
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Publications Utah Water Research Laboratory

7-16-2021

An Open Source Cyberinfrastructure for Collecting, Processing, An Open Source Cyberinfrastructure for Collecting, Processing,

Storing and Accessing High Temporal Resolution Residential Storing and Accessing High Temporal Resolution Residential

Water Use Data Water Use Data

Camilo J. Bastidas Pacheco
Utah State University

Joseph C. Brewer
Utah State University

Jeffery S. Horsburgh
Utah State University

Juan Caraballo
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/water_pubs

 Part of the Civil and Environmental Engineering Commons

Recommended Citation Recommended Citation
Bastidas Pacheco, Camilo, Brewer, Joseph, Horsburgh, Jeffery, and Caraballo, Juan. "An Open Source
Cyberinfrastructure for Collecting, Processing, Storing and Accessing High Temporal Resolution
Residential Water Use Data." Environmental Modelling & Software, vol. 144, no. 2021, 2021, pp. 1-16.

This Article is brought to you for free and open access by
the Utah Water Research Laboratory at
DigitalCommons@USU. It has been accepted for
inclusion in Publications by an authorized administrator
of DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/water_pubs
https://digitalcommons.usu.edu/water
https://digitalcommons.usu.edu/water_pubs?utm_source=digitalcommons.usu.edu%2Fwater_pubs%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fwater_pubs%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Environmental Modelling and Software 144 (2021) 105137

Available online 16 July 2021
1364-8152/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An open source cyberinfrastructure for collecting, processing, storing and
accessing high temporal resolution residential water use data

Camilo J. Bastidas Pacheco *, Joseph C. Brewer, Jeffery S. Horsburgh, Juan Caraballo
Department of Civil and Environmental Engineering and Utah Water Research Laboratory, Utah State University, Logan, UT, USA

A R T I C L E I N F O

Keywords:
Residential water use
Data management
Smart metering
Cyberinfrastructure
Information and communication technology

A B S T R A C T

Collecting and managing high temporal resolution residential water use data is challenging due to cost and
technical requirements associated with the volume and velocity of data collected. We developed an open-source,
modular, generalized architecture called Cyberinfrastructure for Intelligent Water Supply (CIWS) to automate
the process from data collection to analysis and presentation of high temporal residential water use data. A
prototype implementation was built using existing open-source technologies, including smart meters, databases,
and services. Two case studies were selected to test functionalities of CIWS, including push and pull data models
within single family and multi-unit residential contexts, respectively. CIWS was tested for scalability and per-
formance within our design constraints and proved to be effective within both case studies. All CIWS elements
and the case study data described are freely available for re-use.

1. Introduction

Achieving higher efficiency in urban water management and plan-
ning requires understanding of how water is used at the household level.
Daily patterns in consumption, potential for water savings and distri-
bution of water use across end uses are essential inputs to water demand
estimation, leak identification, design of programs to manage water
demand, and water planning to ensure adequate supply (Giurco et al.,
2008; Willis et al., 2011). Metering water use for billing purposes is a
common practice in the United States, where meters are typically read
monthly or quarterly. Our ability to characterize water demand is
limited by the temporal resolution of the data collected. Higher reso-
lution data can increase the accuracy of peak demand estimation and
reduce leak volumes that can go undetected. Sub-minute resolution data
is required to record and quantify end uses of water that have short
duration (Cominola et al., 2018; Nguyen et al., 2015). However,
obtaining this higher temporal resolution data at a scale larger than a
few houses presents several challenges in terms of data collection,
storage, management, and processing (Cominola et al., 2018), and doing
it over an extended period of time can be unpractical (Cardell-Oliver,
2013).

Collecting a month of 10-s resolution data for a single meter, which is
common in end uses of water studies (DeOreo et al, 2011, 2016; Mayer

et al, 1999, 2004), produces more than 250,000 observations. Doing so
at a water utility or municipality scale, which may have thousands of
metered residential connections, presents obvious challenges associated
with the volume of data that would be produced. Many utilities lack a
dedicated information technology or data management staff, which
means that new database management, software deployment, and data
analysis tasks can be prohibitive. In these cases, and in the absence of
sufficient cyberinfrastructure for automating data management tasks,
high resolution data could be more of a roadblock for a water provider
than a benefit. However, with adequate data collection and management
tools, utilities may be able to realize more of the potential benefits
associated with high temporal resolution data. This includes quantifying
water use behavior to better enable planning that ensures adequate
supply, the promotion of water conservation behavior among users (Liu
et al., 2015), improving customer service quality for utilities (Beal and
Flynn, 2015), tipping the cost-benefit balance in the smart metering
adoption case, which remains undefined (Cominola et al., 2018), and
enabling the proliferation of scientific work in this field.

The term “cyberinfrastructure” integrates hardware and software
tools, as well as data networks (NSF, 2007). Cyberinfrastructure can
help solve data management challenges and enable more widespread
collection of higher temporal resolution water use data for utilities and
researchers. In a broader context, cyberinfrastructure is improving the

* Corresponding author. 8200 Old Main Hill, Logan, UT, 84322-8200, USA.
E-mail addresses: camilo.bastidas@usu.edu (C.J. Bastidas Pacheco), jbrewer256@gmail.com (J.C. Brewer), jeff.horsburgh@usu.edu (J.S. Horsburgh), juan.

caraballo17@gmail.com (J. Caraballo).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2021.105137
Accepted 13 July 2021

mailto:camilo.bastidas@usu.edu
mailto:jbrewer256@gmail.com
mailto:jeff.horsburgh@usu.edu
mailto:juan.caraballo17@gmail.com
mailto:juan.caraballo17@gmail.com
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.105137
https://doi.org/10.1016/j.envsoft.2021.105137
https://doi.org/10.1016/j.envsoft.2021.105137
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.105137&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 144 (2021) 105137

2

communication of results from hydrological models (Souffront Alcan-
tara et al., 2017), helping monitor watershed health parameters
(Szwilski et al., 2018), assisting in the automation of comparing climate
model results (Sun et al., 2020), and it is now ubiquitous in multiple
scientific domains (Hachmann et al., 2018; Shams et al., 2018; Wegrzyn
et al., 2020).

Smart meters have potential to solve one of the challenges in the
pathway to an advanced water cyberinfrastructure, high resolution
measurement of water use. The term “smart meter” can be ambiguous
(Boyle et al., 2013). Within this article, it is used to denote devices
capable of recording water use with high resolution (i.e., sub-minute
frequency) that can be integrated in automated systems for data man-
agement. Nearly a decade ago, it was anticipated that use of smart
meters would grow over time (Boyle et al., 2013), and they are, in fact,
becoming more widely available and adopted. With this emergence of
smart meters, there has been an increase in the number of scientific
publications using the high resolution data they produce for water de-
mand analysis. Cominola et al. (2015) provide a comprehensive review.
However, despite the increase in the number of publications using smart
metering data to quantify end uses of water and water use behavior, the
data management procedures, or tools, used in these studies are not well
described, and most of the datasets used are not openly available (Di
Mauro et al., 2020). In most of these studies, the focus has been on the
tools and algorithms used for identifying water end uses and user
behavior. Other components of the data management process are not
described.

Available cyberinfrastructure for collecting, managing and analyzing
this type of data remains scarce and of proprietary nature, with little
available literature describing tools and procedures for data collection,
management, and analysis. Meter manufacturers tend to have their own
software systems designed for their metering technology, which com-
plicates synthesis or integration of data from multiple systems and may
help explain why research in this field has been conducted in a limited
number of countries using a limited number of datasets. Many of these
studies have used the same data logging device for data collection and
the same software tool for end use analysis (Beal and Stewart, 2011;
DeOreo et al, 2011, 2016; Mayer et al, 1999, 2004). Other studies have
reused the same dataset to conduct different analyses. For example, Beal
at al. (2013) present differences between perceived and actual water
consumption, Willis et al. (2013) studied the impact of
socio-demographic and efficient fixtures on water use, and Beal and
Stewart (2011) presented end uses of water characteristics, all using the
same dataset collected in Southeast Queensland, Australia.

The datalogging devices used in most high-resolution data collection
studies lack communication capabilities, which limits the potential for
automated integration with downstream cyberinfrastructure (e.g.,
telemetry, storage, management, and analysis applications). More
recently, there has been increasing discussion around smart cities, smart
grids, smart water networks and other related terms, despite there not
being a wide agreement about their definition, what is meant by “smart,”
or the extension of their applications (Ardito et al., 2013; Hollands,
2008; Wissner, 2011). It is generally agreed that smart cities make use of
information and communication technologies (ICT) in an attempt to
assist cities in optimizing the use of their assets (Neirotti et al., 2014),
water being one of the most important. Connectedness of data collection
and its application is important in this context.

Advanced metering infrastructure (AMI) and ICT systems are vital
for the successful deployment of a smart grid (Yan et al., 2013). In the
energy sector, smart grids use smart technologies for metering,
communication and automation and make use of digital information to
improve reliability (U.S. Congress, 2007). The Internet of Things (IoT)
has also been described as a potential enabler of smart grids in the water
sector (Alghamdi and Shetty, 2016; Robles et al., 2014; Zanella et al.,
2014), and, more recently, smart solutions that use IoT principles have
been proposed (Amaxilatis et al., 2020; Stiri et al., 2019). Liu and
Nielsen (2016) discussed existing technologies to develop an ICT system,

or cyberinfrastructure, to enable smart meter analytics for the energy
sector acknowledging the difficulties in processing and managing the
large volumes of data generated. Similar systems have been proposed
and discussed for water use analytics (Boyle et al., 2013; Li et al., 2020;
Makropoulos, 2017; Moy De Vitry et al., 2019), but few implementa-
tions have been published due to the cost and complexity of these ap-
plications (Alvisi et al., 2019; Amaxilatis et al., 2020; Anda et al., 2013).
In one notable example, Chen et al. (2011) conducted analysis using
data collected on a smart water service architecture deployed for billing
purposes on the city of Dubuque, IA. This system collects data every 15
min providing more advanced analysis to water consumers and pro-
viders (Erickson et al., 2012).

While multiple high-level designs of a smart water network have
been described (e.g., Hauser et al., 2016; Li et al., 2020; Ye et al., 2016),
implementations are scarce. Most of the smart water systems designs we
reviewed lacked a full demonstration or prototype implementation. In
some cases, important elements, such as performance metrics and
implementation guidance were not fully described (Li et al., 2020).
When demonstrations were presented, the focus was primarily on the
results of the specific case study (i.e., the lessons learned about water use
and/or behavior) and not on the design and implementation of the tools
used to complete the tasks. The limited availability of data and tools for
the water sector constitutes a significant barrier for the development of
research and prevents the advancement and implementation of smarter
water grids at a large scale (Mutchek and Williams, 2014). The
closed-source nature of existing data collection hardware and data
management software creates accessibility and interoperability issues
that prevent the progress of smart water grids while curtailing the
adoption of open architectures (Hauser and Roedler, 2015; Robles et al.,
2014). The development of open source cyberinfrastructure for man-
aging high resolution data can lay the foundations for the development
of newer and better tools for water utilities, as well as standards for
operations that result in increased interoperability. All of these actions
could pave the road for more water demand research, and ultimately,
advance technologies for the development of smart water grids.

Thus, in order to achieve the full potential of smart meters, cyber-
infrastructure is needed to support utilization of the high resolution data
they produce (Horsburgh et al., 2019; Mason et al., 2014). Developing
effective cyberinfrastructure that can support both operational data
collection and management (e.g., for billing, reporting and day-to-day
management purposes) and exploration of data for research aimed at
better understanding water use behavior is expensive and challenging
(Stocks et al., 2019). Indeed, architectural designs and data structures
for cyberinfrastructure supporting residential water use data must meet
the needs of multiple users (i.e., water providers, water consumers, re-
searchers) without disrupting a utility’s necessary business functions.
The research described here focused on the following research questions
to advance the cyberinfrastructure and availability of software tools for
collecting, managing and analyzing high resolution smart metering
data: a) what is the general architecture for a cyberinfrastructure to
support collection and management of high temporal resolution smart
metering data, and b) how can that architecture be implemented to meet
the needs of multiple potential users (e.g., water utilities, water con-
sumers, researchers).

In this paper, we present a generalized architectural design for a
Cyberinfrastructure for Intelligent Water Supply (CIWS) and a prototype
implementation of each of the components within the architecture in
support of multiple data collection, management and analysis case
studies. The prototypes we developed demonstrate tools that are not
currently available for researchers or utility managers and include: a) a
data collection layer consisting of datalogging devices with data trans-
mission capabilities, which are modifications from our previous work
(Horsburgh et al., 2017; Bastidas Pacheco et al., 2020); b) a data man-
agement and archival layer that receives, processes, and stores data; and
c) a data analytics layer that enables calculation of common water use
metrics (e.g., average hourly water use, instantaneous peak, and end

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

3

uses of water disaggregation and classification). Components within
these layers demonstrate the entire workflow consisting of data collec-
tion, communication, storage, management and archival, and visuali-
zation and analysis.

While CIWS was designed and implemented for research purposes,
including appropriate mechanisms for protecting the identities of
research participants where necessary, it facilitates implementation of
high temporal residential water use analysis, which is of interest to not
only researchers in the field, but also utility companies and water con-
sumers and can provide information currently not available to them. The
data collected and managed using CIWS is relevant for assessment and
management of both water demand and for planning to ensure adequate
water supply. We first describe the requirements for the system along
with the overall architecture we designed to meet these requirements
(Section 2). We then describe a set of case studies in which this overall
architecture was prototyped and implemented using both existing and
new open source hardware and software components (Section 3).
Finally, we close with discussion and conclusions (Section 4).

