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ABSTRACT

Assessing Extant Methods for Generating G-Optimal Designs and a Novel Methodology to

Compute the G-Score of a Candidate Design

by

Hyrum John Hansen, Master of Science

Utah State University, 2024

Major Professor: Stephen J. Walsh
Department: Mathematics and Statistics

Finding exact G-Optimal designs has been an outstanding problem in optimal design of exper-

iments since the field’s inception. Proposed in 1918, the original G-optimal designs considered only

one-factor experimental settings with multi-factor designs precluded due to mathematical intractabil-

ity. The past two decades have seen rigorous development in the field of numerical optimization,

providing the requisite algorithms to find highly G-efficient designed experiments. In this thesis we

apply four algorithms to the search for G-optimal designs: the Nelder-Mead Simplex Algorithm,

the Particle Swarm Optimizer, and two variants of the Point-Exchange Algorithm. We introduce

Gloptipoly, a MATLAB implementation of the method of semidefinite relaxations to solve the

generalized problem of moments, and use it to score candidate G-optimal designs. We find that

combining Particle Swarm Optimization with Gloptipoly results in the most G-efficient designs

found to-date for several design scenarios. Consistent with past research, our results suggest that

swarm optimizers – such as the particle swarm – are the ideal algorithms to search the space of

candidate designs. This is because they are robust to entrapment in local optima and are capable

of considering many regions of the search space simultaneously. By contrast, greedy algorithms like

the very popular coordinate exchange fall short when the dimension of the search space is large. We

show that the method of semidefinite relaxations mitigates error induced by approximation methods

when computing the G-efficiency of a candidate design.
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We also introduce G-optimal designs for response-surface models not-yet explored in the

literature, noting interesting geometric features related to how design-points are distributed with

respect to their corresponding scaled-prediction-variance surfaces. Computational complexity pre-

cludes extension to settings with more than three factors, making an implementation of the method

of semidefinite relaxations in a faster language essential to progress in this field. Nonetheless, the

proposed designs for cubic, quartic, and higher-order interaction response-surface models are the

first known G-optimal designs of their kind.

(80 Pages)
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PUBLIC ABSTRACT

Assessing Extant Methods for Generating G-Optimal Designs and a Novel Methodology to

Compute the G-Score of a Candidate Design

Hyrum John Hansen

Experimental designs are used by scientists to allocate treatments such that statistical in-

ference is appropriate. Most traditional experimental designs have mathematical properties that

make them desirable under certain conditions. Optimal experimental designs are those where the

researcher can exercise total control over the treatment levels to maximize a chosen mathematical

property. As is common in literature, the experimental design is represented as a matrix where each

column represents a variable, and each row represents a trial. We define a function that takes as

input the design matrix and outputs its score. We then algorithmically adjust each entry until a

design is found that minimizes or maximizes the function of interest.

In this thesis we study how to best minimize a prediction-variance criteria called theG-criteria,

which is the maximum scaled-prediction-variance (SPV) over the entire design-space. Researchers

may choose to implement this type of optimal experimental design when they need make accurate

predictions on untested regions of their design space. In this thesis we apply various algorithms to

the G-optimal problem, identifying and scoring candidate G-optimal designs with a combination of

novel and legacy algorithms. We find that combining a novel scoring method called Gloptipoly with

the best-known searching method (particle swarm optimization) produces the best-known G-optimal

designs to-date.
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CHAPTER 1

REVIEW OF G OPTIMAL DESIGNS ON THE HYPERCUBE

1.1

Introduction

Optimal experimental designs are found by minimizing or maximizing a specific function of

the model information matrix. Optimal designs can offer distinct advantages, especially when exper-

imental constraints necessitate efficiency and when the researcher can predefine the response surface

model. For example, situations characterized by budgetary constraints, which limit the number of

experimental trials, are especially well-suited for optimal designs. In such cases, researchers might

focus on tailoring their experiments to optimize objective measures of quality within the confines of

limited trials, rather than attempting to conform the experiment to classical designs.

The concept of optimal designs was originally introduced by Kristine Smith in 1918. Her

seminal paper provided guidelines for constructing experiments by utilizing residual error variance

where the collected data are used to fit a polynomial model with linear parameters. In her study,

she examined one-factor designs ranging from first-order to sixth-order polynomials. Smith’s paper

presented designs that minimize the worst-case-scenario prediction variance, a property we now refer

to as the G-criterion. Computational intractability limited Smith to univariate experiments as she

was required to analytically derive them using scalar notation. Even for the simplest cases, this was

hardly a trivial endeavor. Notwithstanding its limited scope, this paper laid the groundwork for the

study of optimal experimental designs and is considered to be 30 years before its time [28].

In the 1950s, the field saw significant theoretical development to address the nonoptimality

of classical designs with significant contributions from Kiefer and Wolfowitz [11, 12, 13]. The field’s

focus was on continuous optimal designs—also called approximate or asymptotic designs—which

consider properties of the design achieved for a very large number of trials. These designs are viewed

as probability measures on the space of all possible designs and provide convenient mathematical

properties as well as some theorems for validating a design’s optimality.
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In contrast, exact optimal designs are tailored to be optimal for a specific number of trials.

Exact optimal design theory lacks analogous mathematical tractability and corresponding theorems

for validating a candidate design, so the implemented design is compared to a large group of candidate

optimal designs. Research in this space has focused on efficient ways to explore the space of candidate

designs, which is exceedingly vast for experiments involving numerous variables. The most popular

algorithm for searching this space is the coordinate-exchange (CEXCH) algorithm of Meyer and

Nachtsheim [19], an iterative optimization algorithm that updates one coordinate of a design at a

time while holding others fixed to improve design quality at each update. For additional examples

of research in this space, see [29, 31, 30, 21, 3, 5]

While CEXCH has been relatively successful, it is not without drawbacks. CEXCH begins

with a single random candidate design and iteratively moves towards a local optimum, rendering it

highly sensitive to the initial condition. Goos & Jones (2011) suggest mitigating the influence of

poor starting points by running the algorithm several thousand times with different starting points

and choosing the best design from the candidate pool [4]. Because CEXCH is a local optimizer it is

unlikely—especially in higher dimensional problems—that it will find the globally optimal design. To

overcome these limitations, researchers have implemented meta-heuristic evolutionary algorithms for

optimal design generation that have desirable properties for high-dimensional problems like these.

These algorithms have included the Genetic Algorithm (GA), Simulated Annealing, and Particle

Swarm Optimization (PSO). Borkowski gave the first treatment of the genetic algorithm applied to

the optimal design problem in [1, 32, 23].

There are three primary reasons researchers have chosen to explore this class of algorithms

for the optimal design problem. First, few—if any—assumptions about the nature of the objective

make them agnostic to its peculiarities. These peculiarities will be discussed at length in this and

the following chapter, but for now it is sufficient to highlight the fact that since the G-criterion is

an optimization problem, the search for G-optimal designs is viewed as a saddle-point optimization

with a non-differentiable objective. Second, they overcome CEXCH’s propensity to entrapment

in local optima through techniques like swarm intelligence. For example, instead of starting with

one randomly generated candidate design as in CEXCH, PSO begins with dozens or hundreds of

candidate designs and uses information from current and prior positions of all candidate optima in

the update equation. Third, this class of algorithms propose updates without needing to compute

the gradient of the objective function making it well suited to the optimal design problem.
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1.2

Notation

Since Smith’s 1918 paper [25], the notation and terminology associated with the field have

been rigorously updated. In 1959, Kiefer formalized the field of optimal design, formalizing several

scalar measures related to desirable properties of designed experiments [11]. We will not provide an

exhaustive list of these measures, but we will borrow much of the notation and terminology. We will

be introducing our notation here through the framework of the second-order model. Let N represent

the number of design points and K represent the number of experimental factors. Use x
′
to denote

a design point, a 1 × K row vector where each x ∈ x
′
specifies a factor level. Standard practice

is to scale the feasible domain to [−1, 1] so the space of all x
′
design points is the χ = [−1, 1]K

hypercube. This notation is used to denote the Cartesian product of K such elements, which means

that resultant mathematical object is a row vector of K elements where each element xj ≤ |1|.

This abstract object represents a design point, which is realized as a row in the design matrix. The

collection of N design points as rows in a matrix engenders the design matrix X, an NK-dimensional

hypercube. We use ×N
j=1 to represent the Cartesian product of N items, which can also be used to

abstractly represent the design matrix X. Putting it all together,

X ∈ ×N
j=1χ = ×N

j=1[−1, 1]K = [−1, 1]NK = χN .

The second-order linear model contains
(
K+2
2

)
linear coefficient parameters and is written in

scalar form

y = β0 +

K∑
i=1

βixi +

K−1∑
i=1

K∑
j=i+1

βijxixj +

K∑
i=1

βiix
2
ii + ϵ,

or as

y = Fβ + ϵ

in matrix-vector form. The standard ordinary least squares assumptions are imposed; ϵ ∼ NN (0, σ2IN )

where NN is the N -dimensional multivariate normal distribution. F, the N × p model matrix, is

obtained from X through F(X), and rows in F are given by the expansion vector

f ′(x′
i) = (1 xi1 . . . xik xi1xi2 . . . xi(K−1)xiK x2

i1 x2
iK).

F(X) and F are used interchangeably in literature, but it should be clear that F is always a function
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of X.

The ordinary least squares estimator of β is β̂ = (F
′
F)−1F

′
y, which has variance Var(β̂) =

σ2(F
′
F)−1, also called the full information matrix. Both β̂ and Var(β̂) are expressed as quantities

of F
′
F, the model information matrix. Because of its centrality to the optimal design problem, let

M(X) = F
′
F. Most optimal design objective criteria are dependent on total information matrix (and

all traditional criteria are invariants of the information matrix), so it is of considerable importance

to the field [4].

We use M(X) to formulate objective criteria, functions of the information matrix whose

output describes some property of the candidate design that would be expedient to minimize or

maximize. Typically, the practitioner must choose exactly one X ∈ χN , and objective criteria offer

meaningful ways of measuring the quality of a candidate design from a large candidate pool. In order

to find an optimal design, we need three pieces of information. First, the number of experimental

trials, N , must be given. Second, the response surface model with which the practitioner intends to

analyze the data must be known. Finally, we must define the optimality criteria, which encodes the

desirable experimental design property.

1.3

G-Optimality

There are two prediction variance criteria we commonly study. These are referred to as

the I- and G-criteria, where the I -optimal design minimizes the average prediction variance and

the G-optimal design minimizes the worst-case-scenario prediction variance. This thesis focuses

on G-optimal designs. G-optimal designs have both intuitive and practical appeal, and are a good

choice when prediction on untested regions is a primary objective of experimentation. A practitioner

should favor the G-optimal design over the I -optimal design when prediction accuracy on untested

regions is paramount. It should also be noted that hybrid designs exist; that is, some work has been

done to find designs that are simultaneously both highly G- and I-efficient [26]. Nonetheless, this

work focuses exclusively on optimizing for G-optimality and will not consider other design types.

Intuitively, the G-optimal is that design which minimizes the worst-case-scenario prediction variance

over χ. We compute the variance of the mean predicted value with

Var(ŷ(x′)) = σ2f ′(x′)(F′F)−1f(x).

Because we need this function to provide a numeric value to guide the optimization and σ2 is
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calculated using actual numeric data, we multiply by the variance by a scaling factor, N/σ2, and

use Scaled Prediction Variance (SPV). With this new expression, we can compute scaled prediction

variance for any design point x′ ∈ χ. The resulting quantity is expressed as

SPV(x′|X) := N f ′(x′)(F′F)−1f(x).

The G-score of a candidate design is the maximum scaled prediction variance over all design

points, that is

G(X) := max
x′∈χ

SPV(x′|X).

As stated, computing the G-score is itself an optimization problem making the search for a G-

optimal matrices a nested optimization problem. So the G-optimal design X∗ is that design which

minimizes, over all X ∈ χN , the maximum prediction variance. We can formulate the search as a

minimax problem, that is

X∗ := argmin
X∈χN

G(X)

= argmin
X∈χN

max
x′∈χ

SPV(x′|X).

