
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Undergraduate Honors Capstone Projects Honors Program 

1974 

Unity in the Theory of Elementary Particles Through Group Theory Unity in the Theory of Elementary Particles Through Group Theory 

Douglas Karl Lemon 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/honors 

 Part of the Atomic, Molecular and Optical Physics Commons 

Recommended Citation Recommended Citation 
Lemon, Douglas Karl, "Unity in the Theory of Elementary Particles Through Group Theory" (1974). 
Undergraduate Honors Capstone Projects. 183. 
https://digitalcommons.usu.edu/honors/183 

This Thesis is brought to you for free and open access by 
the Honors Program at DigitalCommons@USU. It has 
been accepted for inclusion in Undergraduate Honors 
Capstone Projects by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/honors
https://digitalcommons.usu.edu/honorsp
https://digitalcommons.usu.edu/honors?utm_source=digitalcommons.usu.edu%2Fhonors%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=digitalcommons.usu.edu%2Fhonors%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/honors/183?utm_source=digitalcommons.usu.edu%2Fhonors%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Approved: 

UNITY IN THE THEORY OF ELEMENTARY PARTICLES 

THROUGH GROUP THEORY 

by 

Douglas Karl Lemon 

A senior thesis submitted in partial fulfillment 
of the requirements for the degree 

of 

BACHELOR OF SCIENCE 

in 

Honors 

UTAH STATE UNIVERSITY 
Logan, Utah 

1974 



TABLE OF CONTENTS 

ABSTRACT 

INTRODUCTION 

Unity: the goal of science 
Unity through group theory 
Objectives . 

A SUMMARY OF GROUP THEORY LEADING TO LIE GROUPS AND ALGEBRAS 

Definitions and fundamental ~roperties of groups 
Group representations 
Continuous groups 

ILLUSTRATIONS OF UNITY THROUGH GROUP THEORY 

Overview 
The homogeneous Lorentz group 
The inhomogeneous Lorentz group 
Description of e lementary particles 

SUMMARY AND CONCLUSIONS 

Summary 
Conclusions 

LITERATURE CITED 

VITA 

ii 

Page 

iii 

1 

1 
2 
3 

4 

4 
6 

10 

17 

17 
17 
19 
19 

24 

24 
26 

28 

29 



ABSTRACT 

Unity in the Theory of Elementary Particles 

Through Group Theory 

by 

Douglas Karl Lemon 

Utah State University, 1974 

Thesis Advisor: Dr. Jack E. Chatelain 
Department: Physics 

iii 

Science is the process of seeking unity in the diversity of natural 

phenomenon. The purpose of this paper is to demonstrate that group 

theory brings unity to the theory of elementary particles. The prime 

motivations are first, to find a quantitative representation of the 

Lorentz transformation, and second, to find a quantitative representa-

tion of angular momentum. Since both of these have con tinuous para-

meters, groups with continuous parameters, particularly Lie groups, are 

of interest. 

The first portion of the paper develops the definition of Lie groups 

and their associated Lie algebras. The prerequisite definitions of 

transformations, groups , group representations, and continuous groups 

are given. 

The second por tion of the paper presents illustrations to suppor t 

the conclusion that group theory brings unity to elementary particle 

theory. The major examples are spin and angular momentum of a particle. 

(32 pages) 



INTRODUCTION 

Uni ty: the goal of science 

Science is more than the process of dividing knowledge into neat and 

well-ordered compartments. It is the process of seeking unity in the 

diversity of nature. Founded on a minimum of postulates, a new theory 

seeks to correlate a broader range of physical phenomenon than had been 

previously possible. 