2. Methods

2.1. CIWS design and overall software architecture

Our goal in developing CIWS was to create a generalized, modular
architecture that can be used to automate the process from collection to
analysis and visualization of high temporal resolution water use data. In
our case study applications of CIWS, we combined existing and devel-
oped new, open source hardware devices and software tools to
demonstrate an integrated solution for high-resolution residential water
use data collection, management, and analysis. The CIWS architecture
and our prototype implementation were designed to address the
following requirements. While we present our prototype implementa-
tions in this paper, there may be multiple implementations of the
generalized architecture that meet these requirements.

a) An open architecture that could be implemented using a variety of
technologies;

b) Open source software development to facilitate its deployment and
use by other users, reduce costs, and provide a platform for future
improvement by others while advancing financial feasibility of larger
scale implementations;

c) A modular design, so each component of CIWS can be used, or
advanced, independently;

d) Accept input data from different meters and measurement devices
(sensors) to address heterogeneity in urban water meter technology;

e) Capacity to manage “push” and “pull” data retrieval from the
metering devices depending on available communication technolo-
gies and storing of data in a centralized server;

f) Scalable to accommodate a large data volume while remaining
responsive to queries for subsets of time series data of varying sizes;

g) Support production of analysis and insights that meet the needs of
different audiences.

In our review of the literature, we found that existing designs of
smart components or cyberinfrastructure for managing water systems
are not fully standardized. However, most systems described or imple-
mented to date are composed of multiple layers working in connection
to achieve the overall goal (Li et al., 2020). We found that the number,
name and function of these layers was different in each design; however,
we observed some similarities. In practice, the number of layers
included in an architectural design comes down to tradeoffs between the
benefits of modularity and separation of concerns that can be achieved
versus the complexity and potential fragility introduced with a larger
number of layers. Separate layers can be autonomous such that changes
to one layer do not have to affect the other layers. However, a greater
number of layers typically involves more components that can fail.

Our overall architectural design for CIWS adopts this multi-layer
paradigm (Fig. 1) and is composed of three main layers. The first layer
is the Data Collection Layer and includes the physical instruments and
sensors used to monitor water use. It has also been called the sensing
layer (Ye et al., 2016), the physical layer (Hauser et al., 2016), or the
instrument layer (Li et al., 2020). The second layer is the Data Man-
agement and Archival Layer, which handles data communication,
parsing and archival. This layer has also been referred to as the network
or function layer (Hauser et al., 2016; Li et al., 2020; Ye et al., 2016). The
final layer is the Data Analytics Layer, which handles all the steps be-
tween queries to retrieve data from the archival component to final vi-
sualizations, analyses and presentations produced for utilities, water
consumers, researchers, etc. (i.e., the consumers of the data). This layer
has also been referred to as the application or the data fusion and
analysis layer (Hauser et al., 2016; Li et al., 2020; Ye et al., 2016). Some
of the other systems reviewed include elements for real time monitoring
and control of observed variables and processes within the system,
resulting in architectural designs with a larger number of layers. Since
these elements were not needed in our case study use cases, a three layer
model met all of the requirements listed above. A system with more
layers may become more fragile; therefore, our design includes the
minimum needed to meet the design considerations.

The architecture for CIWS and our prototype implementations were
developed with a research focus – e.g., collecting, storing and managing
high resolution water use data to enable advanced study of residential
water use behavior. This type of research may be carried out by utilities,
universities, or other agencies involved in research related to or man-
agement of urban water supply and demand. The typical deployment
size in this type of work has been around 50 houses per city; however,
some studies have analyzed up to 762 sites (DeOreo et al., 2016). In the
latter case, the data was not collected simultaneously at all sites. Our
aim was to develop a system that can handle, at minimum, the number
of simultaneous data collection sites within the range of deployments
observed in the past (40–60 houses). In the following sections, we
describe in more detail the high-level design for each of the architectural
layers, their key components, and their basic functionality.

2.1.1. Data collection layer
Data collection refers to the actual measurement of the variable or

variables of interest, in this case, high temporal resolution water use.
Here, we define high temporal resolution data as data collected at a sub-
minute resolution. Typical investigations of water use behavior, such as
separating and quantifying end uses of water within a home, require
data to be recorded at 10-s or even finer resolution over data collection
periods of weeks to months. With few exceptions, high temporal reso-
lution data cannot be collected using existing, commercially available
smart meters without adding additional hardware or software compo-
nents (Cominola et al., 2018), which can be expensive (Horsburgh et al.,
2017). Water metering technology typically consists of a physical meter
that uses one of several measurement techniques paired with an analog
or digital register on which a totalized volume of water use is recorded.
Some registers, including those of commercially available smart meters,
are capable of storing volume readings within internal memory; how-
ever, this is usually constrained to relatively short periods of time (e.g.,
weeks) at recording intervals longer than 1 min. Other registers report
only the most recent volume reading and are designed for periodic (e.g.,
monthly or quarterly) readings either manually or automatically via
radio. These practical limitations are driven by power, local data stor-
age, and network bandwidth limitations of existing metering
technology.

Some water use studies have added flow metering sensors directly on
the water pipe leading to each appliance in a residential house (Kofinas
et al., 2018; Di Mauro et al., 2019). Opting for this approach allows
direct measurements of water use from each fixture, and by placing the
measuring element inside the property, power and communications can
be readily available. However, this approach is invasive and requires

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

4

modifications to the plumbing in each home where data is collected,
which can increase costs and limit the applicability of this methodology
at a medium or large scale. Therefore, we opted to focus our efforts on
datalogging devices that can be coupled with the existing water meter
available at the property. Datalogging devices designed to couple with
existing meters are available (Bastidas Pacheco et al., 2020; F.S. Brai-
nard & Company, 2020). These dataloggers essentially perform the same
function as the meter’s register, but have the capability of recording
much more frequent observations over longer periods of time. To be
fully integrated in a data management system like CIWS, the datalogging
devices must also have communication capabilities. CIWS was designed
to handle both push and pull data communication, making it adaptable
for multiple scenarios. The term push is used to denote systems where
the data is sent by each datalogger (client) to a centralized server, while
pull refers to systems where a centralized server connects to each data-
logger and requests data. Given the modular design of CIWS, it is
possible to integrate dataloggers that lack communication capabilities,
such as those used in most residential studies in the past. Under this
scenario, a user can take advantage of the Data Management and
Archival and Data Analytics Layers of CIWS, while using data files
manually downloaded from the datalogging devices in the field.

2.1.2. Data management and archival layer
The Data Management and Archival Layer is responsible for the work

required to process the data logged by the devices. The key component
addressed in this layer relates to developing and using software elements
to automate repetitive data management processes and enable an easier
transition between large volumes of data collection and useful infor-
mation generation. This layer is composed of multiple working elements
(Fig. 1). For push based data transmission, a listener service is required
to receive the data sent by the dataloggers. In pull based data trans-
mission, a request service is used to achieve the same task. Once the data
is received, it must be verified, parsed and transferred to a database

component. The database component accepts and stores data for
downstream analysis and decision making. Real-time monitoring of
water use is typically not of interest in most research scenarios, where
most data analysis happens after the data have been collected. Addi-
tionally, given the frequency with which observations are recorded (e.g.,
on the order of seconds), it is not practical to push or pull data every time
a new observation becomes available. Based on this, CIWS was designed
to collect and send files containing many observations rather than
sending observations individually. This approach minimizes the
communication load on the system because the data transfer process
does not occur constantly, and it can be scheduled to meet specific
needs.

The request service for pull based data transmission must execute the
following tasks: a) connect to a datalogging device; b) check for new
data files; c) request and transfer new files; d) read and parse the files,
and e) upload the data into the database. Remotely accessing devices can
be achieved using a variety of communication protocols like Secure Shell
(SSH), which is a widely used method for similar tasks due to its
simplicity, speed and security. In this model, the datalogging devices
need to be powered on and connected to the network at the time the
connection is established. Additionally, a key requirement is that each
datalogging device must be located, addressed, and accessed directly,
which also provides an opportunity for remote functionalities, such as
software updates, troubleshooting, changing data collection settings,
and others.

The listener service, which manages the data transferring process
under the push model, must complete the following tasks: a) accept and
validate the data sent from each datalogging device deployed, b) process
incoming files, including parsing the information they contain, and c)
saving the data received into the database. Under this approach, the
communication elements of the datalogger only need to be powered up
and functioning for the time it takes to send the desired information to
the listener service, which can contribute to lower power requirements.

Fig. 1. Overall architecture design of CIWS consisting of three main layers: 1) Data Collection, 2) Data Management and Archival, and 3) Data Analytics. Arrows are
used to indicate data and workflow movement between components. White arrows indicate the flow of data and information and black arrows show the connection
between elements and layers.

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

5

Additionally, there is no requirement for data logging devices to be
uniquely addressed on a network as they can identify themselves within
the content of the message they push to the listener service.

Multiple technologies that can potentially meet the data storage and
accessibility design considerations (i.e., the database requirement) are
available. The database must be able to manage large volumes of data
and provide a platform for generating analytics of such data. The data
managed by the system consist mainly of time series of flow observa-
tions, which are constantly being collected and written into the data-
base. Thus, the databasing technology selected must provide: a) easy
and fast querying between dates and times to enable manipulation of the
data; b) high performance for read and write operations as the database
is continuously being updated with new data and potentially accessed by
multiple users; and c) scalability, as the volume of data to be stored in
the database increases quickly as the monitoring network and time
period over which data are collected grow. The database schema used to
organize the data for CIWS was designed to maximize query efficiency
while maintaining the ability to protect the privacy of water consumers
by storing personally identifiable information outside of the database.
Common queries to be conducted in projects where CIWS can be used
include selecting all or part (time constrained) of the full resolution or
time aggregated data for a single or multiple sites.

2.1.3. Data analytics layer
The Data Analytics Layer supports generalized interactions between

data users and the database for the purposes of visualization and anal-
ysis of the data. The necessary functions executed in this layer include:
a) user authentication to access existing data, b) querying data from the
data base, c) data manipulation and analysis, and d) generation of re-
ports and visualizations of interest for different target audiences. For the
purposes of this research, three main target audiences were identified as
users of information produced by the Data Analytics Layer: water con-
sumers, utility managers, and researchers. While these categories of
users are not necessarily exhaustive or mutually exclusive, the infor-
mation that would be useful to these different users and the methods
used to interact with the data are not the same. For instance, an indi-
vidual residential user would need to be able to access and interact with
the data from their home in a practical and non-technical way that does
not require specialized software. Past studies have evaluated residential
users preferences for water use feedback, finding that information about
their prior water consumption, comparison of use with that of similar
users, and details about their consumption can increase user under-
standing (Erickson et al., 2012; Liu et al., 2015).

Utility managers may want to access standardized plots or reports
showing data from multiple users, and researchers may need much more
freedom to formulate their own, custom queries to the database to
subset, aggregate, or summarize data in useful ways. This implies that
the Data Analytics Layer needs to support multiple mechanisms for
accessing and interacting with the database. Authentication, authori-
zation, and privacy for users with different privileges (read or write data
in a database) to access online resources have been discussed for mul-
tiple applications (Christie et al., 2020; Heiland et al., 2015; Kim and
Lee, 2017). High temporal resolution data products, such as distribution
and timing of end uses, can raise privacy concerns among water con-
sumers that must be considered when designing data presentation tools
(Froehlich et al., 2012). Aggregation and summarization techniques can
be used to present information for multiple water consumers while
protecting privacy, and authentication and authorization can be used to
limit what data is available for different users. CIWS considers the use of
anonymized datasets throughout the system by identifying water con-
sumers with a unique identifier. Linkage with the personally identifiable
information about each water consumer is stored separately and is only
available to those who have appropriate privileges and are allowed
match water consumers with their data.

2.2. Case study design and system testing

In order to evaluate the overall architecture design, we designed two
case studies that demonstrate different aspects of the architecture pre-
sented in two distinct data collection environments. The first case study
demonstrates data collection at individual single-family residential
homes. It uses an autonomous datalogger with communication capa-
bilities to collect high resolution water use data and demonstrates push-
based transmission of the data to the Data Management and Archival
Layer. The second case study demonstrates data collection within multi-
unit residential structures on a University campus. It uses dataloggers
with dedicated power supplies and network registrations to demonstrate
pull-based transmission of the data to the Data Management and
Archival Layer. In the second case study, we collected data for additional
parameters needed to characterize the energy consumption related to
hot water use. The collection of data for these parameters provides an
example of CIWS flexibility. Both case studies share the same layers, but
we describe the different elements used by each case study.

We created a full prototype implementation of the design layers
presented in Fig. 1 for each case study and deployed them in an oper-
ational environment. These prototypes and deployments were created to
demonstrate proof-of-concept for data collection and management
components, the shareability of components within the architecture
regardless of the data transmission method, and generalizability for our
architectural design. We tested the system developed for scalability by
simulating an increased number of sites and larger volumes of data.

Python 3.7 was chosen to develop all of the code and software
associated with our case studies given that it is freely available and open
source, it is a high-level programming language with a vast number of
libraries available to complete an important number of functions
required in our application, and it could be used across all three layers of
our architectural design. Using Python also helped us meet the first three
requirements described above as the code can be easily shared, read and
modified by other programmers and scientists, and can be deployed in
different operating systems, which increases reuse possibilities.