Neither of these optimizations is convex, making the search for G-optimal designs a notoriously

difficult saddle-point problem. Fortunately, there exists a theoretical lower bound on the G-score of

candidate matrices, so we have a baseline for design quality before the search even begins. Outlined in

[11], the general equivalence theorem establishes p, the parameter count, as the minimum threshold.

In other words,

G(X) = max
x′∈χ

SPV(x′|X) ≥ p.

Note that not all design scenarios admit designs that actually achieve this lower bound, but it does

provide a convenient way to check if generated designs are close to being G-optimal. Exploiting

the fact that the theoretically globally G-optimal design has SPV(x′|X) = p at all diagonals of the

hat matrix F(F′F)−1F′ and SPV(x′|X) ≤ p at all other design points x′ ∈ χ, we can compute an

absolute G-efficiency score,
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Geff (X) = 100
p

G(X)
.

The existence of a known theoretical bound makes the G-optimal problem unique from other

exact optimal design problems where the scale on the optimality criterion is arbitrary. To compare

the relative quality of two designs, standard practice in optimal design is to report relative efficiency,

which involves the ratio of the found design to the best-known design, and can be computed as

Greleff (X1,X2) = 100
Geff (X1)

Geff (X2)
.

1.4

On Generating Exact G-Optimal Designs

When Smith first introduced the optimal design problem in 1918, problems were necessarily

solved by hand. This restricted researchers to low-order, univariate models. The age of computing

has lowered the barrier to entry, particularly for computationally expensive tasks like computing

the G-criteria. Borkowski in [1] was the first to apply the genetic algorithm (GA) to the optimal

design problem. The algorithm was adapted to find A−, D−, I−, and G− optimal designs for design

scenarios with up to three variables over a range of experiment sizes. Borkowski’s designs have been

used as a baseline of comparison when evaluating the efficacy of proposed algorithms [19, 1, 23].

In 2010, Rodriguez et al. implemented Brent’s minimization algorithm to propose coordinate

swaps inside CEXCH and to compute the G-score of a candidate design [22], finding designs on par

with those in Borkowski, 2003 [1]. [22] even found the best-known designs for the K = 4, N = 15 and

K = 5, N = 21 cases. Importantly, they also introduced the Variance-Ratio Fraction of Design Space

Plot (VRFDS), a graphical method to compare the prediction variance of competing designs over

regions of interest. The authors found that I-optimal designs have significantly lower prediction

variance than corresponding G-optimal designs over most of the design space, with the intuitive

exception being in the worst case scenario. The I-criteria is to minimize the average prediction

variance, so its elevated practicability came as no surprise. Nonetheless, the G-criteria could be

desirable for models known to be particularly unstable at the extremes and it remains a challenging

but academically interesting problem, so the research has persisted.

Saleh & Pan recognized the need for further algorithm development in the G-opt space. In

2015 they published a modified version of the coordinate exchange that integrates a clustering
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step [23]. The algorithm determines cluster membership for each design point in the current design

matrix. The cluster with the smallest maximum prediction variance is denoted MU while the cluster

with the greatest maximum prediction variance is denoted MX. Within MU , points are iteratively

removed and resulting maximum prediction variance calculated. The element that causes minimal

change in maximum prediction variance is then deleted and replaced by the candidate point with

maximum prediction variance in the MX cluster. The algorithm continues to cluster, evaluate, and

replace until no changes are made. Note that this procedure can’t work for a fully saturated model

because it relies on computing the maximum prediction variance for an (N − 1)× p matrix, which is

singular; however, for viable experimental settings clustering-based coordinate exchange was shown

to produce design with higher G-efficiency in much shorter time when compared to previous methods.

In 2017, Hernandez et al were able to exploit a clever transformation, converting the unwieldy G-

optimal search to a more computationally tractable Iλ search [8]. The authors used the standard

coordinate exchange algorithm with a continuous Iλ-optimal design as a starting point. They refer to

method asG(Iλ)-CEXCH. The method proved to be fairly effective and computationally inexpensive,

at least compared to GA. The designs found by G(Iλ)-CEXCH were greater than 90% efficient and

about 2 orders of magnitude less computationally expensive than GA. This result made it a great

choice to find G-optimal designs. A tabular summary of published work on the G-optimal problem

can be found in Table 1.1.

Walsh & Borkowski were the first to apply particle swarm optimization (PSO) to the G-

optimal problem [32]. A version of PSO that utilizes a local communication topology was shown to

be an effective algorithm to find designs under the D− and I− criteria, but its usefulness hadn’t yet

been evaluated for the G-optimal problem. Despite being a relative newcomer, PSO produced the

best-known designs to-date with cost commensurate to G(Iλ)-CEXCH making it the best known

choice for finding G-optimal designs. PSO allows information about the location of the current best-

known design to influence the behavior of all other designs in the search, which gives it a significant

advantage over CEXCH whose runs are completely blind to the information gained by other trials.

PSO also doesn’t require repeated runs like CEXCH, as 200-runs of the algorithm is analogous to a

200-particle PSO search.
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Table 1.1: Summary of design scenarios, algorithms, and authors who have published resutls for the
G-optimal design problem for a second order response surface model in the last 20 years [1, 8, 32,
22, 23].

# Exp. Factors Experiment Sizes
Algorithms Authors

K N

1 3, 4, 5, 6, 7, 8, 9
GA

G(Iλ)-CEXCH
G-PSO

Borkowski (2003)
Hernandez and Nachtsheim (2018)

Walsh and Borkowski (2022)

2 6, 7, 8, 9, 10,11, 12

GA
CEXCH

cCEA (N = 7 to 12)
G-PSO

Borkowski (2003)
Rodriquez et. al. (2010)
Saleh and Pan (2015)

Walsh and Borkowski (2022)

3 10, 11,12,13,14,15,16

GA
CEXCH

cCEA (N = 11 to 16)
G-PSO

Borkowski (2003)
Rodriquez et. al. (2010)
Saleh and Pan (2015)

Walsh and Borkowski (2022)

4
15, 20, 24

CEXCH
cCEA (N=24)

Rodriguez et. al. (2010)
Saleh and Pan (2015)

16 cCEA Saleh and Pan (2015)
17 G(Iλ)-CEXCH Hernandez and Nachtsheim (2018)

15, 17, 20, 24 G-PSO Walsh and Borkowski (2022)

5
21, 26, 30

CEXCH
cCEA (N = 26)

Rodriquez et. al. (2010)
Saleh and Pan (2015)

23 G(Iλ)-CEXCH Hernandez and Nachtsheim (2018)
21, 23, 26, 30 G-PSO Walsh and Borkowski (2022)

1.5

Computing the G-Score

Computing the G-score for a candidate design is by no means a trivial endeavor. In Chapter

3 the process by which we find and propose optimal designs will be described in more detail, but

for readability we will take a moment here to define some key terms. In this work, when we refer

to the ‘outer-optimization,’ we are talking about the multivariate optimization step that takes as

input an N × K matrix and adjusts each entry until convergence. In the context of element-by-

element adjustment, convergence means a practitioner can pass their univariate optimizer across

all N × K elements in the matrix and no updates will be proposed. There are also multivariate

optimization algorithms for which convergence usually means the outer-optimizer has reached some

specified level of tolerance regarding the difference between a proposed optimum at time step t

vs. t − 1, but these processes will be discussed as needed later in the work. Accordingly when we

refer to the ‘inner-optimization,’ we are talking about computing the G-efficiency of a given design

which is the maximum value on that design’s SPV polynomial. So the outer optimizer searches

the space of candidate designs and proposes updates using the inner optimization as its objective

function. In this work, we are primarily studying the inner-optimization step. Similarly, the SPV
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polynomial, referred to frequently in this work as the SPV surface, is the K-dimensional scalded-

prediction-variance polynomial engendered by a candidate design. This polynomial outputs the

scaled prediction variance for any design point, so its maximum value is the quantity we aim to

minimize when computing the G-criterion. These ideas will be discussed at length later, but a brief

explanation is warranted here before we get into detail.

Various methods have been employed to approximate the G-score of a candidate design matrix,

but there is plenty of space to explore new techniques. The ‘inner-optimization’ can be one of the

trickiest steps in the search. A common practice is to exploit the symmetry of the SPV-surface for

the second-order RSM model and use a 5K grid-approach over χ. Each xi ∈ {−1,−0.5, 0, 0.5, 1} for

i = 1, ...,K with the full grid being Gχ = {−1,−0.5, 0, 0.5, 1}K meaning that the approach requires

5K function evaluations at each iteration. For vanilla CEXCH, this method demands 55 = 3, 125

function evaluations per proposed swap for a K = 5 experimental setting. For a K = 5, N =

30 experimental setting, one pass of a univariate optimizer through the design matrix requires

N × K × 3, 125 = 30 × 5 × 125 = 468, 750 function evaluations per pass, per design. For high-

dimensional problems optimizers usually take more than 1 pass through the matrix to converge to a

local optimum, so scoring a candidate design with the grid-search can require over a million function

evaluations just to propose a single candidate design. Nonetheless, both [10, 11] used this procedure

with remarkable success, due largely to the symmetry of the quadratic G-surface reporting small

errors and finding highly G-optimal designs. It should be noted that a grid approximation is only

reliable for models whose response-surface model engenders symmetric SPV surfaces (more on this

in Chapter 4). Researchers have utilized other methods to score candidate designs including Brent’s

minimizer in [23], but using algorithms that don’t guarantee global optima can result in a seriously

overstated claim about the G-optimality of a given design. Put differently, an underestimate of max

SPV is akin to an overestimate of design quality. Since it is important that a practitioner understand

fully the theoretical implications of their design, an accurate scoring mechanism is imperative. Hence,

there remains need for a robust, reliable way to compute the G-score of a candidate design.

The novelty of this project surrounds the utilization of a technique known to find the global

maximum of a polynomial. The technique is known as the method of semidefinite relaxations [15]

and there exists a convenient MATLAB implementation. As will be clearly articulated in Chapter

2, the SPV surface is a 2 ∗ r-order polynomial where r is the order of the specified RSM model.

Many conventional optimization routines are known to be prone to entrapment in local optima.

Since every design-scenario engenders a unique SPV -surface, computing the true maximum for

every design covered during the search can be difficult. To better understand the problem, consider
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Figure 1.1 where three different SPV -surfaces are visualized alongside the true maximum value on

each polynomial. If an off-the-shelf optimizer is applied to the problem of computing the G-score of

a candidate design, it may get stuck in a local optima and fail to capture the true maximum.

Figure 1.1: Three unique SPV -surfaces engendered by the second-order RSM model for a two-factor,
8-trial experimental setting. Max-SPV is enumerated below each surface visualization.

As we discuss in Chapter 4, there are also cases where the locations sampled by a grid approximation

don’t adequately sample the SPV -surface, resulting in a misscored design.

1.6

Conclusion

Walsh & Borkowski produced the best-known designs by combining PSO with the aforemen-

tioned 5K grid-search approach to scoring a candidate design [32]. Naturally, a grid search approach

induces some error, though the symmetry of the SPV surface engendered by the full, second-order

model helps mitigate the method’s imperfections. Nonetheless, finding an algorithm that can com-

pute an exact G-score would represent significant progress in the field. As will be shown in the

next section, the function we optimize to compute the G-criteria is a fourth-order polynomial, so

a polynomial optimizer is sufficient to find the correct scores. Finding the global optimum of a

polynomial has been explored in industrial engineering literature, but has not yet been applied to

the G-optimal problem. The following chapters explore a promising algorithm [7] to help solve the

G-optimal design generation problem.

The remainder of this thesis proceeds as follows. First, we will introduce the generalized

problem of moments and explore using the method of semidefinite relaxations to find the global

optimum of a polynomial, which is the geometric form of an SPV surface. We will then explore
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Gloptipoly, a MATLAB routine used to solve create semidefinite relaxations and SeDuMi, the

package we use to find their optima [6, 7]. Following the software introduction, we pair Gloptipoly

with the Nelder-Mead Simplex Algorithm to find highly G-efficient designs for all the cases covered

in [1]. We then extend our search to higher-order models not yet explored in literature. Next,

point-exchanges are implemented and tested to stay consistent with common methods in thie field.

