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ABSTRACT

A comprehensive uncertainty quantification methodology for metrology calibration and method
comparison problems via numeric solutions to maximum likelihood estimation and parametric

bootstrapping

by

Aloka B.S.N Dayarathne, Master of Science

Utah State University

Major Professor: Dr. Stephen J. Walsh

Department: Mathematics and Statistics

Straight line calibration models are extremely common in metrology. Ordinary least squares

and generalized least squares are the widely used techniques to fit the calibration curve but they can

produce biased estimates of the slope and intercept if the calibrants (x-values) are subject to un-

certainty. Ripley and Thompson (1987) identified Functional Relationship Estimation by Maximum

Likelihood (FREML) as the better fit for this particular type of problem. FREML accounts for

both x and y variable uncertainties and therefore can produce unbiased estimates of the slope and

intercept of the calibration curve. The objective of this project is to construct a proper mechanism of

calculating the uncertainty of the final measurement quantity which accounts for and propagates all

known input uncertainties. To achieve this, we apply international standard guidelines, specifically

the GUM (Guide to uncertainty in Metrology) guidelines in conjunction with parametric bootstrap-

ping to account for uncertainties in both x and y of the calibration points, and propagate them into

the standard errors of the calibration line parameter estimates. This is achieved by assuming that

the reported uncertainties represent the known population standard deviations. The approach is

validated in a computational study where we benchmark the statistical coverage of the method and

show it achieves the designed confidence. Last, we extend the model to the case where the uncer-

tainties of the calibration inputs are no longer known, but estimated standard deviations and we
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account for their uncertainties, i.e. degrees-of-freedom, and thus include these uncertainty sources

in the propagation calculation.

(83 pages)



v

PUBLIC ABSTRACT

A comprehensive uncertainty quantification methodology for metrology calibration and method

comparison problems via numeric solutions to maximum likelihood estimation and parametric

bootstrapping

Aloka B.S.N Dayarathne

In metrology, the science of measurements, straight line calibration models are frequently

employed. These models help understand the instrumental response to an analyte, whose chem-

ical constituents are unknown, and predict the analyte’s concentration in a sample. Techniques

such as ordinary least squares and generalized least squares are commonly used to fit these cali-

bration curves. However, these methods may yield biased estimates of slope and intercept when

the calibrant, substance used to calibrate an analytical procedure with known chemical constituents

(x-values), carries uncertainty. To address this, Ripley and Thompson (1987) proposed functional

relationship estimation by maximum likelihood (FREML), which considers uncertainties in both x

and y variables, providing unbiased estimates of slope and intercept. This project aims to develop

a robust mechanism for calculating uncertainty in final measurement quantities, integrating inter-

national standard guidelines such as GUM and parametric bootstrapping to handle uncertainties

in both x and y calibration points. Initial validation follows Ripley and Thompson’s assumptions

of known population standard deviations. Subsequently, the model is extended to accommodate

cases where calibration input uncertainties are estimated, incorporating their degrees-of-freedom

and propagating these uncertainties into parameter estimates.
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CHAPTER 1

LITERATURE REVIEW: FUNCTIONAL RELATIONSHIP ESTIMATION BY

MAXIMUM-LIKELIHOOD FOR METROLOGY CALIBRATION AND METHOD

COMPARISON PROBLEMS

1.1

The Role of Simple Linear Regression in Metrology

Calibration is the process of determining the relationship between the measurement results

of an instrument response or system and the corresponding known values of the measured quantity

(e.g. a chemical compound concentration). According to International Vocabulary of Metrology

(VIM), there are three major concepts associated with calibration i.e. the measurand, calibration

specific conditions and the relationship between measured or indicated values and the reference

values. Describing the relationship between measured or indicated values and those of the reference

values includes calibration equations, curves, or mathematical models that establish the connection

between the measured/indicated values and the reference values. The ultimate goal of determining

the mathematical relationships between standard quantities and the indications of instruments is

evaluating new unknown quantities regards to the new indications. Typically, understanding this

relationship enables the assessment of accuracy, determination of measurement uncertainties, and

traceability to established standards [6].

1.1.1

As a Component of the Measurement Procedure

One aspect of calibration curves is establishing instrument linearity. Calibration curves are

used to assess and correct for any non-linearities in the response of measuring instruments. By

plotting a calibration curve, which involves taking multiple measurements at different known values

of the measured quantity, it becomes possible to determine if the instrument exhibits any devia-

tions from linearity. Non-linearities can then be accounted for during subsequent measurements,
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leading to improved accuracy. On the other hand, calibration curves can be used to determine

the instrument sensitivity and the resolution. The slope of a calibration curve indicates the sen-

sitivity of the instrument, i.e., the change in instrument output per unit change in the measured

quantity. Additionally, the calibration curve can reveal the resolution of the instrument, which is

the smallest change in the measured quantity that can be detected and quantified. Also they are

used to determine measurement uncertainty, which quantifies the confidence or range of plausible

values associated with a measured quantity. By considering the scatter or dispersion of calibration

points around the curve, it is possible to estimate the measurement uncertainty associated with the

measurand. Calibration curves provide valuable information for uncertainty evaluation and can be

used to assign appropriate measurement uncertainties to measurement results.

1.1.2

Comparing Relative Method Bias

Method comparison is the process of comparing the results obtained from different methods

of measurement. In the scenario where the reference values for the samples are unknown but have

been measured using an established method, one approach to comparing measurement methods

is to perform a simple linear regression analysis by comparing the results obtained from a new

method with those obtained from the established method. In such cases, it is often observed that

the regression line has a smaller slope, indicating a systematic deviation between the two methods.

This discrepancy might imply that the new method exhibits a bias, for example showing higher

values at low concentrations and lower values at high concentrations compared to the old method.

One component of method comparison studies is the assessment of relative bias. Most authors use

ordinary regression techniques for this purpose which is incapable of handling both response and

explanatory variable uncertainties at the same time. Since the most common regression techniques

such as simple and weighted linear regression are not symmetrical techniques (since both the methods

are designed for predicting y on x), these methods are usually accurate for predicting the bias of

new variable (Y ) relative to the existing reference variable (X) [8].

1.2

Linear Calibration Curves

When seeking to estimate the functional relationship between two variables, it is common to

assume a model that describes their interdependency. This model can take a linear or non-linear
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Figure 1.1: An illustration of the functional Relationship between measurand concentration and the
instrument response.

form, depending on the nature of the relationship between the variables. Once a suitable model

is selected, the parameters of the model need to be estimated. This is often accomplished using

Maximum Likelihood Estimation (MLE). In the calibration exercise, the analyst prepares n samples

with known concentrations, denoted as xi. Then they submit the samples to the instrument to

attain a response yi. This yields a data set {xi, yi}ni=1 to which the analyst fits a calibration curve

of the type depicted in Eq. (1.1). Then for a new sample with an unknown concentration xnew, they

retrieve the sampling response ynew and estimate concentration by inverting the calibration curve

as illustrated in Eq. (1.2).

y = â+ b̂x (1.1)

x̂new =
ynew − â

b̂
(1.2)

The challenge in calibration problems arises from chemists attempting inverse regression. Conse-

quently, the uncertainty of the final measurement xnew is influenced by the uncertainty stemming

from the linear functional relationship as well as the newly measured value ynew. Hence, there

should be a method of incorporating all these uncertainties into the variance of xnew. Conversely,
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in method comparison problems, where both X and Y variables are subject to measurement errors,

it is essential to account for all these measurement errors in the model coefficients. This ensures

unbiased estimates and enables the identification of relative method bias [10]. Failure to propagate

both X and Y variable uncertainties into the model coefficients can lead to erroneous conclusions

when quantifying the bias of the new method compared to the reference method.

Figure 1.1 illustrates the functional relationship of concentration and the instrument response

for the calibration problem. MLE involves identifying the parameter values that maximize the

likelihood function. The likelihood function represents the probability of obtaining the observed

data given the chosen model and its corresponding parameters. This function is dependent on both

the model parameters and the observed data. By maximizing the likelihood function, MLE provides

an effective means of reducing the uncertainties associated with the variables being studied, namely

X and Y . MLE enables the determination of parameter values that optimize the fit between the

model and the observed data, thereby enhancing our understanding of the relationship between the

variables and reducing uncertainties in X and Y .

Within the field of metrology, the likelihood function is frequently constructed by compar-

ing the instrument response with the corresponding known values. The aim is to maximize this

likelihood function by adjusting the model parameters, thereby obtaining the most accurate estima-

tion of the functional relationship between the variables being studied. The MLE method is highly

prevalent in metrology, particularly in calibration and method comparison scenarios. Its appeal lies

in its rigorous and statistically grounded approach to estimating the functional relationship between

variables. By employing MLE, metrologist can determine the best parameter estimates while also

quantifying the uncertainty associated with these estimates [10]. This ability to assess uncertainty

is crucial in metrology as it enables the determination of measurement uncertainties for calibrated

instruments or systems, leading to more reliable and accurate measurements. In essence, the MLE

serves as a valuable tool in metrology by providing a robust framework for estimating functional

relationships, allowing for uncertainty evaluation, and enhancing the overall quality of measurements

and calibration processes.

1.2.1

Ordinary Least Squares Regression - OLS

Ordinary least squares regression is the most often used technique in linear pattern recogni-

tion. OLS is used when the x variable is known exactly without uncertainties and the y variable’s

uncertainty is unknown and assumed to be constant. Therefore, OLS regression line of y on x min-
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imizes the sum of the squares of the residuals, where the vertical distances between the observed

data points and the predicted values on the line. So, in this method the measurement model is of

the form; y = Xβ + ϵ where, y =

(
y1 y2 . . . yn

)′

is an n× 1 vector of the dependent variable y ,

X =

[
1n x

]
is an (n× 2) model matrix, β =

(
a b

)′

is a vector of regression coefficients a and b

and ϵ =

(
ϵ1 ϵ2 . . . ϵn

)′

is an (n× 1) vector of errors. Major assumption of OLS regression is that

the ϵ ∼ N (0, σ2In). Moreover, the estimated vector of regression coefficients β̂ = (X′X)−1X′Y

, V ar(β̂) = σ2(X′X)
−1

and σ̂2 = y′(In−H)y
n−2 where, (In −H)n×n is the annihilator matrix and

Hn×n = X(X′X)
−1

X′ is the hat matrix and p is the number of parameters. The major drawback

of using OLS model in calibration problems is that in OLS regression, the explanatory variable x is

assumed to be exactly known without uncertainties.

1.2.2

Generalized Least Squares Regression - GLS

Generalized Least Squares Regression is frequently used when the response data violates

the major least squares regression assumption of homoscedasticity (having equal variances). In GLS

regression, the model assumes that the errors follow a specific covariance structure, often represented

by a variance-covariance matrix. The estimated coefficients are obtained by minimizing the weighted

sum-of-squared residuals, where the weights are derived from the estimated covariance structure.

So, in this method the measurement model is of the form, y = Xβ + ϵ .Where ϵ ∼ N (0,Σ) and;

Σ =



σ1
2 0 . . .

0 σ2
2

...
. . .

σn
2


Each σi represents the known measurement uncertainty for response yi [7]. GLS model

satisfies all the OLS regression assumptions except homoscedasticity [14]. Also in this model,

the estimated vector of regression coefficients β̂ = (X′Σ−1X)−1X′Σ−1Y and their variance is

given by; V ar(β̂) = σ2(X′Σ−1X)−1 . σ2 can be estimated by using, σ̂2 = y′Σ−1(In−P)y
n−2 where,

P = X(X′Σ−1X)−1X′Σ−1. Major drawback of using GLS model in calibration problems is that in

GLS regression, the explanatory variable x is assumed to be exactly known without uncertainties,

and this assumption is often violated with chemistry and metrology data and applications.
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1.2.3

FREML - Functional Relationship Estimation by Maximum Likelihood

Functional relationship estimation through maximum likelihood is indeed a widely used sta-

tistical approach in metrology calibration and method comparison problems where, the uncertainties

occur on both x and y ; σ2
y =

(
σ2
y1

σ2
y2

. . . σ2
yn

)′

and σ2
x =

(
σ2
x1

σ2
x2

. . . σ2
xn

)′

are known.