2.2.1. Case study 1 description
Water use in single family residential homes is quantified, to a large

extent, using analog, positive displacement water meters. The volume of
water that has passed through the meter is usually the only variable
recorded by this type of meter. In most cases, water meters are enclosed
in underground pits of varying depth, limiting power supply availability.
These meters are typically read monthly, quarterly or at coarser reso-
lutions by the utility for billing purposes either manually or via a roving
radio that receives the most recent volume observation from each meter
when the roving radio passes within range. Some more advanced net-
works include automated retrieval of the coarse resolution volume data,
but very few have the capability to record and transmit high resolution
data. Given that the vast majority of residential water meters in use
today share these constraints, we chose this case study to demonstrate
adding high resolution data collection and transmission capabilities to
existing, analog water meters.

2.2.2. Case study 2 description
The Living Learning Community center (LLC) on Utah State Uni-

versity’s (USU) campus was selected as a second case study for
deploying CIWS within a set of multi-unit residential buildings. The LLC
is one of USU’s newer student housing options and houses approxi-
mately 500 students distributed among six dormitory buildings labeled
building A – building F. The objective of this implementation was to
characterize water and water-related energy use in five buildings (B–F).
The importance of the water-energy nexus for optimizing conservation
and sustainable management has been identified in the past (Hamiche
et al., 2016; Kenway et al., 2016; Fang and Chen, 2017). However,
collecting water and energy consumption data combined at a sufficient
temporal resolution to analyze their relation is uncommon, and the

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

6

methods for linking water and energy use are not well established. This
case study demonstrates a methodology for collecting water and
water-related energy data in a multi-unit residential setting. Buildings
B–F host approximately 90 students each. Building A hosts administra-
tive offices, has a much lower student occupancy, and was excluded
from the study. We chose a pull based model for this case study given the
availability of dedicated power at each data collection site and the
availability of USU’s campus Wi-Fi network to enable communications
and data transmission.

Three water meters are present in the water supply system for each of
these buildings - hot-water supply, cold-water supply, and hot-water
return. To monitor water and water related energy use within each
building, two characteristics of each meter were measured, flow and
water temperature, resulting in a total of six variables collected per
building (Table 1). The hot-water return is a feature of the LLC’s inno-
vative hot water recirculation system. Hot water is continually circu-
lated from three boilers to the LLC buildings at a constant, base flowrate
of approximately 3 gallons per minute (gpm) or 11.4 liters per minute
(Lpm). Increases from this base flowrate constitute hot water use. Un-
used hot water returns to the one of the three boilers for reheating and
eventual recirculation. Cold water is supplied in a typical on-demand
basis.

3. Results and discussion

3.1. Case study 1: push based data collection for single family residential
homes

We selected a single family residential property to test the CIWS
functionality under a push based data retrieval model. We collected two
weeks of data at this property, between January 15, 2021 and January
28, 2021, for the implementation described. All water use results pre-
sented are for this time period. This home had five occupants, three of
ages between 10 and 25 and two between 40 and 60 during the data
collection period. It was built in 2006, has three bathrooms and a total
parcel area of approximately 12,000 ft2 (1114.8 m2). We chose push
based data retrieval for this case study because it is enabled by hetero-
geneous networking – i.e., any datalogger device capable of high reso-
lution data collection and sending data over an available data network
could be used without the need for each device to be uniquely
addressable on a network. Additionally, power requirements can be
reduced given that data logging devices do not have to listen for con-
nections and requests from a centralized server but rather wake to
transmit data on a user-configured schedule.

3.1.1. Data collection layer
At the property selected, a one inch (2.54 cm) Bottom Load (BL)

Master Meter with an analog register was being used by the water utility
to record monthly water use, transmit it to a roving receiver via a 3G
radio and bill water usage. We added high temporal resolution data

collection and transmission capabilities without affecting the normal
operation of the utility’s meter by installing a CIWS Water Meter Node
(CIWS-WM-Node) datalogger to measure water use at a 4-s temporal
resolution on top of the existing meter. The CIWS-WN-Node is an
advanced modification of the CIWS datalogger (Bastidas Pacheco et al.,
2020), which is an open source, Arduino-based datalogger that we
designed to work with any magnetically-driven water meter. The CIWS
datalogger uses a magnetometer sensor to measure the magnetic field
around magnetically-driven residential water meters. It counts peaks in
the magnetic field associated with movement of the magnetically-driven
measurement element within the meter, and registers peaks as pulses
that represent a fixed volume of water passing through the meter. These
pulses are multiplied by a factor called the meter resolution (0.041619
gallons per pulse, or 0.1575 liters per pulse, for the case study meter),
which is specific to each meter type, brand, and size, to obtain the
volume of water that passed through the meter per unit of time. Meter
pulse resolution values can be obtained from meter manufacturers or
through a calibration procedure described by Bastidas Pacheco et al.
(2020).

The CIWS-WM-Node we developed for this case study adds
communication and computational capabilities to the CIWS datalogger
by coupling it with a Raspberry Pi Model B or Model B+ single-board
Linux computer. The components of the CIWS datalogger control all of
the datalogging functions, whereas the Raspberry Pi computer can be
powered on a user defined schedule to process and transmit data. The
Raspberry Pi runs a version of the Linux operating system called Rasp-
berry Pi OS (previously called Raspbian). Although the Raspberry Pi is
capable of interfacing with a number of different wireless communica-
tion options, including Wi-Fi, radio frequency, cellular 3G, LTE, Blue-
tooth, and satellite, we chose to use the Raspberry Pi’s built in Wi-Fi
capabilities for this case study because the homeowner’s Wi-Fi network
was easily accessible. In broader application, however, any Internet data
connection compatible with a Raspberry Pi could be used.

The CIWS-WM-Node datalogger outputs a comma separated values
(CSV) file including a three line header with a unique identifier for the
site at which the datalogger is installed, a unique identifier for the
datalogger, and the meter resolution for the meter on which it is
installed. The datalogger records three variables during the logging
process: Datetime, Record, and Pulses (Bastidas Pacheco et al., 2020).
The CIWS-WM-Node datalogging device was configured to chunk the
data files by day (i.e., a new CSV file is created for each day) and send
data files once per day to the Data Management and Archival Layer via
an HTTP POST request. This functionality was developed as a single
Python script (data_transfer.py). When the Raspberry Pi is powered on, it
can conduct any computation required, and the data_transfer.py script is
executed to send data files to the Data Management and Archival Layer
for further processing. After a file is successfully sent via HTTP, it is
moved to a different folder in the datalogger’s local storage for backup.

3.1.2. Data management and archival layer
For our case studies, the Data Management and Archival Layer

components were deployed within a VMWare ESXi server environment
hosted at Utah State University on a single virtual machine (VM)
running the Ubuntu Linux Server Version 18.04 (Bionic Beaver) oper-
ating system. Ubuntu is a free and open-source Linux distribution
developed by Canonical Ltd. It is well supported, stable, and offers
reliable file security. The VM was configured with a 64-bit architecture,
four 2.3 GHz processor cores, eight GB of RAM, and 100 GB of hard disk
space. We refer to this VM as the “Data Management and Archival
server.”

We developed three main components to complete the tasks
described for this layer, the data posting service (DPS), the data loading
service (DLS), and the operational database, each of which is described
in the sections that follow. The DPS and the DLS were developed in a
generalizable way to facilitate reuse and serve as the Network Listener
shown in the center panel of Fig. 1. However, some specific details were

Table 1
Variables measured, measuring device, and units of observation at each LLC
building.

Measured Variable Measuring device Units

1) Hot-water supply
flow

2) Cold-water supply
flow

Master Meter Octave Ultrasonic water meter
with 4–20 mA current loop outputs

gpm

3) Hot-water return
flow

Master Meter Bottom Load Multi-Jet (BLMJ)
water meter with pulsed output

pulses

4) Cold water supply
temperature

5) Hot water supply
temperature

6) Hot water return
temperature

DS18B20 digital thermometer with digital
output

oC

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

7

adapted to this implementation. For example, the data parsing works for
the specific output format of the CIWS-Datalogger. The DPS and the DLS
were deployed on the Data Management and Archival server and then
configured via settings stored in a user-modifiable JavaScript Object
Notation (JSON) file (named configuration.json) that details the infor-
mation needed for their operation. For deployment, the configuration
file must be placed in the same folder with the DPS and DLS.

3.1.2.1. Data posting service (DPS). The DPS is a listener web service
that receives and processes data files pushed to the Data Management
and Archival server from the CIWS-WM-Node dataloggers. The DPS
works integrated with two common server technologies, the web server
software that processes HTTP requests received by the server and a Web
Server Gateway Interface (WSGI) that runs the DPS application in
response to the requests. We chose NGINX (NGINX, 2021), which is a
free, open source HTTP server, to serve as the web server software
because of its high performance, stability, simple configuration, and low
resource consumption. The WSGI was implemented using (Gunicorn,
2021), which is a Python WSGI HTTP server for Unix-like operating
systems. Guidance for deploying the web server and WSGI software is
available in the project’s GitHub repository. The parameters included in
the configuration files for the DPS and the DLS are described in Table 2.

The overall functioning of the DPS is as follows. Dataloggers send an
HTTP POST request to the server that contains a data file (for our case
study, one day of high resolution water use data for that home). These
requests are received and handled by the NGINX web server, which
passes them to the Gunicorn WSGI. Gunicorn then invokes and executes
the DPS to authenticate the HTTP POST requests by using a token (cli-
ent_token in Table 2), verifying the file type (CSV) and that the file does
not already exist on the server, before moving it to a local folder on the
server (source_directory in Table 2) for further processing by the DLS. The
DPS is composed of three pieces of code: app.py which lists the functions
needed to read the application configuration file, auth.py that lists all the
functions for file authentication, and web_service.py which calls the
previous two files and executes the tasks described. Fig. 2 illustrates the
processes described and lists the elements involved.

The DPS was implemented using Bottle (Hellkamp, 2021), which is a
WSGI micro web-framework for Python. Bottle is simple, fast, light-
weight, and works without additional dependencies, making it ideal for
running small applications like the DPS. Bottle built-in functionalities,
such as its simple URL routing capabilities and the convenient access to
file uploads, were used to facilitate the development of the DPS and
avoid dealing with low-level details of HTTP requests handling and
routing. We implemented a very simple, token-based authentication for

the HTTP POST requests in our prototype to avoid SPAM content being
submitted to the DPS. More sophisticated and secure authentication and
authorization processes could be integrated in the future, if needed to
provide greater security. A log file keeps track of the requests received
by the DPS and actions executed (the log file is located in a directory
described in Table 2). The log file records successful and unsuccessful (e.
g., a file that already exists is sent to the server multiple times, a request
that is rejected by not having appropriate authentication credentials)
posting attempts. All events are logged in a single file, named data_-
poster.log, which is limited to 5 MB in size. When a log file exceeds this
size, it is saved adding a sequential number at the end (data_poster1.log
initially) and the current logging continues in the original log file.

3.1.2.2. Data loading service (DLS). We developed the DLS to read the
files received from the dataloggers from the source directory on the
server, parse the unique site identifier information from the header of
the CSV file and insert the data into the database for archival and use by
the Data Analytics Layer. The DLS also verifies that the data received
does not already exist in the database by checking the unique site
identifier and datetime values of the data to avoid duplication of data in
the database. The DLS uses the same configuration file as the DPS,
described on Table 2. The DLS reads data files from a local/source
directory and moves them to a local/target directory after successfully
inserting the data into the operational database. If an error occurs, the
files are moved to the quarantine directory. A log file records all the
activity executed by the DLS, including any error observed in the pro-
cess, such as invalid datetime stamps, invalid site identifiers, and at-
tempts to load data that already exists in the database. This log file is
named data_loader.log, and it is managed identically to the DPS log file.
Both are located in the same folder (log_directory in Table 2).

We chose this implementation for several reasons. First, it enables
preservation/archival of the original CSV data files recorded by the
dataloggers. Second, the data are loaded into an operational database
that is highly performant for querying and data retrieval in support of
the Data Analytics Layer. Third, it enables all of the downstream com-
ponents in the architecture to be used regardless of how the data files
arrive on the server. For example, they can be automatically pushed to
the server from the datalogger, pulled from the datalogger by the server
(as in our second case study), or manually copied to the server in the
case where data transmission is not automated. The DLS was imple-
mented in a single Python script named loader.py.

3.1.2.3. Operational database. For the operational database component,
we chose to use an existing technology given the availability of mature
and robust database software. In our previous work related to investi-
gating how to best manage large volumes of time series data, we tested
the performance of four commonly used open source database tech-
nologies, including MongoDB, MySQL, PostgreSQL, and InfluxDB
(Brewer, 2020). Based on our tests, we chose to use InfluxDB (Influ-
xData, 2021) due to its time series oriented data structure, rapid query
performance, and favorable disk space requirements when compared to
the other software technologies. InfluxDB is a popular time series
database designed specifically for time series data in applications that
require handling high data write and query loads. It provides a powerful
structured query language (SQL)-like query language and has both open
source distributions that can be installed and used for free (e.g., as we
did on our Linux VM) and cloud deployments that can be implemented
with usage-based pricing. InfluxDB has been used in multiple IoT and
other applications, where it has been tested for large datasets (Balis
et al., 2017; Di Martino et al., 2019; Rinaldi et al., 2019). InfluxDB also
offers extensive support for multiple programming languages, including
Python and R, which are commonly used for data science. This made it
straightforward for us to use Python to insert data and to execute queries
from the Data Analytics Layer.

InfluxDB databases are organized around the concept of a

Table 2
Parameters included in the configuration file for the data posting (DPS) and data
loading (DLS) services. The configuration file follows the structure presented
here.

Parameter Description

log_directory Directory where the log files are located.
source_directory Directory where the files accepted by the DPS are placed.