Finally, we pair PSO with Gloptipoly and find G-optimal designs with higher G-efficiency than

any others propose in the literature for several design cases. We conclude by comparing all tested

methods in this work, and propose some future research directions.
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CHAPTER 2

PROBLEM OF MOMENTS, GLOBAL OPTIMIZATION WITH POLYNOMIALS, AND

GLOPTIPOLY

2.1

The Generalized Problem of Moments

Gloptipoly was developed for solving, and in more complex situations, approximating the

Generalized Problem of Moments (GPM). The GPM has its origins in the early works of renowned

mathematicians such as Chebyshev, Markov, and Stieltjes. [17]. It is considered to be an infinite-

dimensional optimization problem and has been rigorously studied in various fields including proba-

bility, finance, optimization, signal processing, chemistry, and tomography. For a complete discussion

of methodologies and applications, see [14]. A reliable way to solve the GPM is of interest to the

field of optimal design because computing the G-score is a special case of the GPM, as will be shown

in subsequent sections.

Algorithmic development for solving the Generalized Problem of Moments (GPM) has been

a central area of focus in optimization research since the late 20th century. Hernandez-Lerma &

Lasserre introduced a method for using approximation schemes to address infinite linear programs.

Their work demonstrates that under certain assumptions, optimal solutions to a GPM can be approx-

imated by finding the optimal solution to each of a sequence of finite-dimensional linear programs

associated with the original problem. These are sometimes called linear program (LP) relaxations

[9]. Their technique takes an infinite-dimensional linear program and discritizes it, breaking the

problem up into finite-dimensional linear programs of increasing size. They demonstrate that an

accumulation point for a sequence of optimal solutions to one of the finite-dimensional approximat-

ing programs is also an optimal solution for the original infinite-dimensional program. This is quite

a powerful result, and it informed the theory presented in [15] which expanded the idea of finding

global polynomial optima by reducing the problem of moments to a sequence of convex linear ma-

trix inequality (LMI) problems. There are, however, some issues with using LP relaxations to solve
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the GPM. Numerical instability and the absence of a general convergence guarantee make the LP

relaxation technique inappropriate for finding optima of less well-behaved functions. To overcome

these challenges, semidefinite program (SDP) relaxations were introduced [16]. SDP relaxations

offer an attractive solution for small-scale problems because they include a convergence guarantee

and resolve some numerical stability issues, but they have not yet been implemented to solve very

large optimization problems. They also impose an additional constraint on the objective function:

it must be a semidefinite polynomial. So for the practitioner, both LP and SDP are useful tools,

but SDP generally outperforms LP for small scale and medium problems making it the technique of

choice to find max SPV.

2.2

The Development of Gloptipoly

Using the theory developed by [16], an algorithm was proposed to formulate and solve convex

linear matrix inequality relaxations of the global optimization problem of minimizing a polyno-

mial function with polynomial inequality, equality, or integer constraints. This algorithm, called

Gloptipoly, generates a series of lower bounds that monotonically converge to the global optimum

[6]. The original version, implemented in MATLAB, was restricted to problems with few dimensions

and could only build a hierarchy of LMI relaxations of the GPM. Theory from [17] was harnessed in

the implementation of Gloptipoly3, expanding the software’s capability to use SDP relaxations to

solve the GPM [7]. It should be noted that Gloptipoly is not a standalone GPM solver; rather, it

converts the original problem into a sequence of SDPs that a user must solve by calling an external

semidefinite solver. SeDuMi [27] is the Gloptipoly default and seems to be widely used, but the

software is configured to work with any other semidefinite solver in YALIMP, a MATLAB toolbox

for interfacing SDP solvers [2].

The algorithm begins by characterizing the general convex, quadratic, quadratically con-

strained problem for both the primal and dual problems. Exact LMI relaxations are then formu-

lated for both the primal and dual problems. The optimal value is obtained at a particular LMI

relaxation, and the solution is then output for a user. Accordingly, formulating and solving so many

problems makes Gloptipoly a computationally expensive algorithm. First, Gloptipoly must for-

mulate multiple relaxations for the SPV polynomial. Gloptipoly also formulates both dual and

primal optimization problems for each semidefinite program to certify optimality. Then SeDuMi

must solve each of those problems and find the accumulation point for the set of optimal solutions.
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This procedure is repeated each time a new candidate design is considered, which corresponds to a

single update step of the outer-optimzer. Hence, utilizing efficient outer-optimization schemes is of

utmost importance.

2.3

Gloptipoly and the SPV Polynomial

As discussed in Section 1.4, several methods have been applied to compute the G-score of a

candidate design matrix including Brent’s optimizer and a grid search approach. To our knowledge,

an algorithm like Gloptipoly has not yet been applied to research in this space. Gloptipoly is

a good candidate for this problem because it is known to be a global polynomial optimizer, and

the G-score is nothing more than the global optimum of a polynomial. For illustration purposes,

consider the general case in which (F′F)−1 ∈ R3×3. This information matrix corresponds to any

experimental setting with 3 trials, which is only advisable for the univariate case due to model

saturation for all other response-surface settings. So the design matrix would look something like

X =


a

b

c


where we have one factor x with levels a, b, c. After expanding this vector into the model matrix

we’re left with a F ∈ R3×3

F =


1 a a2

1 b b2

1 c c2

 .

Calculating F′F is straightforward, and a formula exists for finding the general inverse of a 3 × 3

matrix. However, since these computations are not pertinent to this work, they will not be presented

here. Without loss of generality, let’s simply consider

(F′F)−1 =


f11 f12 f13

f21 f22 f23

f31 f32 f33

 .

Then we may use the inverse information matrix to compute the SPV.
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SPV (x′|X) = 3×
[
1 x x2

]
f11 f12 f13

f21 f22 f23

f31 f32 f33



1

x

x2



= 3×
[
f11 + f21x+ f31x

2 f12 + f22x+ f32x
2 f13 + f23x+ f33x

2

]
1

x

x2


= f11 + f21x+ f31x

2 + x(f12 + f22x+ f32x
2) + x2(f13 + f23x+ f33x

2)

= f11 + x(f21 + f12) + x2(f31 + f22 + f13) + x3(f32 + f23) + x4(f33)

which is a fourth-order polynomial, making SPV (x′|X) the type of function Gloptipoly is designed

to formulate semidefinite relaxations for. As outlined in Chapter 1, the G-score is considered to be

the global maximum value on the SPV polynomial. Thus, there is adequate theoretical motivation

to apply Gloptipoly for scoring a candidate design.

2.4

Gloptipoly and the G-Score

Though Gloptipoly has desirable theoretical properties, there can be challenges when taking

a problem from an abstract mathematical space to its numerical implementation. In order to justify

its use as the objective function in a search for highly G-efficient designs, it must first be validated

as a tool that can accurately compute the G-criteria of a candidate design. To this effect, it must be

tested on designs with known scores. In this validation study we use designs found by [32], whose G-

criteria were computed via grid approximation. Their scoring method exploited the symmetry of the

SPV function and returned the maximum SPV for x′ ∈ {−1,−0.5, 0, 0.5, 1}K . Table 2.1 gives side

by side comparisons of the absolute efficiencies computed using a grid approximation and computed

with Gloptipoly. There are discrepancies between scores obtained by the two methods, and these

discrepancies suggest need for an improved scoring mechanism. A dense grid approximation was

also computed to confirm which method is more accurate. We scored designs with the grid x′ ∈

{−1,−0.99,−0.98, ..., 0.98, 0.99, 1}K and the scores reported by Gloptipoly were found to be in

agreement with those reported by the dense grid (±0.01). The denser the grid, the more accurate

the reported max SPV, so the agreement provides further evidence that Gloptipoly is a good tool
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to compute G-efficiencies.

K N Grid Approximation Gloptipoly Absolute Difference
1 3 100 100 0
1 4 82.92 82.92 0
1 5 80.58 80.58 0
1 6 100 100 0
1 7 91.17 91.17 0
1 8 89.13 89.13 0
1 9 100 100 0
2 6 75.03 74.39 0.64
2 7 80.24 80.04 0.19
2 8 87.94 87.94 0
2 9 86.63 84.03 2.60
2 10 87.40 86.30 1.10
2 11 87.07 86.66 0.41
2 12 88.17 88.11 0.06
3 10 71.43 70.38 1.05
3 11 80.51 79.54 0.97
3 12 83.35 83.12 0.22
3 13 86.46 85.81 0.64
3 14 89.71 89.09 0.61
3 15 85.99 85.77 0.22
3 16 85.79 85.39 0.39
4 15 71.09 70.64 0.44
4 17 73.90 73.66 0.24
4 20 80.20 79.31 0.89
4 24 85.95 85.85 0.10
5 21 68.67 67.84 0.83
5 23 73.19 72.67 0.52
5 26 75.31 74.84 0.47
5 30 76.16 75.71 0.45

Table 2.1: Relative efficiencies as reported by the grid approximation and Gloptipoly for all second-
order design scenarios covered by [32]. The grid approximation tends to overestimate the G-efficiency
for a candidate design when compared to Gloptipoly, but the difference is generally marginal. For
some cases, the K = 2, N = 9 design scenario being a notable example, the difference sufficiently
pronounced to consider switching algorithms.

To better understand the need for a consistent, accurate scoring mechanism, plots were pro-

duced for various SPV surfaces. Based on our studies, the G-optimal design search seems to flatten

a candidate design’s SPV surface (i.e. the difference between the functions minimum and maximum

value tends to decrease as a design approaches a local optimum). This is illustrated by the wide

range of SPV values for randomly generated designs and comparatively small range for optimal

designs. We expect the absolute difference between the G-efficiency of a candidate optimal design

scored with a grid approximation to be larger for random designs and smaller for optimal designs.

This will be explored further in Chapter 4 for several response surface models, but here we visualize

the SPV surfaces for several K = 2 design scenarios using the full second order model to provide
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some intuition about the problem.

Figure 2.1 provides SPV surfaces for two experimental designs, one where the input matrix is

the G-optimal design for K = 2, N = 9 proposed by [32] (left), and the other where each factor level

is drawn randomly from [−1, 1] (right). The optimal design engenders an SPV -surface with a fairly

small difference between minimum and maximum value compared to the random design. SPV for

the completely random design achieves a minimum value of 2.65 and a maximum value of 2602.96

while SPV for the optimal design has a minimum of 3.31 and a maximum of 7.14. So in optimizing

a design to minimize the maximum prediction variance across the design space, we have increased

the minimum prediction variance while dramatically decreasing the range of values. We would then

say that the random design has a max-SPV – or G-score – of 2602.96 with a corresponding G-

efficiency of about .27%. The optimal design is used as a baseline for comparison and as such has

a G-efficiency of 100%. As we would expect for a completely random design, this is nowhere close

to G-optimal. To accommodate the large range of SPV values, SPV for the random design is

presented on a natural logarithm scale so that a viewer may note real variation across the surface.

Grid points are given in yellow and denote the locations on the SPV surface that would be sampled

by a researcher using a grid approximation, returning the maximum value of the 25 tested locations.

For both plots, the location of the true optimum (computed with Gloptipoly and validated with a

dense grid-approximation) is identified by a large red X.

Importantly, the optimum of the G-optimal design is not particularly close to a grid point,

further justifying the use of Gloptipoly to aid in the search for G-optimal designs. On the other

hand, the optimum for the random design is exactly at (−1, 1), which is one of the points sampled by

the grid approximation. We generated a dozen such random designs and to our surprise, all of them

engendered SPV surfaces with optima located in one of the corners. This indicates that the grid

approximation would generally have little to no error for randomly generated designs. It is surprising

that the randomly generated design engendered an SPV surface that was accurately scored using

the grid approximation, but the discrepancy between the true maximum and the approximated

maximum may be more pronounced for non-random, sub-optimal designs. It should be noted,

however, that the SPV surface changes every time the outer optimizer proposes an update, and

the relationship between approximation error and a design’s proximity to G-optimality has yet to

be explored in literature. We will address the relationship between optimizer update step and

approximation error later in Chapter 4.
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Figure 2.1: Side-by-side SPV-surface plots for the G-optimal design of [32] (left) and a completely
random design (right). Locations that would be sampled by the grid approximation of [1, 32] are
given as yellow circles outlined in red. The optimal design is visually representative of a G-optimal
design after convergence of an optimizer, the random design would be a starting point used as the
optimizer input.

