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An open source cyberinfrastructure for collecting, processing, storing and 
accessing high temporal resolution residential water use data 

Camilo J. Bastidas Pacheco *, Joseph C. Brewer, Jeffery S. Horsburgh, Juan Caraballo 
Department of Civil and Environmental Engineering and Utah Water Research Laboratory, Utah State University, Logan, UT, USA   

A R T I C L E  I N F O   
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A B S T R A C T   

Collecting and managing high temporal resolution residential water use data is challenging due to cost and 
technical requirements associated with the volume and velocity of data collected. We developed an open-source, 
modular, generalized architecture called Cyberinfrastructure for Intelligent Water Supply (CIWS) to automate 
the process from data collection to analysis and presentation of high temporal residential water use data. A 
prototype implementation was built using existing open-source technologies, including smart meters, databases, 
and services. Two case studies were selected to test functionalities of CIWS, including push and pull data models 
within single family and multi-unit residential contexts, respectively. CIWS was tested for scalability and per-
formance within our design constraints and proved to be effective within both case studies. All CIWS elements 
and the case study data described are freely available for re-use.   

1. Introduction 

Achieving higher efficiency in urban water management and plan-
ning requires understanding of how water is used at the household level. 
Daily patterns in consumption, potential for water savings and distri-
bution of water use across end uses are essential inputs to water demand 
estimation, leak identification, design of programs to manage water 
demand, and water planning to ensure adequate supply (Giurco et al., 
2008; Willis et al., 2011). Metering water use for billing purposes is a 
common practice in the United States, where meters are typically read 
monthly or quarterly. Our ability to characterize water demand is 
limited by the temporal resolution of the data collected. Higher reso-
lution data can increase the accuracy of peak demand estimation and 
reduce leak volumes that can go undetected. Sub-minute resolution data 
is required to record and quantify end uses of water that have short 
duration (Cominola et al., 2018; Nguyen et al., 2015). However, 
obtaining this higher temporal resolution data at a scale larger than a 
few houses presents several challenges in terms of data collection, 
storage, management, and processing (Cominola et al., 2018), and doing 
it over an extended period of time can be unpractical (Cardell-Oliver, 
2013). 

Collecting a month of 10-s resolution data for a single meter, which is 
common in end uses of water studies (DeOreo et al, 2011, 2016; Mayer 

et al, 1999, 2004), produces more than 250,000 observations. Doing so 
at a water utility or municipality scale, which may have thousands of 
metered residential connections, presents obvious challenges associated 
with the volume of data that would be produced. Many utilities lack a 
dedicated information technology or data management staff, which 
means that new database management, software deployment, and data 
analysis tasks can be prohibitive. In these cases, and in the absence of 
sufficient cyberinfrastructure for automating data management tasks, 
high resolution data could be more of a roadblock for a water provider 
than a benefit. However, with adequate data collection and management 
tools, utilities may be able to realize more of the potential benefits 
associated with high temporal resolution data. This includes quantifying 
water use behavior to better enable planning that ensures adequate 
supply, the promotion of water conservation behavior among users (Liu 
et al., 2015), improving customer service quality for utilities (Beal and 
Flynn, 2015), tipping the cost-benefit balance in the smart metering 
adoption case, which remains undefined (Cominola et al., 2018), and 
enabling the proliferation of scientific work in this field. 

The term “cyberinfrastructure” integrates hardware and software 
tools, as well as data networks (NSF, 2007). Cyberinfrastructure can 
help solve data management challenges and enable more widespread 
collection of higher temporal resolution water use data for utilities and 
researchers. In a broader context, cyberinfrastructure is improving the 
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communication of results from hydrological models (Souffront Alcan-
tara et al., 2017), helping monitor watershed health parameters 
(Szwilski et al., 2018), assisting in the automation of comparing climate 
model results (Sun et al., 2020), and it is now ubiquitous in multiple 
scientific domains (Hachmann et al., 2018; Shams et al., 2018; Wegrzyn 
et al., 2020). 

Smart meters have potential to solve one of the challenges in the 
pathway to an advanced water cyberinfrastructure, high resolution 
measurement of water use. The term “smart meter” can be ambiguous 
(Boyle et al., 2013). Within this article, it is used to denote devices 
capable of recording water use with high resolution (i.e., sub-minute 
frequency) that can be integrated in automated systems for data man-
agement. Nearly a decade ago, it was anticipated that use of smart 
meters would grow over time (Boyle et al., 2013), and they are, in fact, 
becoming more widely available and adopted. With this emergence of 
smart meters, there has been an increase in the number of scientific 
publications using the high resolution data they produce for water de-
mand analysis. Cominola et al. (2015) provide a comprehensive review. 
However, despite the increase in the number of publications using smart 
metering data to quantify end uses of water and water use behavior, the 
data management procedures, or tools, used in these studies are not well 
described, and most of the datasets used are not openly available (Di 
Mauro et al., 2020). In most of these studies, the focus has been on the 
tools and algorithms used for identifying water end uses and user 
behavior. Other components of the data management process are not 
described. 

Available cyberinfrastructure for collecting, managing and analyzing 
this type of data remains scarce and of proprietary nature, with little 
available literature describing tools and procedures for data collection, 
management, and analysis. Meter manufacturers tend to have their own 
software systems designed for their metering technology, which com-
plicates synthesis or integration of data from multiple systems and may 
help explain why research in this field has been conducted in a limited 
number of countries using a limited number of datasets. Many of these 
studies have used the same data logging device for data collection and 
the same software tool for end use analysis (Beal and Stewart, 2011; 
DeOreo et al, 2011, 2016; Mayer et al, 1999, 2004). Other studies have 
reused the same dataset to conduct different analyses. For example, Beal 
at al. (2013) present differences between perceived and actual water 
consumption, Willis et al. (2013) studied the impact of 
socio-demographic and efficient fixtures on water use, and Beal and 
Stewart (2011) presented end uses of water characteristics, all using the 
same dataset collected in Southeast Queensland, Australia. 

The datalogging devices used in most high-resolution data collection 
studies lack communication capabilities, which limits the potential for 
automated integration with downstream cyberinfrastructure (e.g., 
telemetry, storage, management, and analysis applications). More 
recently, there has been increasing discussion around smart cities, smart 
grids, smart water networks and other related terms, despite there not 
being a wide agreement about their definition, what is meant by “smart,” 
or the extension of their applications (Ardito et al., 2013; Hollands, 
2008; Wissner, 2011). It is generally agreed that smart cities make use of 
information and communication technologies (ICT) in an attempt to 
assist cities in optimizing the use of their assets (Neirotti et al., 2014), 
water being one of the most important. Connectedness of data collection 
and its application is important in this context. 

Advanced metering infrastructure (AMI) and ICT systems are vital 
for the successful deployment of a smart grid (Yan et al., 2013). In the 
energy sector, smart grids use smart technologies for metering, 
communication and automation and make use of digital information to 
improve reliability (U.S. Congress, 2007). The Internet of Things (IoT) 
has also been described as a potential enabler of smart grids in the water 
sector (Alghamdi and Shetty, 2016; Robles et al., 2014; Zanella et al., 
2014), and, more recently, smart solutions that use IoT principles have 
been proposed (Amaxilatis et al., 2020; Stiri et al., 2019). Liu and 
Nielsen (2016) discussed existing technologies to develop an ICT system, 

or cyberinfrastructure, to enable smart meter analytics for the energy 
sector acknowledging the difficulties in processing and managing the 
large volumes of data generated. Similar systems have been proposed 
and discussed for water use analytics (Boyle et al., 2013; Li et al., 2020; 
Makropoulos, 2017; Moy De Vitry et al., 2019), but few implementa-
tions have been published due to the cost and complexity of these ap-
plications (Alvisi et al., 2019; Amaxilatis et al., 2020; Anda et al., 2013). 
In one notable example, Chen et al. (2011) conducted analysis using 
data collected on a smart water service architecture deployed for billing 
purposes on the city of Dubuque, IA. This system collects data every 15 
min providing more advanced analysis to water consumers and pro-
viders (Erickson et al., 2012). 

While multiple high-level designs of a smart water network have 
been described (e.g., Hauser et al., 2016; Li et al., 2020; Ye et al., 2016), 
implementations are scarce. Most of the smart water systems designs we 
reviewed lacked a full demonstration or prototype implementation. In 
some cases, important elements, such as performance metrics and 
implementation guidance were not fully described (Li et al., 2020). 
When demonstrations were presented, the focus was primarily on the 
results of the specific case study (i.e., the lessons learned about water use 
and/or behavior) and not on the design and implementation of the tools 
used to complete the tasks. The limited availability of data and tools for 
the water sector constitutes a significant barrier for the development of 
research and prevents the advancement and implementation of smarter 
water grids at a large scale (Mutchek and Williams, 2014). The 
closed-source nature of existing data collection hardware and data 
management software creates accessibility and interoperability issues 
that prevent the progress of smart water grids while curtailing the 
adoption of open architectures (Hauser and Roedler, 2015; Robles et al., 
2014). The development of open source cyberinfrastructure for man-
aging high resolution data can lay the foundations for the development 
of newer and better tools for water utilities, as well as standards for 
operations that result in increased interoperability. All of these actions 
could pave the road for more water demand research, and ultimately, 
advance technologies for the development of smart water grids. 