The DLS processes the files located in this directory.
target_directory Directory where the CSV files will be moved to after the data

is uploaded into the database for archival.
quarantine_directory Directory where the CSV files will be moved to if an error

occurs.
client_token A public key used to generate upload tokens and

authenticate upload requests.
secret_key A private key used to generate the upload tokens.
database name Name of the InfluxDB database used.

user Username of the InfluxDB user used when connecting to the
database.

password InfluxDB Password for the user selected.
host The host name of the server on which the InfluxDB database

is installed.
port The Internet port number over which communications with

the InfluxDB database server have been configured.

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

8

measurement, which can be thought of as a “table” that contains an
indexed column named time containing the timestamp of each data point,
where each data point is a row in the table. Additional variables are
stored in columns that can be tags or fields. The main difference is that
tags are indexed and are not required in a data structure, whereas at least
one field is required, fields are not indexed. The column names for tags
and fields are defined as keys. Generally, it is recommended that data
values are stored as fields, and metadata as tags to improve query per-
formance. In our design for storing data in InfluxDB, the number of
pulses recorded by the datalogger during each time interval is included
as a field (key = pulses), and the site identifier (key = siteID) and the
datalogger identifier (key = dataloggerID) are included as tags (Table 3).

The data for all sites are stored in a single measurement within the
Influx database. Raw data and quality controlled (QC) data are stored in
separate measurements with the same structure. QC data is a copy of the
raw data that is created after verifying that the volume registered by the
datalogger is within ±5% of the volume registered by the meter (esti-
mated using subsequent readings of the meter’s register conducted
during installation, during periodic site visits, and at removal of the
datalogger). In some cases, known bad data were trimmed from the
beginning and end of a valid deployment. Where the volume recorded
by the datalogger did not match the volume recorded by the meter’s
register, the data were discarded and a new deployment was started.
During our case study deployments, we did not observe any out of range,
anomalous, or unreasonable pulse count values after this QC procedure.
In consequence, additional QC modules were not implemented. How-
ever, additional QC procedures could be implemented in the future. All
queries and analysis are conducted using the QC data.

The database is the point of connection between the Data Analytics
Layer and the Data Management and Archival Layer, and its design must
meet requirements from both layers to write and read data. Typically,
database schemas are designed around the structure of the data to be
stored and to facilitate the most common types of queries. This is usually
a tradeoff between making it easy to insert data into the database while
still providing highly performant queries. The simple database schema
implemented in this case study (Table 3) mirrors the structure of the
data files generated by the dataloggers, making it straightforward to
insert data, but is also optimized to support the following queries: 1)
selecting all of the data for a particular siteID; 2) selecting all of the data
for a particular dataloggerID (e.g., to track the performance of a

datalogger, which may be deployed at multiple sites at different times,
and identify/correct any systematic errors); and 3) querying data for a
specific time frame (e.g., between a beginning and ending date).
Combining queries based on these three elements provides most of the
functionality intended for CIWS and met all of the needs of our case
study.

Additional queries intended to allow comparison of data across
multiple sites may also be of interest. Our design separates the time
series data, which are stored anonymously in the InfluxDB database,
from household information, which is stored in a separate CSV file,
named sites.csv. The data stored in InfluxDB do not contain any identi-
fiable information, which removes privacy concerns from the time series
data. The separate sites.csv file may include sensitive, personally iden-
tifiable information (e.g., names, addresses, etc.) along with any other
descriptive characteristics (the version of the sites.csv file for this study
published in HydroShare has been anonymized). Data managers may
wish to maintain multiple versions of the sites.csv file (e.g., one with all
personally identifiable information about data collection sites and one
that has been anonymized and could be released to a broader set of
users). While this approach adds an additional step for certain types of
queries (e.g., selecting data for all houses within a certain geographic
area or of a certain built age) because the site information must be
queried before the correct time series data can be retrieved, it provides a
mechanism for protecting personally identifiable information and more
flexibility for managing metadata about the sites. Removing or adding
tags to existing measurements is significantly restricted in InfluxDB. In
consequence, anonymizing the data stored in InfluxDB for publication is
not needed, as the data stored is already anonymous. Queries against the
time series data can always be executed using a siteID or set of siteIDs
obtained via a prior query to the sites.csv file. It is also possible, but
currently not implemented, to add all site metadata as tags in the
InfluxDB measurement to eliminate this intermediate query step, if that
is more convenient in a specific application.

Researchers and utility managers can access the data within the
InfluxDB database with a non-administrator user account. InfluxDB al-
lows for the creation of multiple non-administrator users and at least one
administrator user. The administrator manages authorization for each
non-administrator user. Non-administrator users can be restricted to
write, read, or both. The free version of InfluxDB does not allow fine-
grained authorization, which would be needed to restrict users to view
only part of the data in a measurement. However, we did not see this as a
significant drawback as high level users like researchers and/or utility
managers would likely need to have unrestricted access to all of the data
in an InfluxDB database. Furthermore, it is unlikely that the full reso-
lution data would be provided to water consumers. Rather, a more likely
scenario would be for a software application with a graphical user
interface to be developed for presenting water consumers with feedback
about their consumption. Authentication and authorization of users

Fig. 2. Workflow and elements of the data management process for the push based implementation of the CIWS.

Table 3
InfluxDB database schema design in the push model implementation.

Influx Key InfluxDB Type Data Type Example Value

time Time Index Timestamp 2020-01-01 00:00:01
siteID Tag String “1”
pulses Field Integer 5
dataloggerID Tag String “1”

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

9

could be handled separately by the software application in future de-
ployments. Erickson et al. (2012) provide an example of an online water
portal and discuss the privacy and user authorization concerns that
impact the design of similar tools. Homeowners are typically presented
with summary statistics and visualizations calculated for their property
and may be provided with a summary-level comparison with other
properties. However, they generally would not have access to view raw
data for their own or other properties.

3.1.3. Data analytics layer
To illustrate the type of capabilities supported by the Data Analytics

Layer, we developed Python tools that provide an example of the main
aspects involved in this process: connection to the database, user
authentication, and data retrieval via common queries. Once the data
has been retrieved into a Python environment, it can be integrated with
existing, and more advanced, data analysis and visualization tools.
While it is beyond the scope of this paper to demonstrate all of the
possible ways in which data can be retrieved from the database
component and used within analytical applications, the tools we
developed demonstrate the general patterns required for developing
such tools and serve as a foundation on which others could be
developed.

InfluxDB client programming libraries are available for several
popular programming languages, including Python, Go, C#, Java, PHP,
Ruby, Scala, JavaScript, and R, which simplifies software development
using InfluxDB and facilitates desktop, mobile, and web application
development. Using the Python client library for InfluxDB (InfluxDB,
2020), we first developed a set of functions for interacting with the
InfluxDB database. These functions were implemented within a single
Python script called da_functions.py. This script connects to the database
using a set of configuration parameters that are included in a JSON file
named configuration.json, which is similar to the one used by the DPS and
DLS applications. Parameters in the JSON file include: host, port, user-
name, password, and database (as defined in Table 2). The functions we
developed in da_functions.py (Table 4) use the existing capabilities of the
InfluxDB Python client library along with specific parameters provided
by the user (e.g., siteID, time, dataloggerID as defined in Table 3) to
provide a simple application programming interface (API) for querying
data from the database. We anticipate that these functions will meet
many of the most common data requirements for most researchers and
utilities. The functions generate a Pandas dataframe (McKinney, 2010)
with the resulting data if a single siteID is provided, and a Python list of
Pandas dataframes when multiple siteIDs are provided. If a start date or
end date are not included, the function will download the entire record
available. If only a start date is provided the function will return
everything from that date to the end of the record, in the opposite case, it
will retrieve data from the beginning of the record to the specified
ending data. If measurement is not provided, the functions will query
from the quality controlled data (QCData). Raw data can be downloaded
by specifying measurement = ‘RawData.’ For time aggregated data, the
function parameter can include any Influx supported aggregation
function (e.g., mean, median max, min, sum). The time resolution of the
aggregated data supports any InfluxDB duration type (e.g., ‘1m’ for 1
min data, ‘1h’ for hourly data, ‘1d’ for daily data, ‘1w’ for weekly data).
All the arguments in both functions are Python keyword arguments.

They must be preceded by their identifier (or name) when executing the
functions, i.e., get_data(site = 1) to return all the quality controlled data
for siteID 1.

We then developed a Python Jupyter Notebook called data_analytics.
ipynb that loads the functions listed and implements a basic workflow to
produce metrics and analysis from the data collected. Jupyter Notebooks
(Kluyver et al., 2016) allow creation and sharing of documents that
contain live code, equations, visualizations and narrative text, which
makes them ideal for prototyping visualizations and analyses for the
Data Analytics Layer. The Notebook we developed imports data using
the defined functions and then generates visualizations of common
metrics of residential water use for presentation to water consumers. For
example, Fig. 3 shows the average hourly water use (blue solid line), and
the boxplots show the distribution of hourly water use for the period of
data collection at the residential home we monitored. We can notice two
periods of higher water usage, one during the morning and the other
early in the afternoon, corresponding with patterns typically observed in
hourly residential water use data. During this period, no outdoor water
use occurred; therefore, the figure represents indoor water use only. The
Notebook then demonstrates calculation of summary water use infor-
mation for the data collection period. For example, average daily water
use was 170.2 gallons (644.3 L), leading to a per capita average daily
water use of 34 gallons (128.7 L). The maximum daily water usage
observed during the period was 292.7 gallons (1077.9 L), the instanta-
neous peak was 10 gpm, or 37.95 L per minute (Lpm), and the maximum
hourly usage registered was 74.1 gallons (280.5 L).

Another analysis of special interest using high-temporal resolution
data is the identification of end uses of water. We used an open source
algorithm developed by (Attallah et al., 2021), available via the
HydroShare repository (Attallah and Bastidas Pacheco, 2021), within
the Data Analytics layer to separate raw data into events and classify the
resulting events into categories of end uses of water. The algorithm fil-
ters the data collected using a low-pass filter, making it easier identify
single or concurrent events. Concurrent events are separated into single
events, and the final table containing only single events is classified by
using a combination of clustering to identify atypical or outlier events,
and a fully-supervised machine learning methodology to assign labels to
the remaining events. The machine learning model uses a Random
Forest classifier (Liaw and Wiener, 2002) trained using a set of
user-labeled and manually-labeled events to classify new events for in-
dividual residential homes (Attallah et al., 2021). We used the trained
machine learning model to label the events generated during the data
collection period at the residential home we monitored. While a
potentially large number of analytics, visualization, and information can
be generated from the labeled events, the Jupyter Notebook we devel-
oped presents a small subset of them (Fig. 4) as an example of products
that can be generated from the raw data.

At the observed home, toilet events account for 36.1% of the total
indoor volume used, showers 26.3%, clothes washer 13%, faucets
12.4%, and bathtub events 11.1%. Unclassified events, defined as events

Table 4
Functions implemented for querying data in the Data Analytics Layer.

Query Python implementation

Get raw data for one or multiple sites,
between specific dates, or the entire
record.

get_data(site, startdate = None, enddate =
None, measurement = ‘QCData’)

Get time aggregated data for one or
multiple sites, between specific
dates, or the entire record.

get_agg(site, function, t_res, startdate =
None, enddate = None, Measurement =
‘QCData’)

Fig. 3. Hourly distribution of water use for the single family residential home
between January 15, 2021 and January 28, 2021. The blue solid line shows the
hourly average water use, and the boxplot presents hourly water use variability.

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

10

lasting 4 s or less and consisting of a single “pulse” recorded by the meter
(approximately 5 ounces, or 0.15 L of water), account for approximately
1% of total use. Unclassified events include very short water use events
(e.g., ice making refrigerators, short faucet events) and leaks. Fig. 4
shows the distribution of the volume a), flow rate b), and duration c) for
each category of indoor water use. Unclassified events were excluded
from Fig. 4. Faucet events had a median flow rate of approximately 0.8
gpm (3 Lpm). Water-efficient bathroom faucets, as defined by the United
States (U.S.) Environmental and Protection Agency (EPA) in their Water
Sense program (EPA, 2020), operate between 0.8 gpm at a pressure of 20
pounds per square inches (psi), or 137.9 Kilopascals (kpa), and 1.5 gpm
(5.7 Lpm) at 60 psi (413.7 kpa). Compared to this EPA standard, the
flowrates we observed from the faucets at the study property are effi-
cient. A similar conclusion can be reached by comparing the median
flow rate of shower heads at the study property (approximately 1.8 gpm,
or 6.8 Lpm) with EPA Water Sense standards (limiting the maximum
flow rate to 2.0 gpm, or 7.6 Lpm).

In previous studies from multiple U.S. cities, shower durations
averaged 7.8 min (DeOreo et al., 2016). The average shower duration
observed at the study property was approximately 8 min, with a median
value of 6.3. Approximately 25% of the shower durations were longer
than 9.5 min (Fig. 4). The average gallons per flush (gpf) for toilets at the
study property was 2.78 (10.5 L), significantly higher than the 1.28 (4.8
L) recommended by the EPA (EPA, 2020), indicating there is potential
for reducing water usage by retrofitting the property with
water-efficient toilets. There is relatively little variability in the dura-
tions of toilet and clothes washer events, as observed in Fig. 4 c. For
these events, the characteristics are dependent on the type, brand and
setting used. Shower events reflect the largest variability, as expected,
due to personal preferences of the different occupants of the property.
Code to reproduce the results in this section and the raw data collected
are publicly available in HydroShare (Bastidas Pacheco et al., 2021). The
workflow that can be used to reproduce the results presented in this
section consists of the following: a) InfluxDB is installed locally with
instructions provided, b) the database described in Table 3 is created, c)
the database is loaded with the raw data provided using Influ-
xDB_Loading.ipynb, and then d) data_analytics.ipynb is executed on the

database, producing all the results described.