2.5

Gloptipoly Usage in Matlab

The details of the Gloptipoly algorithm are too complex to spell out in this thesis, but the

implementation in MATLAB makes using semidefinite relaxations to solve GPM straightforward.

Syntactically, it parallels MATLAB’s native support for symbolic programming and there are rel-

atively few tuning parameters. To better understand how Gloptipoly works, we start with an

example. Since the focus of this work surrounds the G-criteria – which corresponds to the maximum

value on the SPV -surface – let’s consider the best known design for K = 2 factors and N = 6 trials.

The best-known design of [32] is given as

Xopt =



0.17 −0.21

−0.51 1.00

−0.86 −0.97

1.00 0.83

1.00 −1.00

−1.00 0.54


.

We define this matrix in MATLAB as shown in Listing 2.1. We then use the keyword mpol
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from the SeDuMi add-on to define x1 and x2, the polynomial variables. A variable of type mpol is

functionally similar to MATLAB’s native symbolic variable representation, usually declared with the

keyword vars. The code then defines the model vector and a corresponding vector of constraints,

xi ∈ [−1, 1] , i = 1, ...,K. The design matrix X is then mapped to the model matrix F(X) using

an expansion function x2fx from the Statistics and Machine Learning toolbox.

1 % Define the G-optimal matrix from Walsh & Borkowski (2022)

2 X = [0.17030087162924815 -0.21244490641568772;

3 -0.5079431632696131 0.9999994648605898;

4 -0.8557190575325034 -0.9691315280363174;

5 0.9977983816447024 0.830995957569407;

6 0.9999998764844229 -0.9999994400816095;

7 -0.9999998664977112 0.5363924518991028];

8

9 % Declare variables , create model vector , build constraints

10 mpol x1 x2

11 var = [1 x1 x2 x1*x2 x1^2 x2^2];

12 K = [x1 <= 1, -1 <= x1, x2 <= 1, -1 <= x2];

13

14 % Expand design to model matrix

15 F = x2fx(X, 'quadratic ');

Listing 2.1: MATLAB code required to compute the G efficiency of the optimal design matrix as

provided by Walsh and Borkowski [32]

Now we have built all the required components to define a scalar polynomial and use Gloptipoly

to find its global maximum. Listing 2.2 shows how to define the SPV polynomial with references to

Listing 1.1. Printing f to the console gives us the polynomial we’re interested in optimizing. The

SPV-surface for this candidate design corresponds to
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SPV ∗(x′|X) = 6.10 + 1.12x1 − 1.01x2 − 5.63x2
1 + 0.63x1x2 − 6.32x2

2 − 1.12x3
1

+ 0.49x2
1x2 − 0.51x1x

2
2 + 1.01x3

2 + 7.56x4
1 − 0.35x3

1x2 − 2.44x2
1x

2
2.

+ 0.21x1x
3
2 + 8.25x4

2.

G(X) = max
x1,x2

SPV ∗(x′|X).

Next we find the maximum value over SPV ∗(x′|X) using Gloptipoly and SeDuMi, setting up

the LMI hierarchy with msdp and finding the accumulation point of optimal solutions with msol.

The third argument to msdp is the only hyperparameter-like input to Gloptipoly. This argument

corresponds to the maximum order of LMI relaxations we want to use and the algorithm is not

sensitive to its value in most cases.

1 % Define the polynomial

2 f = 6*var*inv(F.'*F)*var.';

3

4 % Search for optimum using \texttt{Gloptipoly}

5 P = msdp(max(f), K, 5);

6 [~, SPV] = msol(P);

7

8 % Extract the maximizers

9 x = double ([x1 x2]);

Listing 2.2: MATLAB code to run Gloptipoly and compute the G-score of a candidate design. f

is a polynomial representation of the scaled prediction variance (SPV) surface corresponding to the

K = 2, N = 6 best-known design.

After running Gloptipoly, the mpol variables x1 and x2 now contain the optimal arguments.

We convert them to type double and can easily extract values. For this candidate design, the

optimizer is given as

x′ =

[
0.09 1.00

]
.

The functionality of the Gloptipoly interface extends far beyond the example presented here and
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interested readers should consult [7] for usage information and problem-specific instructions.

2.6

Conclusion

In this section we introduced the generalized problem of moments, the problem class to

which computing the G-score belongs, and presented Gloptipoly as a tool that can perform the

computation. We showed the SPV (x′|X) polynomial for the second-order model is a fourth-order

semidefinite polynomial whose theoretical properties make it a good candidate to be optimized by

Gloptipoly. We provided proof-of-concept by applying Gloptipoly to the best-known G-optimal

designs published by [32]. Finally, we gave MATLAB code to use SeDuMi and Gloptipoly to score

candidate designs according to the G-criteria. In the next section, we will use Gloptipoly as the

objective function in a design search and assess its efficacy relative to state-of-the-art methods.
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CHAPTER 3

FINDING G-OPTIMAL DESIGNS WITH THE NELDER-MEAD SIMPLEX ALGORITHM AND

GLOPTIPOLY

3.1

The Design Search

Having demonstrated Gloptipoly’s effectiveness for scoring candidate designs, we now turn

our attention to the design search. Mathematically, the problem is formulated as

X∗ = argmin
X∈χN

max
x′∈χ

N f ′(x′)(F′F)−1f(x′)

where X∗ corresponds to the G-optimal design. Procedure advocated by [4] involves scripting an

algorithm that uses Gloptipoly as the loss function inside a CEXCH design search. The exchange

method works well when the space of candidate designs is low-dimensional or when the objective

function is computationally cheap to evaluate [19], so it would be fitting for something like a D-

optimal design search because thousands of runs can be computed in a short time. By contrast, the

method of semidefinite relaxations utilized by the Gloptipoly algorithm [15] involves the formulation

and solution of multiple SDPs to score just one candidate design. So if X∗ is N ×K, CEXCH calls

Gloptipoly N × K × P × E times, where P is the number of passes through a candidate design

before no changes are made and E is the number of times a chosen univariate optimizer calls the

objective function on the Xth
ij element.

Several attempts were made to stay consistent with standard practice in the field and fit

CEXCH to the G-opt search. Different flavors of the exchange algorithm were tested including

the element-by-element exchange algorithm of [4] and a row-exchange algorithm introduced by [20].

Results from these searches were generally poor and took an impracticable amount of time for the

number of design scenarios we wanted to cover, but for the purpose of comparison we will give a brief

treatment to these algorithms in Chapter 5. In this chapter, we utilize a gradient-free multivariate

optimizer to search the design space. We tried several outer-optimizers before settling on the Nelder-
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Mead simplex algorithm.

The Nelder-Mead simplex algorithm is a multivariate optimization algorithm popular for its

versatility. It’s often used when the loss function is not known to be convex or differentiable,

making it suitable for the min-max search required by G-optimal designs. The algorithm essentially

constructs a simplex that “crawls” through the search space, beginning with a set of N + 1 points

to form the simplex where N is the dimension of the parameter space. The objective function is

then evaluated on all points in the set. Output values are ordered by quality and the centroid is

calculated on the simplex formed by the best N points. The worst point in the set is then reflected

through the simplex by finding a point equidistant from the centroid but in the opposite direction.

Depending on the outcomes of reflection, the algorithm may expand, contract, or shrink the simplex

to explore the parameter space efficiently. The process continues until a termination condition is

met, and the algorithm returns the best point found as the estimated optimum of the objective

function.

3.2

Implementation

The Nelder-Mead simplex algorithm implementation from MATLAB’s optimization toolbox

was used for the outer minimization search. In other words, in this section we use Nelder-Mead to

search the space of candidate designs and propose updates. The routine is called with the fmincon

function, which allows the inclusion of constraints. By default, the routine constructs initializes a

simplex on the search space by adding 5% to the initial condition provided for each variable. It then

searches the space as described in Section 3.1 and returns the found optimum. Now, the algorithm

is designed to find optima for vector-valued functions, but the design search optimizes a function

with a matrix-input. We can work around this issue by employing a matrix operator that takes

columns of the matrix and stacking them, creating a vector of matrix entries that will just need

to be converted into a matrix in the objective function. To illustrate the use of the Vec operator,

begin with an arbitrary design matrix X and partition it by columns. The N ×K design matrix is

expressed as

X =

[
x1 x2 . . . xK

]
.

The Vec operator will simply take each xi and embed it in a column vector, moving from left to

right across the original matrix. Then,
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Vec (X) =



x1

x2

...

xK


.

MATLAB has a convenient built-in function that makes the conversion easy, called reshape. This

function takes as its first argument a matrix or array, and has a size parameter as its second

argument. Example code is given in Listing 3.1 for the initialization of a random starting point and

subsequent conversion to vector. Two arguments are given for size. The first size argument, [],

tells the function to adjust the size of the output to have as many rows as is necessary to make the

data compatible with the second size argument, which specifies the number of columns. This code

achieves the desired mapping from vector to matrix.

1 % Generate a random starting point with N rows and K columns

2 X = gen_mat(N, K);

3

4 % Call Vec on the matrix making it suitable for optimization

5 x_vec = reshape(X, [], 1);

Listing 3.1: MATLAB code to generate and reshape a matrix. The reshape function is given two

size parameters, allowing it to dynamically change the shape of the output based on the dimension

of the input data.

The optimal design search begins with a random starting point, so we built a function called gen_mat

to generate random matrices with entries xij ∈ [−1, 1] drawn uniformly. Pseudocode is given in

Algorithm 1.

Algorithm 1 Generate Random Matrix

1: function gen mat(num trials,num vars)
2: vals← random values from [−1, 1] with size num trials× num vars
3: X ← empty matrix of size num trials× num vars
4: for i← 1 to num trials do
5: for j ← 1 to num vars do
6: X[i, j]← vals[i× j]
7: end for
8: end for

return X
9: end function
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Next, the objective function needs to be modified to allow vector inputs while still formulating

the correct SPV polynomial. If we pass in x_vec as the initial condition for the search, the found

optimum will be a vector of optimal values needing conversion to a matrix for the operations in

the SPV calculation to be conformable. After ensuring the data is formatted correctly, we need to

formulate the SPV polynomial as in Listing 2.1, and call Gloptipoly to find the maximum SPV .

A function was written to execute all these steps for any N ≥ p where p is the number of columns

in the model matrix, and 1 ≤ K ≤ 5. Code is presented in Listing 3.2.

1 % Compute G score for a candidate design using \texttt{Gloptipoly}

2 % -------------------------------------------------------

3 function[SPV] = compute_g_vectorized(design , trials , num_var)

4

5 % Convert vector to matrix

6 X = reshape(design , trials , num_var);

7

8 % Build x vector and constraints

9 % var and K are defined as in Listing 2.1,

10 % complete code is ommitted here for conciseness.

11

12 % Evaluate G-score on matrix

13 F = x2fx(X, 'quadratic ');

14

15 % Define the polynomial

16 f = trials*var*inv(F.'*F)*var.';

17

18 % Search for optimum using \texttt{Gloptipoly}

19 P = msdp(max(f), K, 5);

20 [~, SPV] = msol(P);

21

22 end
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Listing 3.2: A function that used Gloptipoly and SeDuMi to find the max SPV for a candidate

design. The function is defined with flexibility in mind, allowing a range of design scenarios to be

studied.

Now that the objective function can handle vector inputs, it can be formulated as the inptut

to an outer optimizer. Listing 3.3 provides the setup code needed to call fmincon.

1 % Initial values

2 x0 = reshape(X, [], 1);

3

4 % Parameters for the optimizer that must be included but are

unimportant

5 A = [];

6 b = [];

7 Aeq = [];

8 beq = [];

9

10 % Constraints

11 lb = -ones(N*K, 1);

12 ub = ones(N*K, 1);

13

14 % Try fmincon

15 f = @(x)compute_g_vectorized(x, N, K);

16 [x_optimal , fval] = fmincon(f, x0, A, b, Aeq , beq , lb, ub, []);

Listing 3.3: Code used to call fmincon in MATLAB. Some of the inputs are superfluous, but they

must be included for the function to excute. A and b would be used to formulate linear function

constraints, but for this problem the only needed constraint is constant.