Thus, in order to achieve the full potential of smart meters, cyber-
infrastructure is needed to support utilization of the high resolution data 
they produce (Horsburgh et al., 2019; Mason et al., 2014). Developing 
effective cyberinfrastructure that can support both operational data 
collection and management (e.g., for billing, reporting and day-to-day 
management purposes) and exploration of data for research aimed at 
better understanding water use behavior is expensive and challenging 
(Stocks et al., 2019). Indeed, architectural designs and data structures 
for cyberinfrastructure supporting residential water use data must meet 
the needs of multiple users (i.e., water providers, water consumers, re-
searchers) without disrupting a utility’s necessary business functions. 
The research described here focused on the following research questions 
to advance the cyberinfrastructure and availability of software tools for 
collecting, managing and analyzing high resolution smart metering 
data: a) what is the general architecture for a cyberinfrastructure to 
support collection and management of high temporal resolution smart 
metering data, and b) how can that architecture be implemented to meet 
the needs of multiple potential users (e.g., water utilities, water con-
sumers, researchers). 

In this paper, we present a generalized architectural design for a 
Cyberinfrastructure for Intelligent Water Supply (CIWS) and a prototype 
implementation of each of the components within the architecture in 
support of multiple data collection, management and analysis case 
studies. The prototypes we developed demonstrate tools that are not 
currently available for researchers or utility managers and include: a) a 
data collection layer consisting of datalogging devices with data trans-
mission capabilities, which are modifications from our previous work 
(Horsburgh et al., 2017; Bastidas Pacheco et al., 2020); b) a data man-
agement and archival layer that receives, processes, and stores data; and 
c) a data analytics layer that enables calculation of common water use 
metrics (e.g., average hourly water use, instantaneous peak, and end 
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uses of water disaggregation and classification). Components within 
these layers demonstrate the entire workflow consisting of data collec-
tion, communication, storage, management and archival, and visuali-
zation and analysis. 

While CIWS was designed and implemented for research purposes, 
including appropriate mechanisms for protecting the identities of 
research participants where necessary, it facilitates implementation of 
high temporal residential water use analysis, which is of interest to not 
only researchers in the field, but also utility companies and water con-
sumers and can provide information currently not available to them. The 
data collected and managed using CIWS is relevant for assessment and 
management of both water demand and for planning to ensure adequate 
water supply. We first describe the requirements for the system along 
with the overall architecture we designed to meet these requirements 
(Section 2). We then describe a set of case studies in which this overall 
architecture was prototyped and implemented using both existing and 
new open source hardware and software components (Section 3). 
Finally, we close with discussion and conclusions (Section 4). 

2. Methods 

2.1. CIWS design and overall software architecture 

Our goal in developing CIWS was to create a generalized, modular 
architecture that can be used to automate the process from collection to 
analysis and visualization of high temporal resolution water use data. In 
our case study applications of CIWS, we combined existing and devel-
oped new, open source hardware devices and software tools to 
demonstrate an integrated solution for high-resolution residential water 
use data collection, management, and analysis. The CIWS architecture 
and our prototype implementation were designed to address the 
following requirements. While we present our prototype implementa-
tions in this paper, there may be multiple implementations of the 
generalized architecture that meet these requirements.  

a) An open architecture that could be implemented using a variety of 
technologies;  

b) Open source software development to facilitate its deployment and 
use by other users, reduce costs, and provide a platform for future 
improvement by others while advancing financial feasibility of larger 
scale implementations;  

c) A modular design, so each component of CIWS can be used, or 
advanced, independently;  

d) Accept input data from different meters and measurement devices 
(sensors) to address heterogeneity in urban water meter technology;  

e) Capacity to manage “push” and “pull” data retrieval from the 
metering devices depending on available communication technolo-
gies and storing of data in a centralized server;  

f) Scalable to accommodate a large data volume while remaining 
responsive to queries for subsets of time series data of varying sizes;  

g) Support production of analysis and insights that meet the needs of 
different audiences. 

In our review of the literature, we found that existing designs of 
smart components or cyberinfrastructure for managing water systems 
are not fully standardized. However, most systems described or imple-
mented to date are composed of multiple layers working in connection 
to achieve the overall goal (Li et al., 2020). We found that the number, 
name and function of these layers was different in each design; however, 
we observed some similarities. In practice, the number of layers 
included in an architectural design comes down to tradeoffs between the 
benefits of modularity and separation of concerns that can be achieved 
versus the complexity and potential fragility introduced with a larger 
number of layers. Separate layers can be autonomous such that changes 
to one layer do not have to affect the other layers. However, a greater 
number of layers typically involves more components that can fail. 

Our overall architectural design for CIWS adopts this multi-layer 
paradigm (Fig. 1) and is composed of three main layers. The first layer 
is the Data Collection Layer and includes the physical instruments and 
sensors used to monitor water use. It has also been called the sensing 
layer (Ye et al., 2016), the physical layer (Hauser et al., 2016), or the 
instrument layer (Li et al., 2020). The second layer is the Data Man-
agement and Archival Layer, which handles data communication, 
parsing and archival. This layer has also been referred to as the network 
or function layer (Hauser et al., 2016; Li et al., 2020; Ye et al., 2016). The 
final layer is the Data Analytics Layer, which handles all the steps be-
tween queries to retrieve data from the archival component to final vi-
sualizations, analyses and presentations produced for utilities, water 
consumers, researchers, etc. (i.e., the consumers of the data). This layer 
has also been referred to as the application or the data fusion and 
analysis layer (Hauser et al., 2016; Li et al., 2020; Ye et al., 2016). Some 
of the other systems reviewed include elements for real time monitoring 
and control of observed variables and processes within the system, 
resulting in architectural designs with a larger number of layers. Since 
these elements were not needed in our case study use cases, a three layer 
model met all of the requirements listed above. A system with more 
layers may become more fragile; therefore, our design includes the 
minimum needed to meet the design considerations. 

The architecture for CIWS and our prototype implementations were 
developed with a research focus – e.g., collecting, storing and managing 
high resolution water use data to enable advanced study of residential 
water use behavior. This type of research may be carried out by utilities, 
universities, or other agencies involved in research related to or man-
agement of urban water supply and demand. The typical deployment 
size in this type of work has been around 50 houses per city; however, 
some studies have analyzed up to 762 sites (DeOreo et al., 2016). In the 
latter case, the data was not collected simultaneously at all sites. Our 
aim was to develop a system that can handle, at minimum, the number 
of simultaneous data collection sites within the range of deployments 
observed in the past (40–60 houses). In the following sections, we 
describe in more detail the high-level design for each of the architectural 
layers, their key components, and their basic functionality. 

2.1.1. Data collection layer 
Data collection refers to the actual measurement of the variable or 

variables of interest, in this case, high temporal resolution water use. 
Here, we define high temporal resolution data as data collected at a sub- 
minute resolution. Typical investigations of water use behavior, such as 
separating and quantifying end uses of water within a home, require 
data to be recorded at 10-s or even finer resolution over data collection 
periods of weeks to months. With few exceptions, high temporal reso-
lution data cannot be collected using existing, commercially available 
smart meters without adding additional hardware or software compo-
nents (Cominola et al., 2018), which can be expensive (Horsburgh et al., 
2017). Water metering technology typically consists of a physical meter 
that uses one of several measurement techniques paired with an analog 
or digital register on which a totalized volume of water use is recorded. 
Some registers, including those of commercially available smart meters, 
are capable of storing volume readings within internal memory; how-
ever, this is usually constrained to relatively short periods of time (e.g., 
weeks) at recording intervals longer than 1 min. Other registers report 
only the most recent volume reading and are designed for periodic (e.g., 
monthly or quarterly) readings either manually or automatically via 
radio. These practical limitations are driven by power, local data stor-
age, and network bandwidth limitations of existing metering 
technology. 

Some water use studies have added flow metering sensors directly on 
the water pipe leading to each appliance in a residential house (Kofinas 
et al., 2018; Di Mauro et al., 2019). Opting for this approach allows 
direct measurements of water use from each fixture, and by placing the 
measuring element inside the property, power and communications can 
be readily available. However, this approach is invasive and requires 
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modifications to the plumbing in each home where data is collected, 
which can increase costs and limit the applicability of this methodology 
at a medium or large scale. Therefore, we opted to focus our efforts on 
datalogging devices that can be coupled with the existing water meter 
available at the property. Datalogging devices designed to couple with 
existing meters are available (Bastidas Pacheco et al., 2020; F.S. Brai-
nard & Company, 2020). These dataloggers essentially perform the same 
function as the meter’s register, but have the capability of recording 
much more frequent observations over longer periods of time. To be 
fully integrated in a data management system like CIWS, the datalogging 
devices must also have communication capabilities. CIWS was designed 
to handle both push and pull data communication, making it adaptable 
for multiple scenarios. The term push is used to denote systems where 
the data is sent by each datalogger (client) to a centralized server, while 
pull refers to systems where a centralized server connects to each data-
logger and requests data. Given the modular design of CIWS, it is 
possible to integrate dataloggers that lack communication capabilities, 
such as those used in most residential studies in the past. Under this 
scenario, a user can take advantage of the Data Management and 
Archival and Data Analytics Layers of CIWS, while using data files 
manually downloaded from the datalogging devices in the field. 

2.1.2. Data management and archival layer 
The Data Management and Archival Layer is responsible for the work 

required to process the data logged by the devices. The key component 
addressed in this layer relates to developing and using software elements 
to automate repetitive data management processes and enable an easier 
transition between large volumes of data collection and useful infor-
mation generation. This layer is composed of multiple working elements 
(Fig. 1). For push based data transmission, a listener service is required 
to receive the data sent by the dataloggers. In pull based data trans-
mission, a request service is used to achieve the same task. Once the data 
is received, it must be verified, parsed and transferred to a database 

component. The database component accepts and stores data for 
downstream analysis and decision making. Real-time monitoring of 
water use is typically not of interest in most research scenarios, where 
most data analysis happens after the data have been collected. Addi-
tionally, given the frequency with which observations are recorded (e.g., 
on the order of seconds), it is not practical to push or pull data every time 
a new observation becomes available. Based on this, CIWS was designed 
to collect and send files containing many observations rather than 
sending observations individually. This approach minimizes the 
communication load on the system because the data transfer process 
does not occur constantly, and it can be scheduled to meet specific 
needs. 

