters are the hydraulic conductivity of Aquifer-1 and Aquifer-2, vertical hydraulic conductivity
of the leaky confining layer, specific yield of Aquifer-1, storativity of Aquifer-2, groundwater pumping,
and aquifer recharge. Ref. [62] provides details of model calibration, validation, and sensitivity analysis.

This MODFLOW-2005 implementation enabled the prediction of aquifer head response to
groundwater abstraction. The MODFLOW-2005 model supported the development of Optimization
Model-1 discussed next.
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