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Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online
monitoring of fireside corrosion can provide timely data to plant operators for mitigation
implementation. This paper presents a novel sensor concept for measuring metal loss based on
electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design,
fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering
deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal
loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory
experiments using a muffle furnace with an oxidation environment demonstrated that low carbon
steel coatings on ceramic substrate survived cyclic temperatures over 500 °C. Measured corrosion
rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with
metal thickness loss ranging from 2.0 nm/h at 200 °C to 2.0 �m /h at 400 °C. Uncertainty analysis
indicated that the overall measurement uncertainty was within 4%. The experimental system showed
high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes.
The laboratory experiments demonstrated that the sensor concept and measurement system are
capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be
used for fireside corrosion monitoring and other metal loss measurement. © 2009 American
Institute of Physics. �doi:10.1063/1.3262500�

I. INTRODUCTION

Fireside corrosion is the external tube metal loss �wast-
age� caused by chemical reactions on boiler water tubes ex-
posed to the combustion environment in a furnace.1,2 The
leading cause of boiler tube failures is corrosion.3,4 Corro-
sion leads to the thinning of the tubes and loss of more than
80% of original thickness. Corrosion has also emerged as a
significant concern for current and future energy plants due
to the introduction of technologies targeting emissions reduc-
tion, efficiency improvement, and fuel/oxidant flexibility.
Corrosion damage can lead to catastrophic equipment fail-
ures, explosions, and forced outages, each incurring signifi-
cant downtime and repair cost. Proper management of corro-
sion requires real-time indication of corrosion rates.5

Knowledge of localized corrosion rates can provide the criti-
cal information needed for preventive maintenance, which
can extend the overall life of these plants.6–8 Short term,
online corrosion monitoring systems for fireside corrosion,
however, remain a technical challenge.

Methods for corrosion measurement or monitoring fall
into three main types: downtime inspection, metal loss type,
and electrochemical type.8,9 The result of downtime inspec-
tion is of limited value for proactive corrosion management
because it provides only historical data. The simplest metal
loss analysis method is the weight-loss coupon; the most
commonly used technique in corrosion research.10 The cou-
pon requires a relatively long exposure time to yield accurate

results. The constraints imposed by the time of exposure
naturally limit the number of data points that can be obtained
from a location, and ultimately do not detect process changes
quickly.

Metal loss type sensors, however, can be combined with
electrical resistance measurement to provide an online moni-
toring capability. Because the electrical resistance of a cur-
rent path increases as its cross-sectional area is reduced,
metal loss can be detected by an electrical resistance-
measuring instrument.10–12 An electrical resistance sensor is
often comprised of a sensing element that is basically a wire,
strip or tube made of the alloy of concern, which is used to
conduct an electric signal. When the sensor element is ex-
posed to a corrosive environment, the cross-sectional area of
the element decreases, hence the resistance of the sensing
element increases. Therefore, the rate of metal loss can be
recorded as a function of time. Unlike electrochemical meth-
ods, resistance sensors continue to function in the presence
of nonconductive scales and are valuable tools for detecting
underdeposit corrosion. Resistance sensors are simple, rela-
tively inexpensive, and are often the mainstay of a monitor-
ing program in low-temperature applications, especially in
the petroleum industry. In high-temperature combustion ap-
plications, however, resistance sensors are not commonly
used because of significant thermal and thermoelectric
noises.

Electrochemical techniques measure the corrosivity of
an environment independent of actual material loss. Linear
polarization resistance is the most widely used technique of
this type.13 It measures the dc current through the metal/fluid
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interface when the electrodes are polarized by a small elec-
trical potential. As this current is related to the corrosion
current, that in turn, is directly proportional to the corrosion
rate, the method provides an instantaneous measurement of
corrosion rate. It has advantages over metal loss methods but
is limited in the scope of its application due to the require-
ment that the fluid must be conductive, which, in practice,
usually limits it to aqueous solutions. There are also other
electrochemical techniques include potentiostatic, galvano-
static, potentiodynamic, galvanodynamic, and ac impedance
spectroscopy. None of these approaches have been developed
for fireside applications as continuous monitors due to a va-
riety of technical issues.