The request service for pull based data transmission must execute the 
following tasks: a) connect to a datalogging device; b) check for new 
data files; c) request and transfer new files; d) read and parse the files, 
and e) upload the data into the database. Remotely accessing devices can 
be achieved using a variety of communication protocols like Secure Shell 
(SSH), which is a widely used method for similar tasks due to its 
simplicity, speed and security. In this model, the datalogging devices 
need to be powered on and connected to the network at the time the 
connection is established. Additionally, a key requirement is that each 
datalogging device must be located, addressed, and accessed directly, 
which also provides an opportunity for remote functionalities, such as 
software updates, troubleshooting, changing data collection settings, 
and others. 

The listener service, which manages the data transferring process 
under the push model, must complete the following tasks: a) accept and 
validate the data sent from each datalogging device deployed, b) process 
incoming files, including parsing the information they contain, and c) 
saving the data received into the database. Under this approach, the 
communication elements of the datalogger only need to be powered up 
and functioning for the time it takes to send the desired information to 
the listener service, which can contribute to lower power requirements. 

Fig. 1. Overall architecture design of CIWS consisting of three main layers: 1) Data Collection, 2) Data Management and Archival, and 3) Data Analytics. Arrows are 
used to indicate data and workflow movement between components. White arrows indicate the flow of data and information and black arrows show the connection 
between elements and layers. 
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Additionally, there is no requirement for data logging devices to be 
uniquely addressed on a network as they can identify themselves within 
the content of the message they push to the listener service. 

Multiple technologies that can potentially meet the data storage and 
accessibility design considerations (i.e., the database requirement) are 
available. The database must be able to manage large volumes of data 
and provide a platform for generating analytics of such data. The data 
managed by the system consist mainly of time series of flow observa-
tions, which are constantly being collected and written into the data-
base. Thus, the databasing technology selected must provide: a) easy 
and fast querying between dates and times to enable manipulation of the 
data; b) high performance for read and write operations as the database 
is continuously being updated with new data and potentially accessed by 
multiple users; and c) scalability, as the volume of data to be stored in 
the database increases quickly as the monitoring network and time 
period over which data are collected grow. The database schema used to 
organize the data for CIWS was designed to maximize query efficiency 
while maintaining the ability to protect the privacy of water consumers 
by storing personally identifiable information outside of the database. 
Common queries to be conducted in projects where CIWS can be used 
include selecting all or part (time constrained) of the full resolution or 
time aggregated data for a single or multiple sites. 

2.1.3. Data analytics layer 
The Data Analytics Layer supports generalized interactions between 

data users and the database for the purposes of visualization and anal-
ysis of the data. The necessary functions executed in this layer include: 
a) user authentication to access existing data, b) querying data from the 
data base, c) data manipulation and analysis, and d) generation of re-
ports and visualizations of interest for different target audiences. For the 
purposes of this research, three main target audiences were identified as 
users of information produced by the Data Analytics Layer: water con-
sumers, utility managers, and researchers. While these categories of 
users are not necessarily exhaustive or mutually exclusive, the infor-
mation that would be useful to these different users and the methods 
used to interact with the data are not the same. For instance, an indi-
vidual residential user would need to be able to access and interact with 
the data from their home in a practical and non-technical way that does 
not require specialized software. Past studies have evaluated residential 
users preferences for water use feedback, finding that information about 
their prior water consumption, comparison of use with that of similar 
users, and details about their consumption can increase user under-
standing (Erickson et al., 2012; Liu et al., 2015). 

Utility managers may want to access standardized plots or reports 
showing data from multiple users, and researchers may need much more 
freedom to formulate their own, custom queries to the database to 
subset, aggregate, or summarize data in useful ways. This implies that 
the Data Analytics Layer needs to support multiple mechanisms for 
accessing and interacting with the database. Authentication, authori-
zation, and privacy for users with different privileges (read or write data 
in a database) to access online resources have been discussed for mul-
tiple applications (Christie et al., 2020; Heiland et al., 2015; Kim and 
Lee, 2017). High temporal resolution data products, such as distribution 
and timing of end uses, can raise privacy concerns among water con-
sumers that must be considered when designing data presentation tools 
(Froehlich et al., 2012). Aggregation and summarization techniques can 
be used to present information for multiple water consumers while 
protecting privacy, and authentication and authorization can be used to 
limit what data is available for different users. CIWS considers the use of 
anonymized datasets throughout the system by identifying water con-
sumers with a unique identifier. Linkage with the personally identifiable 
information about each water consumer is stored separately and is only 
available to those who have appropriate privileges and are allowed 
match water consumers with their data. 

2.2. Case study design and system testing 

In order to evaluate the overall architecture design, we designed two 
case studies that demonstrate different aspects of the architecture pre-
sented in two distinct data collection environments. The first case study 
demonstrates data collection at individual single-family residential 
homes. It uses an autonomous datalogger with communication capa-
bilities to collect high resolution water use data and demonstrates push- 
based transmission of the data to the Data Management and Archival 
Layer. The second case study demonstrates data collection within multi- 
unit residential structures on a University campus. It uses dataloggers 
with dedicated power supplies and network registrations to demonstrate 
pull-based transmission of the data to the Data Management and 
Archival Layer. In the second case study, we collected data for additional 
parameters needed to characterize the energy consumption related to 
hot water use. The collection of data for these parameters provides an 
example of CIWS flexibility. Both case studies share the same layers, but 
we describe the different elements used by each case study. 

We created a full prototype implementation of the design layers 
presented in Fig. 1 for each case study and deployed them in an oper-
ational environment. These prototypes and deployments were created to 
demonstrate proof-of-concept for data collection and management 
components, the shareability of components within the architecture 
regardless of the data transmission method, and generalizability for our 
architectural design. We tested the system developed for scalability by 
simulating an increased number of sites and larger volumes of data. 

Python 3.7 was chosen to develop all of the code and software 
associated with our case studies given that it is freely available and open 
source, it is a high-level programming language with a vast number of 
libraries available to complete an important number of functions 
required in our application, and it could be used across all three layers of 
our architectural design. Using Python also helped us meet the first three 
requirements described above as the code can be easily shared, read and 
modified by other programmers and scientists, and can be deployed in 
different operating systems, which increases reuse possibilities. 

2.2.1. Case study 1 description 
Water use in single family residential homes is quantified, to a large 

extent, using analog, positive displacement water meters. The volume of 
water that has passed through the meter is usually the only variable 
recorded by this type of meter. In most cases, water meters are enclosed 
in underground pits of varying depth, limiting power supply availability. 
These meters are typically read monthly, quarterly or at coarser reso-
lutions by the utility for billing purposes either manually or via a roving 
radio that receives the most recent volume observation from each meter 
when the roving radio passes within range. Some more advanced net-
works include automated retrieval of the coarse resolution volume data, 
but very few have the capability to record and transmit high resolution 
data. Given that the vast majority of residential water meters in use 
today share these constraints, we chose this case study to demonstrate 
adding high resolution data collection and transmission capabilities to 
existing, analog water meters. 

2.2.2. Case study 2 description 
The Living Learning Community center (LLC) on Utah State Uni-

versity’s (USU) campus was selected as a second case study for 
deploying CIWS within a set of multi-unit residential buildings. The LLC 
is one of USU’s newer student housing options and houses approxi-
mately 500 students distributed among six dormitory buildings labeled 
building A – building F. The objective of this implementation was to 
characterize water and water-related energy use in five buildings (B–F). 
The importance of the water-energy nexus for optimizing conservation 
and sustainable management has been identified in the past (Hamiche 
et al., 2016; Kenway et al., 2016; Fang and Chen, 2017). However, 
collecting water and energy consumption data combined at a sufficient 
temporal resolution to analyze their relation is uncommon, and the 
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methods for linking water and energy use are not well established. This 
case study demonstrates a methodology for collecting water and 
water-related energy data in a multi-unit residential setting. Buildings 
B–F host approximately 90 students each. Building A hosts administra-
tive offices, has a much lower student occupancy, and was excluded 
from the study. We chose a pull based model for this case study given the 
availability of dedicated power at each data collection site and the 
availability of USU’s campus Wi-Fi network to enable communications 
and data transmission. 

Three water meters are present in the water supply system for each of 
these buildings - hot-water supply, cold-water supply, and hot-water 
return. To monitor water and water related energy use within each 
building, two characteristics of each meter were measured, flow and 
water temperature, resulting in a total of six variables collected per 
building (Table 1). The hot-water return is a feature of the LLC’s inno-
vative hot water recirculation system. Hot water is continually circu-
lated from three boilers to the LLC buildings at a constant, base flowrate 
of approximately 3 gallons per minute (gpm) or 11.4 liters per minute 
(Lpm). Increases from this base flowrate constitute hot water use. Un-
used hot water returns to the one of the three boilers for reheating and 
eventual recirculation. Cold water is supplied in a typical on-demand 
basis. 

3. Results and discussion 

3.1. Case study 1: push based data collection for single family residential 
homes 

We selected a single family residential property to test the CIWS 
functionality under a push based data retrieval model. We collected two 
weeks of data at this property, between January 15, 2021 and January 
28, 2021, for the implementation described. All water use results pre-
sented are for this time period. This home had five occupants, three of 
ages between 10 and 25 and two between 40 and 60 during the data 
collection period. It was built in 2006, has three bathrooms and a total 
parcel area of approximately 12,000 ft2 (1114.8 m2). We chose push 
based data retrieval for this case study because it is enabled by hetero-
geneous networking – i.e., any datalogger device capable of high reso-
lution data collection and sending data over an available data network 
could be used without the need for each device to be uniquely 
addressable on a network. Additionally, power requirements can be 
reduced given that data logging devices do not have to listen for con-
nections and requests from a centralized server but rather wake to 
transmit data on a user-configured schedule. 