Becasuse Nelder-Mead is a local optimizer, we increase the chance of finding a good solution by

calling the function multiple times with different starting points.
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3.3

Saturated Cases and Infeasible Initial Values

The cannonical G-optimal design scenarios studied by [1] include cases where the model is

saturated—that is, the number of parameters we need to estimate to fit a model is equal to the

number of data points. In this thesis, we aim to use Gloptipoly to guide the search for each of

these design scenarios, including the saturated cases. Saturated cases can be tricky to deal with

because the space of eligible matrices is sparse. To illustrate how sparse the space of candidate

designs is for saturated cases, consider the following example. Suppose while studying the K = 1,

N = 3 design scenario, we generate a random 3× 1 vector x0. This vector can be expanded to the

3× 3 model matrix F0, and we need Rank(F0) = 3 in order for (F0
′F0)

−1 to exist. There is a very

small, though nonzero probability, that with uniformly-drawn random entries in x0 one row of F0 is

a linear combination of the others, but the probability is not zero. Now say we add one more trial so

that N = 4. This case allows for one row to be a linear combination of the others, and because of this

redundancy the probability of getting a starting point that results in a rank-deficient information

matrix is lower when compared to the saturated case. In other words, when the experiment utilizes

more trials there are fewer starting points that would halt the search from its outset, making the

space of feasible starting points less sparse when compared to saturated design cases.

Standard practice to prevent errors when searching for optimal designs is to compute the

determinant of the information matrix before passing it into the optimizer, precluding searches that

begin with rank-deficient information matrices. If

Det(F′F) = 0

the information matrix cannot be inverted and shouldn’t be used as a starting point. Because

numerical approximations inevitably induce some error, we usually set a threshold like

Det(F′F) ≤ eps(1/k)

where k is a hyperparameter to be tuned and eps represents machine precision. This procedure

works when N is strictly greater than p, but it doesn’t work as well for the saturated cases. Using

the condition number of the model information matrix was demonstrably more reliable for these

cases, though there remains a tuning parameter in the calculation. When a randomly-generated

matrix fails to meet the condition we set for invertibility, we simply generate new random matrix.
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We then repeat until we find one that does meet the criterion. The reciprocal condition number was

used in the final search to select feasible starting points for saturated design cases with k set to be

the smallest value that allows the script to execute.

3.4

Results

Five-hundred iterations were run on the 21 design-scenarios studied by [1]. The best known

G-optimal designs to date were found by [32] using the particle swarm in conjunction with a grid

approximation to compute theG-score. Covering all cases on an 18-Core i9 workstation with a Nvidia

3080 GPU and 32gb ram took approximately seven days. A full week is a long time, but guaranteeing

a globally optimal G-efficiency for each candidate design justifies the added cost [7]. Runs were

performed in parallel and the design with the highest G-efficiency was chosen for presentation.

Table 3.1 summarizes the efficiencies of our search method relative to previously published G-optimal

designs. G-Gloptipoly performed as well or better when compared to the other methods studied

in the literature on all K = 1 and K = 2 design scenarios, with the G-PSO method of [32] being

the only noticeably better method. For the K = 3 case there was more spread—likely due to the

increased dimension of the search space—but results indicated that Gloptipoly is a good choice to

evaluate the objective function when design-space symmetry cannot be exploited.

Studying these canonical design cases highlights the difficulty associated with finding G-

optimal designs for high-dimensional search spaces. For all K = 1 design scenarios, the designs

found with Gloptipoly were on-par with state-of-the-art (SOA) optimization procedures; however,

as the number of factors and the number of variables increases, relative efficiencies tend to decrease.

Recall that the K = 3, N = 16 case engenders a 48-dimensional outer optimization problem with

a 3-dimensional inner optimization, so the search space is necessarily vast. This is also reflected

in the boxplots of Figures 3.1, 3.2, and 3.3. As the dimension of the search space increases the

range of local optima increases as well, with designs for the one-factor case generally surpassing 95%

efficiency and three-factor design cases finding some obvious local optima with relative efficiencies

as low as 20%. Note that there may be ways to improve our search, for example using Gloptipoly

to evaluate the objective function inside a meta-huristic optimizer like the particle-swarm of [32].

We will explore this approach further in Chapter 6.

Boxplots for all 500 runs per design-scenario are given to emphasize the prevalence of local

optima. Naturally, lower-dimensional problems have fewer local optima and the algorithm generally
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Table 3.1: Relative efficiencies of G-optimal designs for each algorithm relative to GA generated
designs of [1]. From left to right, efficiencies for the PSO of [32], the G(Iλ) procedure of [18], the
coordinate-exchange of [22], and the Nelder-Mead + Gloptipoly approach studied in this work.

Design Scenario Best Design Efficiency Relative to G-GA)
K N G-PSO G(Iλ)-CEXCH G-CEXCH G-Gloptipoly

1

3 100.0 100.0 100.0 100.0
4 100.0 96.2 98.7 100.0
5 100.0 97.0 98.7 100.0
6 100.0 100.0 100.0 100.0
7 100.0 98.8 99.7 100.0
8 100.0 94.7 99.4 100.0
9 100.0 100.0 89.4 100.0

2

6 100.3 94.1 96.5 99.0
7 100.1 95.5 97.9 98.6
8 100.0 94.7 99.7 99.2
9 100.3 95.8 97.0 97.8
10 101.7 93.2 97.5 100.3
11 101.0 97.0 94.0 100.1
12 103.9 95.1 101.2 100.3

3

10 101.6 95.4 93.1 94.3
11 104.2 96.9 92.9 97.9
12 103.8 90.3 90.7 99.6
13 103.2 99.9 92.9 94.3
14 100.5 100.0 87.6 92.0
15 102.5 100.1 98.5 94.4
16 108.1 100.2 100.1 97.4

finds designs with high G-efficiency, but as the dimension of the problem increases so does the

number of local optima and hence the algorithm’s propensity to entrapment.
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Figure 3.1: Boxplots for 500 runs of Nelder-Mead on one-factor design scenarios. The best of these
runs is consistently the G-optimal design for one-factor design scenarios.

Figure 3.2: Boxlpots for two-factor settings. A two-factor design search results in significantly more
spread when compared to the one-factor design search, likely due to an increase in the number of
local optima.
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Figure 3.3: Boxplots for three-factor settings. Though not-quite SOA, the best designs have relative
efficiencies above 90%.
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3.5

Conclusion

In this section, we used Gloptipoly to guide the design search, embedding it in the objec-

tive function to score candidate designs. Implementation required a modification of the problem

statement, transforming the N × K design matrix to an NK-dimensional column vector, ensur-

ing conformability with MATLAB’s optimizers. The design search process is outlined and includes

working MATLAB code along with pseudocode for custom-built functions. Complexities associated

with saturated design-scenarios were briefly discussed before presenting the results of five-hundred

runs of the outer-optimizer per design-scenario. Absolute efficiencies for each case are visualized

with box-plots and a discussion of the methods efficacy can be found in section 3.4. Though Nelder-

Mead + Gloptipoly fails to match SOA, the designs we find are highly-efficient compared to other

methods in the literature. In the next section, we will apply this method to design scenarios that

have yet to be studied.
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CHAPTER 4

HIGHER-ORDER MODELS AND APPROXIMATION ERROR

4.1

Introduction

In Section 1.5, we gave an overview of the methods used by researchers to compute the

G-efficiency of a candidate design matrix. In Section 2.4, we re-scored the proposed G-optimal

designs of [32]. Though the differences were only pronounced for some design scenarios, this cursory

examination provides no insight into how much these calculations differ at each update proposed by

the outer optimizer. To understand how the method used to evaluate the objective function affects

the proposed G-optimal designs, we must further explore this relationship. We begin by extending

the procedure to higher order models. Our literature search did not return any G-optimal designs

for design-scenarios with higher-order interaction terms, so we begin by using the Nelder-Mead

Simplex Algorithm introduced in Section 3.1 to find and propose highly G-efficient designs for first,

second, and third order models with additional interaction coefficient estimates. We then compare

the efficacy of the search for two objective function evaluation methods: Gloptipoly and the 5k

grid of [1].

In Section 4.2 we study the efficacy of Nelder-Mead and Gloptipoly to find G-optimal designs

under two and three factor design settings with higher order interaction terms. We then extend the

work to one, two, and three factor cubic and quartic response-surface models in Section 4.3. We

also present a case-study examining the difference in computed max SPV for both the 5K grid

approximation of [1] and Gloptipoly at each update to the design matrix proposed by the Nelder-

Mead Algorithm. Finally, we compare the results of Nelder-Mead with Glotipoly to the results of

Nelder-Mead with the grid approximation to assess relative efficacy.
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4.2

Models With Higher-Order Interaction Terms

When using experimental designs to study physical systems, practitioners often need to eval-

uate the significance of higher order interactions, particularly when studying biological and phys-

ical systems [24]. Here we address that need by proposing G-optimal designs for models with a

second-order interaction term. The designs we find are highly G-efficient making them immediatly

implementable; however, since there are no extant G-optimal designs for models with higher-order

interaction terms in the literature they may also be used as a baseline for comparison in future

work. We begin with the simplest case: finding G-optimal designs for a second-order model with

higher-order interaction terms. Obviously, the inclusion of interaction terms implies a multivariate

response-surface model, so we begin with a two-factor setting.

A practitioner may have theoretical justification to include any combination of higher-order

interactions, but since this work is theoretical in nature we will pick one such model in two-factors:

f(x1, x2) = β0 + β1x1 + β2x2 + β12x1x2 + β3x
2
1 + β4x

2
2 + β5x

2
1x2 + β6x1x

2
2

where β5 and β6 are the coefficients for two new higher-order interaction terms. Because we are

estimating two parameters on top of what is required for the full second-order model, the minimum

number of experimental runs is 8 – two more than our RSM from Chapter 3. As addressed in

Chapter 3, we need at least as many trials as we have parameter estimates to fit a linear model, so

we will move forward using N > 8.

We ran 100 iterations of the Nelder-Mead Simplex Algorithm on N = 9, 10 using Gloptipoly

to evaluate the objective function. Because computational feasibility is a typical consideration when

searching for G-optimal designs [32, 18, 8], we performed 5 separate such searches and report the

minimum, median, and maximum compute time for each design scenario at the end of Section 4.3

in Table 4.1. The first of these runs was used in reporting efficiencies. The median time for all 5

runs was 25.28 and 23.86 minutes for N = 9 and N = 10 respectively. It is interesting to note that

the 10-trial setting required less time on average when compared to the 9-trial setting. Because

the search for G-optimal designs is a minimax saddle-point optimization problem, it is difficult to

conjecture a geometric or heuristic explanation for the decrease in computation time associated

with a modest increase in problem complexity. The outer optimization for K = 2, N = 9 is an 18-

variable optimization problem while for the K = 2, N = 10 setting it is a 20-variable optimization.
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We generally expect more variables to require more compute time; however, this simple example

contradicts that expectation.

Since this is the first piece of academic work studying G-optimal designs for higher order

response surface models, we can’t present efficiencies relative to the best-known designs. We can,

however, utilize the general equivalence theorem outlined in Section 1.3 to calculate each proposed

design’s absolute G-efficiency. The general equivalence theorem gives p, the number of model pa-

rameters, as the lower bound on max SPV for any design-scenario, but since the actual max SPV

for some design settings is much greater than p it is difficult to truly know how close to the global

optimum we actually are without exhaustively testing a variety of outer-search algorithms. Nonethe-

less, in Figure 4.1 we provide boxplots of absolute efficiencies for the higher-order two-factor models

discussed above. The best-design found for the 9-trial higher-order model was over 90% efficient and

the best design for the 10-trial model was close to 85%. It is also interesting to note that the 10-trial

search led to designs that are more consistently highly G-efficient as indicated by the dense IQR

of the corresponding box plot. The intuitive explanation for this result is that the 10-trial setting

has fewer local optima when compared to the 9-trial setting, which also likely explains the observed

decrease in computation time.