3.2. Case study 2: pull based data collection within multi-unit residential
buildings

For results of this case study, we present only the data collection and
management infrastructure required. The specifics details about esti-
mating and water-related energy use estimates using the data collected
are reported elsewhere by Brewer (2020). The functionality of the Data
Analytics Layer is independent of the selected data communication
method (push or pull) because the Data Analytics Layer interacts only
with the operational database. Given that the data collected by both case
studies and the resulting database are similar, the considerations for
implementing the Data Analytics Layer are equivalent to those of the
first case study presented (e.g., ability to support queries, data privacy,
etc.) and the technology of the implementation would follow the same
process. To avoid duplication of results, we have chosen not to present
an implementation of the Data Analytics Layer with this case study.
However, similar functionalities related to this case study are discussed
in our previous work (Brewer, 2020) and available in an online data
resource (Brewer and Horsburgh, 2020).

3.2.1. Data collection layer
An enhanced version of the water meter datalogger presented by

Horsburgh et al. (2017) was used to collect data for the variables listed
in Table 1. This device was named the CIWS-EWM-Logger, where EWM
denotes “electronic water meter” for the electronic output signal of the
meter types it works with. The CIWS-EWM-Logger was designed to be
installed on commercial water meters of the types typically used in
multi-unit residential buildings and where a dedicated power source is
readily available at the meter’s location. The CIWS-EWM-Logger also
uses a Raspberry Pi 3 Model B or Model B + Linux computer running
Raspberry Pi OS. The Raspberry Pi in this device controls the functioning
of the datalogger and has integrated ethernet and Wi-Fi capabilities for
connecting to a network while operating. Given the location of the water
meters in utility closets with no wired ethernet ports, we chose to use
Wi-Fi to enable communications with the dataloggers. Connecting a

Fig. 4. Illustrative examples of high-temporal residential water use data analytics for the case study home between January 15, 2021 and January 28, 2021. The
figure presents boxplots of a) the volume of events, b) the flow rate of events, c) the duration of events. In all cases, the data is grouped by end use type. Outliers were
removed to improve the quality of visualization for short duration and low volume events (faucet and toilet events).

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

11

device to USU’s Wi-Fi network requires registration of the device’s
hardware address, after which, each device is assigned a unique host
name that is routable on USU’s network. Thus, each datalogger could be
located and connected to within the network, which allowed for remote
work interactions with the datalogger. For example, the firmware of the
loggers could be updated, their functioning could be evaluated in real
time, and data could be pulled from them via SSH at any time. While this
specific configuration relies on characteristics of USU’s Wi-Fi network,
we anticipate that Wi-Fi networks like USU’s would be available in many
application contexts. The functionality described here would function
identically for wired ethernet connections.

The CIWS-EWM-Logger was specifically modified to read the output
of each of the meters available on the LLC buildings along with water
temperature values from three separate sensors. The CIWS-EWM-
Loggers we deployed can be used with any water meter or sensor that
has a 4–20 mA current loop output, analog voltage output, digital output
readable by the Raspberry Pi via its General Purpose Input/Output
(GPIO) ports, or pulsed output. The Master Meter Octave meters provide
output through a 4–20 mA current loop module where the output cur-
rent is directly proportional to the flow rate through the meter. The
necessary transformations from current to voltage and then to flow rate
were performed by the CIWS-EWM-Logger (Brewer, 2020), and a time
series of water flow in gallons per minute at a user-configurable tem-
poral resolution was generated. The BLMJ meter outputs a pulsed signal
(voltage) where every pulse represents a gallon of water that has passed
through the meter. In this case, the count of pulses, which equals the
number of gallons, was registered by the CIWS-EWM-Logger at the same
user-configured temporal resolution. The DS18B20 digital thermome-
ters provided digital 9-bit to 12-bit Celsius temperature measurements
to an accuracy of ± 0.5 ◦C and were wired directly to the Raspberry Pi
with a single wire for each sensor and do not require an external power
supply.

The CIWS-EWM-Logger in each building logged data to a CSV file
that was saved in a local directory within the Raspberry Pi’s file system.
For this deployment, data was collected at a 1-s time interval and in-
cludes the following columns: time (datetime of the measurement using
the YYYY-MM-DD HH:MM:SS format), buildingID (B, C, D, E, or F), col-
dInFlowRate, coldInTemp, hotInFlowRate, hotInTemp, hotOutFlowRate and
hotOutTemp with units indicated in Table 1. In the quality controlled
data, the hot water return flow was transformed to gallons per minute
for uniformity.

3.2.2. Data management and archival layer
To support pull based data retrieval, we developed an application

called the Data Transfer Manager (DTM) to serve as the Request Service
shown in Fig. 1. It was implemented as a single Python script named
transfer_manager.py and follows the same convention used by the DPS
and the DLS, reading configuration data from a JSON file. As in the first
Case Study, the DTM and the operational database were deployed on a
VM with similar characteristics to the one described in Section 3.1.2. We
used InfluxDB as the operational database for this case study as well
given the similarity in the type of data and requirements among both
case studies and to show generalizability.

The DTM manages all data communications under the pull based
model. Operation of the DTM was scheduled using Linux’s native CRON
functionality, which allows the user to specify how often the DTM
program is executed. Upon being triggered by the scheduled CRON job,
the DTM first reads the configuration file described in Table 5 and then
proceeds through a list of defined tasks to manage transfer of data from
each remote data collection site to the Data Management and Archival
Layer:

1. Connect to each datalogger listed in the configuration file using
Paramiko, a Python library that enables SSH connections for safely
accessing network services over unsecured networks (Forcier, 2021).

2. Parse the datalogger’s Linux file system for new datalog files and
download them to the server with Secure File Transfer Protocol
(SFTP), an extension of SSH that offers secure file transfer capabil-
ities over any reliable data stream. Tasks 1 and 2 in this list are
executed by a function named connect() in the transfer_manager.py
Python script.

3. Upload new data into the InfluxDB database. This task is completed
by the write_to_db() function in the transfer_manager.py Python script.

An additional function in the DTM, named send_error(), was devel-
oped to inform data managers about errors in the data transfer process.
Errors are sent via Slack, a cloud-based instant messaging service (Slack
Technologies, 2021). Messages are formulated as a JSON payload that is
sent to a unique URL provided by Slack as a webhook. Information de-
tailing which datalogger file caused the error is included in the message.
Fig. 5 describes the overall functionality of the DTM, indicating the key
tasks mentioned. For this case study, data transferring and parsing are
executed by a single element (transfer_manager.py), which requires fewer
moving parts and minimizes the amount of time between the data being
retrieved from the remote dataloggers and having them show up in the
operational InfluxDB database. This is a slightly different approach than
the one presented for Case Study 1, which allows more flexibility in the
system. The DTM can work concurrently on a user defined number of
datalogger devices at the same time (connections in Table 5). The optimal
number of threads is dependent on the number of CPU cores of the
server. For our testing, we set the number of threads to 6, matching the
number of dataloggers in the LLC buildings.

As in the first case study, the raw data and quality controlled data
were stored in the same InfluxDB database in different measurements.
Brewer (2020) describes the quality control procedures for the data
collected in this case study. The database schema used for this case study
is similar in structure to that of the first case study. The data included in
the database copies all columns from the CSV files recorded by the
dataloggers. BuildingID serves as the SiteID and is the only column
stored as a tag. All additional variables (the recorded data values for
each variable) are stored as fields.

3.3. Scalability and Performance Metrics

While we experienced no performance issues in the case study de-
ployments, we performed scalability testing to investigate the

Table 5
Parameters included in the configuration file for the DTM. The configuration file
follows the structure presented here.

Parameter Description

connections The number of threads used for concurrent connection
with hosts.

log_directory Path where the log files are stored in the Data
Management and Archival server (must have write
permissions for that directory).

hosts A list of datalogger host names or IP addresses to
connect to.

database name Name of the InfluxDB database to connect to.
user Username for a user with permission to write data to

the InfluxDB database.
password Password for a user with permission to write data to the

InfluxDB database.
host Database server hostname or IP address.
port The port number over which communications with the

InfluxDB database server have been configured.
measurement Name of InfluxDB Measurement where the data will be

saved.
sshinfo username Username used to connect to remote dataloggers via

SSH.
password Password used to connect to remote dataloggers via

SSH.
slack_webhook Slack webhook to send error messages through the

Slack messaging service.

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

12

performance of the system beyond the scale of our case studies. We
conducted individual tests of the DPS, the DLS, and the DTM, simulating
larger numbers of dataloggers and HTTP POST requests, in the case of
the DPS and DLS, and a larger number of remote datalogger hosts, in the
case of the DTM, to be processed by the system.

Scalability of the DPS is dependent upon its ability to handle many
HTTP POST requests from many dataloggers posting data at the same
time. The DPS was tested by sending multiple HTTP POST requests, each
with a CSV file containing one day of randomly generated data with
values recorded every 4 s (for consistency with the implementation of
Case Study 1). The files were sent using a Python script implemented
using the Asyncio library (Python Software Foundation, 2021a) from a
MacBook Pro laptop computer with a 2.3 GHz 8-Core Intel Core i9
processor and 16 GB of memory. Asyncio is a library that can be used to
write code that executes concurrently, allowing the code to send mul-
tiple simultaneous, or nearly simultaneous, requests to the DPS. There
are limitations in the number of concurrent requests that can be sent
from the same computer, as well as in the number of dataloggers that can
send data at the exact same time in a filed deployment, considering
computing power, speed of connection, and synchronization.

We simulated an increasing number of concurrent HTTP POST re-
quests to the DPS (10, 50, 100, 200 and finally 500), and each operation
was repeated ten times to characterize server/network variability. The
total duration of each repetition, calculated as the end time of the last
HTTP POST request minus the start time of the first request, on average,
was 0.6 s, 2.05 s, 3.58, 6.91 s, and 16.7 s for 10, 50, 100, 200, and 500
requests, respectively. We observed no transmission errors or requests
rejected by the server during our testing process. Fig. 6 shows the du-
rations of HTTP POST requests, separated by the batch size (10, 50, 100,
200, and 500) for each one of the 10 repetitions conducted. We observed
that the median duration of POST requests was larger for the 10-request
batches compared to all other batches, but longer durations were

observed for some requests in larger batches, which is expected as the
DPS is busy with an increasing number of requests. Median times are
consistent for batches with more than 50 POST requests. These times are
affected by the processing power of the machine sending the request, the
resources available on the remote server, and the speed and quality of
the Internet connection but are provided here as an indicator of the
performance of our prototype implementation. These tests indicate that
the DPS can handle 500 nearly simultaneous POST requests in under 20 s
with most individual requests being handled in under 0.2 s.

To test the DLS, we simulated different data loading scenarios
ranging from loading one CSV file for a single site to loading one file for
500 sites. The testing procedure consisted of placing CSV files containing
one day of data with values recorded every 4 s in the source directory
and then executing the DLS. Each operation was repeated ten times.
Table 6 presents the mean and standard deviation of each scenario along
with the average time for loading a single file to facilitate comparisons.
The DLS can load 1 day of data from 100 different sites in less than 50 s.
There are differences between loading n files from the same site and
loading 1 file from n sites, which can be explained by the way data are
organized within the InfluxDB database. Although all of the data values
are stored in the same InfluxDB measurement, InfluxDB logically groups
data values by shared measurement, tag set, and field key. Writing data
with multiple siteID tag values takes longer. Both scenarios are realistic
applications. The first scenario (n files from 1 site) simulates loading
data collected from dataloggers lacking communication technologies.
The second scenario (1 file from n sites) represents a deployment like the
one described in Case Study 1 with a larger number of sites.

We used the six dataloggers described in Case Study 2 to test the
DTM. Each data logger sent 1 day of data during all tests. The func-
tionality that allows the system to identify existing data or files was
removed, allowing the system to upload existing CSV files and re-write
existing data to the InfluxDB without restrictions. This configuration

Fig. 5. General functionality of the DTM.

Fig. 6. Boxplot of processing times, separated by the number of HTTP POST requests in the batch (10, 50, 100, 200, and 500) for each repetition, from 1 to 10.
Duration is calculated as the final processing time minus the starting time of each individual POST request.

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

13

enabled us to simulate a larger number of connections by repeating
dataloggers in the hosts list included in the DTM configuration file
(described in Table 5). The number of dataloggers was gradually
increased (6, 48, 96, and finally 480), and the DTM was executed ten
times for each number of dataloggers, processing one CSV file contain-
ing one day of 1-s resolution data for each datalogger. The DTM was set
to execute six threads at a time, meaning that it can be simultaneously
connected to and downloading data from six dataloggers at a time, for
consistency with the application of Case Study 2. During our testing,
only 6 dataloggers were available, which meant that it was possible for
the DTM to attempt connecting to and processing data from the same
logger multiple times simultaneously. This can negatively affect the time
reported if a host is not immediately available for processing when the
system is trying to connect to it. Table 7 lists the duration and standard
deviation after ten runs with an increasing number of datalogger hosts.
Using our test configuration, it took less than 50 min for the DTM to
process data from 480 hosts.