3.1.1. Data collection layer 
At the property selected, a one inch (2.54 cm) Bottom Load (BL) 

Master Meter with an analog register was being used by the water utility 
to record monthly water use, transmit it to a roving receiver via a 3G 
radio and bill water usage. We added high temporal resolution data 

collection and transmission capabilities without affecting the normal 
operation of the utility’s meter by installing a CIWS Water Meter Node 
(CIWS-WM-Node) datalogger to measure water use at a 4-s temporal 
resolution on top of the existing meter. The CIWS-WN-Node is an 
advanced modification of the CIWS datalogger (Bastidas Pacheco et al., 
2020), which is an open source, Arduino-based datalogger that we 
designed to work with any magnetically-driven water meter. The CIWS 
datalogger uses a magnetometer sensor to measure the magnetic field 
around magnetically-driven residential water meters. It counts peaks in 
the magnetic field associated with movement of the magnetically-driven 
measurement element within the meter, and registers peaks as pulses 
that represent a fixed volume of water passing through the meter. These 
pulses are multiplied by a factor called the meter resolution (0.041619 
gallons per pulse, or 0.1575 liters per pulse, for the case study meter), 
which is specific to each meter type, brand, and size, to obtain the 
volume of water that passed through the meter per unit of time. Meter 
pulse resolution values can be obtained from meter manufacturers or 
through a calibration procedure described by Bastidas Pacheco et al. 
(2020). 

The CIWS-WM-Node we developed for this case study adds 
communication and computational capabilities to the CIWS datalogger 
by coupling it with a Raspberry Pi Model B or Model B+ single-board 
Linux computer. The components of the CIWS datalogger control all of 
the datalogging functions, whereas the Raspberry Pi computer can be 
powered on a user defined schedule to process and transmit data. The 
Raspberry Pi runs a version of the Linux operating system called Rasp-
berry Pi OS (previously called Raspbian). Although the Raspberry Pi is 
capable of interfacing with a number of different wireless communica-
tion options, including Wi-Fi, radio frequency, cellular 3G, LTE, Blue-
tooth, and satellite, we chose to use the Raspberry Pi’s built in Wi-Fi 
capabilities for this case study because the homeowner’s Wi-Fi network 
was easily accessible. In broader application, however, any Internet data 
connection compatible with a Raspberry Pi could be used. 

The CIWS-WM-Node datalogger outputs a comma separated values 
(CSV) file including a three line header with a unique identifier for the 
site at which the datalogger is installed, a unique identifier for the 
datalogger, and the meter resolution for the meter on which it is 
installed. The datalogger records three variables during the logging 
process: Datetime, Record, and Pulses (Bastidas Pacheco et al., 2020). 
The CIWS-WM-Node datalogging device was configured to chunk the 
data files by day (i.e., a new CSV file is created for each day) and send 
data files once per day to the Data Management and Archival Layer via 
an HTTP POST request. This functionality was developed as a single 
Python script (data_transfer.py). When the Raspberry Pi is powered on, it 
can conduct any computation required, and the data_transfer.py script is 
executed to send data files to the Data Management and Archival Layer 
for further processing. After a file is successfully sent via HTTP, it is 
moved to a different folder in the datalogger’s local storage for backup. 

3.1.2. Data management and archival layer 
For our case studies, the Data Management and Archival Layer 

components were deployed within a VMWare ESXi server environment 
hosted at Utah State University on a single virtual machine (VM) 
running the Ubuntu Linux Server Version 18.04 (Bionic Beaver) oper-
ating system. Ubuntu is a free and open-source Linux distribution 
developed by Canonical Ltd. It is well supported, stable, and offers 
reliable file security. The VM was configured with a 64-bit architecture, 
four 2.3 GHz processor cores, eight GB of RAM, and 100 GB of hard disk 
space. We refer to this VM as the “Data Management and Archival 
server.” 

We developed three main components to complete the tasks 
described for this layer, the data posting service (DPS), the data loading 
service (DLS), and the operational database, each of which is described 
in the sections that follow. The DPS and the DLS were developed in a 
generalizable way to facilitate reuse and serve as the Network Listener 
shown in the center panel of Fig. 1. However, some specific details were 

Table 1 
Variables measured, measuring device, and units of observation at each LLC 
building.  

Measured Variable Measuring device Units  

1) Hot-water supply 
flow  

2) Cold-water supply 
flow 

Master Meter Octave Ultrasonic water meter 
with 4–20 mA current loop outputs 

gpm  

3) Hot-water return 
flow 

Master Meter Bottom Load Multi-Jet (BLMJ) 
water meter with pulsed output 

pulses  

4) Cold water supply 
temperature  

5) Hot water supply 
temperature  

6) Hot water return 
temperature 

DS18B20 digital thermometer with digital 
output 

oC  
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adapted to this implementation. For example, the data parsing works for 
the specific output format of the CIWS-Datalogger. The DPS and the DLS 
were deployed on the Data Management and Archival server and then 
configured via settings stored in a user-modifiable JavaScript Object 
Notation (JSON) file (named configuration.json) that details the infor-
mation needed for their operation. For deployment, the configuration 
file must be placed in the same folder with the DPS and DLS. 

3.1.2.1. Data posting service (DPS). The DPS is a listener web service 
that receives and processes data files pushed to the Data Management 
and Archival server from the CIWS-WM-Node dataloggers. The DPS 
works integrated with two common server technologies, the web server 
software that processes HTTP requests received by the server and a Web 
Server Gateway Interface (WSGI) that runs the DPS application in 
response to the requests. We chose NGINX (NGINX, 2021), which is a 
free, open source HTTP server, to serve as the web server software 
because of its high performance, stability, simple configuration, and low 
resource consumption. The WSGI was implemented using (Gunicorn, 
2021), which is a Python WSGI HTTP server for Unix-like operating 
systems. Guidance for deploying the web server and WSGI software is 
available in the project’s GitHub repository. The parameters included in 
the configuration files for the DPS and the DLS are described in Table 2. 

The overall functioning of the DPS is as follows. Dataloggers send an 
HTTP POST request to the server that contains a data file (for our case 
study, one day of high resolution water use data for that home). These 
requests are received and handled by the NGINX web server, which 
passes them to the Gunicorn WSGI. Gunicorn then invokes and executes 
the DPS to authenticate the HTTP POST requests by using a token (cli-
ent_token in Table 2), verifying the file type (CSV) and that the file does 
not already exist on the server, before moving it to a local folder on the 
server (source_directory in Table 2) for further processing by the DLS. The 
DPS is composed of three pieces of code: app.py which lists the functions 
needed to read the application configuration file, auth.py that lists all the 
functions for file authentication, and web_service.py which calls the 
previous two files and executes the tasks described. Fig. 2 illustrates the 
processes described and lists the elements involved. 

The DPS was implemented using Bottle (Hellkamp, 2021), which is a 
WSGI micro web-framework for Python. Bottle is simple, fast, light-
weight, and works without additional dependencies, making it ideal for 
running small applications like the DPS. Bottle built-in functionalities, 
such as its simple URL routing capabilities and the convenient access to 
file uploads, were used to facilitate the development of the DPS and 
avoid dealing with low-level details of HTTP requests handling and 
routing. We implemented a very simple, token-based authentication for 

the HTTP POST requests in our prototype to avoid SPAM content being 
submitted to the DPS. More sophisticated and secure authentication and 
authorization processes could be integrated in the future, if needed to 
provide greater security. A log file keeps track of the requests received 
by the DPS and actions executed (the log file is located in a directory 
described in Table 2). The log file records successful and unsuccessful (e. 
g., a file that already exists is sent to the server multiple times, a request 
that is rejected by not having appropriate authentication credentials) 
posting attempts. All events are logged in a single file, named data_-
poster.log, which is limited to 5 MB in size. When a log file exceeds this 
size, it is saved adding a sequential number at the end (data_poster1.log 
initially) and the current logging continues in the original log file. 

3.1.2.2. Data loading service (DLS). We developed the DLS to read the 
files received from the dataloggers from the source directory on the 
server, parse the unique site identifier information from the header of 
the CSV file and insert the data into the database for archival and use by 
the Data Analytics Layer. The DLS also verifies that the data received 
does not already exist in the database by checking the unique site 
identifier and datetime values of the data to avoid duplication of data in 
the database. The DLS uses the same configuration file as the DPS, 
described on Table 2. The DLS reads data files from a local/source 
directory and moves them to a local/target directory after successfully 
inserting the data into the operational database. If an error occurs, the 
files are moved to the quarantine directory. A log file records all the 
activity executed by the DLS, including any error observed in the pro-
cess, such as invalid datetime stamps, invalid site identifiers, and at-
tempts to load data that already exists in the database. This log file is 
named data_loader.log, and it is managed identically to the DPS log file. 
Both are located in the same folder (log_directory in Table 2). 

We chose this implementation for several reasons. First, it enables 
preservation/archival of the original CSV data files recorded by the 
dataloggers. Second, the data are loaded into an operational database 
that is highly performant for querying and data retrieval in support of 
the Data Analytics Layer. Third, it enables all of the downstream com-
ponents in the architecture to be used regardless of how the data files 
arrive on the server. For example, they can be automatically pushed to 
the server from the datalogger, pulled from the datalogger by the server 
(as in our second case study), or manually copied to the server in the 
case where data transmission is not automated. The DLS was imple-
mented in a single Python script named loader.py. 