Electrochemical noise �ECN� is a passive electrochemi-
cal technique that requires no polarizing current but mea-
sures the naturally occurring electrochemical potential and
current disturbances that result from corrosion.14–20 The
method uses current variations between two nominally simi-
lar working electrodes, whereas potential noise is based on
alterations between a working electrode and a stable, refer-
ence electrode. ECN is capable of returning accurate indica-
tions of general corrosion, pitting, and stress cracking when
it is properly applied but requires both expertise and complex
data processing to be effective. Because ECN requires moni-
toring of very small signal fluctuations, this approach is also
susceptible to extraneous sources of signal noise in the plant
environment.

In summary, downtime inspection and metal loss cou-
pons remain the primary techniques used to assess the fire-
side corrosion in power plants. Technologies with online
monitoring potential are still being developed for plant ap-
plications. Most efforts have focused on adapting existing
technologies from low temperature applications to fireside
measurement. These technologies, however, are in their in-
fancy and many have been found to be significantly affected
by interferences inherent to the harsh combustion condition
and power plant environment.

This paper reports the development effort of a novel sen-
sor concept based on electrical capacitance for corrosion
monitoring and a laboratory measurement system for short
term, online fireside corrosion monitoring. The main objec-
tive of the research was to perform laboratory experiments to
examine the feasibility of the concept and sensor design.
Metal loss experiments were conducted using the prototype
sensor in a muffle furnace to investigate sensor sensitivity,
detection limit, and uncertainty range.

II. SENSOR PRINCIPLE AND METHODS

A. Sensor principle

The principle of the novel sensor is to convert the thick-
ness measurement �i.e., the loss of a thin layer of metal due
to corrosion�, to an area measurement. The design of the
sensor is similar to an electrical capacitor and the signal is
measured by electrical capacitance �EC�. An EC sensor con-
sists of a thin ceramic substrate with metal coatings on both
sides. The frontside coating that is exposed to the combus-

tion environment has a linear thickness variation. A backside
coating of noncorroding material is used to form a plate ca-
pacitor, as illustrated in Fig. 1.

The sensor capacitance is a function of the overlapping
area of metal coatings, substrate thickness, and dielectric
constant. When there is metal loss on the frontside coating,
the corresponding area of the frontside coating will become
smaller. Therefore, there will be a decrease in capacitance
caused by the decrease in overlapping area. The corrosion
rate can be measured by the decrease in electrical capaci-
tance over the time. Because the frontside coating exposed to
corrosion has a small slope, this design equivalently magni-
fies a small change in thickness to a much larger change in
area as illustrated in Fig. 1, which is easier to measure by
electrical capacitance. For instance, the thickness of the coat-
ing varies continuously from 0 to 40 �m over a length of 4
cm. Such a design converts the thickness change of 1 �m to
a length change of 1 mm, and 2.5% capacitance change. The
corresponding change in capacitance caused by the change in
thickness can be determined theoretically based on the sen-
sor coating geometry and the dielectric constant of the ce-
ramic plate and calibrated experimentally on the same sen-
sor.

The corrosion rate R in this study is defined as rate of
coating thickness reduction

R = �c/�t , �1�

where �� is the coating thickness reduction perpendicular to
the surface, and �t is the exposure time. The corrosion rate
can be expressed as the capacitance change by

R = ��C

C
� h

�t
, �2�

where h is the maximum thickness of the initial coating. It is
apparent that the percent decrease in capacitance represents
the percent reduction in the coating thickness. The corrosion
rate can be determined based on the percent change of the
initial coating thickness as a function of time.