By maximizing the likelihood function, which represents the probability of obtaining the observed

data given the model and its parameters, MLE identifies the parameter values that are most consis-

tent with the observed data. This estimation process allows for the determination of the functional

relationship between variables and provides a statistical foundation for calibration and method com-

parison in metrology. In fact, closed form expressions for maximum likelihood estimators do not

exist and must be found numerically [8]. Section 1.3 discusses the derivation of the FREML model

in detail.

1.3

The FREML Model

1.3.1

The Model

The FREML model is presented in the perspective of the calibration problem. Let xi be the

measurand value of the ith calibrant, and yi be the instrument response to this calibrant. We assume

that there are n samples in the calibration and so i ∈ {1, 2, . . . , n}. These are measured values and

we assume that the true unknown values are ui and vi respectively. We assume a simple-linear

relationship between the true values as given in Eq. (1.3), where a and b represent the intercept and

slope of the true calibration line, respectively. Consequently, the measurement-error models can be
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derived as depicts in Eq. (1.4) and Eq. (1.5).

vi = a+ bui (1.3)

yi = vi + ϵi = a+ bui + ϵi (1.4)

xi = ui + ηi (1.5)

ϵi
i.i.d∼ N (0, σ2

yi
)

ηi
i.i.d∼ N (0, σ2

xi
)

ϵi and ηi are independent.

In FREML model we assume that the errors in both directions are normally distributed with

zero mean and non-constant variances. Additionally, we assume that all measurement uncertainties,

namely σ2
y =

(
σ2
y1

σ2
y2

. . . σ2
yn

)′

and σ2
x =

(
σ2
x1

σ2
x2

. . . σ2
xn

)′

are known. Therefore, the

probability distribution functions for this study are given by Eq. (1.6) and Eq. (1.7).

f(xi|ui, σ
2
xi
) =

1√
2πσ2

xi

exp

{
− 1

2σ2
xi

(xi − ui)
2

}
(1.6)

f(yi|a, b, ui, σ
2
yi
) =

1√
2πσ2

yi

exp

{
− 1

2σ2
yi

(yi − (a+ bui))
2

}
(1.7)

1.3.2

Parameter Estimation Via Maximum Likelihood

For a vector of true calibration values u =

(
u1 u2 . . . un

)′

which are now viewed as

parameters to be estimated and slope and intercept a and b, the likelihood function is given by Eq.

(1.9) [8].

L(a, b,u|x,σ2
x,y,σ

2
y) := f(x,σ2

x,y,σ
2
y|a, b,u) (1.8)

=

n∏
i=1

f(xi|u,σ2
x)f(yi|a, b,u,σ2

y)

=

n∏
i=1

1√
2πσ2

xi

exp

{
− 1

2σ2
xi

(xi − ui)
2

}
1√
2πσ2

yi

exp

{
− 1

2σ2
yi

(yi − (a+ bui))
2

}

=

n∏
i=1

(
1

(4πσ2
xi
σ2
yi
)1/2

)
exp

{
−
∑n

1=1(xi − ui)
2

2σ2
xi

+
−
∑n

1=1(yi − (a+ bui))
2

2σ2
yi

}
(1.9)
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The negative log-likelihood is then;

−l(a, b,u|x,σ2
x,y,σ

2
y) := − logL(a, b,u|x,σ2

x,y,σ
2
y) (1.10)

= − log

(
n∏

i=1

1

(4πσ2
xi
σ2
yi
)1/2

exp

{
−
∑n

1=1(xi − ui)
2

2σ2
xi

+
−
∑n

1=1(yi − (a+ bui))
2

2σ2
yi

})

= −
n∑

i=1

log

[
1

(4πσ2
xi
σ2
yi
)1/2

]
+

∑n
1=1(xi − ui)

2

2σ2
xi

+

∑n
i=1(yi − (a+ bui))

2

2σ2
yi

(1.11)

{â, b̂, û} := argmin
a,b∈(−∞,∞)

ui∈(0,∞)∀i

−l(a, b,u|x,σ2
x,y,σ

2
y) (1.12)

Given the negative log-likelihood, the maximum-likelihood parameter estimates are defined

as shown in Eq. (1.12). Previous studies have endeavored to derive mathematical formulas to

evaluate the parameter estimates of the FREML model. However, due to the likelihood function

for calibration problems involving n + 2 parameters to be estimated by minimizing the negative

log likelihood function, finding a closed-form mathematical solution for the estimation process is

challenging [8]. Therefore, in this study, we propose to employ numerical maximum likelihood

estimation using R programming software to determine the parameter estimates.

1.4

Conclusions

In the calibration or method comparison problems the commonly found issue is having the

x variable uncertainties reported as data. In such problems the usual regression techniques such

as ordinary least squares or generalized least squares are not appropriate. Maximum likelihood

estimation constructs the joint probability model that has complete information on Y as well as X

which is an applicable method in these specific cases. An issue arises when estimating the parameters

since calibration/method comparison problem may have more than two parameters in general (e.g.

slope, intercept and the true u values). Finding a mathematical solution to minimize the negative log

likelihood is challenging, but computational solutions can be easily obtained. FREML gives estimates

for â, b̂, ûi, i = 1, . . . , n. But it fails to give uncertainties of â, b̂, ûi, SE(â), SE(b̂) and SE(ûi). Though

FREML evaluates the point estimates for parameters, the derivation is quite complex [8].

Once the model coefficient estimates are determined, my next objective is to establish a

suitable method for assessing the uncertainty associated with the final measurement of the calibration
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problem, namely ’xnew’. This entails incorporating the final uncertainty arising from both the model

coefficients and the newly measured value ’ynew’. Chapter 2 focuses on implementing an appropriate

approach(Monte-Carlo simulation) to evaluate the final uncertainty and to estimate the uncertainty

arising from the model coefficients.
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CHAPTER 2

LITERATURE REVIEW: GUM, THE GUIDE TO UNCERTAINTY IN METROLOGY

2.1

Introduction to GUM

The Guide to Uncertainty in Metrology (GUM) defines uncertainty as “a parameter associated

with the result of a measurement that characterizes the dispersion of the values that could reason-

ably be attributed to the measurand” [3]. Therefore, errors in measurements can be explained by

uncertainty of measurements and uncertainty of analysis. GUM provides a framework for estimating

and expressing uncertainty, including a description of the sources of uncertainty, the methods for

combining them, and the means for expressing the results. It also provides guidance on the report-

ing of uncertainty in measurement results, including the use of probability distributions, coverage

factors, confidence intervals, and error bars.

GUM is widely used in fields such as chemistry, physics, engineering, and metrology (the

science of measurement). It is also an important reference for accreditation bodies, regulators, and

others who require measurements to be traceable and of known quality. The final measurand, the

quantity of interest, depends on several measurements that are not always exact. When a quantity is

measured, the measurand depends upon the measuring system, the measurement procedure, the skill

of the operator, the environment, and other random and systematic effects. Even if repetitions are

made (i.e. the quantity is measured several times), a slightly different measurement value is usually

obtained each time [4]. Measurement errors in GUM are categorized into two main types: systematic

errors and random errors. Systematic errors, also known as measurement biases, arise from a

consistent offset present in the measured quantity value. On the other hand, random errors occur

when repeated measurements yield different values, making the next measurement unpredictable

based solely on previous values. Both types of errors can stem from various contributing factors.

Measurement presents a challenge in determining the best way to communicate the informa-

tion obtained about the quantity being measured, known as the measurand. Before the introduction
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of GUM, one approach was to express the measurement result by providing a best estimate of the

measurand, accompanied by information about systematic and random errors (through an error anal-

ysis). However, GUM introduced a new perspective on measurement by emphasizing the expression

of the perceived quality of the measurement result. This is achieved by providing a best estimate of

the measurand, along with a measurement uncertainty value, rather than relying solely on an error

analysis. Figure 2.1 depicts the GUM uncertainty framework for the calibration curve model via

FREML as shown in Chapter 1. The GUM uncertainty framework is a versatile and widely appli-

cable approach for estimating and expressing uncertainty in various measurement scenarios. While

it can be applied in many circumstances, there are specific conditions where the GUM framework

yields exact and precise results. One such circumstance is when the measurement function exhibits

linearity with respect to the input quantities, and the probability distributions of these quantities

follow a Gaussian distribution. In this case, the GUM uncertainty framework provides exact and

rigorous uncertainty statements. When the measurement function is linear, it means that the rela-

tionship between the input quantities and the measurand can be expressed as a linear combination

of the input quantities. This simplifies the uncertainty analysis, as the propagation of uncertainties

can be performed using straightforward mathematical calculations. However, it is important to note

that the GUM framework can also be applied in more general cases, where non-linear relationships

or non-Gaussian distributions are present, although more advanced techniques and approximations

may be required in such situations. Producing measurements via inverting a linear calibration curve

is an example of a non-linear measurement equation, as will be shown in Section 2.2.
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Figure 2.1: Measurement uncertainty evaluation using the GUM uncertainty framework for the
calibration curve model.
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2.2

Mathematical and Statistical Perspective of the GUM

In a measurement model, the factors necessary to define a measurand are referred to as input

quantities. These input quantities, denoted as X1, X2, . . . , XN , are part of a functional relationship

expressed as Y = f(X1, X2, . . . , XN ) where Y is the measurement result. The measurand represents

the output quantity in this model. However, the true values of the input quantities (X1, X2, . . . , XN )

are generally unknown. In the GUM approach, the input quantities (X1, X2, . . . , XN ) are treated

as random variables and characterized by probability distributions. This means that their values

are not precisely known. Uncertainties of those unknown u(Xi) are produced under two major

concepts usually referred as “type A and type B”. Information about an input quantity, u(Xi),

is derived either from repeated measurements or observations (referred to as Type A evaluation of

uncertainty), or through scientific judgment and other relevant information regarding the possible

values of the quantity (known as Type B evaluation of uncertainty) [1]. These methods help to

establish knowledge about the input quantities and their associated uncertainties.

When conducting Type A evaluations of measurement uncertainty, it is common to assume

that the distribution that best describes an input quantity X, based on repeated independent in-

dication values, is a Gaussian distribution (also known as a normal distribution). In this case, the

expectation of X is equal to the average repeated measurements, and the standard deviation of

X is equal to the standard deviation of the repeated measurements, and so the uncertainty of the

mean is u(x̄) = Sx√
n
. There are three forms of uncertainties: standard, combined and expanded

uncertainty. Standard uncertainty is often calculated using the observed data (Type A) or expert

opinion (Type B). The combined uncertainty requires a technique of propagating uncertainty in

measurements on the model Y = f(X1, X2, . . . , XN ). Expanded uncertainty quantifies confidence

by an interval about the results of a measurement. It is calculated using the standard or combined

standard uncertainty multiplied by the coverage factor which is determined by degrees-of-freedom

and a required significance [13].

When uncertainty is evaluated based on a small number of indication values, which can be

seen as instances of an indication quantity characterized by a Gaussian distribution, a t-distribution

can be used. The t-distribution takes into account the smaller sample size and tends to have fatter

tails compared to the Gaussian distribution, accommodating the increased uncertainty associated

with limited data. Therefore, the t-distribution is employed when the number of indication values

is limited in order to provide a more appropriate representation of the uncertainty. Moreover,
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degrees-of-freedom is another important concept that comes along with the t-distribution. Degrees-

of-freedom refers to the number of values in a calculation that are free to vary. The degrees-of-

freedom in the t-distribution are associated with the number of independent pieces of information

available in the data. Specifically, in the context of hypothesis testing or constructing confidence

intervals, degrees-of-freedom are used to determine the critical values or probabilities associated with

the t-distribution. As the degrees-of-freedom increase, the t-distribution approaches the shape of

the standard normal distribution. For large sample sizes (typically considered as degrees-of-freedom

greater than 30), the t-distribution becomes virtually indistinguishable from the standard normal

distribution [3].