3.1.2.3. Operational database. For the operational database component, 
we chose to use an existing technology given the availability of mature 
and robust database software. In our previous work related to investi-
gating how to best manage large volumes of time series data, we tested 
the performance of four commonly used open source database tech-
nologies, including MongoDB, MySQL, PostgreSQL, and InfluxDB 
(Brewer, 2020). Based on our tests, we chose to use InfluxDB (Influ-
xData, 2021) due to its time series oriented data structure, rapid query 
performance, and favorable disk space requirements when compared to 
the other software technologies. InfluxDB is a popular time series 
database designed specifically for time series data in applications that 
require handling high data write and query loads. It provides a powerful 
structured query language (SQL)-like query language and has both open 
source distributions that can be installed and used for free (e.g., as we 
did on our Linux VM) and cloud deployments that can be implemented 
with usage-based pricing. InfluxDB has been used in multiple IoT and 
other applications, where it has been tested for large datasets (Balis 
et al., 2017; Di Martino et al., 2019; Rinaldi et al., 2019). InfluxDB also 
offers extensive support for multiple programming languages, including 
Python and R, which are commonly used for data science. This made it 
straightforward for us to use Python to insert data and to execute queries 
from the Data Analytics Layer. 

InfluxDB databases are organized around the concept of a 

Table 2 
Parameters included in the configuration file for the data posting (DPS) and data 
loading (DLS) services. The configuration file follows the structure presented 
here.  

Parameter Description 

log_directory Directory where the log files are located. 
source_directory Directory where the files accepted by the DPS are placed. 

The DLS processes the files located in this directory. 
target_directory Directory where the CSV files will be moved to after the data 

is uploaded into the database for archival. 
quarantine_directory Directory where the CSV files will be moved to if an error 

occurs. 
client_token A public key used to generate upload tokens and 

authenticate upload requests. 
secret_key A private key used to generate the upload tokens. 
database name Name of the InfluxDB database used. 

user Username of the InfluxDB user used when connecting to the 
database. 

password InfluxDB Password for the user selected. 
host The host name of the server on which the InfluxDB database 

is installed. 
port The Internet port number over which communications with 

the InfluxDB database server have been configured.  
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measurement, which can be thought of as a “table” that contains an 
indexed column named time containing the timestamp of each data point, 
where each data point is a row in the table. Additional variables are 
stored in columns that can be tags or fields. The main difference is that 
tags are indexed and are not required in a data structure, whereas at least 
one field is required, fields are not indexed. The column names for tags 
and fields are defined as keys. Generally, it is recommended that data 
values are stored as fields, and metadata as tags to improve query per-
formance. In our design for storing data in InfluxDB, the number of 
pulses recorded by the datalogger during each time interval is included 
as a field (key = pulses), and the site identifier (key = siteID) and the 
datalogger identifier (key = dataloggerID) are included as tags (Table 3). 

The data for all sites are stored in a single measurement within the 
Influx database. Raw data and quality controlled (QC) data are stored in 
separate measurements with the same structure. QC data is a copy of the 
raw data that is created after verifying that the volume registered by the 
datalogger is within ±5% of the volume registered by the meter (esti-
mated using subsequent readings of the meter’s register conducted 
during installation, during periodic site visits, and at removal of the 
datalogger). In some cases, known bad data were trimmed from the 
beginning and end of a valid deployment. Where the volume recorded 
by the datalogger did not match the volume recorded by the meter’s 
register, the data were discarded and a new deployment was started. 
During our case study deployments, we did not observe any out of range, 
anomalous, or unreasonable pulse count values after this QC procedure. 
In consequence, additional QC modules were not implemented. How-
ever, additional QC procedures could be implemented in the future. All 
queries and analysis are conducted using the QC data. 

The database is the point of connection between the Data Analytics 
Layer and the Data Management and Archival Layer, and its design must 
meet requirements from both layers to write and read data. Typically, 
database schemas are designed around the structure of the data to be 
stored and to facilitate the most common types of queries. This is usually 
a tradeoff between making it easy to insert data into the database while 
still providing highly performant queries. The simple database schema 
implemented in this case study (Table 3) mirrors the structure of the 
data files generated by the dataloggers, making it straightforward to 
insert data, but is also optimized to support the following queries: 1) 
selecting all of the data for a particular siteID; 2) selecting all of the data 
for a particular dataloggerID (e.g., to track the performance of a 

datalogger, which may be deployed at multiple sites at different times, 
and identify/correct any systematic errors); and 3) querying data for a 
specific time frame (e.g., between a beginning and ending date). 
Combining queries based on these three elements provides most of the 
functionality intended for CIWS and met all of the needs of our case 
study. 

Additional queries intended to allow comparison of data across 
multiple sites may also be of interest. Our design separates the time 
series data, which are stored anonymously in the InfluxDB database, 
from household information, which is stored in a separate CSV file, 
named sites.csv. The data stored in InfluxDB do not contain any identi-
fiable information, which removes privacy concerns from the time series 
data. The separate sites.csv file may include sensitive, personally iden-
tifiable information (e.g., names, addresses, etc.) along with any other 
descriptive characteristics (the version of the sites.csv file for this study 
published in HydroShare has been anonymized). Data managers may 
wish to maintain multiple versions of the sites.csv file (e.g., one with all 
personally identifiable information about data collection sites and one 
that has been anonymized and could be released to a broader set of 
users). While this approach adds an additional step for certain types of 
queries (e.g., selecting data for all houses within a certain geographic 
area or of a certain built age) because the site information must be 
queried before the correct time series data can be retrieved, it provides a 
mechanism for protecting personally identifiable information and more 
flexibility for managing metadata about the sites. Removing or adding 
tags to existing measurements is significantly restricted in InfluxDB. In 
consequence, anonymizing the data stored in InfluxDB for publication is 
not needed, as the data stored is already anonymous. Queries against the 
time series data can always be executed using a siteID or set of siteIDs 
obtained via a prior query to the sites.csv file. It is also possible, but 
currently not implemented, to add all site metadata as tags in the 
InfluxDB measurement to eliminate this intermediate query step, if that 
is more convenient in a specific application. 

Researchers and utility managers can access the data within the 
InfluxDB database with a non-administrator user account. InfluxDB al-
lows for the creation of multiple non-administrator users and at least one 
administrator user. The administrator manages authorization for each 
non-administrator user. Non-administrator users can be restricted to 
write, read, or both. The free version of InfluxDB does not allow fine- 
grained authorization, which would be needed to restrict users to view 
only part of the data in a measurement. However, we did not see this as a 
significant drawback as high level users like researchers and/or utility 
managers would likely need to have unrestricted access to all of the data 
in an InfluxDB database. Furthermore, it is unlikely that the full reso-
lution data would be provided to water consumers. Rather, a more likely 
scenario would be for a software application with a graphical user 
interface to be developed for presenting water consumers with feedback 
about their consumption. Authentication and authorization of users 

Fig. 2. Workflow and elements of the data management process for the push based implementation of the CIWS.  

Table 3 
InfluxDB database schema design in the push model implementation.  

Influx Key InfluxDB Type Data Type Example Value 

time Time Index Timestamp 2020-01-01 00:00:01 
siteID Tag String “1” 
pulses Field Integer 5 
dataloggerID Tag String “1”  
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could be handled separately by the software application in future de-
ployments. Erickson et al. (2012) provide an example of an online water 
portal and discuss the privacy and user authorization concerns that 
impact the design of similar tools. Homeowners are typically presented 
with summary statistics and visualizations calculated for their property 
and may be provided with a summary-level comparison with other 
properties. However, they generally would not have access to view raw 
data for their own or other properties. 

3.1.3. Data analytics layer 
To illustrate the type of capabilities supported by the Data Analytics 

Layer, we developed Python tools that provide an example of the main 
aspects involved in this process: connection to the database, user 
authentication, and data retrieval via common queries. Once the data 
has been retrieved into a Python environment, it can be integrated with 
existing, and more advanced, data analysis and visualization tools. 
While it is beyond the scope of this paper to demonstrate all of the 
possible ways in which data can be retrieved from the database 
component and used within analytical applications, the tools we 
developed demonstrate the general patterns required for developing 
such tools and serve as a foundation on which others could be 
developed. 

InfluxDB client programming libraries are available for several 
popular programming languages, including Python, Go, C#, Java, PHP, 
Ruby, Scala, JavaScript, and R, which simplifies software development 
using InfluxDB and facilitates desktop, mobile, and web application 
development. Using the Python client library for InfluxDB (InfluxDB, 
2020), we first developed a set of functions for interacting with the 
InfluxDB database. These functions were implemented within a single 
Python script called da_functions.py. This script connects to the database 
using a set of configuration parameters that are included in a JSON file 
named configuration.json, which is similar to the one used by the DPS and 
DLS applications. Parameters in the JSON file include: host, port, user-
name, password, and database (as defined in Table 2). The functions we 
developed in da_functions.py (Table 4) use the existing capabilities of the 
InfluxDB Python client library along with specific parameters provided 
by the user (e.g., siteID, time, dataloggerID as defined in Table 3) to 
provide a simple application programming interface (API) for querying 
data from the database. We anticipate that these functions will meet 
many of the most common data requirements for most researchers and 
utilities. The functions generate a Pandas dataframe (McKinney, 2010) 
with the resulting data if a single siteID is provided, and a Python list of 
Pandas dataframes when multiple siteIDs are provided. If a start date or 
end date are not included, the function will download the entire record 
available. If only a start date is provided the function will return 
everything from that date to the end of the record, in the opposite case, it 
will retrieve data from the beginning of the record to the specified 
ending data. If measurement is not provided, the functions will query 
from the quality controlled data (QCData). Raw data can be downloaded 
by specifying measurement = ‘RawData.’ For time aggregated data, the 
function parameter can include any Influx supported aggregation 
function (e.g., mean, median max, min, sum). The time resolution of the 
aggregated data supports any InfluxDB duration type (e.g., ‘1m’ for 1 
min data, ‘1h’ for hourly data, ‘1d’ for daily data, ‘1w’ for weekly data). 
All the arguments in both functions are Python keyword arguments. 