One profound unification in the development of physics was the advent 

of Maxwell's equations of electromagnetism. They not only accounted for 

the separate areas of elec tromagnetism such as electrostatics, induction, 

and others, but they also predicted that lig ht was electromagnetic in 

nature. This unification brings visible ligh t, microwaves, radio waves, 

X-rays, and gamma rays all under a single unified description as electro

magnetic quanta. J. R. Pierce wrote, "To anyone who is motivated by any

thing beyond the most narrowly practical, it is worthwhile to understand 

Maxwell's equations simply for the good of his soul." (Halliday, Resnick, 

1967, p. 963) 

Another far-reaching unification in physic s were Einstein's Special 

and General Theories of Relativity. They encompassed and surpassed 

New tonia n mechanics and theory of gravi tation. The triumph of the 

Special Theory of Relativity was that it dispell e d the conflict between 

Newtonian mechanics and Maxwell's electromagnetism thereby bringing a 

broad er unification of understanding. Additionally the Special Theory 

predicted new phenomenon concerning the behavior of matter moving at 
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velocities near the speed of light. The predictions have been experi-

mentally verified. General Relativity brought unity to the concept of 

gravitation and the universe. It accounted for all the consequences of 

Newtonian gravitation in the limit as well as predicting other phenomenon. 

The precession of the perihelion of Mercury and the deflection of star 

light by the sun were quantitatively explained by the new theory. Con-

cerning this unification C. Lanczos wrote, "We admit the loss of sim-

plicity, but are willing to pay the price for the sake of the tremendous 

advance in unity." (Marion, 1970, p. 130) 

Unity through group theory 

Originally group theory was studied only by mathematicians. Then, 

as quantum mechanics developed, physicists realized its many applica-

tions to the new field. The formalism of group theor y brings under a 

single mathematical description such otherwise unrelated concepts as 

angular momentum, spin, tensor character, crystal lattice description, 

the quark model of elementary particles and so forth. 

Often in physics the mathematical apparatus of a theory predicts 

previously unknown ideas. In addition to Maxwell's and Einstein's 

theories, this was the case with Dirac's prediction of antiparticles . 

Dirac insisted that both the positive and negative roots of the rela-

tivistic equation E 
/2 2 2 4 . = ± lp c + m

0
c be recognized as physically valld. 

Gell-Mann and Zweig predicted the existence of the ~ particle based on 

the quark model or "Eight-fold Way" group theory model of the elementary 

particles. Mathematical unity, therefore, may reveal physical unity 

as well. 
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Objectives 

The first objective is to develop the theory of a Lie group and Lie 

algebra. They are important because their continuous parameters corres

pond meaningfully to physical quantities. An example is the Lorentz 

transformation group . The Lorentz transformation which plays a central 

role in any relativistic theory has the continuous quantities space and 

time as its parameters. Consequently the preliminary definitions of a 

group and transformation are given. Then, the definition of a continu

ous group is extended to the Lie group and its associated Lie algebra. 

Examples of a Lie group and algebra are given. 

The second objective is to illustrate that group theory, especially 

Lie groups, bring unity to the description of elementary particles. 

Spin, angular momentum, and the equivalence of all unitary representa

tions of a relativity group to all relativistic wave equations are given 

as illustrations. Additional, more advanced applications are listed 

with references for further investigation. 



A SUMMARY OF GROUP THEORY LEADING 

TO LIE GROUPS AND ALGEBRAS 

Definitions a nd fu ndamental 
properties of groups 

A widely applied and fundamental concept in physics is the trans-

formation. They are a quantitative method of describing a change in a 

system. The change may be the rotation of a rigid bod y , the passage of 

light rays through a series of lenses, a change of bases in a vector 

space or many others. 

4 

A useful property of transformations is that they allow certain pro-

perties of the system such as total energy, total angular momentum, pro-

per time and distance to remain constant or invariant while the position, 

velocity, or other properties are changed by the transformat ion. The 

Lorentz transformation, for example, which transforms from a coordinate 

system 0 to a system O' which is moving in the x direction is x 

x'cosh8 + t'sinh8, t = x'sinh8 + t'cosh8 , y = y' z = z', where tanh8 

their relative velocity normalized to the speed of light. This trans-

formation preserved the proper time between events . It will be dis-

cussed in more detail later. 

In general a transformation may be defined for a se t X and X' as 

a one to one correspondence or mapping of the elements of X and X'. If 

the mapping has the form x. 
]_ 

L: a .. x., i 
l.J J 

1,2, ... ,n, then the trans-

formation is said to be linear. The matrix of the coefficients (a .. ) is 
l.] 

called the transformation matrix. 
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Groups. With the concept of a transformation presented, we now give 

the most important definition in this section . It is, of course, the 

definition of a group. It is in the language of groups with which models 

are constructed. A set of transformations is a group if the following 

criteria are satisfied: (1) the set contains the identity element, 

(2) -1 
for every transformation M, then the inverse, M is an element of 

the set, and (3) if the set includes M and M' then it also contains their 

composition MM'. In other words, the set of transforroBtions is closed 

under combination. 