B. Substrate material selection

The physical and chemical properties of the sensor sub-
strate material are important factors affecting the sensor de-
sign and its performance. Since the sensor is to operate as an
electrical capacitor for corrosion monitoring in high tempera-
ture and corrosive combustion environments, it requires that
the substrate material has properties of high thermal conduc-

FIG. 1. Schematic drawings of the sensor used in this study.
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tivity, low thermal expansion, good electrical insulation, cor-
rosion resistance, and stability in high temperature environ-
ments.

The substrate of the sensor should be a ceramic plate
with high thermal conductivity in order to minimize tem-
perature nonuniformity on the sensor surface. Because the
dielectric constant is a function of temperature, a uniform
temperature can minimize the uncertainty originated from
the variation in dielectric constant. There are a few ceramic
materials that have high thermal conductivity including be-
ryllium oxide �BeO�, aluminum nitride �AlN� and alumina
�Al2O3�. The comparisons of relevant properties of these ma-
terials, collected from published information, are provided in
Table I.

BeO is a ceramic material that combines excellent elec-
trical insulation properties with high thermal conductivity
and resistance to corrosion. This unique combination of
properties in conjunction with good mechanical strength and
thermal shock resistance make BeO one of the best substrate
materials for the sensor in this study. BeO powders, however,
are toxic when inhaled or ingested, which requires fabrica-
tion at certified locations, significantly impacting end-user
costs. It was, however, selected for this laboratory study,
even though other ceramic materials �e.g., alumina� can also
be used as the substrate for the capacitance sensors at a lower
cost.

Aluminum oxide or alumina was the second choice for
the sensor substrate although their thermal conductivity is
not as high as BeO. The high volume resistivity, chemical
stability at high temperature environments, high dielectric
constant coupled with low dielectric loss, and excellent elec-
trical insulation lead to its wide applications in electronics as
substrates. Its cost is much lower than BeO, which makes it
an attractive choice if the sensor is to be developed for in-
dustrial applications. Aluminum nitride is another ceramic
material with high thermal conductivity and low coefficient
of thermal expansion. The main drawback of AlN is its po-
tential reactivity with water vapor in moist, high temperature
environments making it inappropriate for combustion envi-
ronments. This novel corrosion sensor, however, can poten-
tially be used for low temperature or aqueous applications
besides fireside environment, where AlN can be a good can-
didate.

Because the dielectric constant of sensor substrate is

usually a function of temperature and there are temperature
fluctuations during the measurement, it is important to obtain
the relationship between the dielectric constant and tempera-
ture because the measured capacitance is temperature depen-
dent through the dielectric constant of the ceramic substrate.
A change in sensor capacitance could be caused by two
sources: corrosion of the frontside coating or sensor tempera-
ture change. To eliminate the capacitance change from the
sensor temperature variations and obtain the corrosion rate, a
temperature compensation technique is used to process the
database on measured sensor temperature and the relation-
ship between the temperature and dielectric constant. The
compensation procedure can remove the influence of tem-
perature variations in capacitance measurement.

C. Sensor design and fabrication

Fabrication of the wedge-shaped coating on the sensor
substrate is the key to the sensor concept. Figure 1 shows the
schematic design of the sensor used in this study. The sensor
has a wedge-shaped, low carbon steel coating on the fron-
tside, and a uniform, corrosion-resistant titanium coating on
the backside. The thickness of frontside coating varies lin-
early from 0 to 1.5 �m over a length of 15 mm. With the
width of the coating at 30 mm, the sensor has total overlap-
ping area of 450 mm2.

The fabrication of the sensor used dc magnetron sputter-
ing deposition technology to coat both sides of ceramic sub-
strate. A Denton DVI-SJ-24 multicathode dc/rf magnetron
sputtering deposition system was used to deposit the steel
coating on the corrosion side and titanium coating on other
side of the substrate. The shape of the coating area was ob-
tained by specially designed masks on the substrate. To
achieve linear thickness change of the frontside coating, a
slow moving shutter was designed and incorporated into the
sputtering chamber. The shutter gradually adjusted the ex-
posed area of substrate for sputtering at a steady speed. The
edge with most exposure time had the maximum coating
thickness, while the edge with the least exposure time had
the minimum thickness. The backside coating had same sput-
tering exposure time and a uniform thickness. The substrate
was mounted on a rotating stage during the sputtering depo-
sition in order to achieve uniform deposition. Low carbon
steel 1010 was used as the target material to create wedge-
shaped coatings. For the backside coating, titanium was used
to provide better resistance to oxidation.