Figure 4.1: Boxplots of absolute efficiencies for two-factor response-surface models with 9 (left) and
10 (right) trials.

We also propose designs for two design settings utilizing the following three-factor model with
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higher order interaction terms:

f(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3

+ β4x
2
1 + β5x

2
2 + β6x

2
3 + β7x1x

2
2 + β8x

2
1x2 + β9x

2
2x1.

This model had 13 parameters to estimate, so we chose to run our algorithm for N = 14, 15. The

median times were 194.42 and 193.88 minutes for N = 14 and N = 15 respectively. Once again,

though the number of variables we need to optimize for increases by 3 when moving from a 14-trial

setting to a 15-trial setting, we see a counterintuative modest decrease in computation time. In this

case, using the IQR density to conjecture a relationship about the number of local optima won’t do

since N = 15 seems to have more spread; however, the difference in compute time between the two

settings is marginal compared to the difference we observed for the 2-factor model settings.

Figure 4.2: Boxplots of absolute efficiencies for three-factor response-surface models with 14 (left)
and 15 (right) trials. Note that the absolute efficiencies are lower for the 3-factor model settings
when compared to the two-factor settings. This is unsurprising since as the dimension of the problem
increases, absolute efficiency generally decreases [32].
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4.3

Cubic and Quartic Models

In addition to higher-order interaction terms, models may require cubic and sometimes quartic

parameters. In this section we will find the first known G-optimal designs for RSM models satisfying

this relationship. We begin here by studying the one-factor cubic model,

f(x) = β0 + β1x+ β2x
2 + β3x

3.

Boxplots for all 100 candidate G-optimal designs proposed by Nelder-Mead are presented in figure

4.3, and the corresponding run times are given in Table 4.1. For this study we considered the 5 and

6 trial settings, but the code is easily adapted to find G-optimal designs for any number of trials.

Figure 4.3: Boxplots of candidate optimal designs proposed by Nelder-Mead for the cubic RSM
model in one factor. The 6-trial minimax problem seems to have a greater range of local optima
when compared to the 5-trial problem.

In Figure 4.4 we visualize the SPV surfaces for optimal designs produced for these same one-

factor settings. The grid approximation points of [1] are presented as yellow dots with red outlines.

In both cases, the max SPV is achieved when x = 1, so the grid approximation works just as well

as Gloptipoly for the univariate case.
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Figure 4.4: SPV -surfaces for the 5-trial (left) and 6-trial (right) cubic RSM models in one factor.
These design scenarios engender geometrically similar SPV -surfaces.

The next set of cases we studied considered the two-factor cubic model with lower-order

interactions. The two-factor cubic model had eight estimable parameters, so designs were generated

for both the 9-trial and 10-trial design settings. The model took the form

f(x1, x2) = β0 + β1x1 + β2x2 + β12x1x2 + β3x
2
1 + β4x

2
2 + β5x

3
1 + β6x

3
2.

As with the one-factor cases, 100 iterations of the Nelder-Mead Algorithm were used, and five

separate instances of the code were executed for benchmarking. There was a modest increase in

compute time for the 10-trial setting when compared to the 9-trial setting. Figure 4.5 visualizes

the SPV surfaces for N = 9 (left) and N = 10 (right). In contrast to yellow and red dots featured

in Figure 4.4, the dots overlayed on the SPV -surfaces now represent proposed design points. That

is, each dot on the surface is a row in the design matrix for our Nelder-Mead proposed G-optimal

design. These represent the factor settings that an experimenter would use in order to minimize the

worst-case-scenario prediction variance. As will be discussed in Chapter 6, there can be interesting

geometry associated with design points, and optimal designs often sample the design space in a

somewhat symmetric way. The 10-trial G-optimal design presented in Figure 4.5 places design

points symmetrically about both the veritcal and horizontal axes.
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Figure 4.5: SPV surfaces for the cubic model in two-factors for 9 (left) and 10 (right) trials. Design
points for the 10-factor setting are distributed about the surface symmetrically.

The next two factor setting we considered was the quartic model

f(x1, x2) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x

3
1 + β6x

3
2 + β7x

4
1 + β8x

4
2.

In Figure 4.6 we provide the SPV plot for the most G-efficient design proposed by our algorithm for

K = 11, 12, respectively, with design-points superimposed.

Figure 4.6: SPV surfaces for the quartic model in two-factors for 11 (left) and 12 (right) trials.
There is no clear design-point symmetry for either of these surfaces.

Next, we considered experimental designs with three factors. We first explored a cubic model

for K = 14, 15. This model includes first-order two-way interaction terms. Moving beyond the

two-factor setting here requires four dimensions for visualization, one for each factor plus one for
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the SPV value. This type of visualization can be obtained by plotting the SPV surface in three

dimensions with color as the fourth, but doing so results in a figure that is difficult to present and

interpret. Thus, to visually summarize the designs in three factors we use boxplots of the absolute

efficiencies for each candidate optimal design proposed by Nelder-Mead for 100 algorithm runs. The

three-factor model took the form

f(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3

+ β4x
2
1 + β5x

2
2 + β6x

2
3 + β7x

3
1 + β8x

3
2 + β9x

3
3.

A boxplot of absolute efficiencies is given in Figure 4.7. The two design settings engendered G-

optimal designs with vastly different absolute efficiencies, but this is not unexpected.

Figure 4.7: Boxplots of the absolute efficiencies for candidate G-optimal designs proposed by Nelder-
Mead for the 14-trial (left) and 15-trial (right) cubic RSM models.

As with the two-factor settings, we next considered the quartic RSM model in three variables

with the same number of trials as before. Interactions were not included so as to lessen computational

burden. The chosen model took the form
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f(x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 + β4x
2
1 + β5x

2
2 + β6x

2
3

+ β7x
3
1 + β8x

3
2 + β9x

3
3 + β10x

4
1 + β11x

4
2 + β12x

4
3.

Side-by-side boxplots for the distribution of absolute efficiencies corresponding to each design sce-

nario are given in Figure 4.8. The absolute efficiencies for the best designs in the candidate pools are

relatively low compared to the other design scenarios; however, as mentioned earlier in this section

and as observed by [32], we expect design efficiency to decrease as model complexity increases.

Figure 4.8: Boxplots of the absolute efficiencies for candidate G-optimal designs proposed by Nelder-
Mead for the 14-trial (left) and 15-trial (right) quartic RSM models.

We end this section with benchmarking statistics given in Table 4.1, which provides the

minimum, median, and maximum compute time in minutes for each design scenario. The 3-factor

quartic models were omitted due to the computation time required to repeat 100-runs of Nelder-

Mead five times. As expected computation time generally increases as model complexity increases,

though the two-factor quartic searches actually took less time than the two-factor cubic models.

This could be because the quartic models did not include an interaction term while the cubic models

did.
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K N Model Min Median Max

1 5 Cubic 2.30 2.46 3.15
1 6 Cubic 4.08 4.11 4.12
2 9 Higher Order 25.05 25.28 25.84
2 10 Higher Order 23.78 23.86 25.13
2 9 Cubic 27.04 27.74 27.95
2 10 Cubic 28.64 28.67 29.00
2 11 Quartic 21.49 21.77 22.03
2 12 Quartic 24.54 24.56 24.84
3 14 Higher Order 192.92 194.42 194.68
3 15 Higher Order 192.72 193.88 194.68

Table 4.1: Table of run-times for selected design-scenarios. K = 3 quartic cases were excluded due
to the computational burden required to repeat the search 5 times.

4.4

A case study on Approximation Error

We end this section with a brief exploration of the approximation error induced by the 5k grid

approach of [32, 1]. By using a dense grid approximation in Chapter 2, we were able to determine that

Gloptipoly is a more accurate scoring mechanism when compared to the approximation scheme.

In this section we make an effort to determine how the grid approximation of max SPV compares

to the computed true optima calculated by Gloptipoly. The following section digs deeper into

approximation error, computing the discrepancy between the two scoring algorithms at each update

step of Nelder-Mead.

To begin this study, we collected data on the design matrix at every proposed update from

the outer optimizer. These data included the design matrix at each Nelder-Mead iteration, the

Gloptipoly computed max SPV , and the 5k grid max SPV . As in Chapter 3, the full second-order

model was used. We considered the design scenario with 2 factors and 10 trials. We ran 100 separate

instances of Nelder-Mead, resulting in 100 different proposed candidate optimal designs. Figure 4.9

presents a boxplot describing of the number of iterations it took for Nelder-Mead to converge for

each of the 100 runs. On average, Nelder-Mead takes 85.5 iterations to find a candidate G-optimal

design, with a minimum of 21 runs and a maximum of 137. The wide range of iterations required

for convergence hints at the complexity of the G-optimal problem.

Next we examined the relationship between update step and the absolute error between

Gloptipoly and the grid approximation. Designs from the first run of Nelder-Mead were used,

and max SPV was computed using Gloptipoly and the grid approximation. Gloptipoly was used

to guide the search as the inner optimizer, but we performed post-hoc scoring of the designs at each
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Figure 4.9: Boxplot of iterations to convergence for 100-runs of Nelder-Mead. There are some runs
where the outer optimizer is quickly trapped by local optima and others where it searches for over
100 iterations before converging.

proposed Nelder-Mead update. The absolute value of the difference between the two scores was then

calculated and plotted in Figure 4.10.

Figure 4.10: Line plot visualizing the difference between max SPV as computed by Gloptipoly and
max SPV as computed by the grid approximation for the first run of the algorithm. The difference
is generally quite small.
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Because this is just one trial, more exploration is needed to determine if there exists a significant

relationship between optimizer update step and approximation error. To assess the magnitude of

approximation error, a boxplot of the average error across all proposed updates by Nelder-Mead for

all 100 runs was produced. Outliers severely skewed the data, so absolute error is given on a log

scale. This plot is given in Figure 4.11

Figure 4.11: Boxplot of logged average approximation error. As we saw in Figure 4.10, most runs
had fairly low approximation error. Some outliers had more significant error.

Further exploring the relationship between the iteration of Nelder-Mead and absolute error,

we took all 100 runs of the algorithm and computed the average error at each step. As discussed

above, some runs of the Nelder-Mead Algorithm had as few as 27 proposed updates until convergence

while others took over 100 to find a local optimum. Data of varying lengths present computational

difficulties, but to overcome this challenge the average of the ith observation is taken to be the

average of all runs where the ith observation existed. Algorithm 2 outlines this procedure in more

detail.

In Figure 4.12 we visualize the average error across all runs as returned by Algorithm 2. As the

algorithm gets closer to convergence we see the absolute approximation error decrease. This could

be due to the symmetry engendered by the second-order RSM model, or it could simply be that the

magnitude of max SPV decreases significantly as Nelder-Mead proposes updates that flatten the
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Algorithm 2 Calculate Average Values

1: max length← max(length(vec) for each vector ⃗in the list)
2: average values← numeric vector of length max length
3: for i← 1 to max length do
4: values← numeric vector of length 100
5: for j ← 1 to 100 do
6: if i ≤ length(vecj) then
7: values[j]← vecj [i]
8: else
9: values[j]← NA ▷ If the ith observation doesn’t exist in vector vecj

10: end if
11: end for
12: average values[i]← mean(values,na.rm = TRUE)
13: end for

SPV surface and bring all values closer to zero. Future researchers may consider producing plots

paralleling this one but for a selection of response-surface models.

Figure 4.12: Line plot visualizing average approximation error at each update step across 100 runs
of Nelder-Mead. The error decreases dramatically as the algorithm nears convergence.

4.5

Conclusion

In this section, we applied the Gloptipoly and Nelder-Mead pairing to a class of models with

higher-order interaction terms. We then applied our algorithm to models with cubic and quadratic

effects, followed by a brief case-study on approximation error to determine how big the discrepancy is
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between the grid approximation and the method of semidefinite relaxations. While the two methods

do return different values for the max SPV of a given surface, the magnitude of error is usually not

very large and it decreases with each optimizer iteration. As such, the grid approximation is shown

to be a good tool for estimating max SPV , but if experimental conditions necessitated the most

highly G-efficient design possible, the practitioner ought to use Gloptipoly, at least for fine-tuning

the design.