They must be preceded by their identifier (or name) when executing the 
functions, i.e., get_data(site = 1) to return all the quality controlled data 
for siteID 1. 

We then developed a Python Jupyter Notebook called data_analytics. 
ipynb that loads the functions listed and implements a basic workflow to 
produce metrics and analysis from the data collected. Jupyter Notebooks 
(Kluyver et al., 2016) allow creation and sharing of documents that 
contain live code, equations, visualizations and narrative text, which 
makes them ideal for prototyping visualizations and analyses for the 
Data Analytics Layer. The Notebook we developed imports data using 
the defined functions and then generates visualizations of common 
metrics of residential water use for presentation to water consumers. For 
example, Fig. 3 shows the average hourly water use (blue solid line), and 
the boxplots show the distribution of hourly water use for the period of 
data collection at the residential home we monitored. We can notice two 
periods of higher water usage, one during the morning and the other 
early in the afternoon, corresponding with patterns typically observed in 
hourly residential water use data. During this period, no outdoor water 
use occurred; therefore, the figure represents indoor water use only. The 
Notebook then demonstrates calculation of summary water use infor-
mation for the data collection period. For example, average daily water 
use was 170.2 gallons (644.3 L), leading to a per capita average daily 
water use of 34 gallons (128.7 L). The maximum daily water usage 
observed during the period was 292.7 gallons (1077.9 L), the instanta-
neous peak was 10 gpm, or 37.95 L per minute (Lpm), and the maximum 
hourly usage registered was 74.1 gallons (280.5 L). 

Another analysis of special interest using high-temporal resolution 
data is the identification of end uses of water. We used an open source 
algorithm developed by (Attallah et al., 2021), available via the 
HydroShare repository (Attallah and Bastidas Pacheco, 2021), within 
the Data Analytics layer to separate raw data into events and classify the 
resulting events into categories of end uses of water. The algorithm fil-
ters the data collected using a low-pass filter, making it easier identify 
single or concurrent events. Concurrent events are separated into single 
events, and the final table containing only single events is classified by 
using a combination of clustering to identify atypical or outlier events, 
and a fully-supervised machine learning methodology to assign labels to 
the remaining events. The machine learning model uses a Random 
Forest classifier (Liaw and Wiener, 2002) trained using a set of 
user-labeled and manually-labeled events to classify new events for in-
dividual residential homes (Attallah et al., 2021). We used the trained 
machine learning model to label the events generated during the data 
collection period at the residential home we monitored. While a 
potentially large number of analytics, visualization, and information can 
be generated from the labeled events, the Jupyter Notebook we devel-
oped presents a small subset of them (Fig. 4) as an example of products 
that can be generated from the raw data. 

At the observed home, toilet events account for 36.1% of the total 
indoor volume used, showers 26.3%, clothes washer 13%, faucets 
12.4%, and bathtub events 11.1%. Unclassified events, defined as events 

Table 4 
Functions implemented for querying data in the Data Analytics Layer.  

Query Python implementation 

Get raw data for one or multiple sites, 
between specific dates, or the entire 
record. 

get_data(site, startdate = None, enddate =
None, measurement = ‘QCData’) 

Get time aggregated data for one or 
multiple sites, between specific 
dates, or the entire record. 

get_agg(site, function, t_res, startdate =
None, enddate = None, Measurement =
‘QCData’)  

Fig. 3. Hourly distribution of water use for the single family residential home 
between January 15, 2021 and January 28, 2021. The blue solid line shows the 
hourly average water use, and the boxplot presents hourly water use variability. 
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lasting 4 s or less and consisting of a single “pulse” recorded by the meter 
(approximately 5 ounces, or 0.15 L of water), account for approximately 
1% of total use. Unclassified events include very short water use events 
(e.g., ice making refrigerators, short faucet events) and leaks. Fig. 4 
shows the distribution of the volume a), flow rate b), and duration c) for 
each category of indoor water use. Unclassified events were excluded 
from Fig. 4. Faucet events had a median flow rate of approximately 0.8 
gpm (3 Lpm). Water-efficient bathroom faucets, as defined by the United 
States (U.S.) Environmental and Protection Agency (EPA) in their Water 
Sense program (EPA, 2020), operate between 0.8 gpm at a pressure of 20 
pounds per square inches (psi), or 137.9 Kilopascals (kpa), and 1.5 gpm 
(5.7 Lpm) at 60 psi (413.7 kpa). Compared to this EPA standard, the 
flowrates we observed from the faucets at the study property are effi-
cient. A similar conclusion can be reached by comparing the median 
flow rate of shower heads at the study property (approximately 1.8 gpm, 
or 6.8 Lpm) with EPA Water Sense standards (limiting the maximum 
flow rate to 2.0 gpm, or 7.6 Lpm). 

In previous studies from multiple U.S. cities, shower durations 
averaged 7.8 min (DeOreo et al., 2016). The average shower duration 
observed at the study property was approximately 8 min, with a median 
value of 6.3. Approximately 25% of the shower durations were longer 
than 9.5 min (Fig. 4). The average gallons per flush (gpf) for toilets at the 
study property was 2.78 (10.5 L), significantly higher than the 1.28 (4.8 
L) recommended by the EPA (EPA, 2020), indicating there is potential 
for reducing water usage by retrofitting the property with 
water-efficient toilets. There is relatively little variability in the dura-
tions of toilet and clothes washer events, as observed in Fig. 4 c. For 
these events, the characteristics are dependent on the type, brand and 
setting used. Shower events reflect the largest variability, as expected, 
due to personal preferences of the different occupants of the property. 
Code to reproduce the results in this section and the raw data collected 
are publicly available in HydroShare (Bastidas Pacheco et al., 2021). The 
workflow that can be used to reproduce the results presented in this 
section consists of the following: a) InfluxDB is installed locally with 
instructions provided, b) the database described in Table 3 is created, c) 
the database is loaded with the raw data provided using Influ-
xDB_Loading.ipynb, and then d) data_analytics.ipynb is executed on the 

database, producing all the results described. 

3.2. Case study 2: pull based data collection within multi-unit residential 
buildings 

For results of this case study, we present only the data collection and 
management infrastructure required. The specifics details about esti-
mating and water-related energy use estimates using the data collected 
are reported elsewhere by Brewer (2020). The functionality of the Data 
Analytics Layer is independent of the selected data communication 
method (push or pull) because the Data Analytics Layer interacts only 
with the operational database. Given that the data collected by both case 
studies and the resulting database are similar, the considerations for 
implementing the Data Analytics Layer are equivalent to those of the 
first case study presented (e.g., ability to support queries, data privacy, 
etc.) and the technology of the implementation would follow the same 
process. To avoid duplication of results, we have chosen not to present 
an implementation of the Data Analytics Layer with this case study. 
However, similar functionalities related to this case study are discussed 
in our previous work (Brewer, 2020) and available in an online data 
resource (Brewer and Horsburgh, 2020). 

3.2.1. Data collection layer 
An enhanced version of the water meter datalogger presented by 

Horsburgh et al. (2017) was used to collect data for the variables listed 
in Table 1. This device was named the CIWS-EWM-Logger, where EWM 
denotes “electronic water meter” for the electronic output signal of the 
meter types it works with. The CIWS-EWM-Logger was designed to be 
installed on commercial water meters of the types typically used in 
multi-unit residential buildings and where a dedicated power source is 
readily available at the meter’s location. The CIWS-EWM-Logger also 
uses a Raspberry Pi 3 Model B or Model B + Linux computer running 
Raspberry Pi OS. The Raspberry Pi in this device controls the functioning 
of the datalogger and has integrated ethernet and Wi-Fi capabilities for 
connecting to a network while operating. Given the location of the water 
meters in utility closets with no wired ethernet ports, we chose to use 
Wi-Fi to enable communications with the dataloggers. Connecting a 

Fig. 4. Illustrative examples of high-temporal residential water use data analytics for the case study home between January 15, 2021 and January 28, 2021. The 
figure presents boxplots of a) the volume of events, b) the flow rate of events, c) the duration of events. In all cases, the data is grouped by end use type. Outliers were 
removed to improve the quality of visualization for short duration and low volume events (faucet and toilet events). 
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device to USU’s Wi-Fi network requires registration of the device’s 
hardware address, after which, each device is assigned a unique host 
name that is routable on USU’s network. Thus, each datalogger could be 
located and connected to within the network, which allowed for remote 
work interactions with the datalogger. For example, the firmware of the 
loggers could be updated, their functioning could be evaluated in real 
time, and data could be pulled from them via SSH at any time. While this 
specific configuration relies on characteristics of USU’s Wi-Fi network, 
we anticipate that Wi-Fi networks like USU’s would be available in many 
application contexts. The functionality described here would function 
identically for wired ethernet connections. 