D. Temperature compensation and corrosion rate

Temperature variation in the sensor element can produce
capacitance fluctuations because the dielectric constant of the
substrate is a function of temperature. It was found experi-
mentally that the dielectric constant of the BeO substrate
increased with temperature. In order to eliminate interference
from temperature variations, the sensor capacitance has to be
evaluated and compared at a constant or nominal tempera-
ture. The fireside sensor is likely air cooled to maintain a
temperature close to the boiler tube surface temperature.
Small temperature fluctuation is expected to exist on the sen-
sor under air cooling, for instance, �2 °C. Therefore, a pro-

TABLE I. Properties for BeO, AlN, and alumina �99.6% Al2O3�.

Property BeO AlN 99.6% Al2O3

Electrical
Dielectric constant at 1 MHz 6.7 9.1 9.8
Dielectric loss at 1 MHz 0.0002 0.0004 0.0001
Dielectric Strength �kV/mm� �9.5 �15 35
Electrical resistivity �� cm� �1014 �1012 �1014

Mechanical
Density �g /cm3� 2.88 3.27 3.75
Young’s modulus �GPa� 340 350 390
Thermal Properties
CTE��10−6 / °C� �25–400 °C� 6.7 4.7 6.9
Thermal conductivity �W/Mk� 290 200 30
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cedure for temperature compensation was developed to re-
move the capacitance fluctuation caused by temperature
fluctuations. The compensated capacitance of the sensor ele-
ment C�T , t� under nominal temperature T at transient time t
is calculated by Eq. �3�

C�T,t� = C�T�,t� −
dC

dT
�T� − T� , �3�

where C�T� , t� is the measured sensor capacitance at tem-
perature T� and time t, and �T�−T� is the temperature differ-
ence or fluctuation from the nominal temperature T. The
value of dC /dT can be determined from the temperature de-
pendent dielectric constant of the ceramic material.

A more accurate method is to obtain dC /dT value ex-
perimentally from the actual sensor element around the tem-
perature of interest. The recorded data include sensor capaci-
tance and sensor temperature. The small variations in
temperature around its set point, together with change in ca-
pacitance for a short period can be plotted to acquire the
dC /dT value, which can be approximated as a constant.
Within the short period, the actual corrosion is negligible for
the sensor. The resulting capacitance-temperature relation-
ship can be used to compensate for the temperature fluctua-
tions in capacitance calculation. Figure 2 shows the data of
temperature dependent capacitance recorded around 200 °C,
and the result of dC /dT was used for temperature compen-
sation of the measured capacitance.

Using the method, dC /dT values can be obtained at
other temperature ranges and at any moment of the corrosion
measurement. It allows frequent calibration of the
capacitance-temperature relationship during the experiment.
After temperature compensation, the true capacitance de-
crease �C of the sensor element caused by corrosion during
exposure time �t− t0� can be found using Eq. �4�

�C = C�T,t� − C�T,t0� . �4�

Thus, the corrosion rate R at a nominal temperature T can be
determined by Eq. �5�

R =
�C

C

h

�t − t0�
. �5�

E. Experimental setup

An experimental system consisting of a muffle furnace,
sensor element, air-cooled probe, capacitance meter, and data
acquisition system was set up in the laboratory, as shown in
Fig. 3. The furnace was set at a high temperature with tem-
perature control. The sensor was placed in the muffle furnace
by an air-cooled probe, which maintains the sensor element
temperature. A thermocouple was installed on the sensor el-
ement to record the temperature of the sensor. The data ac-
quisition system was programmed to perform automatic data
collection by a computer to obtain the data from the SR715
LCR meter and OMEGA Dpi8 thermometer on a real time
basis. The four-wire measurement technique was used to
measure the capacitance of the sensor, with one pair of leads
to supply test current to the sensor and a separate pair of
leads to measure the voltage. This technique eliminates the
impedance of the leads in the probe and improves measure-
ment accuracy.