The studies in this chapter were conducted using the full, second-order model. Future re-

search should consider performing similar case-studies, where approximation error is computed for

non-second-order models like those introduced earlier in this chapter. As we saw in Chapter 3 and

throughout this chapter, we tend to observe an increase in the number local optima on the SPV -

surface as the model complexity increases. As such, it is likely that during the outer-optimization

process there are intermediate, sub-optimal designs whose SPV -surfaces don’t have a global max-

imum that is well-approximated by a 5k grid-search approach. These designs may lead the outer-

optimizer astray and result in sub-optimal designs.

We also noted a steady drop in absolute efficiencies for higher-order models. That is, when

transitioning from second to third to fourth order response surface models, we note a decrease in

absolute efficiency. This could be due to an increase in problem complexity without a commensurate

increase in the number of outer-optimizer runs, but we also know from past research that absolute

efficiency decreases as model complexity increases. Nonetheless, the relationship between complexity

and efficiency would be an interesting problem to explore in future research.
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CHAPTER 5

POINT EXCHANGES

5.1

Introduction

Despite recent success of multivariate meta-heuristic optimizers, the coordinate exchange

(CEXCH) algorithm of [18] remains the most popular optimization routine to find optimal experi-

mental designs [32]. We speculate that the reason for this is cultural rather than practical, as PSO

is demonstrably the most suitable algorithm for this problem. Notwithstanding the success of PSO,

researchers in the field of optimal design remain attatched to point-exchange algorithms, so in this

section we make an effort to implement intelligently-guided point exchange algorithms.

The dominant paradigm involves discritizing the space of design points via a candidate set

of size n. The coordinate exchange algorithm considers individual entries in the design matrix,

swapping xij for a value in the candidate set if and only if that value results in an improvement to

the design. One pass through the matrix requires N ×K × n objective function evaluations, so for

a computationally expensive objective function like the G-criteria this procedure is asinine. An al-

ternative exchange-algorithm considers exchanging rows of the design-matrix rather than individual

entries. This procedure is often called the point-exchange (PEXCH) algorithm because proposed

updates to the design replace design-points instead of individual coordinates. One pass of PEXCH

requires N × n objective function evaluations, though the candidate set is often bigger than the

candidate set for CEXCH.

5.2

Standard Point-Exchange

In this section we implement standard point-exchange, but instead of a uniformly spaced

candidate-set we harness information extracted from the Gloptipoly algorithm to propose intelligent

updates. As discussed in Section 4.4, with Nelder-Mead as the outer-optimizer it takes an average
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of 85.50 iterations to converge. To illustrate the usefulness of this procedure, consider the SPV

surface for a candidate optimal design at update step t vs. update step t + 1. Especially towards

the end of the design-search process, these SPV -surfaces are unlikely to undergo dramatic changes

between iterations. To better understand this relationship, we arbitrarily chose to investigate the

36th run of Nelder-Mead for K = 2, N = 10. This run took exactly 50 iterations to converge,

resulting in a max SPV of 8.2. Figure 5.1 juxtaposes the SPV surfaces for update step 32 and 33,

highlighting the fact that there has been very little change to the surface. Though the design points

have moved slightly engendering midly varied SPV surfaces, it is visually challenging to distinguish

any differences between the two plots. Accordingly, the max SPV difference is only 0.03, indicating

that information at one update step is largely preserved to the next. The preservation of information

provides theoretical justification to consider a point-exchange algorithm.

Figure 5.1: SPV -surfaces and superimposed design-points for the 36th run of Nelder-Mead on
K = 2, N = 10. Visually, these designs are very similar.

NM Trial 36, Update 32 NM Trial 36, Update 33

−0.003 0.384

0.959 −0.918
0.899 0.644

−0.956 −0.344
−0.579 0.852

0.946 0.974

−0.979 −0.986
−0.977 0.981

0.896 −0.551
0.195 −0.969



One pass of Nelder-Mead (NM)−−−−−−−−−−−−−−−−−−−−→



-0.001 0.382

0.960 −0.918
0.898 0.642

−0.956 -0.341

-0.581 0.854

0.946 0.975

−0.979 −0.986
−0.977 0.981

0.897 -0.554

0.195 −0.969
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Since the G-criterion is to minimize the wost-case-scenario prediction variance, we should use

the optimizer (i.e. the x′ ∈ [−1, 1]K that describes the location of the maximum value on the SPV

surface) to update the design. Heuristically, if we want to minimize worst-case-scenario prediction

variance we should sample points that give us the most information about regions of high variability,

and the optimizer theoretically captures the desired information. So in this section we implement a

version of point-exchange where the candidate set consists only of the optimizer. We first take the

current design and compute the global maximizer on the SPV surface using Gloptioply. We then

build a list of N + 1 matrices and their corresponding G-scores, picking the design with the highest

efficiency. Then, we repeat this procedure until no improvements are made to the design, resulting

in a candidate optimal design. Pseudocode for a single run of the algorithm is given in Algorithm

3. To fully replicate our results, one need only embed this code in a ‘for’ loop and repeat as many

times as desired.

The procedure was repeated 1000 times for the second-order response surface model on K =

2, 3, N = 8, 12 respectively. In Figure 5.2 we juxtapose the proposed optimal design from the Nelder-

Mead optimization algorithm with the proposed optimal design from standard point exchange for

K = 2, N = 8. Geometrically, the surfaces are similar to one another, and the design-points are

placed in similar locations. The Nelder-Mead optimizer still produced a more efficient design than

the point-exchange, with a relative efficiency of 99.2% vs 98.5% when compared to the design of

[32]. The point-exchange still did, however, still perform surprisingly well on this case, especially

considering how small the candidate set was.

Figure 5.2: SPV surfaces corresponding to the Nelder-Mead proposed optimal design (left) and
PEXCH proposed optimal design (right) for K = 2, N = 8.
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Algorithm 3 Gloptipoly-Informed Point Exchange

1: while delta G > tol do

2: # Get max SPV for previous iteration

3: [g curr, optimizer]← compute g(design)
4: # This is the optimizer

5: x new← double(optimizer)
6: # Append the optimizer to the matrix as a new row

7: design new← [design; x new.’]
8: # To store the max SPVS for the resultant matrices

9: spvs← zeros(1,num rows)

10: # Iteratively delete rows and re-score the matrix

11: for j ← 1 to num rows do
12: # Remove a row from the new design matrix

13: A← design new
14: A(j, :)← []
15: # Compute the new g-efficiency

16: spvs(j)← compute g(A)
17: end for

18: # Find the minimum max SPV

19: min spv← min(spvs)
20: min index← find(spvs == min spv, 1)
21: # Update the new design to be the best from the previous list

22: design new(min index, :)← []
23: # Calculate the difference in old vs. new design

24: delta G← abs(compute g(design new) - compute g(design))
25: design← design new

26: end while
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5.3

Modified Point-Exchange

As has been discussed at length, Gloptipoly is a computationally expensive algorithm. Every

time the function is called, a hierarchy of SDPs must be formulated and solved, so it’s important

to build outer-search algorithms that can traverse the space of candidate designs with minimal

objective function evaluations. In this section, we reduce the number of function evaluations by

considering an update to the extant design each time Gloptipoly is called. Rather than creating a

set of N +1 candidate designs and choosing the best at each iteration, we consider an update every

time a design-point is swapped with the old design’s optimizer. Algorithm 4 spells out the code in

more detail. This algorithm continues to loop through the design until a certain tolerance is met

between the max SPV at the previous iteration and the max SPV at the current iteration.

In Figure 5.3 we juxtapose the G-optimal designs for the two point-exchange methods. Design

points are superimposed on corresponding SPV -surfaces. The designs have similar geometry and

correspondingly similarG-efficiencies. Interestingly, the modified PEXCH engenders an SPV -surface

whose maximum value is located at (−1,−1) with a corresponding SPV of 6.98, while the standard

PEXCH achieves its maximum of 6.92 at (1, 1). Additionally, the average SPV for both designs is

about 4.65, so we would consider these designs to be of similar quality according to the I-criteria as

well [8].

In Figure 5.4 we present side-by-side boxplots of the distribution canidate optimal designs for

three algorithms: the two point-exchange methods introduced in this chapter and the Nelder-Mead

algorithm proposed in Chapter 3. The efficiencies we present are calculated relative to the best

known design of [32]. In Figure 5.5, we present boxplots of relative efficiencies for K = 3, N = 12.

In both cases, Nelder-Mead still emerges as the best choice. We suppose here that restricting the

candidate set to just the optimzer from the previous proposed optimal design may not provide the

flexibility required to effectively search the space of candidate designs. This is not to say that this

methodology is without use however, as it could provide very efficient starting points for a meta-

heuristic optimizer like PSO. In other words, the top k designs from a run of PEXCH could serve

as the starting points for a run of PSO. This could drastically reduce the number of iterations until

convergence while simultaneously providing information to the optimizer that could result in a better

design.
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Algorithm 4 Modified Gloptipoly-Informed Point Exchange

while delta G > tol do

% Store last iteration’s design

old design← design;

% Iteratively delete and re-score the matrix

for j ← 1 to size(design, 1) do

% Get max SPV for the previous iteration

[spv curr, optimizer]← compute g(design);

% This is the optimizer

x new ← double(optimizer);

% Replace row j in the design matrix

proposed design(j, :)← x new;

% Compute max SPV of resultant design

spv new← compute g(proposed design);

% If resultant design is better, keep it!

if spv new < spv curr then
design← proposed design;

else
% Reset the proposed design if it’s not better

proposed design← design;
end if

end for

% Re-calculate δG to determine termination

delta G← abs(compute g(old design)− compute g(design));
end while

Figure 5.3: Comparison of SPV -surfaces for the two point-exchange algorithms tested in this chap-
ter. We present standard PEXCH (left) as outlined in Algorithm 3 and our modified PEXCH (right)
as outlined in Algorithm 4. The two methods find designs with comparable efficiency and the dis-
tribution of points is nearly identical.
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Figure 5.4: Boxplots for the distribution of designs proposed by three methods studied thus far in
the text. For K = 2, N = 8, the two point-exchange algorithms have comparable performance.
Nelder-Mead, however, is still the clear front-runner.

Figure 5.5: Boxplots for the distribution of three factor designs. For K = 3, N = 12, the modified
point-exchange algorithm finds better designs on average, but the original point exchange finds the
most G-efficient design. Nelder Mead is once again, the best option.
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5.4

Conclusion

In this section we introduced two point-exchange algorithms: one that considers an update

after generating a candidate list of N + 1 designs and another that considers an update every time

a design point is swapped. Though there are historical reasons for implementing point-exchange

algorithms, their performance falls short of modern optimizations routines like Nelder-Mead and

PSO. Point-exchanges need not be disregarded entirely, as future work may consider using them

to finding starting points for an outer optimizer. One would find a highly G-efficient design using

PEXCH and use the proposed design points as the initial condition for a more flexible outer optimizer.

Using input designs with theoretical structural similarities to output designs has been tried on this

problem before by [8] to reduce computational burden. This section provides proof of concept to

emulate their procedure, but with G-efficient designs from a cheap optimizer as the starting point

rather than known I-optimal designs.
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CHAPTER 6

EXTENSION TO STATE OF THE ART

6.1

Introduction

In this section we extend the work done in the previous five chapters by harnessing the

precision of Gloptipoly with the intelligence of the particle swarm (PSO). Though the Nelder-

Mead Algorithm was relatively successful, it failed to produce results on-par with the best-known

designs of [32] in some cases. In this section we revisit the use of PSO, restricting ourselves to far

fewer runs than is conventional in the field to make computation feasible. This work is motivated

by two key factors. First, Gloptipoly is a guaranteed global optimizer when assumptions are met

[6, 7] and was shown in Chapter 2 to provide more accurate scores than the grid search. Second,

PSO offers the flexibility required to effectively explore large search spaces and is the current state-

of-the art method for finding G-optimal designs [32]. The precision of Gloptipoly for evaluating

the minimax objective function provides the cleanest signal to the outer optimizer to-date, and the

ability of the particle swarm to consider multiple designs simultaneously provides the most thorough

search of any outer-optimizer tested in this thesis. Testing this procedure on two and three factor

design settings, we find that the intelligence of the particle swarm optimizer is sufficient to overcome

limited trials. In doing so we produce the best-known G-optimal designs to-date for some design

settings.