The CIWS-EWM-Logger was specifically modified to read the output 
of each of the meters available on the LLC buildings along with water 
temperature values from three separate sensors. The CIWS-EWM- 
Loggers we deployed can be used with any water meter or sensor that 
has a 4–20 mA current loop output, analog voltage output, digital output 
readable by the Raspberry Pi via its General Purpose Input/Output 
(GPIO) ports, or pulsed output. The Master Meter Octave meters provide 
output through a 4–20 mA current loop module where the output cur-
rent is directly proportional to the flow rate through the meter. The 
necessary transformations from current to voltage and then to flow rate 
were performed by the CIWS-EWM-Logger (Brewer, 2020), and a time 
series of water flow in gallons per minute at a user-configurable tem-
poral resolution was generated. The BLMJ meter outputs a pulsed signal 
(voltage) where every pulse represents a gallon of water that has passed 
through the meter. In this case, the count of pulses, which equals the 
number of gallons, was registered by the CIWS-EWM-Logger at the same 
user-configured temporal resolution. The DS18B20 digital thermome-
ters provided digital 9-bit to 12-bit Celsius temperature measurements 
to an accuracy of ± 0.5 ◦C and were wired directly to the Raspberry Pi 
with a single wire for each sensor and do not require an external power 
supply. 

The CIWS-EWM-Logger in each building logged data to a CSV file 
that was saved in a local directory within the Raspberry Pi’s file system. 
For this deployment, data was collected at a 1-s time interval and in-
cludes the following columns: time (datetime of the measurement using 
the YYYY-MM-DD HH:MM:SS format), buildingID (B, C, D, E, or F), col-
dInFlowRate, coldInTemp, hotInFlowRate, hotInTemp, hotOutFlowRate and 
hotOutTemp with units indicated in Table 1. In the quality controlled 
data, the hot water return flow was transformed to gallons per minute 
for uniformity. 

3.2.2. Data management and archival layer 
To support pull based data retrieval, we developed an application 

called the Data Transfer Manager (DTM) to serve as the Request Service 
shown in Fig. 1. It was implemented as a single Python script named 
transfer_manager.py and follows the same convention used by the DPS 
and the DLS, reading configuration data from a JSON file. As in the first 
Case Study, the DTM and the operational database were deployed on a 
VM with similar characteristics to the one described in Section 3.1.2. We 
used InfluxDB as the operational database for this case study as well 
given the similarity in the type of data and requirements among both 
case studies and to show generalizability. 

The DTM manages all data communications under the pull based 
model. Operation of the DTM was scheduled using Linux’s native CRON 
functionality, which allows the user to specify how often the DTM 
program is executed. Upon being triggered by the scheduled CRON job, 
the DTM first reads the configuration file described in Table 5 and then 
proceeds through a list of defined tasks to manage transfer of data from 
each remote data collection site to the Data Management and Archival 
Layer:  

1. Connect to each datalogger listed in the configuration file using 
Paramiko, a Python library that enables SSH connections for safely 
accessing network services over unsecured networks (Forcier, 2021).  

2. Parse the datalogger’s Linux file system for new datalog files and 
download them to the server with Secure File Transfer Protocol 
(SFTP), an extension of SSH that offers secure file transfer capabil-
ities over any reliable data stream. Tasks 1 and 2 in this list are 
executed by a function named connect() in the transfer_manager.py 
Python script.  

3. Upload new data into the InfluxDB database. This task is completed 
by the write_to_db() function in the transfer_manager.py Python script. 

An additional function in the DTM, named send_error(), was devel-
oped to inform data managers about errors in the data transfer process. 
Errors are sent via Slack, a cloud-based instant messaging service (Slack 
Technologies, 2021). Messages are formulated as a JSON payload that is 
sent to a unique URL provided by Slack as a webhook. Information de-
tailing which datalogger file caused the error is included in the message. 
Fig. 5 describes the overall functionality of the DTM, indicating the key 
tasks mentioned. For this case study, data transferring and parsing are 
executed by a single element (transfer_manager.py), which requires fewer 
moving parts and minimizes the amount of time between the data being 
retrieved from the remote dataloggers and having them show up in the 
operational InfluxDB database. This is a slightly different approach than 
the one presented for Case Study 1, which allows more flexibility in the 
system. The DTM can work concurrently on a user defined number of 
datalogger devices at the same time (connections in Table 5). The optimal 
number of threads is dependent on the number of CPU cores of the 
server. For our testing, we set the number of threads to 6, matching the 
number of dataloggers in the LLC buildings. 

As in the first case study, the raw data and quality controlled data 
were stored in the same InfluxDB database in different measurements. 
Brewer (2020) describes the quality control procedures for the data 
collected in this case study. The database schema used for this case study 
is similar in structure to that of the first case study. The data included in 
the database copies all columns from the CSV files recorded by the 
dataloggers. BuildingID serves as the SiteID and is the only column 
stored as a tag. All additional variables (the recorded data values for 
each variable) are stored as fields. 

3.3. Scalability and Performance Metrics 

While we experienced no performance issues in the case study de-
ployments, we performed scalability testing to investigate the 

Table 5 
Parameters included in the configuration file for the DTM. The configuration file 
follows the structure presented here.  

Parameter Description 

connections The number of threads used for concurrent connection 
with hosts. 

log_directory Path where the log files are stored in the Data 
Management and Archival server (must have write 
permissions for that directory). 

hosts A list of datalogger host names or IP addresses to 
connect to. 

database name Name of the InfluxDB database to connect to. 
user Username for a user with permission to write data to 

the InfluxDB database. 
password Password for a user with permission to write data to the 

InfluxDB database. 
host Database server hostname or IP address. 
port The port number over which communications with the 

InfluxDB database server have been configured. 
measurement Name of InfluxDB Measurement where the data will be 

saved. 
sshinfo username Username used to connect to remote dataloggers via 

SSH. 
password Password used to connect to remote dataloggers via 

SSH. 
slack_webhook Slack webhook to send error messages through the 

Slack messaging service.  
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performance of the system beyond the scale of our case studies. We 
conducted individual tests of the DPS, the DLS, and the DTM, simulating 
larger numbers of dataloggers and HTTP POST requests, in the case of 
the DPS and DLS, and a larger number of remote datalogger hosts, in the 
case of the DTM, to be processed by the system. 

Scalability of the DPS is dependent upon its ability to handle many 
HTTP POST requests from many dataloggers posting data at the same 
time. The DPS was tested by sending multiple HTTP POST requests, each 
with a CSV file containing one day of randomly generated data with 
values recorded every 4 s (for consistency with the implementation of 
Case Study 1). The files were sent using a Python script implemented 
using the Asyncio library (Python Software Foundation, 2021a) from a 
MacBook Pro laptop computer with a 2.3 GHz 8-Core Intel Core i9 
processor and 16 GB of memory. Asyncio is a library that can be used to 
write code that executes concurrently, allowing the code to send mul-
tiple simultaneous, or nearly simultaneous, requests to the DPS. There 
are limitations in the number of concurrent requests that can be sent 
from the same computer, as well as in the number of dataloggers that can 
send data at the exact same time in a filed deployment, considering 
computing power, speed of connection, and synchronization. 

We simulated an increasing number of concurrent HTTP POST re-
quests to the DPS (10, 50, 100, 200 and finally 500), and each operation 
was repeated ten times to characterize server/network variability. The 
total duration of each repetition, calculated as the end time of the last 
HTTP POST request minus the start time of the first request, on average, 
was 0.6 s, 2.05 s, 3.58, 6.91 s, and 16.7 s for 10, 50, 100, 200, and 500 
requests, respectively. We observed no transmission errors or requests 
rejected by the server during our testing process. Fig. 6 shows the du-
rations of HTTP POST requests, separated by the batch size (10, 50, 100, 
200, and 500) for each one of the 10 repetitions conducted. We observed 
that the median duration of POST requests was larger for the 10-request 
batches compared to all other batches, but longer durations were 

observed for some requests in larger batches, which is expected as the 
DPS is busy with an increasing number of requests. Median times are 
consistent for batches with more than 50 POST requests. These times are 
affected by the processing power of the machine sending the request, the 
resources available on the remote server, and the speed and quality of 
the Internet connection but are provided here as an indicator of the 
performance of our prototype implementation. These tests indicate that 
the DPS can handle 500 nearly simultaneous POST requests in under 20 s 
with most individual requests being handled in under 0.2 s. 

To test the DLS, we simulated different data loading scenarios 
ranging from loading one CSV file for a single site to loading one file for 
500 sites. The testing procedure consisted of placing CSV files containing 
one day of data with values recorded every 4 s in the source directory 
and then executing the DLS. Each operation was repeated ten times. 
Table 6 presents the mean and standard deviation of each scenario along 
with the average time for loading a single file to facilitate comparisons. 
The DLS can load 1 day of data from 100 different sites in less than 50 s. 
There are differences between loading n files from the same site and 
loading 1 file from n sites, which can be explained by the way data are 
organized within the InfluxDB database. Although all of the data values 
are stored in the same InfluxDB measurement, InfluxDB logically groups 
data values by shared measurement, tag set, and field key. Writing data 
with multiple siteID tag values takes longer. Both scenarios are realistic 
applications. The first scenario (n files from 1 site) simulates loading 
data collected from dataloggers lacking communication technologies. 
The second scenario (1 file from n sites) represents a deployment like the 
one described in Case Study 1 with a larger number of sites. 

We used the six dataloggers described in Case Study 2 to test the 
DTM. Each data logger sent 1 day of data during all tests. The func-
tionality that allows the system to identify existing data or files was 
removed, allowing the system to upload existing CSV files and re-write 
existing data to the InfluxDB without restrictions. This configuration 

Fig. 5. General functionality of the DTM.  