III. RESULTS AND DISCUSSIONS

A. Dielectric constant measurement

The purpose of this measurement was to determine the
quantitative influence of temperature on the dielectric con-
stant of BeO because the correlation between the dielectric
constant of BeO substrate and temperature is not available in
the literature at the ac frequency range of this measurement.
Experiments were conducted using a BeO substrate with
coatings on both sides, similar to the sensor element, and
varying the furnace temperature from room temperature to
over 400 °C. Results in Fig. 4 demonstrate that the dielectric
constant of BeO is highly temperature dependent, and in-
creases from 6.6 at 150 °C to 7.9 at 450 °C. The dielectric
constant and temperature correlation were used in the sensor

FIG. 2. A plot of dC /dT measured from small temperature fluctuations
around 200 °C.

FIG. 3. Schematic diagram of the measurement system.

FIG. 4. Dielectric constant change of BeO as a function of temperature at 10
kHz.
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design, in the selection of the measurement instrument, and
in the process of evaluating uncertainties introduced by the
temperature fluctuation.

B. Corrosion measurement results

Experiments were also conducted to verify that sensors
can survive temperature cycles up to over 500 °C. Optical
microscopy analysis of the temperature-cycled sensors indi-
cated that the coatings survived high temperature tests with-
out any peeling or detachment from the substrate. Laboratory
corrosion experiments were performed at temperatures of
200, 300, 350, and 400 °C. To validate corrosion rates ob-
tained by capacitance, all corroded sensors were subjected to
postexposure analysis using scanning electron microscope
�SEM� and a profilometer for actual corrosion. The range of
temperature fluctuation during experiments was controlled
within �2 °C around the nominal temperature and tempera-
ture compensation was applied to process experimental data.
The processed data in Figs. 5�a�–5�d� were obtained by using
ten–point moving average. Because the reduction in coating

thickness and capacitance decrease are proportional, which
follows Eq. �5�, the vertical axis in these figures can be con-
sidered relative coating thickness. Figures 5�a�–5�d� show
that the capacitance of the sensors decreased steadily during
the period of corrosion under all temperature conditions.

The results in Figs. 5�a� and 5�b� were obtained using
the same sensor element. The sensor was first corroded at
200 °C for 48 h and then the temperature was increased to
300 °C for further corrosion for an additional 6 h. After
cooling, the capacitance of the sensor was decreased by
50.4% from the initial capacitance value before corrosion at
room temperature. Meanwhile, using the calculated average
corrosion rates and integrating over exposure time, the total
percentage of capacitance reduction in the sensor is 46.2%.
The difference of 3.4% between the values calculated from
different methods could be caused by various factors includ-
ing measurement uncertainty.

Figures 5�c� and 5�d� show the results under 350 and
400 °C from two separate sensors, respectively. The corro-
sion experiments were carried out at 350 °C for about 45
min and 400 °C for 30 min. The total percentages of capaci-
tance decrease were 79.1% at 350 °C and 67% at 400 °C by
measuring the difference before and after the test at the room
temperature. Using the calculated corrosion rates, the same
values derived from the integral method were 70.9% for
350 °C and 65% for 400 °C, respectively.

The results indicate that the system can measure capaci-
tance change of the sensor to about 1% of the initial capaci-
tance. In fact, capacitance data fluctuation shown in Fig. 2
was only about 0.05 pF, much less than 1% of the measure-
ment range. Because the total capacitance was about 30 pF
for this experimental design, and it was corresponding to the
maximum coating thickness of 1.5 �m, the detection limit
for thickness change for the coating was 15 nm. As a result,
an accurate metal loss measurement was achieved in periods
as short as a few hours under 200–400 °C conditions.