6.2

Particle Swarm Optimization

PSO belongs to the class of meta-heuristic optimizers, which means it navigates the space of

candidate optima through trial and error. The algorithm was first introduced by James Kennedy

and Russell Eberhart in 1995 [10]. It is said to have been inspired by the behavior of natural

swarms, such as flocks of birds or schools of fish. Since its introduction, PSO has been applied
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to a wide range of application spaces from economics to industrial engineering to optimal design

of experiments. With over 80,000 citations, it has been an impactful contribution to the field of

meta-heuristic optimization.

The power of the particle swarm comes from the ability of particles to “communicate” with

one another, and the simultaneous ability of those same particles to move through different regions

of the search space and relay update information to the swarm. Each particle represents a potential

solution to the optimization problem and holds a weighted combination of individual and shared

memory. The individual memory represents a particle’s best-known-position (in our case, the design

with minimum max SPV ) and shared memory represents the best known position among all particles

in the swarm. By leveraging collective knowledge, the particle swarm is able to search the space

of candidate designs very effectively. We believe PSO is particularly well-suited to the G-optimal

design problem because it is robust to entrapment in local optima. If the wide range of candidate

designs proposed by Nelder-Mead and the PEXCH algorithms are any indication, this problem is

replete with local optima. PSO aims to overcome the problem of local optima by using information

from the best of the proposed designs to inform updates for each particle.

Now, [4] suggest performing several thousand runs of a greedy outer-optimizer like PEXCH

to overcome entrapment in local optima. Since PSO is not a greedy algorithm and instead explores

the solution space in a collectivist fashion, guided by the interactions of particles with each other,

we believe we can find highly G-efficient designs with far fewer runs. In this section we allow just

20 runs of the outer optimizer and still get results on-par with [32], suggesting that when the outer-

optimizer is well-suited to the G-optimal problem, we need far fewer runs than when we use greedy,

naive optimizers like CEXCH or PEXCH.

6.3

Application of PSO to the Search for G-Optimal Designs

PSO was applied to the K = 2, 3 cases of [1]. K = 1 cases were omitted because most outer-

optimizers are capable of finding G-optimal designs for univariate settings so we need not repeat the

exercise here. We used a swarm size of 150, following the lead of [32]. To account for computational

burden, just 20 runs were performed. Though this is far fewer than the 500-runs of Nelder-Mead

we implemented in Chapter 3, 20-runs of PSO captures far more information than the same number

of runs with local optimizers. For greedy algorithms like PEXCH, the number of candidate optima

is exactly equal to the number of runs, and entrapment in local optima is not only probable but
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expected. PSO on the other hand, begins by considering 150 unique candidate designs. As the

algorithm approaches convergence, each particle – which represents a candidate design in this case

– tends toward the best design in the swarm. So while the combination of individual and shared

information correlates the path of each particle, PSO is able to consider a much larger region of the

search space when compared to the other algorithms in this thesis. We applied PSO to the K = 4,

N = 15 design setting in addition to the cannonical cases of [1], but it took over a week for the

script to complete and the G-efficiency of the proposed optimal design was no better than current

SOA. Even so, just 20 runs for K = 2 provided excellent designs.

Figure 6.1 gives side-by-side boxplots for all K = 2 design cases, comparing the method of

PSO and Gloptipoly to the method of Nelder-Mead and Gloptipoly. For these plots we compute

relative efficiency with respect to the best-known designs of [32]; however, to fully illustrate the

capabilities of this method we re-score these designs using Gloptipoly. As mentioned in Chapter

2, there is a small amount of error induced by the grid approximation, so by re-scoring the designs

we ensure the greatest possible degree of accuracy.

Figure 6.1: Boxplots for the distribution of designs by design scenario and algorithm, with efficiencies
relative to the best designs of [32] for all two factor settings. The best design of just 20-runs of PSO
surpassed the best design of 500 runs of Nelder-Mead in nearly every case.

For five out of the seven K = 2 cases, Gloptipoly and PSO were able to jointly find the best-

known designs on the G-efficiency scale. For the other two cases, the designs we found were on-par
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with SOA. Just 20 runs of the outer optimizer resulted in designs that beat the best of 500 runs of

Nelder-Mead, suggesting that when we use intelligent outer optimizers like PSO that are robust to

entrapment in local optima, we can effectively search the space of candidate designs with far fewer

runs than [4] suggest – at least for these lower-dimensional cases.

Figure 6.2 visualizes the distribution of designs on the K = 3 cases, once again juxtaposing

the two algorithms to provide a visual indication of relative performance. For K = 3, PSO only

found the best-known design for N = 10 and N = 13, though the designs were highly efficient

across the board. This highlights the unfortunate reality that as the dimension of the search space

increases, the probability of entrapment in local optima increases, which necessitates additional runs

of the outer optimizer to find the best-possible design. But even with our 18-core i9-10980XE CPU,

K = 3, N = 15 took nearly 20 hours to complete 20-runs of PSO, so increasing the number of runs

would need to be accompanied by an increase in compute power.

Figure 6.2: Boxplots for the distribution of designs by design scenario and algorithm, with efficiencies
relative to the best designs of [32] for all three factor settings. The relative superiority of PSO
becomes increasingly clear when assessing algorithmic efficacy on three-factor design scenarios.
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6.4

Design Comparison by Algorithm

A question that naturally arises when comparing competing algorithms is how the proposed

optimal designs compare to one another visually. This section considers all four methods that have

been explored in this thesis: the Nelder-Mead Simplex Algorithm, PEXCH, the modified PEXCH,

and PSO. Figure 6.3 visualizes SPV surfaces and design-points for the K = 2, N = 8 design

setting. The designs proposed by all four algorithms place design-points in the corners, suggesting

that we minimize worst-case scenario prediction variance by testing all four combinations of two

factors at their extremes. The remaining four points are variable from design to design. PEXCH

algorithms and Nelder-Mead all propose allocating the remaining design points asymmetrically;

however, PSO, the clearly superior optimizer, has proposed a sampling methodology that seems to

be closer to horizontal and vertical symmetry than the other designs. This seems to suggest that

for the K = 2, N = 8 design setting, symmetric designs are highly desirable. Thus, future searches

for G-optimal designs may consider this property a restriction on the space of candidate designs,

dramatically reducing the size of the search space. Nonetheless, the geometry of the SPV surfaces

and corresponding design-points is remarkably similar from design to design.

Since the point-exchange algorithms failed to find designs on-par with Nelder-Mead and PSO,

they were not applied to design settings beyond those mentioned in Chapter 5. Next, we compare the

designs proposed by Nelder-Mead to the designs proposed by PSO, assessing structural similarities in

the placement of design-points. Figure 6.4 juxtaposes the Nelder-Mead proposed design (left) with

the PSO proposed design (right) for K = 2, N = 9, 10, 11 cases. Structural similarities exist, but

PSO continues to propose design points that seem to be less random, almost as if the Nelder-Mead

proposed design is a not-yet-converged version of the PSO proposed design.
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Figure 6.3: SPV -surfaces with superimposed design points for standard PEXCH (top left), modified
PEXCH (top right), Nelder-Mead (bottom left), and PSO (bottom right). Geometrically, these
designs share structure in both the curvature of SPV -surfaces and the placement of design-points.
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Figure 6.4: SPV -surfaces with superimposed design points for a selection of design-scenarios studied
in this section. It is common for both Nelder-Mead and PSO to produce designs that sample the
boundaries.
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6.5

Conclusion and Future Work

In this thesis, we began with an overview of the G-optimal design problem, surveying the

literature from the problem’s inception in 1918 [25]– for which G-optimal designs were drived by

hand in the univariate setting – to the SOA application of PSO [32]. After introducing notation

and terminology, we introduced Gloptipoly, a MATLAB routine that formulates a hierarchy of

semidefinite programs for which accumulation point of the set of optimal solutions is guaranteed

to be the global optimum for the original problem, assuming the input function is a semidefinite

polynomial. We provided proof-of-concept by re-scoring the designs of [32], identifying a small

amount of approximation error in the proposed designs. A dense-grid approximation confirmed that

Gloptipoly is providing more accurate max SPV values than the 5K grid-approximation. We then

embedded Gloptipoly in a custom-built objective-function evaulation tool, using Nelder-Mead as

the outer optimizer. The resultant designs were on par with [1], but not quite on par with SOA for

most design settings.

After reproducing designs for the cannoncial cases, we extended the research into optimal

designs by proposing the first-ever G-optimal designs for response-surface models with higer-order

interaction terms, cubic, and quartic models. These designs will need to be reproduced and improved

upon by future scholars. Keeping with the traditions of the field, we implemented two computa-

tionally efficient point-exchange algorithms and demonstrated that antiquated optimizers are not

suitable for this problem – good designs require more intelligent algorithms. Finally, we applied

the SOA method, PSO, to the problem with Gloptipoly running under the hood to evaluate the

objective function. While PSO + Gloptipoly make for a computationally burdensome marriage,

we still managed to find the best-known designs for several design-scenarios, replicating and even

improving upon the designs of [32]. The PSO proposed designs were compared to the Nelder-Mead

proposed designs, and some structural similarities were identified.

Researchers interested in the G-optimal design problem should consider implementing the

method of semidefinite relaxations proposed by [] in a more computationally efficient language, like

Julia. Pairing PSO with Gloptipoly in a more efficient setting would make finding G-optimal de-

signs for higher-order response-surface models much easier. Future researchers may also consider

comparing the structural similarities of G-optimal designs proposed by various algorithms for higher

order models. Lastly, mirroring the work of [22], researchers may choose to find sub-optimal de-

signs with highly efficient algorithms like point-exchange, and use those designs as starting points
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for more robust algorithms like Nelder-Mead or PSO. Alternatively, a practitioner may use the

grid-approximation to compute max SPV until designs are nearly optimal, then switch to the com-

putationally burdensome Gloptipoly to fine-tune towards the end of the design-search process.
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APPENDIX

Supplementary Materials

CODE: A github repository containing all code used to produce the results and figures presented in
this thesis can be found at the following link. Data generation was performed primarily in MATLAB
and figures were produced using R.

https://github.com/HyrumHansen/thesisResearch

Chapter 3 Designs: The G-optimal designs we propose in chapter 3 may be found at the following
link.

https://github.com/HyrumHansen/thesisResearch/tree/main/borkowski_cases/designs

Chapter 4 Designs: The G-optimal designs we propose in chapter 4 for models with higher-order
interaction terms may be found at the following link,

https://github.com/HyrumHansen/thesisResearch/tree/main/extension_functions/

higher_order_interaction_data

while the designs involving cubic and quartic RSM models may be found here.

https://github.com/HyrumHansen/thesisResearch/tree/main/extension_functions/

higher_order_data

Chapter 5 Designs: The G-optimal designs we propose in chapter 5 using point-exchange algo-
rithms may be found here,

https://github.com/HyrumHansen/thesisResearch/tree/main/point_exchange/data

Chapter 6 Designs: The G-optimal designs we propose in chapter 6 using PSO may be found
here,

https://github.com/HyrumHansen/thesisResearch/tree/main/pso_data

https://github.com/HyrumHansen/thesisResearch
https://github.com/HyrumHansen/thesisResearch/tree/main/borkowski_cases/designs
https://github.com/HyrumHansen/thesisResearch/tree/main/extension_functions/higher_order_interaction_data
https://github.com/HyrumHansen/thesisResearch/tree/main/extension_functions/higher_order_interaction_data
https://github.com/HyrumHansen/thesisResearch/tree/main/extension_functions/higher_order_data
https://github.com/HyrumHansen/thesisResearch/tree/main/extension_functions/higher_order_data
https://github.com/HyrumHansen/thesisResearch/tree/main/point_exchange/data
https://github.com/HyrumHansen/thesisResearch/tree/main/pso_data
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