2.2.1

Measurement Equation

Recall in Eq. (1.2) which represents the measurement equation of the calibration problem.

Here, x̂new denotes the new concentration of the compound for a measurement index of the machine

ynew. â and b̂ are the estimates of intercept and slope of the calibration curve, which are estimated

via maximum likelihood under the FREML model.

2.2.2

Propagation of Uncertainty

This section briefly describes how GUM recommends quantifying uncertainty of measurement

Y given uncertainties of input quantities X1, X2, . . . , XN . Let the measurement equation be:

Y = f(X1, X2, . . . , Xn) (2.1)

According to the law of uncertainty propagation stated in GUM, the variance of the predicted value

can be written as:

u2(y) =
∑
i

[
δ Y

δ Xi

]2
u2(xi) + 2

∑
i

∑
j ̸=i

δ Y

δ Xi

δ Y

δ Xj
cov(xi, xj) (2.2)

In calibration problem, the variance of the Xnew is:

var(x̂new) = var

(
ynew − â

b̂

)
(2.3)
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In this equation, the partial derivatives are determined using an analytical or numerical method.

Now that the measurement equation is a function of 3 random variables, Y , â, and b̂, the law of

error propagation is used to derive the variance formula. According to the Eq. (2.3),

var (x̂new) =var

(
ynew − â

b̂

)
(2.4)

=

δ
(

ynew−â

b̂

)
δynew

2

var(ynew) +

δ
(

ynew−â

b̂

)
δâ

2

var(â) +

δ
(

ynew−â

b̂

)
δ b̂

2

var(b̂)

+ 2
δ
(

ynew−â

b̂

)
δynew

δ
(

ynew−â

b̂

)
δâ

cov(ynew, â)

+ 2
δ
(

ynew−â

b̂

)
δynew

δ
(

ynew−â

b̂

)
δb̂

cov(ynew, b̂) + 2
δ
(

ynew−â

b̂

)
δâ

δ
(

ynew−â

b̂

)
δb̂

cov(â, b̂)

=
1

b̂2

[
var(ynew) + var(â) +

(ynew − â)2

b̂2
var(b̂) + 2

(ynew − â)

b̂
cov(â, b̂)

]
(2.5)

The derivation of the Eq. (2.5) removes cov(ynew, â) and the cov(ynew, b̂) as it is commonly assumed

that y is independent of both â and b̂. According to Eq. (2.5), var(ynew), var(â), var(b̂) and cov(â, b̂)

are required to estimate the var(x̂new). In calibration problem, var(ynew) is a given data by the

experimenter and a methodology is required to produce var(â), var(b̂) and cov(â, b̂). We will provide

such a methodology in Chapter 3.

2.3

GUM guidelines regarding the FREML model used in linear calibration

Primarily, when applying the FREML model it is mandatory to check the randomness of the

input data. If every input is random, or if each Xi, Xj are constants or else if there is insufficient

information to evaluate the covariances between each pair of inputs, the covariance associated with

the estimates of two input quantities Xi and Xj may be taken to be zero or treated as insignifi-

cant. In real-world scenarios, input quantities frequently exhibit correlation due to factors such as

the use of common physical measurement standards, measuring instruments, reference datums, or

measurement methods with notable uncertainties. In such cases, the associated uncertainty should

be calculated using the Eq. (2.3). Variances of â, b̂ and covariance of â and b̂ can be obtained from

FREML and parametric bootstrapping. Starting with the FREML model, Monte Carlo simulation

and bootstrap procedure can generate thousands of similar data of the existing data set, and then

the empirical sampling distributions of respective regression coefficients. Afterwards, the uncertain-
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ties of â and b̂ can be derived from those sampling distributions. We will develop and validate this

approach in the Chapter 3.
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CHAPTER 3

UNCERTAINTY PROPAGATION FOR THE FREML MODEL VIA PARAMETRIC

BOOTSTRAPPING FOR KNOWN AND REPORTED MEASUREMENT UNCERTAINTIES

3.1

Introduction

This chapter briefly discuss about the summary of FREML model and maximum likelihood

function and then, the implication of these two methods in calibration is illustrated by an example

problem taken from Ripley & Thompson (1987) [8]. Then uncertainty propagation using parametric

bootstrapping is discussed and applied the new mechanism to the illustrative example to check

whether bootstrap technique gives exact same results in the Ripley & Thompson (1987)[8]. End of

the chapter discuss about the validation of the application of parametric bootstrap into FREML

and the final conclusion.

3.1.1

FREML Model

Recall the Eq. (1.3) in Chapter 1. In the presence of both x and y variable uncertainties,

the model that accounts for both variable uncertainties to address the relationship of x and y is the

FREML model. Therefore, the true linear relationship lies between the expected x(u) and expected

y(v), where a and b represent the intercept and slope of the true calibration line, as shown in Eq.

(1.3). Thus, the measurement-error models are

yi = vi + ϵi = a+ bui + ϵi

xi = ui + ηi
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Where, ϵ is the error of observed y and the actual y (v) while η is the error of the observed x and

the actual x (u). The assumptions of the FREML model are

ϵi
i.i.d∼ N (0, σ2

yi
)

ηi
i.i.d∼ N (0, σ2

xi
)

ϵi and ηi are independent.

This chapter focuses on determining the uncertainty of the parameter estimates of the FREML

model; â and b̂, when the x and y uncertainties are known.

3.1.2

Maximum Likelihood Estimates

According to this problem, there are n+2 parameters to be estimated (a, b and {u1, u2, . . . , un}).

Maximum Likelihood Estimation (MLE) is used to estimate the parameters of the FREML model.

MLEs maximizes the likelihood function (or minimize the negative log-likelihood function). For the

calibration problem, the negative log likelihood function is of the form,

−l(a, b,u|x,σ2
x,y,σ

2
y) := − logL(a, b,u|x,σ2

x,y,σ
2
y)

= −
n∑

i=1

log

[
1

(4πσ2
xi
σ2
yi
)1/2

]
+

∑n
1=1(xi − ui)

2

2σ2
xi

+

∑n
1=1(yi − (a+ bui))

2

2σ2
yi

(3.1)

In order to illustrate the concept of FREML in mass spectrometry we now present an example. Table

3.1 depicts the Arsenic(V) concentration of 30 natural water determined by two different methods.

The data are taken from Ripley & Thompson (1987) [8]. Method 1 used for determining x values is

selective reduction and atomic absorption spectrometry where as the method 2 used to determine y is

cold trapping and atomic emission spectrometry. x and y are the means of Arsenic(V) concentrations

and σx and σy are the standard deviations of x and y respectively. This is and example of method

comparisons in the field of mass spectrometry.

Comparing the two methods using a FREML model evaluates a model of expected concen-

trations which minimizes relative method bias. Figure 3.1 illustrates the fitted ordinary least square

regression and FREML linear models for this scenario. It can be seen that the FREML is resulting

a model that is different from the OLS model. As the figure indicates, both x and y variables have

uncertainties in them and OLS regression does not propagate x variable uncertainty while FREML

does. Also among the two models, FREML does the better job propagating heterogeneous uncertain-
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Table 3.1: Arsenic(V) concentration in 30 natural waters determined by two methods. Data from
Ripley & Thompson (1987) [8].

x(Method 1)/µgl−1 σ(xi) y(Method 2)/µgl−1 σ(yi)
8.71 1.92 7.35 2.07
7.01 1.56 7.92 2.23
3.28 0.76 3.4 0.96
5.6 1.26 5.44 1.53
1.55 0.39 2.07 0.59
1.75 0.43 2.29 0.65
0.73 0.22 0.66 0.19
3.66 0.84 3.43 0.97
0.9 0.25 1.25 0.36
9.39 2.07 6.58 1.85
4.39 1 3.31 0.93
3.69 0.84 2.72 0.77
0.34 0.13 2.32 0.66
1.94 0.47 1.5 0.43
2.07 0.5 3.5 0.99
1.38 0.36 1.17 0.33
1.81 0.45 2.31 0.66
1.27 0.33 1.88 0.54
0.82 0.23 0.44 0.13
1.88 0.46 1.37 0.4
5.66 1.27 7.04 1.98
0 0.06 0 0.01
0 0.06 0.49 0.15
0.4 0.15 1.29 0.37
0 0.06 0.37 0.12
1.98 0.48 2.16 0.62
10.21 2.24 12.53 3.51
4.64 1.05 3.9 1.1
5.66 1.27 4.66 1.31
19.25 4.18 15.86 4.45

ties and therefore FREML is a good approach in the method comparison problem. Hypothetically, if

the two methods gives identical results without concerning the chance error, the fitted model should

be inline with y = x. Therefore, in method comparison problems, for a fitted line of y = a + bx, it

is needed to check the hypothesis of

H01 : Intercept(a) = 0 and H02 : Slope(b) = 1

These hypotheses may be assessed in several ways, one of which includes calculating the following

confidence intervals shown in Eq. (3.3) and Eq. (3.4).
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Figure 3.1: Simple Linear regression and FREML models in the process of method comparison in
Calibration Metrology.

Confidence Interval for Intercept (a) := â± coverage factor× SE(â) (3.2)

Confidence Interval for Slope (b) := b̂± coverage factor× SE(b̂) (3.3)

Where, Ripley & Thompson (1987) [8] use 1.96 as the coverage factor assuming that a and

b have from normal distributions. According to Eq. (3.3) and Eq. (3.4), variances of â and b̂ are

required and these variances are not immediately available from the FREML calculation. Therefore,

we propose the use of parametric bootstrapping to produce var(â), var(b̂) and also cov(â, b̂). Hence

var(â), var(b̂) and cov(â, b̂) are required in both calibration and method comparison perspective.
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The next section is about calculating variance-covariance matrix using parametric bootstrapping.

3.2

Parametric Bootstrapping

Parametric bootstrapping is a resampling technique used in statistics to estimate the sampling

distribution of a statistic or to make inferences about a population parameter. It is a variation of

the bootstrap method, which involves sampling with replacement from the observed data to create

new datasets [11]. Parametric bootstrapping is useful when the underlying population distribution

can be reasonably assumed to follow a specific parametric form. It allows for making inferences and

estimating population parameters even when the underlying distribution is not known or is difficult

to determine. An important fact of using parametric bootstrapping is that the validity of the results

relies on the accuracy of the chosen parametric model. Four major steps of parametric bootstrap-

ping are: parameter estimation, resampling, calculation of statistic on the bootstrap samples and

analysis of resampled statistics. For the calibration problem, the parameter estimation is done using

maximum likelihood function and the resulting parameter estimates are used as set of initial values

to initiate the resampling procedure. An algorithm shows the procedure followed for to obtain the

bootstrap sampling distributions.

Algorithm 1 Parametric bootstrapping procedure for generating empirical sampling distributions
of parameters

1: Inputs: â := Point estimate of intercept, b̂ := point estimate for the slope, {ûi}ni=1 := Vector
of point estimates for true ûi,M := Number of simulation runs

//Simulate x, y data
2: For s in 1 : M with M large, do

3: xi
(s) = ûi +N (0, σ2

xi
) for i = 1, . . . , n

4: v
(s)
i = â+ b̂ûi

5: y
(s)
i = v

(s)
i +N (0, σ2

yi
) for i = 1, . . . , n

6: {â(s), b̂(s), {û(s)
i }ni=1} := argmin−l(a, b, u1, . . . , un|x(s)

i , σ2
xi, y

(s)
i , σ2

yi)

7: End For

//Output bootstrap sampling distributions for parameters

8: Output: {â(s), b̂(s), {û(s)
i }ni=1}Ms=1

In this study, M = 5000 simulation runs were conducted on the inputs â, b̂ and ûi’s. In each

trial, a new sample data set was generated that has different plausible set of errors but the same

characteristics as the parent data set. For each sample data set, maximum likelihood estimation
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Table 3.2: Variance covariance matrix of the parameter estimates of the illustrative example ad-
dressed by Ripley & Thompson (1987) [8].