The elements of a group are in general arbitrary. For the applica-

tion in physics they are usually transformations. However, a set of 

points or numbers may also be a group if under the law of combination 

defined, the above criteria are satisfied. We shall restrict the dis-

cussion to groups of transformations. 

Subgroups. The idea of a subgroup will be very useful later. In-

variance properties of subgroups allow one to determine if the group 

representation is irreducible. This will be explained in more detail 

in a later section. The definition is given at this point, however, so 

its relationship to a group will be clear. 

We say that H is a subgroup of G if H and G are groups and H is a 

subset of G. The group itself and the identity are called improper 

subgroups. 

Symmetry and rotation groups. Groups may be classified by what their 

transformations perform. The set of transformations which preserves the 

symmetry of a set of points is called a symmetry group. This class of 

groups is very important in physics and chemistry. They are used for 



example if desiring the lattice structure of crystals. The symmetry 

groups SU(2) and SU(J) are used in the quark model or "Eight Fold Way" 

description of elementary particles. The reader is referred to Lipkin 

(1960) for further study of these groups. 
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A rotation group is a set of transformations which perform a rota

tion on a system. The system may be a rigid body or a coordinate system 

for example. In quantum mechanics the conservations of angular momentum 

is expressed mathematically by requiring that the wave function of a 

system be invariant with respect to infinitesimal rotations in a Hilbert 

space. The eigenvalue of the rotation operator is the total angular 

momentum of the system. This application will be discussed in more de

tail in a later section. For a complete treatment of the 3-dimensional 

rotation group and its representation the reader is referred to Gel'Fand, 

Minlos, a nd Shapiro (1963). 

Gro up representations 

With the definitions and basic properties of groups established, 

the next concept in the development toward a Lie group is the repre

sentation of a group. Two important terms which will b e used are iso

morphic and homomorphic. Hamermesh (1962) gives the definition that two 

groups G and H are isomorphic if their elements can be put into a one

to-one correspondence which is preserved under combination. He also 

states that a homomo rphic mapping or ho momorp hi sm is a correspondence 

similar to an isomorphic mapping. The difference is that in a homo

morphism from a group G to a group H more than one element of G may have 

the same image or correspond to the same element in H. 
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With this background the concept of a group representation is intro-

duced. Intuitively, one can conceive of rotations of a rigid body about 

an axis. For each rotation forward there is an opposite rotation which 

brings the body back to its original position. Therefore an inverse 

exists for each rotation. The identity exists since either no rotation 

or a complete rotation brings the body back to its original position. 

Lastly, for any two successive rotations, there is a third rotation which 

brings the body to the same position as the composite for the first two. 

So one has an intuitive feeling that the set of rotations about an axis 

form a group since the criteria are satisfied. 

One may ask, however, how can rotations be described quantitatively. 

This suggests the use of mathematics. It is in the quantitative descrip-

tion of elements of a group that group representations are introduced. 

Before giving a formal definition two preliminary ideas are necessary, 

the linear operator and the matrix representative. 

Linear OEerators. A linear transformation as defined previously may 

also be considered to be a linear operator. It is an operator in the 

sense that it changes the system or, in other words, performs a certain 

operation on it. Such operators may be considered independently from 

any specified coordinate system because they have intrinsic significance. 

Although if one chooses a set of basis vectors u. in a vector space L, 
l 

then a transformation T is defined by the coordinate functions 

yi = Ti(xl'' ·· ,xn). 

Matrix represent~t~ve. A theorem of linear analysis (Kaplan, 1973, 

p. 79) guarantees that every linear operator may be represented by a 
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matrix (T .. ) for a basis u .. Therefore matrices may be used as a 
lJ l 

quantitative method for describing elements of a group such as the 

rotations mentioned previously . 

The matrix (T .. ) is called the matrix representative of the operator 
lJ 

T. If one chooses a different basis v. to represent T, the two repre
l 

sentatives are said to be equivalent. 

