Characterizing the Effects of Radiation on Muscle Cells

Lori Caldwell
Utah State University

Charles Harding
Utah State University

Eryn Hanson
Utah State University

JR Dennison
Utah State University

Elizabeth Vargis
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/mp_presentations

Part of the Condensed Matter Physics Commons

Recommended Citation

Caldwell, Lori; Harding, Charles; Hanson, Eryn; Dennison, JR; and Vargis, Elizabeth, "Characterizing the Effects of Radiation on Muscle Cells" (2018). IBE. *Presentations*. Paper 189.
https://digitalcommons.usu.edu/mp_presentations/189

This Presentation is brought to you for free and open access by the Materials Physics at DigitalCommons@USU. It has been accepted for inclusion in Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
Characterizing the Effects of Radiation on Muscle Cells

LORI CALDWELL1, CHARLES HARDING1, ERYN HANSON1, DR. JR DENNISON2, DR. ELIZABETH VARGIS1

1UTAH STATE UNIVERSITY – BIOLOGICAL ENGINEERING
2UTAH STATE UNIVERSITY – PHYSICS
Muscle Atrophy Occurs in Space

Muscle loss

180 days

-40%

leaving

arriving

-12% in 10 days [3]

[1]https://m1.behance.net/rendition/modules/46869501/disp/e31f45fa96b406c2edd5f105dd023744.png
Caused by Reactive Oxygen Species

Sources of ROS
- UV radiation
- Ionizing radiation
- Increased incidence under microgravity
 - Decreased muscle loading

http://www.biotek.com/assets/tech_resources/10592/figure1.jpg
Rigorous Astronaut Training

- Minimize effects of muscle loss
 - Send physically fit astronauts to space
Rigorous Astronaut Training

- Minimize effects of muscle loss
 - Send physically fit astronauts to space
 - In space, undergo continued exercise
Rigorous Astronaut Training
Reactive Oxygen Species

Sources of ROS
- UV radiation
- Ionizing radiation
- Increased incidence in microgravity
 - Decreased muscle loading

Utah State University’s Space Environment Test Facility

Heated cell chamber (37°C, 1 atm)

Strontium 90 radiation source

Vacuum chamber

Sample port
Modeling Radiation

- 21.5 cm source-to-sample distance
- Dosage rate: 0.71 Gy/hr
Dosage Calculation

- Dosage outside Earth’s geomagnetic sphere = $48.1 \pm 0.81 \mu\text{Gy/day}$
- Flight duration to Mars one way = 180 days
- Dosage on Mars’ surface = $22.9 \pm 0.44 \mu\text{Gy/day}$
- Experimental stay on Mars = 365 days

- Total mission length = 725 days
- **Total mission radiation dosage** = $0.66 \pm 0.12 \text{ Gy}$

- 10 year colonizing mission dosage = $3.84 \pm 0.15 \text{ Gy}$
- 3-5 Gy at once could kill person
Preliminary Work

- How does radiation affect cell pellet?
- Mouse skeletal muscle cells (C2C12)
Utah State University’s Space Environment Test Facility

- Strontium 90 radiation source
- Vacuum chamber
- Heated cell chamber (37°C, 1 atm)

- Undifferentiated C2C12 mouse skeletal muscle cells

(Not even close to normal, \textit{in vivo} cells)
Undifferentiated C2C12 Cell Viability

![Graph showing the relationship between radiation dose (Gy) and percent viability. The graph indicates a decrease in viability with increasing radiation dose. The data points for Day 0 and Day 7 are shown with error bars.]
C2C12 Morphology – 7 Day post radiation
Differentiated, Normal Control
C2C12 Morphology – 7 Day post radiation

7.2 Gy
14.6 Gy
36.8 Gy
Monolayer Radiation Exposure

- Strontium 90 radiation source
- Atmospheric pressure

C2C12 skeletal muscle
CRL-1999 aortic smooth muscle
C2C12 Cellular Monolayer Viability

* = p < 0.05
CRL-1999 Cellular Monolayer Viability

* = p < 0.05
C2C12 Morphology – 7 Day post radiation

7.2 Gy

14.6 Gy

36.8 Gy
Caused by Reactive Oxygen Species

Sources of ROS
- UV radiation
- Ionizing radiation
- Increased incidence under microgravity
 - Decreased muscle loading

http://www.biotek.com/assets/tech_resources/10592/figure1.jpg
Ground-based Models

- **Animal Models**
 - Nerve blocking
 - Casting
 - Hindlimb unloading

- **Cell Culture Models**
 - Clinostat
 - Rotary cell culture system

Rotating Cell Culture System (RCCS)

- Simulated microgravity using a rotating vessel maintaining cells at their terminal settling velocity
- Normal gravity using ultra low attachment flasks
Combining Radiation with Microgravity Simulations

- Preliminary work with cesium disks did not deliver adequate levels of radiation to cells within RCCS
Custom RCCS compatible with Space Survivability Test Chamber

- Constructed from stainless steel and polycarbonate
- 6 rotary vessels controlled by one motor
Combining Radiation and Microgravity

- Custom RCCS built for compatibility with Space Survivability Test Chamber
- Constructed from stainless steel and polycarbonate
- 6 rotary vessels controlled by one motor
Combined Effects

Sample port
Summary and Ongoing Work

- Radiation chamber effective at delivering radiation to muscle cells
 - Advantages: close to our cell culture lab, tunable, accessible
 - Disadvantages: \(\beta\) not \(\gamma\) radiation
- Combining radiation and simulated microgravity ongoing
- Future work: how can changes to muscle tissue be mitigated?
 - Anti-oxidants
 - Anti-inflammatory therapeutics
Acknowledgments
Spontaneous contractions of C2C12 cells in vitro

questions?

vargis@usu.edu

www.VargisLab.com