â b̂
â 0.00232 -0.00071

b̂ -0.00071 0.00610

Table 3.3: Comparison of the standard errors of the regression coefficients of the illustrative example
evaluated by Parametric bootstrapping and by Ripley & Thompson (1987) [8].

SE(â) SE(b̂)
Parametric Bootstrap 0.0482 0.0781
Ripley & Thomson (1987) 0.048 0.076

was then applied contemporary with the generation of the data sets. Hence, the final outcome of

the bootstrap procedure was 5000 of possible values for the parameters a, b and {ui}ni=1. Figure

3.2 shows the empirical distributions of estimated coefficients â and b̂ by the FREML model for the

illustrative example addressed by Ripley & Thompson (1987) [8]. Table 3.2 shows the spread of

these sampling distributions equivalently the variance of the estimates and Table 3.3 compares the

results obtained by parametric bootstrap to findings of Ripley & Thompson (1987) [8]. It is evident

that, bootstrapping evaluates almost exact same results as Ripley & Thompson have obtained in

their analysis (The methodology used to evaluate the var(â) and var(b̂) is not revealed in Ripley &

Thompson (1987) paper [8]).

3.3

Method Validation

3.3.1

Coverage Estimation

For the validation assessment, this study uses coverage estimation process. Coverage estima-

tion refers to the process of assessing how well a statistical model’s predictions or confidence intervals

match the actual outcomes or true values in a dataset [12]. In the context of calibration, coverage

estimation pertains to the assessment of how effectively the calculated confidence intervals for the

model’s parameters encompass the actual true values. FREML, MLE and bootstrap are utilized to

provide confidence intervals for the n+ 2 parameters of the study. Coverage estimation involves in

examining whether these confidence intervals encompass the true values of these parameters. If the

coverage is close to the nominal confidence level, i.e. 95%, it indicates that the method accurately

quantifies the uncertainty associated with the estimated parameters.
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Figure 3.2: Sampling distributions of parameters by parametric bootstrapping.
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For the calibration problem the coverage estimation is of the form:

p̂ =
Number of Confidence Intervals which include the population parameter

Total number of confidence intervals
(3.4)

3.3.2

Validation of implication of Parametric Bootstrapping to FREML and MLE

For the validation of the concept of applying bootstrapping to the FREML model, this study

uses 19 lists of datasets where as each list contains 2000 datasets with same number of parameters,

same initial values for â and b̂ but different ûi values. We selected these 19 cases to illustrate the

efficacy of our approach for different number of parameters and with varying relative sizes between

parameters. Table 3.4 shows the initial true parameter values used for generating the sampling data

sets. n is the number of observations per data set, a is the intercept parameter and b is the slope

parameter, u.min and u.max are the minimum and maximum values of actual ui’s of that particular

data list, In each data set, the uncertainty of x and y are subject to change. Relative sd(x) is the

expected relative standard deviation of x is allowed to vary by ±rsd.x.r which refers to range of

relative standard deviation (x). Also, y variable measurement uncertainty is generated by using the

relative sd(y) and the rsd.y.r or range of relative standard deviation of (x).

For each case depicted in Table 3.4, a total of 2000 sample datasets were simulated. Applying

parametric bootstrapping to each dataset results in a single list containing 2000 elements, with each

element comprising 5000 bootstrap datasets. Subsequently, applying maximum likelihood estimation

(MLE) to each list element yields 5000 estimates for each of the parameters a, b, and {ui}ni=1. Next,

the 2.5% and 97.5% quantiles are calculated for each of these 2000 sampling distributions. The

proportion of confidence intervals containing their true population parameters is then calculated

list-wise. This constitutes an estimate of empirical statistical coverage, which should be close to

0.95 if the parametric bootstrap method is consistent. To ensure this, interval estimates of the

proportions are calculated [2].

Table 3.5 and Figure 3.3 illustrate the coverage results for Study Case number eight out of

the 19 cases tested for statistical validation. “p̂” is an estimate of the coverage of the parametric

bootstrap procedure. “n” is the number of vectors of p̂’s per list. “SE(p̂)” is the standard error of p̂

and “lb” and “ub” represent the lower bound and the upper bound of the estimated p̂. According to

Table 3.5, all the confidence interval for the proportions calculated include 95%. Therefore, it can

be concluded that 95% calculated confidence intervals for the parameters include their respective
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Table 3.4: Master parameter set used for data generation.

case n a b u.min u.max rsd(x) rsd.x.r rsd(y) rsd.y.r
1 5 0 1 0.1 5 0.05 0.02 0.15 0.03
2 5 0 1 0.1 5 0.15 0.03 0.05 0.02
3 5 0 1 0.1 5 1.00E-07 0 0.1 0
4 5 10 0.5 0.1 5 0.01 0.005 0.05 0.02
5 5 10 0.5 0.1 5 0.05 0.02 0.15 0.03
6 10 0 1 0.01 50 0.05 0.02 0.15 0.03
7 10 0 1 0.01 50 0.15 0.03 0.05 0.02
8 10 0 1 0.01 50 1.00E-07 0 0.1 0
9 10 10 0.5 0.01 50 0.01 0.005 0.05 0.02
10 10 10 0.5 0.01 50 0.05 0.02 0.15 0.03
11 20 0.001 1.00E-07 0.1 10000 0.05 0.01 0.12 0.06
12 20 0.001 1.00E-07 0.1 10000 0.15 0.1 0.2 0.06
13 20 1.00E+20 1.00E-07 0.1 10000 0.15 0.1 0.2 0.06
14 40 0 1 0.1 5 0.05 0.02 0.15 0.03
15 40 0 1 0.1 5 0.15 0.03 0.05 0.02
16 40 0 1 0.1 5 1.00E-07 0 0.1 0
17 100 0 1 0.1 5 0.05 0.02 0.15 0.03
18 100 0 1 0.1 5 0.15 0.03 0.05 0.02
19 100 0 1 0.1 5 1.00E-07 0 0.1 0

population parameters.

Table 3.6 summarizes the coverage results of the 19 cases studied. In each case, the number

of parameters studied equals the total number of observations plus 2. According to Table 3.6, there

are 593 total coverage assessments and 25 of them haven’t captured by the expected coverage of

95%. Moreover, among those 25 coverage assessments, for 11 cases coverage was over achieved and

for the remaining 14 cases the coverage was under achieved. Therefore, is can be concluded that

parametric bootstrapping application in calibration and in method comparison problems give highly

accurate results.

Table 3.5: Proportional Comparison of Estimated VS. True Parameters Case 8 with 10 Parameters.

p.hat SE.p.hat lb ub
a 0.942 0.00525 0.931 0.952
b 0.95 0.00487 0.940 0.960
u1 0.946 0.00505 0.936 0.956
u2 0.948 0.00496 0.938 0.958
u3 0.946 0.00505 0.936 0.956
u4 0.942 0.00525 0.931 0.952
u5 0.953 0.00476 0.943 0.962
u6 0.954 0.00468 0.945 0.963
u7 0.948 0.00496 0.938 0.958
u8 0.951 0.00483 0.942 0.961
u9 0.949 0.00494 0.939 0.958
u10 0.954 0.00468 0.945 0.963
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Figure 3.3: Estimated Confidence Intervals for Coverage
Case 8 with 10 Parameters.
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Table 3.6: Summary of coverage estimation that does not capture the target
coverage of 95%.

Case number Parameters coverage not achieved Observations per data set
1 None 5
2 None 5
3 None 5
4 u4 5
5 u4 5
6 u6 10
7 None 10
8 None 10
9 u5 10
10 u1 10
11 None 20
12 a b u5 20
13 None 20
14 a u8 u40 40
15 None 40
16 u4 u13 u21 40
17 u3 u34 u41 u69 100
18 u73 100
19 u10 u15 u36 u52 u78 u89 100

Total number of parameters which the coverage achieved 95% 593
Parameters for which the Total number of parameters coverage under achieved 14
coverage not achieved 95% Total number of parameters coverage over achieved 11

3.4

Conclusion

In this chapter, we illustrated the FREML model application in method comparison in cali-

bration and then it was found that in both calibration and method comparison problems variance-

covariance matrix of model parameters need to be estimated. Since FREML fails to generate the

variance-covariance matrix, parametric bootstrap method was introduced to generate the var(â),

var(b̂) and the cov(â, b̂). The parametric bootstrap implication in FREML was validated using man-

ually generated data sets and using the concept of “coverage estimates” and found that uncertainties

calculated with the aid of bootstrap technique reaches 95% significance level. Therefore, it can be

concluded that the parametric bootstrap implication in FREML evaluates the uncertainties of the

model coefficients with significant accuracy. Chapter 4 is focused on modeling and calculating the

model uncertainties when the initial input variable uncertainties are unknown.
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CHAPTER 4

EXTENSION OF THE FREML MODEL AND MAXIMUM-LIKELIHOOD ESTIMATION

PROCEDURE WHEN MEASUREMENT UNCERTAINTIES ARE ESTIMATED AND

REPORTED WITH A STATED DEGREES-OF-FREEDOM

4.1

Introduction

In the preceding section, we delved into the utilization of the parametric bootstrap technique

in scenarios where the FREML model is employed for both straight line calibration and method

comparison problems. In both contexts, the estimation of model coefficients was predicated upon the

assumption that the population variances of variables x and y are known and non negligible. In this

chapter, we shift focus to an extension of the model in situations where the population variances of

the variables are unknown and instead replaced by their respective sample variances along with their

corresponding degrees-of-freedom. We construct the joint likelihood function to provide accurate

estimates for the unknown parameters and extend the parametric bootstrap process to the resulting

model. We end with a comprehensive study on the degrees-of freedom space to discover when

the extended FREML approach is necessary, or when degrees-of-freedoms are large enough so that

FREML is safe to use.

4.2

Likelihood Function for the Extended Model

Ripley & Thompson (1987) suggest that FREML model is more appropriate in straight line

calibration problem when x and y have known population uncertainties [8]. Therefore, for this study

we uses FREML approach along with maximum likelihood estimation process to determine model

coefficients of the linear calibration curve. The scenario involves several unknown parameters that

need to be estimated through the analysis process. The linear model coefficients, a and b, true ui

values, population uncertainty of x namely {σx1 , σx2 , . . . , σxn} and population uncertainties of y
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namely {σy1 , σy2 , . . . , σyn} are now viewed as unknown parameters that need to be estimated given

data. All of these unknown parameters are estimated using an extension of FREML and MLE

approach. This entails finding the values of a, b and {ui, σxi
, σyi

}ni=1 that minimize the negative

log likelihood of observing the given data points while considering the uncertainties associated with

both x and y.

As per the structure of FREML:

vi = a+ bui

where v is the true responses, u is the true xi values and a and b are the estimates for intercept

and slope parameters. Also,

xi = ui + ϵi

yi = vi + ηi

where, ϵi is the deviation of true ui from observed xi and ηi is the deviation of true vi from

observed yi. The assumptions of the FREML model for the extended case are

ϵi
i.i.d∼ N (0, σ2

yi
)

ηi
i.i.d∼ N (0, σ2

xi
)

ϵi and ηi are independent.

But now population variances {σ2
x1
, σ2

yi
} are unknown but estimated and their estimates are

reported in the data, specially we assume {s2xi
, dfxi

, s2xi
, dfyi

} are given. To extend the model and

UQ procedure, we will exploit the following well known distribution assumptions[2].

s2yi
× dfyi

σ2
yi

∼ χ2
dfyi

s2xi
× dfxi

σ2
xi

∼ χ2
dfxi

We also use the fact that xi ⊥⊥ s2xi
and yi ⊥⊥ s2yi

,[2] which are reasonable assumptions in this

scenario. Therefore, the likelihood equation for the extended version of the calibration problem can
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be written as:

L(a, b,u,σ2
x,σ

2
y|x, s2x,dfx,y, s

2
y,dfy) := f(x, s2x,dfx,y, s

2
y,dfy|a, b,u,σ2

x,σ
2
y) (4.1)

=

n∏
i=1

f(xi|ui, σ
2
xi
)f(s2xi

|σ2
xi
, dfxi

)f(yi|a, b, ui, σ
2
yi
)f(s2yi

|σ2
yi
, dfyi

) (4.2)

4.2.1

Maximum Likelihood Estimates for Population Variances

The likelihood function in Eq. (4.1) shows that one can use a hierarchical approach for

estimating the model parameters. Therefore, first we will estimate the unknown variances of x and

y and then we will substitute these estimates into the likelihood function to estimate the a, b, and u.