We tested the system up to, and with much larger numbers than the
40–60 sites in our design considerations and observed no real limitations
for using CIWS in deployments roughly an order of magnitude larger,
even with our relatively limited testing server. The DLS and the DTM
include writing to the database as part of their tasks, and the times
observed satisfy the stated requirements for our application. As a final
test, we tested the database by conducting standard queries from a Py-
thon environment, using the same laptop computer. We observed the
amount of time required to downloaded one day, one week, and one
month of data for 1, 5, and 10 sites along with the time required to load
the data into a Pandas dataframe object (Table 8). All queries were
conducted using the function get_data() described on Table 4. The timeit
Python module (Python Software Foundation, 2021b) was used to
repeat each query 10 times and measure execution times. Downloading
one month of data (a common record length in studies collecting high
resolution residential water use data) for ten sites into a Pandas data-
frame takes less than 1 min. The log files and code to reproduce all the
results of this section are publicly available in HydroShare (Bastidas
Pacheco et al., 2021).

The cost of deploying CIWS to support data collection at residential
houses using the equipment described for Case Study 1 can be broken
down as follows: a) the cost of CIWS-NODE Datalogger devices, which is
approximately $180 multiplied by the number of houses to be enrolled
simultaneously, and; b) the cost of hosting a server with characteristics
similar to our testing server (4 processor cores, 8 GB of memory, 100 GB

of storage). At the time of this writing, hosting this machine using the
Amazon Elastic Compute Cloud would cost approximately $57 per
month (Amazon, 2021), although there are multiple hosting alternatives
for the server that could be used and that would impact the cost estimate
provided. The approximated cost of building the datalogger device used
in Case Study 2 is $85.

4. Conclusions and future work

A complete cyberinfrastructure system that uses a layered approach
to collect and manage high-temporal resolution water use data was
developed and implemented. The system was designed focusing on the
scale of data collection that would be required for research projects
conducted by utilities or other researchers. Having a standardized
cyberinfrastructure like CIWS can increase the value of the data
collected by allowing more straightforward data collection and man-
agement, as well as facilitating the analysis and understanding of data
collected in different projects, cities and utilities. CIWS can be used to
manage data collected or used for multiple purposes - e.g., collecting
data to support estimates of design parameters for future home de-
velopments, guiding the planning of water conservation campaigns,
assessing the effectiveness of rebate programs, assisting in the definition
of utility rates, and defining future demand and infrastructure needs.

Our case studies showed that CIWS can work with any datalogging
devices that generate CSV files containing time series of water use data,
but it can also be used in the collection of other variables, as demon-
strated in experimental Use Case 2. By integrating low cost data
collection devices and open-source cyberinfrastructure we sought to
increase the accessibility of tools for conducting high-temporal resolu-
tion data collection in support of residential water use studies. CIWS can
reduce not only the cost of such studies, but also technical barriers by
providing a framework to collect and manage the data.

CIWS can manage push and pull based data communication. Since
each functionality is implemented separately, future users of CIWS can
select push or pull, or a combination of both, depending on the needs
and settings of their application. The work performed within the Data
Management and Archival Layer depends on whether the push or pull
model is used. In the pull case, the data is pulled from the device by a
request service, whereas in the push case the data is managed by a
network listener web service that accepts incoming files and processes
them. Both use the same database component, which means that the
Data Analytics Layer can operate independent of how the data are
transferred. The demonstrations we presented of the Data Analytics
Layer serve as a proof of concept and show the foundation upon which
more sophisticated tools could be built that can be used to communicate
results with multiple interested parties.

We focused our design and implementation on a system that is
capable of transferring high temporal resolution water use data from
water meters to a centralized infrastructure for storage and subsequent
analysis. In a research context, this is preferable, as researchers may not
know at the outset of a study all of the specific analyses they may want to

Table 6
Results from the DLS testing. Every operation was repeated 10 times.

Load Operation Average duration
(seconds)

Standard
deviation
(seconds)

Average time for
processing 1 file
(seconds)

1 file from 1 site 0.37 0.06 0.37
10 files from 1 site 3.96 0.14 0.40
1 file from 10 sites 4.67 0.23 0.47
50 files from 1 site 19.92 0.67 0.40
1 file from 50 sites 23.87 0.33 0.48
100 files from 1 site 39.87 1.05 0.40
1 file from 100 sites 47.48 0.89 0.47
500 files from 1 site 195.19 2.98 0.39
1 file from 500 sites 240.70 3.00 0.48

Table 7
Results from the DTM testing.

Number of datalogger
hosts

Average duration
(seconds)

Standard deviation
(seconds)

6 41.7 1.57
48 279.4 9.35
96 551.5 9.21
480 2831 252

Table 8
InfluxDB downloading times for different queries. In all cases the data was
downloaded and loaded into a Pandas dataframe.

Days of
data

Number of
sites

Average duration
(seconds)

Standard deviation
(seconds)

1 1 0.17 0.02
1 5 0.81 0.03
1 10 1.62 0.04
7 1 1.16 0.04
7 5 5.74 0.07
7 10 11.39 0.07
30 1 4.51 0.27
30 5 22.46 0.52
30 10 45.47 1.24

C.J. Bastidas Pacheco et al.

Environmental Modelling and Software 144 (2021) 105137

14

perform with the data and, thus, keeping all of the data is necessary.
However, transferring large volumes of data to a centralized data
management system poses challenges when scaling a system like this to
larger deployments. While technically possible over Wi-Fi or cellular
data networks, the availability of Wi-Fi is limited, and cost of data
transfer over a cellular data network may be prohibitive. As an alter-
native, we are now investigating edge computing techniques using our
CIWS-WM-Node datalogger to process the high resolution water use
data on the logger to produce summary data products that are much
smaller and can be transferred over a network with far less bandwidth
and at lower cost. The tradeoff is that the full resolution data are never
transferred or saved in the long term.

CIWS combines multiple open-source technologies. The modular
design makes it easier to replace or update technology elements in the
system, if needed. Similarly, additional tools can be added to system - e.
g., more advanced analytics tools and enhanced authentication pro-
tocols. The analytics presented show potential for conservation pro-
grams and can assist in the design of future urban water infrastructure.
All of the components we developed are publicly available for reuse, and
we envision future improvements to the system once the tools are used
in other studies. The system testing, performance metrics, and deploy-
ment demonstrate that CIWS can meet and significantly exceed the
design considerations in terms of scale and performance. We saw no
impediment for using CIWS, or a similar system in larger deployments
than the ones tested, by increasing the processing power of the virtual
machine, or deploying multiple instances. The server we used for testing
had only moderate system specifications and could either be run on
private server hardware or could easily be hosted within a commercial
cloud service provider at a reasonable monthly cost.

Software and data availability

Name of Software: Cyberinfrastructure for Intelligent Water Supply
(CIWS);

Developers: Camilo J. Bastidas Pacheco, Joseph C. Brewer, Jeffery S.
Horsburgh, Juan Caraballo, Elijah West.

Contact: jeff.horsburgh@usu.edu.
Year First Available: 2021.
Required hardware and software: We used open source dataloggers

for the data collection efforts in this study. Datalogger hardware details
are provided by Bastidas Pacheco et al. (2020) and Horsburgh et al.
(2017). Data management and archival components of CIWS were
designed to run on a Linux server and were tested using Ubuntu. The
data analytics components we demonstrate require a computer running
the Windows, Linux, or Macintosh operating system. Instructions for
how to deploy the system are available in the project’s GitHub
repository.

Availability: Source code for the Data Management and Archival
Layer software components described in this manuscript is freely
available and can be downloaded from the CIWS Server GitHub re-
pository (https://github.com/UCHIC/CIWS-Server). The src folder in
that repository contains a folder named ciws_ci and a folder named
data_transfer_manager where the elements related to Case Study 1 and
Case Study 2 are located, respectively. The doc folder contains a
deployment guide for CIWS. The data described in Case Study 1 and the
source code of the Data Analytics Layer software are publicly available
in HydroShare (Bastidas Pacheco et al., 2021) with instructions for
reproducing the results presented in that section. The data described in
Case Study 2 and tools used to analyze it are also publicly available in
HydroShare (Brewer and Horsburgh, 2020). The log files from Section
3.3 (Scalability and Performance Metrics) and code used to generate the
results presented are available in HydroShare (Bastidas Pacheco et al.,
2021). Design files, instructions for assembly, and firmware for the open
source dataloggers are available on the GitHub sites for the CIWS Water
Meter Node datalogger (https://github.com/UCHIC/CIWS-WM-Node)
and the CIWS Electronic Output Water Meter datalogger (https://gith

ub.com/UCHIC/CIWS-EWM-Logger).

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research was funded by the United States National Science
Foundation under grant number 1552444. Any opinions, findings, and
conclusions or recommendations expressed are those of the authors and
do not necessarily reflect the views of the National Science Foundation.
We would like to acknowledge Providence City and Utah State Univer-
sity Housing and Facilities for their cooperation and support in the data
collection efforts. The authors would also like to acknowledge support
from Nour Atallah, Arle J. Beckwith, and Rob J. Tracy in the data
collection efforts and Elijah West for his contribution in software
development. We also acknowledge and thank the owner of the resi-
dential home and the students in the LLC buildings that participated in
the data collection campaign.

References

Alghamdi, A., Shetty, S., 2016. Survey toward a smart campus using the internet of
things. In: Proceedings - 2016 IEEE 4th International Conference on Future Internet
of Things and Cloud, FiCloud 2016. Institute of Electrical and Electronics Engineers
Inc., pp. 235–239. https://doi.org/10.1109/FiCloud.2016.41

Alvisi, S., Casellato, F., Franchini, M., Govoni, M., Luciani, C., Poltronieri, F., Riberto, G.,
Stefanelli, C., Tortonesi, M., 2019. Wireless middleware solutions for smart water
metering. Sensors 19, 1853. https://doi.org/10.3390/s19081853.

Amaxilatis, D., Chatzigiannakis, I., Tselios, C., Tsironis, N., Niakas, N.,
Papadogeorgos, S., 2020. A smart water metering deployment based on the fog
computing paradigm. Appl. Sci. 10, 1965. https://doi.org/10.3390/app10061965.

Anda, M., Le Gay Brereton, F., Brennan, J., Paskett, E., 2013. Smart metering
infrastructure for residential water efficiency: results of a trial in a behavioural
change program in Perth, Western Australia. In: Information and Communication
Technologies for Sustainability. ETH Zurich, Zurich. https://researchrepository.mur
doch.edu.au/id/eprint/22422/. (Accessed 3 April 2021).

Ardito, L., Procaccianti, G., Menga, G., Morisio, M., 2013. Smart grid technologies in
europe: an overview. Energies 6, 251–281. https://doi.org/10.3390/en6010251.

Balis, B., Bubak, M., Harezlak, D., Nowakowski, P., Pawlik, M., Wilk, B., 2017. Towards
an operational database for real-time environmental monitoring and early warning
systems. In: Procedia Computer Science. Elsevier B.V., pp. 2250–2259. https://doi.
org/10.1016/j.procs.2017.05.193

Bastidas Pacheco, C.J., Horsburgh, J.S., Tracy, R.J., 2020. A low-cost, open source
monitoring system for collecting high temporal resolution water use data on
magnetically driven residential water meters. Sensors 20, 3655. https://doi.org/
10.3390/s20133655.

Bastidas Pacheco, C.J., Horsburgh, J.S., Caraballo, J., Attallah, N., 2021. Supporting Data
and Tools for "An Open Source Cyberinfrastructure for Collecting, Processing,
Storing and Accessing High Temporal Resolution Residential Water Use Data.
HydroShare. https://doi.org/10.4211/hs.aaa7246437144f2390411ef9f2f4ebd0.

Beal, C.D., Flynn, J., 2015. Toward the digital water age: survey and case studies of
Australian water utility smart-metering programs. Util. Pol. 32, 29–37. https://doi.
org/10.1016/j.jup.2014.12.006.

Beal, C., Stewart, R.A., 2011. South East Queensland Residential End Use Study: Final
Report, Urban Water Security Research Alliance. https://research-repository.griffith.
edu.au/bitstream/handle/10072/46802/80687_2.pdf?sequence=1. (Accessed 3
February 2021).

Beal, C.D., Stewart, R.A., Fielding, K., 2013. A novel mixed method smart metering
approach to reconciling differences between perceived and actual residential end use
water consumption. J. Clean. Prod. 60, 116–128. https://doi.org/10.1016/j.
jclepro.2011.09.007.

Boyle, T., Giurco, D., Mukheibir, P., Liu, A., Moy, C., White, S., Stewart, R., 2013.
Intelligent metering for urban water: a review. Water 5, 1052–1081. https://doi.org/
10.3390/w5031052.

Brewer, Joseph C., 2020. Characterizing Water and Water-Related Energy Use in Multi-
Unit Residential Structures with High Resolution Smart Metering Data. All Graduate
Theses and Dissertations, p. 7976. https://doi.org/10.26076/669a-93b0.

Brewer, J., Horsburgh, J.S., 2020. Characterizing Water and Water-Related Energy in
Multi-Unit Residential Structures with High Resolution Smart Meter Data.
HydroShare. http://www.hydroshare.org/resource/b6bbdcd9b120430b9a54974
a798961f1.

Cardell-Oliver, R., 2013. Water use signature patterns for analyzing household
consumption using medium resolution meter data. Water Resour. Res. 49,
8589–8599. https://doi.org/10.1002/2013WR014458.