The sensitivity of the capacitance method depends on the
sensitivity of the fabricated sensors and the precision of in-
struments used. The sensitivity of the sensors was deter-
mined by the slope of the wedge-shaped coating, its initial
coating thickness, sensor geometry such as the overlapping
area, and the dielectric constant of substrate material. Further
understanding the relationship of these parameters and sen-
sitivity will be useful to optimize the sensor design and the
measurement system.

The experiments clearly demonstrated the feasibility of
the sensor concept. In real fireside corrosion cases, typical
range of the normal corrosion is about 1 �m per day for
water walls in a pulverized coal, wall-fired boiler. Using this
type of sensor of maximum thickness, for instance, 15 �m,
it is feasible to determine carbon steel loss rate in a day or
two, while the sensor can last two weeks in the furnace at
typical water wall temperatures about 300–400 °C. Higher
corrosion rates will be much easier to detect. As a contrast,
typical corrosion coupon tests take months to return corro-
sion rates. This novel capacitance fireside corrosion sensor
can provide much quicker detection of corrosion condition if
the operation condition of the furnace is changed.

The average corrosion rates of experiments are summa-

FIG. 5. Sensor capacitance change during corrosion tests at different tem-
peratures.
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rized in Table II. The temperature dependence of steel cor-
rosion rate is evident from the data. Arrhenius form of rate
equation was used to approximate the temperature effect.
The average volume corrosion rate �i.e., iron oxidation reac-
tion in air� is a function of the exposed surface area �4.5
�10−4, in m2�, oxygen concentration �at different experi-
mental temperatures, in mol /m3�, a pre-exponential factor A,
and an exponential term with activation energy E, and tem-
perature T. The corrosion rate in terms of thickness reduction
�m/s� can be written as

R = O2 Concentration � A � e− E
RuT , �6�

where Ru is the universal gas constant, 8.314 J/mol K. The
average corrosion rate data were plotted in Fig. 6 with the
logarithmic dimensionless thickness reduction rate,
ln�R / �O2 Concentration�A�� as a function of 1 /T. The data
had a reasonably good fit, indicating the temperature depen-
dence of iron oxidation generally follows the Arrhenius rate.
The resulting activation energy is 100 kJ/mol, and the pre-
exponential factor is 0.0135 m4 / �mol·s�. The average corro-
sion rate in thickness reduction can be estimated using the
activation energy and pre-exponential factor for the coating
fabricated in this study.

Because sputtered low carbon steel is a dense material
with a different microstructure from the original target mate-
rial, its corrosion rate is expected to be different from the
original material. In addition, because the sputtered coating
has a fresh surface, the initial corrosion rate is expected to be
high due to the lack of an oxidized layer. The experimental
data in Fig. 5 show that the capacitance of the sensors de-
creased quickly once the corrosion experiments started. As a

layer of oxide scale built up, the corrosion rate decreased
with exposure time. If such a sensor is used to monitor fire-
side corrosion, the measured corrosion rate is likely to reflect
the general corrosion characteristics. It will provide semi-
quantitative corrosion information comparatively. The mea-
sured rate using such a sensor element, however, has to be
calibrated to provide a quantitative measure of corrosion rate
of the low carbon steel of boiler water walls. Resistance
sensors with sputtered coating are commercially available for
low temperature applications. Calibrations and correlations
for such applications are well established. For high tempera-
ture applications, calibrations and correlations can be estab-
lished in a similar way once this type of sensors is widely
used.