Fig. 6. Boxplot of processing times, separated by the number of HTTP POST requests in the batch (10, 50, 100, 200, and 500) for each repetition, from 1 to 10. 
Duration is calculated as the final processing time minus the starting time of each individual POST request. 
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enabled us to simulate a larger number of connections by repeating 
dataloggers in the hosts list included in the DTM configuration file 
(described in Table 5). The number of dataloggers was gradually 
increased (6, 48, 96, and finally 480), and the DTM was executed ten 
times for each number of dataloggers, processing one CSV file contain-
ing one day of 1-s resolution data for each datalogger. The DTM was set 
to execute six threads at a time, meaning that it can be simultaneously 
connected to and downloading data from six dataloggers at a time, for 
consistency with the application of Case Study 2. During our testing, 
only 6 dataloggers were available, which meant that it was possible for 
the DTM to attempt connecting to and processing data from the same 
logger multiple times simultaneously. This can negatively affect the time 
reported if a host is not immediately available for processing when the 
system is trying to connect to it. Table 7 lists the duration and standard 
deviation after ten runs with an increasing number of datalogger hosts. 
Using our test configuration, it took less than 50 min for the DTM to 
process data from 480 hosts. 

We tested the system up to, and with much larger numbers than the 
40–60 sites in our design considerations and observed no real limitations 
for using CIWS in deployments roughly an order of magnitude larger, 
even with our relatively limited testing server. The DLS and the DTM 
include writing to the database as part of their tasks, and the times 
observed satisfy the stated requirements for our application. As a final 
test, we tested the database by conducting standard queries from a Py-
thon environment, using the same laptop computer. We observed the 
amount of time required to downloaded one day, one week, and one 
month of data for 1, 5, and 10 sites along with the time required to load 
the data into a Pandas dataframe object (Table 8). All queries were 
conducted using the function get_data() described on Table 4. The timeit 
Python module (Python Software Foundation, 2021b) was used to 
repeat each query 10 times and measure execution times. Downloading 
one month of data (a common record length in studies collecting high 
resolution residential water use data) for ten sites into a Pandas data-
frame takes less than 1 min. The log files and code to reproduce all the 
results of this section are publicly available in HydroShare (Bastidas 
Pacheco et al., 2021). 

The cost of deploying CIWS to support data collection at residential 
houses using the equipment described for Case Study 1 can be broken 
down as follows: a) the cost of CIWS-NODE Datalogger devices, which is 
approximately $180 multiplied by the number of houses to be enrolled 
simultaneously, and; b) the cost of hosting a server with characteristics 
similar to our testing server (4 processor cores, 8 GB of memory, 100 GB 

of storage). At the time of this writing, hosting this machine using the 
Amazon Elastic Compute Cloud would cost approximately $57 per 
month (Amazon, 2021), although there are multiple hosting alternatives 
for the server that could be used and that would impact the cost estimate 
provided. The approximated cost of building the datalogger device used 
in Case Study 2 is $85. 

4. Conclusions and future work 

A complete cyberinfrastructure system that uses a layered approach 
to collect and manage high-temporal resolution water use data was 
developed and implemented. The system was designed focusing on the 
scale of data collection that would be required for research projects 
conducted by utilities or other researchers. Having a standardized 
cyberinfrastructure like CIWS can increase the value of the data 
collected by allowing more straightforward data collection and man-
agement, as well as facilitating the analysis and understanding of data 
collected in different projects, cities and utilities. CIWS can be used to 
manage data collected or used for multiple purposes - e.g., collecting 
data to support estimates of design parameters for future home de-
velopments, guiding the planning of water conservation campaigns, 
assessing the effectiveness of rebate programs, assisting in the definition 
of utility rates, and defining future demand and infrastructure needs. 

Our case studies showed that CIWS can work with any datalogging 
devices that generate CSV files containing time series of water use data, 
but it can also be used in the collection of other variables, as demon-
strated in experimental Use Case 2. By integrating low cost data 
collection devices and open-source cyberinfrastructure we sought to 
increase the accessibility of tools for conducting high-temporal resolu-
tion data collection in support of residential water use studies. CIWS can 
reduce not only the cost of such studies, but also technical barriers by 
providing a framework to collect and manage the data. 

CIWS can manage push and pull based data communication. Since 
each functionality is implemented separately, future users of CIWS can 
select push or pull, or a combination of both, depending on the needs 
and settings of their application. The work performed within the Data 
Management and Archival Layer depends on whether the push or pull 
model is used. In the pull case, the data is pulled from the device by a 
request service, whereas in the push case the data is managed by a 
network listener web service that accepts incoming files and processes 
them. Both use the same database component, which means that the 
Data Analytics Layer can operate independent of how the data are 
transferred. The demonstrations we presented of the Data Analytics 
Layer serve as a proof of concept and show the foundation upon which 
more sophisticated tools could be built that can be used to communicate 
results with multiple interested parties. 

We focused our design and implementation on a system that is 
capable of transferring high temporal resolution water use data from 
water meters to a centralized infrastructure for storage and subsequent 
analysis. In a research context, this is preferable, as researchers may not 
know at the outset of a study all of the specific analyses they may want to 

Table 6 
Results from the DLS testing. Every operation was repeated 10 times.  

Load Operation Average duration  
(seconds) 

Standard  
deviation  
(seconds) 

Average time for  
processing 1 file  
(seconds) 

1 file from 1 site 0.37 0.06 0.37 
10 files from 1 site 3.96 0.14 0.40 
1 file from 10 sites 4.67 0.23 0.47 
50 files from 1 site 19.92 0.67 0.40 
1 file from 50 sites 23.87 0.33 0.48 
100 files from 1 site 39.87 1.05 0.40 
1 file from 100 sites 47.48 0.89 0.47 
500 files from 1 site 195.19 2.98 0.39 
1 file from 500 sites 240.70 3.00 0.48  

Table 7 
Results from the DTM testing.  

Number of datalogger 
hosts 

Average duration 
(seconds) 

Standard deviation 
(seconds) 

6 41.7 1.57 
48 279.4 9.35 
96 551.5 9.21 
480 2831 252  

Table 8 
InfluxDB downloading times for different queries. In all cases the data was 
downloaded and loaded into a Pandas dataframe.  

Days of 
data 

Number of 
sites 

Average duration 
(seconds) 

Standard deviation 
(seconds) 

1 1 0.17 0.02 
1 5 0.81 0.03 
1 10 1.62 0.04 
7 1 1.16 0.04 
7 5 5.74 0.07 
7 10 11.39 0.07 
30 1 4.51 0.27 
30 5 22.46 0.52 
30 10 45.47 1.24  
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perform with the data and, thus, keeping all of the data is necessary. 
However, transferring large volumes of data to a centralized data 
management system poses challenges when scaling a system like this to 
larger deployments. While technically possible over Wi-Fi or cellular 
data networks, the availability of Wi-Fi is limited, and cost of data 
transfer over a cellular data network may be prohibitive. As an alter-
native, we are now investigating edge computing techniques using our 
CIWS-WM-Node datalogger to process the high resolution water use 
data on the logger to produce summary data products that are much 
smaller and can be transferred over a network with far less bandwidth 
and at lower cost. The tradeoff is that the full resolution data are never 
transferred or saved in the long term. 

CIWS combines multiple open-source technologies. The modular 
design makes it easier to replace or update technology elements in the 
system, if needed. Similarly, additional tools can be added to system - e. 
g., more advanced analytics tools and enhanced authentication pro-
tocols. The analytics presented show potential for conservation pro-
grams and can assist in the design of future urban water infrastructure. 
All of the components we developed are publicly available for reuse, and 
we envision future improvements to the system once the tools are used 
in other studies. The system testing, performance metrics, and deploy-
ment demonstrate that CIWS can meet and significantly exceed the 
design considerations in terms of scale and performance. We saw no 
impediment for using CIWS, or a similar system in larger deployments 
than the ones tested, by increasing the processing power of the virtual 
machine, or deploying multiple instances. The server we used for testing 
had only moderate system specifications and could either be run on 
private server hardware or could easily be hosted within a commercial 
cloud service provider at a reasonable monthly cost. 

Software and data availability 

Name of Software: Cyberinfrastructure for Intelligent Water Supply 
(CIWS); 

Developers: Camilo J. Bastidas Pacheco, Joseph C. Brewer, Jeffery S. 
Horsburgh, Juan Caraballo, Elijah West. 

Contact: jeff.horsburgh@usu.edu. 
Year First Available: 2021. 
Required hardware and software: We used open source dataloggers 

for the data collection efforts in this study. Datalogger hardware details 
are provided by Bastidas Pacheco et al. (2020) and Horsburgh et al. 
(2017). Data management and archival components of CIWS were 
designed to run on a Linux server and were tested using Ubuntu. The 
data analytics components we demonstrate require a computer running 
the Windows, Linux, or Macintosh operating system. Instructions for 
how to deploy the system are available in the project’s GitHub 
repository. 

Availability: Source code for the Data Management and Archival 
Layer software components described in this manuscript is freely 
available and can be downloaded from the CIWS Server GitHub re-
pository (https://github.com/UCHIC/CIWS-Server). The src folder in 
that repository contains a folder named ciws_ci and a folder named 
data_transfer_manager where the elements related to Case Study 1 and 
Case Study 2 are located, respectively. The doc folder contains a 
deployment guide for CIWS. The data described in Case Study 1 and the 
source code of the Data Analytics Layer software are publicly available 
in HydroShare (Bastidas Pacheco et al., 2021) with instructions for 
reproducing the results presented in that section. The data described in 
Case Study 2 and tools used to analyze it are also publicly available in 
HydroShare (Brewer and Horsburgh, 2020). The log files from Section 
3.3 (Scalability and Performance Metrics) and code used to generate the 
results presented are available in HydroShare (Bastidas Pacheco et al., 
2021). Design files, instructions for assembly, and firmware for the open 
source dataloggers are available on the GitHub sites for the CIWS Water 
Meter Node datalogger (https://github.com/UCHIC/CIWS-WM-Node) 
and the CIWS Electronic Output Water Meter datalogger (https://gith 

ub.com/UCHIC/CIWS-EWM-Logger). 
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