In this case we assume that the sample variance is a function of chi-square distributed and the

sample variance only depends upon the population variance and therefore independent of sample

mean. Therefore, the joint distribution function is the product of individual probability distributions

Eq. (4.2).

{σ̂2
xi,ML, σ̂

2
yi,ML} = argmin{L(σ2

x|s2x, dfx)× L(σ2
y|s2y, dfy)} (4.3)

= argmin{− log

n∏
i=1

f(s2xi
|σ2

xi
, dfxi

)× f(s2yi
|σ2

yi
, dfyi

)} (4.4)

The next task will be to find the point estimates for the population variances. From the

previous section we know that s2 × df/σ2 ∼ χ2
df . Therefore, this formulas is used to derive the

probability distribution function of s2 using transformations. The formula in Eq. (4.5) shows the

transformed formula to calculate the probability distribution function of s2.

Let W =
s2 × df

σ2
where, W ∼ χ2

df

FS2

(
s2
)
=P

(
S2 ≤ s2

)
=P

(
Wσ2

df
≤ s2

)
=P

(
W ≤ s2df

σ2

)
=FW

(
s2df

σ2

)
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Therefore,

fS2

(
s2
)
=

d

ds2

(
FW

(
s2df

σ2

))
=fW

(
s2df

σ2

)
× d

ds2

(
s2df

σ2

)
∴ fS2

(
s2
)
=
df

σ2
fW

(
s2df

σ2

)
(4.5)

According to above formula,

fS2(s2) =
df

σ2

[
1

2df/2Γ(df/2)

[
s2df

σ2

] df
2 −1

e−
s2df

2σ2

]

∝ df

σ2

[
s2df

σ2

] df
2 −1

e−
s2df

2σ2

−logL(σ2|s2) =− log

(
df

σ2

)
−
(
df

2
− 1

)
log

(
s2df

σ2

)
− s2df

sσ2

d

dσ2
− logL(σ2|s2) = 1

σ2
−
(
df

2
− 1

)[
− 1

σ2

]
− s2df

2σ4

To find the critical points, let
d

dσ2
− logL(σ2|s2) = 0

=⇒ σ̂2
MLE = s2

The second derivative test is used to check whether the negative likelihood function reach a

minimum when σ̂2 = s2.

∂2(− logL(σ2|s2))
∂σ22

=
∂[ 1

σ2 − (df2 − 1)[− 1
σ2 ]− s2df

2σ4 ]

∂σ2
(4.6)

=
−df/2

σ4
+

s2df

σ6

when σ̂2 = s2,

∂2(− logL(σ2|s2))
∂σ22

=
df

s4
− df

2s4
(4.7)

=
df

2s4
> 0

Therefore, −log{L(σ2|s2)} reaches minimum when σ2 = s2. Since the maximum likelihood

estimator for population variance is the sample variance, we can get rid of the optimizing the

likelihood formula shown in Eq. (4.1) and can directly use sample variance. Now the original
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likelihood function for the extended model can be revised as:

− logL(a, b,u|x, σ̂ = s2x,y, σ̂ = s2y) := −log{f(x, s2x,y, s2y|a, b,u)} (4.8)

=− log

{
n∏

i=1

f(xi|ui, σ̂
2
xi,MLE)f(yi|a, b, ui, σ̂

2
yi,MLE)

}

Then we need to minimize the negative log likelihood function shown is Eq. (4.8) to obtain

the parameter estimates. We will be using the likelihood function in Eq. (4.8) which can produce

estimates for n + 2 parameters (a, b and {u}). The function is optimized via the R function optim

and the method Nelder-Mead. The estimates that minimizes the negative log-likelihood function will

be using as the initial values for the bootstrapping. We will be using parametric bootstrapping along

with numerical maximum likelihood and propagate all reported uncertainties, sxi
, syi

and dfxi
, dfyi

through the system of measurement equations aiming to obtain the uncertainties of model coefficient

estimates.

{â, b̂, ûi,LM |σ̂2
xi,ML, σ̂

2
yi,ML} = argmin

{
− log

n∏
i=1

f(xi|σ̂2
xi,ML

, ui)× f(yi|σ̂2
yi,ML

, a, b, ui)

}
(4.9)

Optimizations are done using R optim function. The outcomes of the likelihood functions

are then used to build the bootstrap algorithm to estimate the sampling distributions of a, b and u

which we show in Algorithm 2. According to Algorithm 2, it can be seen that for each bootstrap

data set, the population variance is substituted using sample variance. And for generating each

xi, random values from normal distribution were used and the substituted population variances

are again generated by using chi-square distribution. For a single initial data set, this procedure

generates 5000 possible sampling data sets and per each data set maximum likelihood estimates are

then calculated using R optim function. Final outcome of the procedure is 5000 possible â, b̂, ˆ{u},

yielding Monte Carlo approximations of their sampling distributions.

4.3

Statistical Validation - Extended Approach

For the validation of this procedure, coverage calculations were used. Since the problem

consists with both x and y sample uncertainties and the respective degrees-of-freedoms, validation

was done considering all possible combinations of degrees of freedoms. In this study, 5 major cases

each with 5 possible combinations were considered for coverage estimation. Table 4.1 shows all
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Algorithm 2 Parametric bootstrapping procedure for generating empirical sampling distributions
of parameters - Extended model approach.

1: Inputs: â := Point estimate of intercept, b̂ := point estimate for the slope, {ûi}ni=1 := Vector
of point estimates for true ûi, {σ̂xi

2}ni=1 := sample variance for x data,{dfxi}ni=n := degrees-of-
freedom of x,{σ̂yi

2}ni=1:= sample variance for y data,{dfyi
}ni=n := degrees-of-freedom of y, M :=

Number of simulation runs

2: For s in 1 : M with M large, do

3: vi = â+ b̂ûi for i = 1, . . . , n

//Simulate new sample standard deviations for bootstrap data sets

4: sxi
2(s) ∼ χ2

dfxi

σ̂xi
2
MLE

dfxi
for i = 1, . . . , n

5: syi
2(s) ∼ χ2

dfyi

σ̂yi
2
MLE

dfyi
for i = 1, . . . , n

//Account for uncertainty in true σ2
xi
, σ2

yi
by simulating new possible values given s2xi

and s2yi

6: σ̃x
2
i ∼

s2xi
dfxi

χ2
dfxi

for i = 1, . . . , n

7: σ̃y
2
i ∼

s2yi
dfyi

χ2
dfyi

for i = 1, . . . , n

//Simulate x, y data.

8: xi
(s) ∼ ûi +N (0, σ̃x

2
i ) for i = 1, . . . , n

9: y
(s)
i ∼ v

(s)
i +N (0, σ̃y

2
i ) for i = 1, . . . , n

10: {â(s), b̂(s), {û(s)
i }ni=1, {σ̂x

2(s)
i }ni=1, {σ̂y

2(s)
i }ni=1} :=

11: argmin−l(a, b, u1, . . . , un|x(s)
i , s2xi

(s)
, dfxi

, y
(s)
i , s2yi

(s)
, dfyi

)

12: End For

//Output bootstrap sampling distributions for parameters

13: Output: {â(s), b̂(s), {û(s)
i }ni=1}
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Table 4.1: Case combinations studied in coverage estimation process.

Case Number Procedure dfx dfy

1
Fixed y at low degrees of freedom while
changing x degrees of freedom

{5,10,30,50,100} 5

2
Both x and y degrees of freedom
vary from smaller to larger

{5,10,30,50,100} {5,10,30,50,100}

3
Fixed x at low degrees of freedom while
changing y degrees of freedom

5 {5,10,30,50,100}

4
Fixed y at low degrees of freedom while
changing x degrees of freedom

{5,10,30,50,100} 100

5
Fixed x at high degrees of freedom while changing
y degrees of freedom from low to high values.

100 {5,10,30,50,100}

Table 4.2: Comparison of Coverage Assessment with dfx = 5 and dfy = 5 (EFREML vs. FREML
Approach).

Results of Coverage using EFREML Results of Coverage using FREML
p.hat SE.p.hat lb ub p.hat SE.p.hat lb ub

a.hat 0.963 0.00425 0.954 0.971 0.897 0.0068 0.884 0.91
b.hat 0.959 0.00443 0.95 0.968 0.848 0.00803 0.832 0.864
u1 0.947 0.00501 0.937 0.957 0.886 0.00711 0.872 0.9
u2 0.951 0.00483 0.942 0.96 0.889 0.00701 0.876 0.903
u3 0.955 0.00464 0.946 0.964 0.883 0.00719 0.869 0.897
u4 0.956 0.00459 0.947 0.965 0.876 0.00736 0.862 0.891
u5 0.956 0.00461 0.946 0.965 0.884 0.00716 0.87 0.898
u6 0.953 0.00473 0.944 0.962 0.882 0.00721 0.868 0.896
u7 0.943 0.00518 0.933 0.953 0.878 0.00731 0.864 0.893
u8 0.955 0.00464 0.946 0.964 0.883 0.00719 0.869 0.897
u9 0.959 0.00446 0.95 0.967 0.882 0.0072 0.868 0.897
u10 0.947 0.00503 0.937 0.956 0.877 0.00733 0.863 0.892

possible case combinations studied for the coverage estimations. For each of these cases, 2000 data

sets were generated using the same true parameter values and at the end of the bootstrap procedure,

sampling distributions for each model parameter estimated each with 5000 estimates were obtained.

Assuming binomial distribution, coverage intervals were calculated for each of these data set to check

whether how many intervals include the true population parameter with significance level of 0.05.

For each case we end up with n+ 2 coverage intervals and check whether the interval includes 0.95.

For each of the cases presented in Table 4.1, coverage calculations were completed. Table 4.2

and Table 4.3 depict two of these outputs generated using the EFREML approach, as well as using

the FREML approach. Upon comparing both FREML and extended FREML outputs it can be seen

that EFREML catch the true parameters as expected and reach 0.95 coverage all most all of the time

compared to FREML outputs. These results suggest that even with smaller degrees-of-freedom, em-

ploying the extended approach alongside the FREML model leads to calculated confidence intervals

for most parameters capturing the true population parameter 95% of the time.
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Table 4.3: Comparison of Coverage Assessment with dfx = 100 and dfy = 5 (EFREML vs. FREML
Approach).