C.J. Bastidas Pacheco et al.

mailto:jeff.horsburgh@usu.edu
https://github.com/UCHIC/CIWS-Server
https://github.com/UCHIC/CIWS-WM-Node
https://github.com/UCHIC/CIWS-EWM-Logger
https://github.com/UCHIC/CIWS-EWM-Logger
https://doi.org/10.1109/FiCloud.2016.41
https://doi.org/10.3390/s19081853
https://doi.org/10.3390/app10061965
https://researchrepository.murdoch.edu.au/id/eprint/22422/
https://researchrepository.murdoch.edu.au/id/eprint/22422/
https://doi.org/10.3390/en6010251
https://doi.org/10.1016/j.procs.2017.05.193
https://doi.org/10.1016/j.procs.2017.05.193
https://doi.org/10.3390/s20133655
https://doi.org/10.3390/s20133655
https://doi.org/10.4211/hs.aaa7246437144f2390411ef9f2f4ebd0
https://doi.org/10.1016/j.jup.2014.12.006
https://doi.org/10.1016/j.jup.2014.12.006
https://research-repository.griffith.edu.au/bitstream/handle/10072/46802/80687_2.pdf?sequence=1
https://research-repository.griffith.edu.au/bitstream/handle/10072/46802/80687_2.pdf?sequence=1
https://doi.org/10.1016/j.jclepro.2011.09.007
https://doi.org/10.1016/j.jclepro.2011.09.007
https://doi.org/10.3390/w5031052
https://doi.org/10.3390/w5031052
https://doi.org/10.26076/669a-93b0
http://www.hydroshare.org/resource/b6bbdcd9b120430b9a54974a798961f1
http://www.hydroshare.org/resource/b6bbdcd9b120430b9a54974a798961f1
https://doi.org/10.1002/2013WR014458

Environmental Modelling and Software 144 (2021) 105137

15

Chen, F., Dai, J., Wang, B., Sahu, S., Naphade, M., Lu, C.T., 2011. Activity analysis based
on low sample rate smart meters. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM Press, New York, New
York, USA, pp. 240–248. https://doi.org/10.1145/2020408.2020450.

Christie, M.A., Bhandar, A., Nakandala, S., Marru, S., Abeysinghe, E., Pamidighantam, S.,
Pierce, M.E., 2020. Managing authentication and authorization in distributed
science gateway middleware. Future Generat. Comput. Syst. 111, 780–785. https://
doi.org/10.1016/j.future.2019.07.018.

Cominola, A., Giuliani, M., Piga, D., Castelletti, A., Rizzoli, A.E., 2015. Benefits and
challenges of using smart meters for advancing residential water demand modeling
and management: a review. Environ. Model. Software 72, 198–214. https://doi.org/
10.1016/j.envsoft.2015.07.012.

Cominola, A., Giuliani, M., Castelletti, A., Rosenberg, D.E., Abdallah, A.M., 2018.
Implications of data sampling resolution on water use simulation, end-use
disaggregation, and demand management. Environ. Model. Software 102, 199–212.
https://doi.org/10.1016/j.envsoft.2017.11.022.

DeOreo, W.B., Mayer, P.W., Martien, L., Hayden, M., Funk, A., Kramer-Duffield, M.,
Davis, R., Henderson, J., Raucher, B., Gleick, P., 2011. California Single-Family
Water Use Efficiency Study, Report Prepared for the California Dept. Of Water
Resources. Aquacraft Inc., Boulder, CO. https://cawaterlibrary.net/document/cali
fornia-single-family-water-use-efficiency-study/. (Accessed 12 April 2021).

DeOreo, W.B., Mayer, P.W., Dziegielewski, B., Kiefer, J., Foundation, W.R., 2016.
Residential End Uses of Water, Version 2. Water Research Foundation. https://www.
waterrf.org/resource/residential-end-uses-water-version-2. (Accessed 5 May 2021).

Di Martino, S., Fiadone, L., Peron, A., Vitale, V.N., Riccabone, A., 2019. Industrial
internet of things: persistence for time series with NoSQL databases. In: Proceedings -
2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WETICE 2019. Institute of Electrical and Electronics
Engineers Inc., pp. 340–345. https://doi.org/10.1109/WETICE.2019.00076

Di Mauro, A., Di Nardo, A., Santonastaso, G.F., Venticinque, S., 2019. An IoT system for
monitoring and data collection of residential water end-use consumption. In: 28th
International Conference on Computer Communication and Networks (ICCCN),
pp. 1–6. https://doi.org/10.1109/ICCCN.2019.8847120.

Di Mauro, A., Cominola, A., Castelletti, A., Di Nardo, A., 2020. Urban water consumption
at multiple spatial and temporal scales. A review of existing datasets. Water 13, 36.
https://doi.org/10.3390/w13010036.

Erickson, T., Podlaseck, M.E., Sahu, S., Dai, J.D., Chao, T., Naphade, M., 2012. The
Dubuque Water Portal: evaluation of the uptake, use and impact of residential water
consumption feedback. In: Conference on Human Factors in Computing Systems -
Proceedings. ACM Press, New York, New York, USA, pp. 675–684. https://doi.org/
10.1145/2207676.2207772.

Fang, D., Chen, B., 2017. Linkage analysis for the water–energy nexus of city. Appl.
Energy 189, 770–779. https://doi.org/10.1016/j.apenergy.2016.04.020.

Froehlich, J., Findlater, L., Ostergren, M., Ramanathan, S., Peterson, J., Wragg, I.,
Larson, E., Fu, F., Bai, M., Patel, S.N., Landay, J.A., 2012. The design and evaluation
of prototype eco-feedback displays for fixture-level water usage data. In: Conference
on Human Factors in Computing Systems - Proceedings. ACM Press, New York, New
York, USA, pp. 2367–2376. https://doi.org/10.1145/2207676.2208397.

F.S. Brainard & Company, 2020. Meter-Master Model 100EL and 100AF Flow Recorders,
2020. https://meter-master.com/product/model-100el-100af/. (Accessed 4 April
2021).

Giurco, D., Carrard, N., McFallan, S., Nalbantoglu, M., Inman, M., Thornton, N.,
White, S., 2008. Residential End Use Measurement Guidebook: A Guide to Study
Design, Sampling and Technology. Prepared by the Institute for Sustainable Futures
UTS and CSIRO for the Smart Water Fund, Victoria. https://opus.lib.uts.edu.au/bitst
ream/10453/35089/1/giurcoetal2008resenduse.pdf. (Accessed 5 April 2021).

Hachmann, J., Afzal, M.A.F., Haghighatlari, M., Pal, Y., 2018. Building and deploying a
cyberinfrastructure for the data-driven design of chemical systems and the
exploration of chemical space. Mol. Simulat. 44, 921–929. https://doi.org/10.1080/
08927022.2018.1471692.

Hamiche, A.M., Stambouli, A.B., Flazi, S., 2016. A review of the water-energy nexus.
Renew. Sustain. Energy Rev. 65, 319–331. https://doi.org/10.1016/j.
rser.2016.07.020.

Hauser, A., Roedler, F., 2015. Interoperability: the key for smart water management.
Water Supply 15, 207–214. https://doi.org/10.2166/ws.2014.096.

Hauser, A., Sud, T., Nicolas Foret, C., Electric Stuart Combellack, S., Jonathan Coome, T.,
Quintilia Lopez, S., Elkin Hernandez, I., Water Salil Kharkar, D.M., Water Amin
Rasekh, D., Michal Koenig, S., Remy Marcotorchino, Q., Nicolas Damour, S., 2016.
Communication in Smart Water Networks SWAN Forum Interoperability
Workgroup. https://www.swan-forum.com/wp-content/uploads/sites/218/202
0/12/SWAN-White-Paper_Communication-Protocols.pdf. (Accessed 3 May 2021).

Heiland, R., Koranda, S., Marru, S., Pierce, M., Welch, V., 2015. Authentication and
authorization considerations for a multi-tenant service. In: SCREAM 2015 -
Proceedings of the 2015 Workshop on the Science of Cyberinfrastructure: Research,
Experience, Applications and Models, Part of HPDC 2015. Association for Computing
Machinery, Inc, New York, New York, USA, pp. 29–35. https://doi.org/10.1145/
2753524.2753534.

Hollands, R.G., 2008. Will the real smart city please stand up? Intelligent, progressive or
entrepreneurial? City 12, 303–320. https://doi.org/10.1080/13604810802479126.

Horsburgh, J.S., Leonardo, M.E., Abdallah, A.M., Rosenberg, D.E., 2017. Measuring
water use, conservation, and differences by gender using an inexpensive, high
frequency metering system. Environ. Model. Software 96, 83–94. https://doi.org/
10.1016/j.envsoft.2017.06.035.

Horsburgh, J.S., Caraballo, J., Ramírez, M., Aufdenkampe, A.K., Arscott, D.B.,
Damiano, S.G., 2019. Low-cost, open-source, and low-power: but what to do with the
data? Front. Earth Sci. 7 https://doi.org/10.3389/feart.2019.00067.

Kenway, S.J., Binks, A., Scheidegger, R., Bader, H.-P., Pamminger, F., Lant, P.,
Taimre, T., 2016. Household analysis identifies water-related energy efficiency
opportunities. Energy Build. 131, 21–34. https://doi.org/10.1016/j.
enbuild.2016.09.008.

Kim, H., Lee, E.A., 2017. Authentication and authorization for the internet of things. IT
Prof 19, 27–33. https://doi.org/10.1109/MITP.2017.3680960.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J.,
Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S.,
Willing, C., 2016. Jupyter Notebooks—a publishing format for reproducible
computational workflows. In: Loizides, F., Scmidt, B. (Eds.), Positioning and Power
in Academic Publishing: Players, Agents and Agendas - Proceedings of the 20th
International Conference on Electronic Publishing, ELPUB 2016. IOS Press BV,
pp. 87–90. https://doi.org/10.3233/978-1-61499-649-1-87.

Kofinas, D.T., Spyropoulou, A., Laspidou, C.S., 2018. A methodology for synthetic
household water consumption data generation. Environ. Model. Software 100,
48–66. https://doi.org/10.1016/j.envsoft.2017.11.021.

Li, J., Yang, X., Sitzenfrei, R., 2020. Rethinking the framework of smart water system: a
review. Water 12, 412. https://doi.org/10.3390/w12020412.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R. News 2,
18–22.

Liu, X., Nielsen, P.S., 2016. A hybrid ICT-solution for smart meter data analytics. Energy
115, 1710–1722. https://doi.org/10.1016/j.energy.2016.05.068.

Liu, A., Giurco, D., Mukheibir, P., 2015. Motivating metrics for household water-use
feedback. Resour. Conserv. Recycl. 103, 29–46. https://doi.org/10.1016/j.
resconrec.2015.05.008.

Makropoulos, C., 2017. Thinking platforms for smarter urban water systems: fusing
technical and socio-economic models and tools. Geol. Soc. Spec. Publ. 408, 201–219.
https://doi.org/10.1144/SP408.4.

Mason, S.J.K., Cleveland, S.B., Llovet, P., Izurieta, C., Poole, G.C., 2014. A centralized
tool for managing, archiving, and serving point-in-time data in ecological research
laboratories. Environ. Model. Software 51, 59–69. https://doi.org/10.1016/j.
envsoft.2013.09.008.

Mayer, P.W., DeOreo, W.B., Optiz, E.M., Kiefer, J.C., Davis, W.Y., Dziegielewski, B.,
Nelson, J.O., 1999. Residential End Uses of Water. American Water Works
Association. https://www.sdu.dk/~/media/Files/Om_SDU/Institutter/ITI/Forsknin
g/NATO%20ARW/Literature/Residential%20end%20uses_of%20water.pdf.

Mayer, P.W., DeOreo, W.B., Towler, E., Martien, L., Lewis, D.M., 2004. Tampa Water
Department Residential Water Conservation Study: the Impacts of High Efficiency
Plumbing Fixture Retrofits in Single-Family Homes. A Report Prepared for Tampa
Water Department and the United States Environmental Protection Agency.

McKinney, W., 2010. Data structures for statistical computing in Python (SCIPY). In: van
der Walt, S., Millman, J. (Eds.), Proceedings of the 9th Python in Science Conference,
pp. 56–61. https://doi.org/10.25080/Majora-92bf1922-00a.

Moy De Vitry, M., Schneider, M.Y., Wani, O., Manny, L., Leitao, J.P., Eggimann, S., 2019.
Smart urban water systems: what could possibly go wrong? Environ. Res. Lett.
https://doi.org/10.1088/1748-9326/ab3761.

Mutchek, M., Williams, E., 2014. Moving towards sustainable and resilient smart water
grids. Challenges 5, 123–137. https://doi.org/10.3390/challe5010123.

Neirotti, P., De Marco, A., Cagliano, A.C., Mangano, G., Scorrano, F., 2014. Current
trends in smart city initiatives: some stylised facts. Cities 38, 25–36. https://doi.org/
10.1016/j.cities.2013.12.010.

Nguyen, K.A., Stewart, R.A., Zhang, H., Jones, C., 2015. Intelligent autonomous system
for residential water end use classification: Autoflow. Appl. Soft Comput. 31,
118–131. https://doi.org/10.1016/j.asoc.2015.03.007.

Rinaldi, S., Bonafini, F., Ferrari, P., Flammini, A., Sisinni, E., Bianchini, D., 2019. Impact
of data model on performance of time series database for internet of things
applications. In: I2MTC 2019 - 2019 IEEE International Instrumentation and
Measurement Technology Conference, Proceedings. https://doi.org/10.1109/
I2MTC.2019.8827164.

Robles, T., Alcarria, R., Martin, D., Morales, A., Navarro, M., Calero, R., Iglesias, S.,
Lopez, M., 2014. An internet of things-based model for smart water management. In:
2014 IEEE 28th International Conference on Advanced Information Networking and
Applications Workshops, IEEE WAINA 2014. IEEE Computer Society, pp. 821–826.
https://doi.org/10.1109/WAINA.2014.129.