C. Profilometer, optical microscope, and SEM
analysis

Analysis of the new and corroded sensor elements in-
cluded optical and SEM morphological examinations and
thickness measurement using a profilometer. The coating
boundary and the transition area shown in Fig. 7 illustrate the
areas of thinnest coating of the substrate after corrosion. The
surface was lightly brushed to remove the loose layer of rust.
The thin coating layer appears to follow the surface rough-
ness features of the substrate; however, the capacitance result
did not show any effect of roughness in terms of the sensor
function to determine corrosion rate. The surface roughness
would not be an issue if the coating was thicker for industrial
applications. A surface stylus profilometer �Alpha Step 500�
was used to measure the coating thickness of new sensor
elements and provided quantitative verification of the coating
thickness and slope. It was not able, however, to determine
the coating thickness change after corrosion because the pro-
cess requires a special sensor design in addition to the un-
certainties caused by different surface cleaning processes.

D. Uncertainty estimation

Uncertainty analysis of the corrosion measurement was
carried out to quantify the uncertainty of the measurement
system. The corrosion rate in this research is a multivariable
indirect measurement, and the measurement uncertainty from
each variable propagates to the final result or overall uncer-
tainty. Therefore, the corrosion rates with uncertainty for the
experimental results under different temperatures were cal-
culated based on experimental or estimated precision and

TABLE II. Average corrosion rates with uncertainty at different test tem-
peratures.

Sensors
Corrosion exposure

time �h�
Temperature

�°C�
Corrosion rate with
uncertainty �nm/h�

1 48 200 1.98�0.07
2 6 300 56�2.0
3 0.75 350 1520�38
4 0.5 400 1970�62

FIG. 6. Arrhenius plot of measured corrosion data.

FIG. 7. SEM photomicrograph of coating boundary of a corroded sensor.
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bias uncertainties of individual variables �final results are
provided in Table II�. The overall uncertainty for the mea-
sured corrosion rate is about 3%–4%. Furthermore, the ex-
periments show that the corrosion monitoring system can
achieve high sensitivity, which is a strong function of the
slope of wedge–shaped coating, the dielectric constant and
the thickness of the substrate, sensor and coating geometry,
and the measurement instrumentation of the system. The ex-
perimental results indicate that the sensor is capable of mea-
suring submicrometer thickness changes confidently. Such
sensitivity enables specific designs of the sensor to suit the
need for different applications and, in particular, for short
term, online fireside corrosion monitoring. Further field test-
ing is needed to examine the feasibility of the sensor concept
for power plant applications because many environmental
parameters cannot be completely simulated in the laboratory,
such as ash deposits on the sensor, large temperature gradi-
ents within the ash deposits, metal and flue gas temperature
fluctuations inside the boilers, and the electrical noise in the
environment.

IV. CONCLUSIONS

The laboratory corrosion experiments have demonstrated
that the sensor concept and measurement system are capable
of short term, online monitoring of metal loss. Several con-
clusions can be drawn from the current study:

�1� Laboratory proof-of-concept experiments demonstrated
the feasibility of the sensor concept and design. The sen-
sor fabricated can perform metal loss measurement at
high temperature conditions with a high signal-to-noise
ratio and can detect submicrometer thickness changes.

�2� DC magnetron sputtering deposition is a method that
can be used to make wedge-shaped coating on ceramic
substrates. The coatings survived high temperature envi-
ronments in our experiment. The fabricated method for
the sensors was shown to meet the theoretical design
requirements.

�3� The sensor and measurement system obtained the corro-
sion rate quickly under different temperatures for sput-
tered low carbon steel in oxidizing conditions. The cor-
rosion rates showed strong dependence on temperature,
ranging from 2 nm/h at 200 °C to 2 �m /h at 400 °C.

The corrosion followed the Arrhenius rate form and the
rate constant were determined based on parameters ob-
tained from the experiments.

�4� Uncertainty analysis indicated that the overall measure-
ment uncertainty was within 4% for the average corro-
sion rate. The sensitivity of the experimental system in-
dicated that the performance of the sensor and corrosion
measurement system could be used for short term, on-
line fireside corrosion monitoring.

Further effort is needed to design and integrate an air-
cooled probe with temperature control and a corrosion mea-
surement system for short-term continuous online corrosion
monitoring in power plant boilers.
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