Results of Coverage using EFREML Results of Coverage using FREML
p.hat SE.p.hat lb ub p.hat SE.p.hat lb ub

a.hat 0.956 0.0046 0.946 0.965 0.903 0.0066 0.891 0.916
b.hat 0.948 0.0050 0.938 0.957 0.847 0.0081 0.831 0.863
u1 0.949 0.0049 0.939 0.958 0.947 0.0050 0.937 0.956
u2 0.959 0.0044 0.95 0.968 0.937 0.0054 0.926 0.948
u3 0.959 0.0045 0.95 0.967 0.933 0.0056 0.923 0.944
u4 0.96 0.0044 0.951 0.968 0.928 0.0058 0.917 0.94
u5 0.964 0.0042 0.956 0.972 0.941 0.0053 0.931 0.951
u6 0.952 0.0048 0.943 0.961 0.922 0.0060 0.91 0.934
u7 0.953 0.0047 0.944 0.962 0.932 0.0056 0.921 0.943
u8 0.946 0.0051 0.936 0.955 0.918 0.0061 0.907 0.93
u9 0.958 0.0045 0.949 0.967 0.937 0.0054 0.926 0.948
u10 0.944 0.0051 0.934 0.954 0.928 0.0058 0.917 0.939

Except for the coverage assessment, we have graphed the variation of the coverage estimation

over the degrees of freedoms of x and y to see how well the previous and current procedure capture

the true parameter values over the sample size. For each of the cases mentioned in Table 4.1,

var(â), var(b̂) and the cov(â, b̂) are drawn against the degrees-of-freedom (Figure 4.1 - Figure 4.5)

4.3.1

When should degrees-of-freedom be accounted for as an uncertainty source

Our final effort is to generate and compare the sampling distributions for â, b̂ using original

FREML model assuming the given uncertainty is equivalent to the population uncertainty and also

using the extended approach assuming the given uncertainties are the sample uncertainties. Primary

goal of doing this is to check whether there is a significant difference between the outputs of the

two methods and if so that difference will be affecting the variance of predicted new unknown

compound concentration. For each case mentioned in Table 4.1, we calculate the following ratios

and compare between the degrees of freedoms. These ratios quantify the percentage that model

parameter uncertainties will be underestimated if degrees- of-freedom is ignored as an uncertainty

source.

Factor var(â) underestimated =
var(â|FREML)

var(â|Extended FREML)

Factor var(b̂) underestimated =
var(b̂|FREML)

var(b̂|Extended FREML)

Factor cov(â, b̂) underestimated =
cov(â, b̂|FREML)

cov(â, b̂|Extended FREML)
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Figure 4.1: FREML Vs. Extended FREML estimated variance covariance comparison - Case 1.

Figure 4.1 - Figure 4.5 show the output for this calculation and according to that the un-

certainties calculated for â, b̂ using EFREML is two times higher than the uncertainties calculated

from the original FREML model. Therefore, it can be concluded that taking the degrees of freedom

and the sample uncertainties into account when the experiment is done using small sample sizes is

important for determining the final outcome of the calibration process.

In Case 1 (Figure 4.1), when the degrees-of-freedom of {x, y} is {5,5}, the percentage un-

derestimated is 0.5. which means, the variance calculated using EFREML is two times than the

variance calculated using FREML model. When the x degrees-of-freedom increases, underestimation

seemingly getting reduced for the intercept parameter but can not see that deviation in the other

two graphs indicating that FREML underestimates the uncertainty when the y degrees of freedom

is smaller. According to Case 2 shown in Figure 4.2, when the x and y degrees-of-freedom changes

sequentially from lower to higher, it can be seen that in the the underestimated ratio is about 0.5

when {dfx, dfy} is {5,5} and eventually the underestimation declined with the number of replicates

increases. That means when we have larger degrees-of-freedom for both x and y, both FREML

and EFREML give similar results. Figure 4.3 shows the underestimation of estimated variance for

slope intercept and covariance between slope and intercept when the dfx is 5 and held constant and

the dfy takes values from 5 to 100. For the intercept, underestimation ratio reaches 0.5 when both
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Figure 4.2: FREML Vs. Extended FREML estimated variance covariance comparison - Case 2.

Figure 4.3: FREML Vs. Extended FREML estimated variance covariance comparison - Case 3.
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Figure 4.4: FREML Vs. Extended FREML estimated variance covariance comparison - Case 4.

Figure 4.5: FREML Vs. Extended FREML estimated variance covariance comparison - Case 5.
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degrees-of-freedoms are smaller and the ratio held consistent when from dfx = 10 to 30 and thereafter

the ratio get closer to 1. The remaining two plots show the same pattern; ratio is about 0.5 when

both degrees-of-freedoms equal to 5 and eventually increases when the dfy gets bigger. Figure 4.4

shows variance covariance comparison results for Case 4 where the the dfx changes between 5 and

100 while the dfy is consistent at 100. According to the results, the underestimation ration is closer

to 1 all the time with few miner deviations indicating that FREML and EFREML approach gives

similar results when the dfy is a higher value. Figure 4.5 show the behavior of the underestimation

ratio when the dfx is held constant at 100 and dfy changes between 5 to 100. It can be seen that the

underestimation ratio is almost 0.5 when the dfy is 5 and getting reduced when the dfy increases.

Therefore, it can be concluded that the FREML underestimates the variance when either of the dfx

or dfy are lower. Therefore using EFREML gives reasonable estimates when the number of replicates

are low and the population variances are unknown.

4.4

Conclusion

Calibration problem is usually carried out using small number of replicates and the reported

uncertainties can not be considered as population variances. Therefore, the extended approach is to

evaluate the uncertainty of the model coefficients when the population variances are unknown. In

this process we are propagating both sample variances and the degrees-of-freedoms into the likeli-

hood function. This study derives a mathematical formula for new likelihood function and provides

the maximum likelihood estimation of the population variance using reported data. One of the

most important finding of the mathematical exploration was finding of the maximum likelihood

estimate of the population variance as the sample variance itself which is an unbiased estimator

for this problem. Based on the coverage calculations, it can be seen that all most all the cal-

culated coverage intervals capture 0.95 indicating the extended procedure accurately predict the

uncertainty of the model coefficients. Moreover, variance-covariance comparison between FREML

and EFREML shows that the extended method has higher variances and covariances compared to

original method indicating that extended solutions are more accurate when the number of replicates

are smaller. Ultimately, the EFREML model is shown to be necessary when dfx, dfy ≤ 30 to ensure

that var(â), var(b̂) and cov(â, b̂) are not significantly underestimated.
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CHAPTER 5

AN IN−DEPTH DESCRIPTION OF PROGRAMMING CONSTRUCTS FOR THE STUDY

Calibration issue occurs in metrology calibration problem when fitting a linear calibration

curve to detect an unknown chemical compound concentration. This challenge can manifest across

various sectors, including healthcare, environmental monitoring, manufacturing, and scientific re-

search [5]. This study primarily revolves around leveraging numerical methods to optimize the like-

lihood function and employing the bootstrap method to generate sampling distributions of model

coefficients. Consequently, the study necessitates the development of three key R functions: one

for constructing the likelihood function (nLogLik FREML knownPopVar), another for optimizing the

likelihood function (mmEst FREML knownPopVar) and obtaining estimates, and a third for bootstrap-

ping data generation (pbs FREML knownPopVar). This investigation focuses on two scenarios: firstly,

estimating the uncertainties associated with model coefficients when the error population variances

are known, and secondly, when they are assumed to be unknown and replaced by sample variances

along with the respective degrees of freedom. Initially, we constructed the aforementioned functions

and subsequently modified them to cater to the second scenario. All programming tasks were exe-

cuted utilizing the R statistical software environment. These functions are designed to handle inputs

in the form of data frames. It is essential that all input data be numeric and devoid of categorical

or Boolean data. At the outset of each script, we elucidate the functions employed for the FREML

and EFREML procedures. Additionally, all parameter and variable definitions are written within

the code.

RT_data <- list(data = data.frame(x, sd_x_pop = sx, y, sd_y_pop = sy))

print{RT_data}

## a) MLE estimates for original data set

ml_est <- mmEst_FREML_knownPopVar(RT_data)

ml_est$coefficients
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x sx y sy
8.71 1.92 7.35 2.07
7.01 1.56 7.92 2.23
3.28 0.76 3.4 0.96
5.6 1.26 5.44 1.53
1.55 0.39 2.07 0.59
1.75 0.43 2.29 0.65
0.73 0.22 0.66 0.19
3.66 0.84 3.43 0.97
0.9 0.25 1.25 0.36
9.39 2.07 6.58 1.85
4.39 1 3.31 0.93
3.69 0.84 2.72 0.77
0.34 0.13 2.32 0.66
1.94 0.47 1.5 0.43
2.07 0.5 3.5 0.99
1.38 0.36 1.17 0.33
1.81 0.45 2.31 0.66
1.27 0.33 1.88 0.54
0.82 0.23 0.44 0.13
1.88 0.46 1.37 0.4
5.66 1.27 7.04 1.98
0 0.06 0 0.01
0 0.06 0.49 0.15
0.4 0.15 1.29 0.37
0 0.06 0.37 0.12
1.98 0.48 2.16 0.62
10.21 2.24 12.53 3.51
4.64 1.05 3.9 1.1
5.66 1.27 4.66 1.31
19.25 4.18 15.86 4.45
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â b̂
â 0.00232 -0.00071

b̂ -0.00071 0.00610

## b) get list of PBS datasets

pbs_data_list <- pbs_FREML_knownPopVar(ml_est)

## c) apply MLE estimation for each data set

Sys.time()

pbs_param_est <- lapply(pbs_data_list, mmEst_FREML_knownPopVar_forPBS)

Sys.time()

## Uncertainties estimated

pbs_param_est_final <- do.call(rbind, pbs_param_est)

cov(pbs.param.est_final[,1:2])

5.1

Limitations of the study

This procedure is intended for application with small sample sizes and can be used for large

samples even though it is not a practical situation. The primary challenge encountered lies in

the time-consuming nature of generating Monte Carlo simulations, which may require a significant

amount of time for a personal computer to produce results. Apart from this, the method is not

subject to any other limitations.
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CHAPTER 6

CONCLUSION

This study primarily focuses on quantifying the uncertainty associated with the model coef-

ficients of the calibration curve. It addresses a significant issue often overlooked by chemists, which

involves using a linear regression model to fit the calibration curve while both the x and y vari-

ables contain measurement errors. To tackle this challenge, the study adopts the FREML model

introduced by scientists Ripley and Thompson. The main objective is to develop a method for quan-

tifying the uncertainties associated with the model coefficients using a numerical technique called

parametric bootstrapping. In the initial approach, the study considers a scenario where the re-

ported data exhibit population variances and employs likelihood estimation to determine the model

coefficients. However, a practical limitation arises as reported uncertainties are typically calculated

from around five replicates, rendering them unreliable as representations of population uncertainties.

Consequently, the study shifts its focus to a second approach, where reported uncertainties represent

sample variances. In this case, the study incorporates degrees-of-freedom as a source of uncertainty,

as the variance of the sample variance is dependent on degrees-of-freedom.

For validation purposes, the study employs a coverage assessment process for both methods.

The coverage calculation reveals that the original approach yields lower coverage compared to the

proposed new method, particularly in cases with lower degrees-of-freedom. Furthermore, when

comparing the calculated variances for a reported dataset with a smaller number of replicates, the

study finds that the estimated uncertainties using the second approach are approximately two times

larger than those using the first approach, particularly when degrees-of-freedom are limited. Notably,

both methods yield similar results when the number of replicates is larger. In conclusion, the findings

suggest that the second approach should be favored for estimating associated uncertainties when

degrees-of-freedom are lower, while both methods perform comparably when the number of replicates

is larger.



44

6.1

REFERENCES

[1] Sergei F. Boulyga, J. Alan Cunningham, Zsuzsanna Macsik, Joe Hiess, Maxim V. Peńkin, and
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book of Computational Statistics. Springer Handbooks of Computational Statistics. Springer,

Berlin, Heidelberg., 2012.

[8] Brian D. Ripley and Michael J. Thompson. Regression techniques for the detection of analytical

bias. Analyst, 112:377–383, 1987. doi:https://doi.org/10.1039/AN9871200377.

[9] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2023.

[10] M Thompson. Uncertainties in concentrations estimated from calibration experiments.

Technical report, amc technical brief, March 2006. https://www.rsc.org/images/

concentrations-calibration-experiments-technical-brief-22_tcm18-214840.pdf.

https://doi.org/10.1039/C7JA00180K
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6
https://www.iso.org/standard/46383.html
https://www.iso.org/standard/46383.html
https://doi.org/10.6028/jres.106.014
https://doi.org/10.6028/jres.106.014
https://doi.org/10.1039/AN9871200377
https://www.rsc.org/images/concentrations-calibration-experiments-technical-brief-22_tcm18-214840.pdf
https://www.rsc.org/images/concentrations-calibration-experiments-technical-brief-22_tcm18-214840.pdf


45

[11] Onghena P. Van Den Noortgate, W. Parametric and nonparametric bootstrap methods for

meta-analysis. Behavior Research Methods, 37:11–22, 2005. doi:https://doi.org/10.3758/

BF03206394.