Shams, S., Goswami, S., Lee, K., Yang, S., Park, S.J., 2018. Towards distributed
cyberinfrastructure for smart cities using big data and deep learning technologies. In:
Proceedings - International Conference on Distributed Computing Systems. Institute
of Electrical and Electronics Engineers Inc., pp. 1276–1283. https://doi.org/
10.1109/ICDCS.2018.00127

Souffront Alcantara, M.A., Kesler, C., Stealey, M.J., Nelson, E.J., Ames, D.P., Jones, N.L.,
2017. Cyberinfrastructure and web apps for managing and disseminating the
national water model. J. Am. Water Resour. Assoc. 54 (4), 859–871. https://doi.org/
10.1111/1752-1688.12608.

Stiri, S., Chaoub, A., Bennani, R., Lakssir, B., Tamtaoui, A., 2019. Internet of things
connectivity-based smart grids in Morocco: proof of concept and guide to massive
deployments. In: 5th IEEE International Smart Cities Conference, ISC2 2019.
Institute of Electrical and Electronics Engineers Inc., pp. 129–135. https://doi.org/
10.1109/ISC246665.2019.9071734

Stocks, K.I., Schramski, S., Virapongse, A., Kempler, L., 2019. Geoscientists’ perspectives
on cyberinfrastructure needs: a collection of user scenarios. Data Sci. J. 18, 1–15.
https://doi.org/10.5334/dsj-2019-021.

Sun, Z., Di, L., Cash, B., Gaigalas, J., 2020. Advanced cyberinfrastructure for
intercomparison and validation of climate models. Environ. Model. Software 123.
https://doi.org/10.1016/j.envsoft.2019.104559.

C.J. Bastidas Pacheco et al.

https://doi.org/10.1145/2020408.2020450
https://doi.org/10.1016/j.future.2019.07.018
https://doi.org/10.1016/j.future.2019.07.018
https://doi.org/10.1016/j.envsoft.2015.07.012
https://doi.org/10.1016/j.envsoft.2015.07.012
https://doi.org/10.1016/j.envsoft.2017.11.022
https://cawaterlibrary.net/document/california-single-family-water-use-efficiency-study/
https://cawaterlibrary.net/document/california-single-family-water-use-efficiency-study/
https://www.waterrf.org/resource/residential-end-uses-water-version-2
https://www.waterrf.org/resource/residential-end-uses-water-version-2
https://doi.org/10.1109/WETICE.2019.00076
https://doi.org/10.1109/ICCCN.2019.8847120
https://doi.org/10.3390/w13010036
https://doi.org/10.1145/2207676.2207772
https://doi.org/10.1145/2207676.2207772
https://doi.org/10.1016/j.apenergy.2016.04.020
https://doi.org/10.1145/2207676.2208397
https://meter-master.com/product/model-100el-100af/
https://opus.lib.uts.edu.au/bitstream/10453/35089/1/giurcoetal2008resenduse.pdf
https://opus.lib.uts.edu.au/bitstream/10453/35089/1/giurcoetal2008resenduse.pdf
https://doi.org/10.1080/08927022.2018.1471692
https://doi.org/10.1080/08927022.2018.1471692
https://doi.org/10.1016/j.rser.2016.07.020
https://doi.org/10.1016/j.rser.2016.07.020
https://doi.org/10.2166/ws.2014.096
https://www.swan-forum.com/wp-content/uploads/sites/218/2020/12/SWAN-White-Paper_Communication-Protocols.pdf
https://www.swan-forum.com/wp-content/uploads/sites/218/2020/12/SWAN-White-Paper_Communication-Protocols.pdf
https://doi.org/10.1145/2753524.2753534
https://doi.org/10.1145/2753524.2753534
https://doi.org/10.1080/13604810802479126
https://doi.org/10.1016/j.envsoft.2017.06.035
https://doi.org/10.1016/j.envsoft.2017.06.035
https://doi.org/10.3389/feart.2019.00067
https://doi.org/10.1016/j.enbuild.2016.09.008
https://doi.org/10.1016/j.enbuild.2016.09.008
https://doi.org/10.1109/MITP.2017.3680960
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1016/j.envsoft.2017.11.021
https://doi.org/10.3390/w12020412
http://refhub.elsevier.com/S1364-8152(21)00180-8/sref53
http://refhub.elsevier.com/S1364-8152(21)00180-8/sref53
https://doi.org/10.1016/j.energy.2016.05.068
https://doi.org/10.1016/j.resconrec.2015.05.008
https://doi.org/10.1016/j.resconrec.2015.05.008
https://doi.org/10.1144/SP408.4
https://doi.org/10.1016/j.envsoft.2013.09.008
https://doi.org/10.1016/j.envsoft.2013.09.008
https://www.sdu.dk/~/media/Files/Om_SDU/Institutter/ITI/Forskning/NATO%20ARW/Literature/Residential%20end%20uses_of%20water.pdf
https://www.sdu.dk/~/media/Files/Om_SDU/Institutter/ITI/Forskning/NATO%20ARW/Literature/Residential%20end%20uses_of%20water.pdf
http://refhub.elsevier.com/S1364-8152(21)00180-8/sref59
http://refhub.elsevier.com/S1364-8152(21)00180-8/sref59
http://refhub.elsevier.com/S1364-8152(21)00180-8/sref59
http://refhub.elsevier.com/S1364-8152(21)00180-8/sref59
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1088/1748-9326/ab3761
https://doi.org/10.3390/challe5010123
https://doi.org/10.1016/j.cities.2013.12.010
https://doi.org/10.1016/j.cities.2013.12.010
https://doi.org/10.1016/j.asoc.2015.03.007
https://doi.org/10.1109/I2MTC.2019.8827164
https://doi.org/10.1109/I2MTC.2019.8827164
https://doi.org/10.1109/WAINA.2014.129
https://doi.org/10.1109/ICDCS.2018.00127
https://doi.org/10.1109/ICDCS.2018.00127
https://doi.org/10.1111/1752-1688.12608
https://doi.org/10.1111/1752-1688.12608
https://doi.org/10.1109/ISC246665.2019.9071734
https://doi.org/10.1109/ISC246665.2019.9071734
https://doi.org/10.5334/dsj-2019-021
https://doi.org/10.1016/j.envsoft.2019.104559

Environmental Modelling and Software 144 (2021) 105137

16

Szwilski, T.B., Smith, J., Chapman, J., Lewis, M., 2018. Cyberinfrastructure supporting
watershed health monitoring and management. WIT Trans. Ecol. Environ. 228,
245–256. https://doi.org/10.2495/WP180231.

U.S. Congress, 2007. Energy Independence and Security Act - SMART GRID. United
States of America. https://www.govinfo.gov/content/pkg/STATUTE-121/pdf/STA
TUTE-121-Pg1492.pdf. (Accessed 3 March 2021).

Wegrzyn, J.L., Falk, T., Grau, E., Buehler, S., Ramnath, R., Herndon, N., 2020.
Cyberinfrastructure and resources to enable an integrative approach to studying
forest trees. Evol. Appl. https://doi.org/10.1111/eva.12860.

Willis, R.M., Stewart, R.A., Williams, P.R., Hacker, C.H., Emmonds, S.C., Capati, G.,
2011. Residential potable and recycled water end uses in a dual reticulated supply
system. Desalination 272, 201–211. https://doi.org/10.1016/j.desal.2011.01.022.

Willis, R.M., Stewart, R.A., Giurco, D.P., Talebpour, M.R., Mousavinejad, A., 2013. End
use water consumption in households: impact of socio-demographic factors and
efficient devices. J. Clean. Prod. 60, 107–115. https://doi.org/10.1016/j.
jclepro.2011.08.006.

Wissner, M., 2011. The Smart Grid - a saucerful of secrets? Appl. Energy 88, 2509–2518.
https://doi.org/10.1016/j.apenergy.2011.01.042.

Yan, Y., Qian, Y., Sharif, H., Tipper, D., 2013. A survey on smart grid communication
infrastructures: motivations, requirements and challenges. IEEE Commun. Surv.
Tutorials. https://doi.org/10.1109/SURV.2012.021312.00034.

Ye, Y., Liang, L., Zhao, H., Jiang, Y., 2016. The system Architecture of smart water grid
for water security. In: Procedia Engineering. Elsevier Ltd, pp. 361–368. https://doi.
org/10.1016/j.proeng.2016.07.492.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M., 2014. Internet of things for
smart cities. IEEE Internet Things J 1, 22–32. https://doi.org/10.1109/
JIOT.2014.2306328.

InfluxData, 2021. InfluxDB. https://www.influxdata.com/products/influxdb/ (accessed
5 May 2021).

EPA, 2020. United States Environmental Protection Agency. The water Sense label.
https://www.epa.gov/watersense (accessed 1 May 2021).

Forcier, Jeff, 2021. Welcome to Paramiko. http://www.paramiko.org/ (accesed 5 May
2021).

Gunicorn, 2021. Gunicorn. https://gunicorn.org/ (accessed 3 May 2021).
Hellkamp, Marcel, 2021. Bottle: Python web framework. https://bottlepy.org/, 2021

(accessed 1 May 2021).
InfluxDB, 2020. API documentation. https://influxdb-python.readthedocs.io/en/latest

/index.html (accessed 1 February 2021).
NGINX, 2021. About NGINX. https://nginx.org/en/ (accessed 5 May 2021).
NSF, 2007. National Science Foundation. Cyberinfrastructure Vision for 21st Century

Discovery. https://www.nsf.gov/pubs/2007/nsf0728/index.jsp (accessed 4 May
2021).

Python Software Foundation, 2021a. Asyncio — asynchronous I/O. https://docs.python.
org/3/library/asyncio.html (accessed 5 April 2021).

Python Software Foundation, 2021b. Timeit — measure execution time of small code
snippets. https://docs.python.org/3/library/timeit.html (accessed 5 April 2021).

Slack Technologies, 2021. Slack. https://slack.com (accessed 5 May 2021).
Attallah, N., Bastidas Pacheco, C.J., 2021. Supporting data and tools for "Tools for

Evaluating, Developing, and Testing Water End Use Disaggregation Algorithms",
HydroShare, http://www.hydroshare.org/resource/3143b3b1bdff48e0aaebcb4ae
df02feb.

Attallah, N.A., Horsburgh, J.S., Bastidas Pacheco, C.J., 2021. Tools for Evaluating,
Developing, and Testing Water End Use Disaggregation Algorithms. Manuscript
submitted for publication.

Amazon, 2021. Amazon EC2 Secure and resizable compute capacity to support virtually
any workload. https://aws.amazon.com/ec2/?nc2=h_ql_prod_fs_ec2&ec2-whats
-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc
(accessed 2 May 2021).

C.J. Bastidas Pacheco et al.

https://doi.org/10.2495/WP180231
https://www.govinfo.gov/content/pkg/STATUTE-121/pdf/STATUTE-121-Pg1492.pdf
https://www.govinfo.gov/content/pkg/STATUTE-121/pdf/STATUTE-121-Pg1492.pdf
https://doi.org/10.1111/eva.12860
https://doi.org/10.1016/j.desal.2011.01.022
https://doi.org/10.1016/j.jclepro.2011.08.006
https://doi.org/10.1016/j.jclepro.2011.08.006
https://doi.org/10.1016/j.apenergy.2011.01.042
https://doi.org/10.1109/SURV.2012.021312.00034
https://doi.org/10.1016/j.proeng.2016.07.492
https://doi.org/10.1016/j.proeng.2016.07.492
https://doi.org/10.1109/JIOT.2014.2306328
https://doi.org/10.1109/JIOT.2014.2306328
https://www.influxdata.com/products/influxdb/
https://www.epa.gov/watersense
http://www.paramiko.org/
https://gunicorn.org/
https://bottlepy.org/
https://influxdb-python.readthedocs.io/en/latest/index.html
https://influxdb-python.readthedocs.io/en/latest/index.html
https://nginx.org/en/
https://www.nsf.gov/pubs/2007/nsf0728/index.jsp
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/timeit.html
https://slack.com
http://www.hydroshare.org/resource/3143b3b1bdff48e0aaebcb4aedf02feb
http://www.hydroshare.org/resource/3143b3b1bdff48e0aaebcb4aedf02feb
https://aws.amazon.com/ec2/?nc2=h_ql_prod_fs_ec2&ec2-whats-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc
https://aws.amazon.com/ec2/?nc2=h_ql_prod_fs_ec2&ec2-whats-new.sort-by=item.additionalFields.postDateTime&ec2-whats-new.sort-order=desc

	An Open Source Cyberinfrastructure for Collecting, Processing, Storing and Accessing High Temporal Resolution Residential Water Use Data
	Recommended Citation

	An open source cyberinfrastructure for collecting, processing, storing and accessing high temporal resolution residential w ...
	1 Introduction
	2 Methods
	2.1 CIWS design and overall software architecture
	2.1.1 Data collection layer
	2.1.2 Data management and archival layer
	2.1.3 Data analytics layer

	2.2 Case study design and system testing
	2.2.1 Case study 1 description
	2.2.2 Case study 2 description

	3 Results and discussion
	3.1 Case study 1: push based data collection for single family residential homes
	3.1.1 Data collection layer
	3.1.2 Data management and archival layer
	3.1.2.1 Data posting service (DPS)
	3.1.2.2 Data loading service (DLS)
	3.1.2.3 Operational database

	3.1.3 Data analytics layer

	3.2 Case study 2: pull based data collection within multi-unit residential buildings
	3.2.1 Data collection layer
	3.2.2 Data management and archival layer

	3.3 Scalability and Performance Metrics

	4 Conclusions and future work
	Software and data availability
	Declaration of competing interest
	Acknowledgements
	References