[12] Stephen J. Walsh. Revisiting the fission track method for the analysis of particles in safe-

guards environmental samples. Talanta, pages 583–592, 2017. doi:https://doi.org/10.1016/

j.talanta.2017.01.090.

[13] Stephen J. Walsh, Naida Dzigal, Ernesto Chinea-Cano, and Andreas Limbeck. Simple robust

estimation of uranium isotope ratios in individual particles from la-icp-ms measurements. J.

Anal. At. Spectrom, 32(6):1155–1165, 2017. doi:https://doi.org/10.1039/C7JA00089H.

[14] Stephen J. Walsh, Zsuzsanna Macsik, Dariusz Wegrzynek, Thomas Krieger, and Sergei Boulyga.

Model diagnostics for detecting and identifying method repeatability outliers in precision stud-

ies: application to a homogeneity study under a two-stage nested anova. J. Anal. At. Spectrom.,

31(3):686–699, 2016. doi:https://doi.org/10.1039/C5JA00380F.

https://doi.org/10.3758/BF03206394 
https://doi.org/10.3758/BF03206394 
https://doi.org/10.1016/j.talanta.2017.01.090
https://doi.org/10.1016/j.talanta.2017.01.090
https://doi.org/10.1039/C7JA00089H
https://doi.org/10.1039/C5JA00380F


46

APPENDICES



47

APPENDIX 1 -VALIDATION OF NUMERICAL MLE AND PARAMETRIC BOOTSTRAP
METHODS FOR UNCERTAINTY QUANTIFICATION USING FREML MODEL: COVERAGE

PLOTS.

This appendix contains the results of Monte Carlo estimates of the statistical coverage of the
FREML procedure described in Chapter 3 as per the Table 3.4.
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Figure 6.1: Estimated Confidence Intervals of Coverage for Study Cases 1-5 with Seven Parameters.
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Figure 6.2: Estimated Confidence Intervals of Coverage for Study Cases 6-10 with 12 Parameters.
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Figure 6.3: Estimated Confidence Intervals of Coverage for Study Cases 11-13 with 22 Parameters.
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Figure 6.4: Estimated Confidence Intervals of Coverage for Study Cases 14-16 with 42 Parameters.
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Figure 6.5: Estimated Confidence Intervals of Coverage for Study Cases 17-19 with 102 Parameters
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APPENDIX 2 - VALIDATION OF NUMERICAL MLE AND PARAMETRIC BOOTSTRAP
METHODS FOR UNCERTAINTY QUANTIFICATION USING EFREML MODEL:

COVERAGE PLOTS.

This appendix contains Monte Carlo estimates of the statistical coverage of the EFREML
procedure as described in Chapter 4 for the cases shown in Table 4.1
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Figure 6.6: Estimated Confidence Intervals of EFREML via Parametric Bootstrap Procedure - Case
1.
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Figure 6.7: Estimated Confidence Intervals of EFREML via Parametric Bootstrap Procedure - Case
2.
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Figure 6.8: Estimated Confidence Intervals of EFREML via Parametric Bootstrap Procedure - Case
3.
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Figure 6.9: Estimated Confidence Intervals of EFREML via Parametric Bootstrap Procedure - Case
4.
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Figure 6.10: Estimated Confidence Intervals of EFREML via Parametric Bootstrap Procedure -
Case 5.
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APPENDIX 3 - INVESTIGATING THE UNDERESTIMATION OF ESTIMATED
UNCERTAINTY IN CASES WHERE THE MEASUREMENT UNCERTAINTY OF X IS

GREATER THAN THAT OF Y .

In this Chapter 2 appendix , we investigate the underestimation of var(â), var(b̂), and cov(â, b̂)
calculated using FREML compared to those calculated using EFREML when the measurement
uncertainty of x is larger than that of y under Case 1 in Table 4.1(degrees-of-freedom of y is fixed
at 5 with degrees-of-freedom of x is varying). The study ratios are detailed in Section 4.3.1. From
these findings, it is evident that when both the degrees-of-freedom for x and y are lower, the average
underestimation ratios for all three comparisons are 0.5, and they remain below 1 even as the degrees-
of-freedom of x increase. Consequently, these results suggest that when the degrees-of-freedom of
y are lower, EFREML should be preferred for uncertainty quantification, even in cases where the
measurement uncertainty of x exceeds that of y.
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Figure 6.11: Comparison of Estimated Variance-Covariance using FREML and EFREML when the
Measurement Uncertainty of x is greater than that of y.



61

APPENDIX 4 - FREML R FUNCTIONS AND EXAMPLE USAGE

This appendix contains code used to produce results in Chapter 3. Program was developed
using R version 4.3.2 [9].

## =============================================================================

#

# Authors: Aloka Dayarathne and Stephen J. Walsh

#

# January 2024, Utah State University,

# Department of Mathematics and Statistics

#

#

# README: --------------------------------------------------------------------

# Contents: this script contains the full set of functions and an

# updated workflow for implementing studies under the

# FREML model where population variances are known.

#

#

# Functions:

# 1.) simFREML_knownPopVar --- simulate data from FREML model

# 2.) nLogLik_FREML_knownPopVar --- FREML model negative log-likelihood

# 3.) mmEst_FREML_knownPopVar --- optimization wrapper to perform ML

# estimation given data

# 4.) mmEst_FREML_knownPopVar_forPBS --- a simplified ML estimation routine

# for use inside parametric

# bootstrapping

# 5.) pbs_FREML_knownPopVar --- the parametric bootstrap procedure,

# output is a list of potential

# (bootstrapped)

# datasets that are supported by the

# initial data sample

# 6.) sampDist_study_FREML_knownPopVar --- build sampling distributions given

# a PBS dataset list

## =============================================================================

rm(list = ls())

## 1.0 Simulate data from FREML model with known parameters --------------------

simFREML_knownPopVar <- function(n = 10, a = 0, b = 1, u_min = 1, u_max = 1000,

rsd_x = 0.05, rsd_x_r = 0.02,

rsd_y = 0.15, rsd_y_r = 0.03) {

# chemist will space these regularly

u_vc <- seq(u_min, u_max, length = n)

# make true v’s

v_vc <- a + b * u_vc

sigma_rsd_x <- runif(n, min = rsd_x - rsd_x_r, max = rsd_x + rsd_x_r)
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sigma_x <- u_vc * sigma_rsd_x

x_vc <- u_vc + rnorm(n, mean = 0, sd = sigma_x)

# make y’s

sigma_rsd_y <- runif(n, min = rsd_y - rsd_y_r, max = rsd_y + rsd_y_r)

sigma_y <- v_vc * sigma_rsd_y

y_vc <- v_vc + rnorm(n, mean = 0, sigma_y)

# pack into data frame

D <- data.frame(x = x_vc, sd_x_pop = sigma_x, y = y_vc, sd_y_pop = sigma_y)

true_params <- list(a = a, b = b, u = u_vc)

result <- list(data = D, params = true_params)

return(result)

}

## === STANDARD FREML FUNCTIONS ===============================================

# evaluates the FREML negative log-likeihood given parameters and data

nLogLik_FREML_knownPopVar <- function(

theta, # parameter vector: (a,b,u_1,...,u_n)

y, # measurements on Y

x, # measurements on X

sigma_x, # pop SD of Y

sigma_y # popSD of X

) {

# separate parameters

a <- theta[1]

b <- theta[2]

u <- theta[3:length(theta)]

# Compute SSD_x

x_err <- sum((x - u)^2 / sigma_x^2)

# compute SSD_y

y_err <- sum((y - (a + b * u))^2 / sigma_y^2)

# return negative log likelihood

res <- 0.5 * (x_err + y_err)

return(res)

}

# apply ML estimation to a data set

mmEst_FREML_knownPopVar <- function(Dlist, # Dlist contains $data and $params

allResult = F) {

## NOTE: this function is applied to original/master data

# to give ML estimates

D <- Dlist$data

# pick off variables

x <- D$x

sigma_x <- D$sd_x_pop

y <- D$y

sigma_y <- D$sd_y_pop

theta <- c(lm(y ~ x)$coefficients, x) # select starting values for

# optimization by OLS approach
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mle <- optim(

fn = nLogLik_FREML_knownPopVar,

par = theta,

x = x,

y = y,

sigma_x = sigma_x,

sigma_y = sigma_y,

method = "BFGS",

control = list(maxit = 50000)

)

if (allResult) {

nlmOut <- mle

} else {

(

nlmOut <- NULL

)

}

# grab estimates

estimates <- mle$par

# organize output

ans <- list(

# needed to add data to keep known pop vars

"data" = D,

"true.params" = Dlist$params,

"estimates" = list(

"coefficients" = estimates[1:2],

"u_i" = estimates[3:length(estimates)]

),

"optim Output" = nlmOut

)

ans # Return the Results

}

mmEst_FREML_knownPopVar_forPBS <- function(D, # PBS Bootstrap FREML dataset

allResult = F) {

## NOTE: This is FREML MLE but simplified for application

# to the bootrap data sets

# pick off variables

x <- D$x

sigma_x <- D$sd_x_pop

y <- D$y

sigma_y <- D$sd_y_pop

n <- length(x)

theta <- c(lm(y ~ x)$coefficients, x) # select starting values for

# optimization by OLS approach

mle <- optim(

fn = nLogLik_FREML_knownPopVar,

par = theta,

x = x,

y = y,

sigma_x = sigma_x,
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sigma_y = sigma_y,

method = "BFGS",

control = list(maxit = 50000)

)

# grab estimates

estimates <- mle$par

# organize output

res <- as.data.frame(t(estimates))

cnames <- c("a_hat", "b_hat", paste0("u", 1:n))

names(res) <- cnames

return(res) # Return the Results

}

# ------------------------------------------------------------------------------

## Parametric Bootstrap --------------------------------------------------------

# given ML parameter estimates, use FREML model to make M new potential dataset

# -s supported by the mother data

pbs_FREML_knownPopVar <- function(p_list, M = 5000) {

data_t <- p_list$data

sd_x_pop <- data_t$sd_x_pop

sd_y_pop <- data_t$sd_y_pop

coef_t <- p_list$estimates$coefficients

a_hat <- coef_t[1]

b_hat <- coef_t[2]

ui_hat <- p_list$estimates$u_i

n <- length(ui_hat)

# PBS data list

pbs_d_list <- list()

for (i in 1:M) {

# simulate new data sets

x_new <- ui_hat + rnorm(n, 0, sd_x_pop)

v <- a_hat + b_hat * ui_hat

y_new <- v + rnorm(n, 0, sd_y_pop)

# parametric bootstrapped data set

data_pbs <- data.frame(

x = x_new, sd_x_pop = sd_x_pop, y = y_new,

sd_y_pop = sd_y_pop

)

pbs_d_list[[i]] <- data_pbs

}

return(pbs_d_list)

}

# this function applies ML estimation to a list of PBS bootstrapped

# datasets

sampDist_study_FREML_knownPopVar <- function(Dl) {

rt <- lapply(Dl, mmEst_FREML_knownPopVar_forPBS)

res <- do.call(rbind, rt)

return(res)

}
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#-------------------------------------------------------------------------------

## -----------------------------------------------------------------------------

## Example Application:

# a) make the list of mother data sets - each of these mimics a dataset

# reported by a chemist or lab analyst

N_data <- 1

D_list <- list()

for (i in 1:N_data) D_list[[i]] <- simFREML_knownPopVar()

# b) add ML ests to each set

ml_est_list <- lapply(D_list, mmEst_FREML_knownPopVar)

## c) get list of list of PBS datasets

## NOTE: CAN BE PARALLELIZED for coverage study

pbs_data_list <- lapply(ml_est_list, pbs_FREML_knownPopVar)

## MUST BE PARALLELIZED for coverage study

Sys.time()

pbs_param_est_list <- lapply(pbs_data_list, sampDist_study_FREML_knownPopVar)

Sys.time()

## the following 3 databases should be saved together

ml_est_list

pbs_data_list

pbs_param_est_list
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APPENDIX 5 - EFREML R FUNCTIONS AND EXAMPLE USAGE

This appendix contains code used to produce results in Chapter 4. Program was developed
using R version 4.3.2 [9].

## =============================================================================

#

# Authors: Aloka Dayarathne and Stephen J. Walsh

#

# January 2024, Utah State University,

# Department of Mathematics and Statistics

#

#

# README: --------------------------------------------------------------------

# Contents: this script contains the full set of functions and an

# updated workflow for implementing studies under the Extended-

# FREML model where population variances are unknown and

# reported with corresponding degrees-of-freedom.

#

#

# Functions:

# 1.) simFREMLext --- simulate data from FREML model

# 2.) nLogLik_FREML_knownPopVar --- EXTFREML model negative

# log-likelihood

# 3.) mmEst_FREML_extended_A2_forPBS --- optimization wrapper to perform ML

# estimation given data

# 4.) mmEst_FREML_extended_A2_forPBS --- a simplified ML estimation routine

# for use inside parametric

# bootstrapping

# 5.) pbs_FREML_extended_A2 --- the parametric bootstrap procedure,

# output is a list of potential

# (bootstrapped)

# datasets that are supported by the

# initial data sample

# 6.) sampDist_study_FREML_extended_A2 --- build sampling distributions given

# a PBS dataset list

## =============================================================================

rm(list = ls())

## 1.0 Simulate data from ExtendedFREML model with known parameters ------------

## See Manuscript for definitions

simFREMLext <- function(n = 10, a = 0, b = 1, u_min = 1, u_max = 100,

rsd_x = 0.05, rsd_x_r = 0.02, rsd_y = 0.15,

rsd_y_r = 0.03, dfx = 5, dfy = 5) {

dfxi <- rep(dfx, n)

dfyi <- rep(dfy, n)
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# chemist will space these regularly

u_vc <- seq(u_min, u_max, length = n)

# make true v’s

v_vc <- a + b * u_vc

sigma_rsd_x <- runif(n, min = rsd_x - rsd_x_r, max = rsd_x + rsd_x_r)

sigma_x <- abs(u_vc * sigma_rsd_x)

sxi <- sqrt(sigma_x^2 * rchisq(n = n, df = dfxi) / dfxi)

x_vc <- u_vc + rnorm(n, mean = 0, sd = sigma_x)

# make y’s

sigma_rsd_y <- runif(n, min = rsd_y - rsd_y_r, max = rsd_y + rsd_y_r)

sigma_y <- abs(v_vc * sigma_rsd_y)

y_vc <- v_vc + rnorm(n, mean = 0, sigma_y)

syi <- sqrt(sigma_y^2 * rchisq(n = n, df = dfyi) / dfyi)

## make dataframe, note change of name of samp SDs

D <- data.frame(

x = x_vc, sd_x_samp = sxi, dfxi = dfxi,

y = y_vc, sd_y_samp = syi, dfyi = dfyi

)

true_params <- list(

a = a, b = b, u = u_vc, var_pop.x = sigma_x^2,

var_pop_y = sigma_y^2

)

result <- list(data = D, params = true_params)

return(result)

}

## === Extended FREML FUNCTIONS ================================================

# evaluates the EXT FREML negative log-likeihood given parameters and data

nLogLik_FREML_knownPopVar <- function(

theta, # parameter vector: (a,b,u_1,...,u_n)

y, # measurements on Y

x, # measurements on X

sigma_x, # pop SD of Y

sigma_y # popSD of X

) {

# separate parameters

a <- theta[1]

b <- theta[2]

u <- theta[3:length(theta)]

# Compute SSD_x

x_err <- sum((x - u)^2 / sigma_x^2)

# compute SSD_y

y_err <- sum((y - (a + b * u))^2 / sigma_y^2)

# return negative log likelihood

res <- 0.5 * (x_err + y_err)
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return(res)

}

# apply ML estimation to a data set

mmEst_FREML_extended_A2 <- function(Dlist, allResult = FALSE) {

D <- Dlist$data

x <- D$x

y <- D$y

sd_x_mle <- D$sd_x_samp

sd_y_mle <- D$sd_y_samp

n <- length(x)

# original FREML procedure

theta_0 <- c(lm(y ~ x)$coefficients, x)

mle <- optim( # nlm is a function for Non-Linear Minimization

fn = nLogLik_FREML_knownPopVar,

par = theta_0,

x = x,

y = y,

sigma_x = sd_x_mle,

sigma_y = sd_y_mle,

method = "Nelder-Mead",

control = list(maxit = 50000) # , factr = 1E-10, pgtol = 1E-30, trace = 0)

)

# grab estimates

estimates <- mle$par

if (allResult) {

nlmOut <- mle

} else {

(

nlmOut <- NULL

)

}

ans <- list(

"data" = D,

"true_params" = Dlist$params,

"estimates" = list(

"coefficients" = estimates[1:2],

"u_i" = estimates[3:(n + 2)]

),

"optim Output" = nlmOut

)

return(ans) # Return the Results

}

mmEst_FREML_extended_A2_forPBS <- function(D, allResult = F) {

x <- D$x
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y <- D$y

sd_x_samp <- D$sd_x_samp_s

sd_y_samp <- D$sd_y_samp_s

n <- length(x)

# apply estimation under known-pop-var freml to initiate this optim search

# original FREML procedure

theta_0 <- c(lm(y ~ x)$coefficients, x)

mle <- optim( # nlm is a function for Non-Linear Minimization

fn = nLogLik_FREML_knownPopVar,

par = theta_0,

x = x,

y = y,

sigma_x = sd_x_samp,

sigma_y = sd_y_samp,

method = "Nelder-Mead",

control = list(maxit = 50000) # , factr = 1E-10, pgtol = 1E-30, trace = 0)

)

# grab estimates

estimates <- mle$par

conv <- mle$convergence

# organize output

if (conv == 0) {

res <- as.data.frame(t(estimates))

} else {

res <- as.data.frame(t(rep(NA, length(estimates))))

}

cnames <- c("a_hat", "b_hat", paste0("u", 1:n))

names(res) <- cnames

return(res)

}

# ------------------------------------------------------------------------------

## Parametric Bootstrap --------------------------------------------------------

# given ML parameter estimates, use FREML model to make M new potential

# datasets supported by the mother data

## make PBS datasets given param estimates -------------------------------------

pbs_FREML_extended_A2 <- function(p_list, M = 5000) {

# get data

data_t <- p_list$data

sd_x_samp <- data_t$sd_x_samp

sd_y_samp <- data_t$sd_y_samp

dfxi <- data_t$dfxi

dfyi <- data_t$dfyi

# first, pick off ML ests of params

mest_t <- p_list$estimates

a_hat <- mest_t$coefficients[1]

b_hat <- mest_t$coefficients[2]
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ui_hat <- mest_t$u_i

n <- length(ui_hat)

# PBS data list

pbs_d_list <- list()

for (i in 1:M) {

v_s <- a_hat + b_hat * ui_hat

# bootstrap a new data sample variance from observed sample

# variance acting in place of \sigma^2 as MLE

sd_x_samp_s <- sqrt(rchisq(n, df = dfxi) * (sd_x_samp^2) / dfxi)

sd_y_samp_s <- sqrt(rchisq(n, df = dfyi) * (sd_y_samp^2) / dfyi)

# propogate uncertainty in knowledge of true \sigma_{xi}^2 and

# true \sigma_{yi}^2 into boostrapped data (x, y)

sd_x_pop_s <- sqrt(dfxi * (sd_x_samp^2) / rchisq(n, df = dfxi))

sd_y_pop_s <- sqrt(dfyi * (sd_y_samp^2) / rchisq(n, df = dfyi))

# sample new X and Y

x_s <- ui_hat + rnorm(n, 0, sd_x_pop_s)

y_s <- v_s + rnorm(n, 0, sd_y_pop_s)

data_pbs <- data.frame(

x = x_s, sd_x_samp_s = sd_x_samp_s,

y = y_s, sd_y_samp_s = sd_y_samp_s

)

pbs_d_list[[i]] <- data_pbs

}

return(pbs_d_list)

}

# this function just makes the PBS param sampling distribution list to dataframe

sampDist_study_FREML_extended_A2 <- function(Dl) {

# this is to make sampling distributions for

# one mother data set

rt <- lapply(Dl, mmEst_FREML_extended_A2_forPBS)

res <- do.call(rbind, rt)

return(res)

}

#-------------------------------------------------------------------------------

## -----------------------------------------------------------------------------

## Example Application:

# a) make the list of mother data sets - each of these mimics a dataset

# reported by a chemist or lab analyst

N_data <- 1

D_list <- list()

for (i in 1:N_data) D_list[[i]] <- simFREMLext()

# b) add ML ests to each set

ml_est_list <- lapply(D_list, mmEst_FREML_extended_A2)



71

## c) get list of list of PBS datasets

## NOTE: CAN BE PARALLELIZED for coverage study

pbs_data_list <- lapply(ml_est_list, pbs_FREML_extended_A2)

## MUST BE PARALLELIZED for coverage study

Sys.time()

pbs_param_est_list <- lapply(pbs_data_list, sampDist_study_FREML_extended_A2)

Sys.time()

## the following 3 databases should be saved together

ml_est_list

pbs_data_list

pbs_param_est_list
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APPENDIX 6 - FREML FUNCTIONS APPLIED TO DATA FROM RIPLEY AND THOMPSON
(1987).

This appendix contains code used to reproduce analysis performed in Ripley and Thompson
paper in Chapter 3. The following code is a usage of the codes in Appendix 4. Program was
developed using R version 4.3.2 [9].

## Example data set found from Ripley and Thompson(1987) paper

x <- c(

8.71, 7.01, 3.28, 5.60, 1.55, 1.75, 0.73, 3.66, 0.9, 9.39, 4.39, 3.69, 0.34,

1.94, 2.07, 1.38, 1.81, 1.27, 0.82, 1.88, 5.66, 0, 0, 0.4, 0, 1.98, 10.21,

4.64, 5.66, 19.25

)

sx <- c(

1.92, 1.56, 0.76, 1.26, 0.39, 0.43, 0.22, 0.84, 0.25, 2.07, 1, 0.84, 0.13,

0.47, 0.5, 0.36, 0.45, 0.33, 0.23, 0.46, 1.27, 0.06, 0.06, 0.15, 0.06, 0.48,

2.24, 1.05, 1.27, 4.18

)

y <- c(

7.35, 7.92, 3.4, 5.44, 2.07, 2.29, 0.66, 3.43, 1.25, 6.58, 3.31, 2.72, 2.32,

1.5, 3.5, 1.17, 2.31, 1.88, 0.44, 1.37, 7.04, 0, 0.49, 1.29, 0.37, 2.16,

12.53, 3.9, 4.66, 15.86

)

sy <- c(

2.07, 2.23, 0.96, 1.53, 0.59, 0.65, 0.19, 0.97, 0.36, 1.85, 0.93, 0.77, 0.66,

0.43, 0.99, 0.33, 0.66, 0.54, 0.13, 0.4, 1.98, 0.01, 0.15, 0.37, 0.12, 0.62,

3.51, 1.1, 1.31, 4.45

)

RT_data <- list(data = data.frame(x, sd_x_pop = sx, y, sd_y_pop = sy))

## a) MLE estimates for original data set

ml_est <- mmEst_FREML_knownPopVar(RT_data)

## b) get list of PBS datasets

pbs_data_list <- pbs_FREML_knownPopVar(ml_est)

## c) apply MLE estimation for each data set

Sys.time()

pbs_param_est <- lapply(pbs_data_list, mmEst_FREML_knownPopVar_forPBS)

Sys.time()

## Uncertainties estimated

pbs_param_est_final <- do.call(rbind, pbs_param_est)

cov(pbs.param.est_final[,1:2])
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