Represen!ation of a group. Using the definitions and functions of 

linear operators and their matrix representatives we are now able to 

present a formal definition of the representation of a group. A set of 

operators D(G) = A,B, •.• in a vector space L form a group if, of course, 

they satisfy the criteria for a set to be a group. Then if one maps a 

group G homomorphically on such a group of operators D(G) in L, the 

operator group D(G) is called a representation of G in the representa-

tion space L. 

For example , consider the possible rotations of a body about an axis. 

We have shown that they form a group. Each rotation can be represented 

by a matrix for a given basis in a vector space. The set of matrices 

also form a group M called the representation of the group R. As stated 

by Hamermesh, "If we choose a basis in the n-dimensional space L, the 

linear operators of the representation can be described by their matrix 

representatives. " (Hamermesh, 1962, p. 7 8) 

IrredL!,cible re12resentat;.,.ions of a group. Hhen considering the repre-

sentation of a group, one may ask if it is possible to represent the 

group in a more simple representation . If a representation is in its 

simplest form, it is said to be irreducible. We must, of course, define 

what is meant by "simplest form." 
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The concept of irreducibility is of prime importance in physical 

applications. One desires that a model or theory be expressed in the 

most fundamental concepts in order to provide the broadest possible uni-

fication. The development of the transformation, operator, group and 

group representation given above allow us to define exactly what is 

meant for a representation to be in its simplest form. 

The representation T of a group G in the space 1 is called 
reducible, if there exists in 1 at least one non-trivial subspace 
1

1 
invariant with respect to all operators T(g) (g E G). 

Accordingly, the representation T of the group G in the 
space 1 is called irreducible, if in 1 there is no non-trivial 
subspace 1

1 
invariant with respect to all the operators T(g) 

(g E G). (1yubarskii, 1960, p. 45) 

We can give this definition a physical interpretation. Suppose for 

a representation T of a group G there is a subspace which is invariant 

with respect to the operators of the group G. This means that when an 

operator operates on a vector in the subspace the resulting vector is 

also an element of the subspace. We may intuitively think therefore 

that the subspace is somehow more basic or elementary itself. Naturally, 

if a system has a subset which is more elementary, then we want to form 

our theory in terms of the most fundamental or elementary units or con-

ceptual models possible. Hence, the above definition of reducible and 

irreducible seem natural. If a system, a particle for example, has a 

more basic substructure then the particle is "reducible" to its elemen-

tary constituents. 

Schur's lemmas. Based on the irreducibility of a group we conclude 

this section on group representations with the following lemmas known 

as Schur's lemmas. 



Lemma I. If D and D' are two irreducible representations of 
a group G, having different dimensions, then if the matrix A 
satisfies D(R) A= A D'(R) for all RinG, it follows that A= 0. 

Lemma II. If the matrices D(R) are an irreducible repre
sentation of a group G, and if A D(R) = D(R) A for all R in G, 
then A= constant (1). (Hamermesh, 1962, p. 100) 
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It is discussed further in a later section on Casimir operators that 

these lemmas provide important information about a group. Lemma II 

guarantees that any operator which commutes with all the elements of an 

irreducible representation of a group are scalar multiples of the unit 

matrix. These operators called Casimir operators are of physical impor-

tance because they are invariants of the group. Also, the scalar value 

of the Casimir operator provides a means of distinguishing irreducible 

representations of a group. 

Continuous groups 

Definition of a continuous group. The rotation group illustrates 

another major point toward the definition of a Lie group. The angle of 

rotation of a body from its initial position may be a ny real value. 

They are continuous and therefore two elements may be arbitrarily close 

together . The angle is called the parameter of the group. 

Contrast this continuous group to the group consisting of the set of 

positive and negative integers and zero. If the law of combination is 

algebraic addition, then they satisfy the requirements to be a group. 

Clearly the integer zero is the identity element since n + 0 n. For 

and element n, then -n is the inverse since n + (-n) = 0 the identity 

element. Finally, m = n + k + 1 then there is an element of the set 

p k + 1 such that m = n + p also. One sees, however, that the elements 
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are discreet. Every pair of elements are at least one integer apart. 

Such groups are called discreet or point groups since the parameters 

are discreet. 

In general, and more formally, we say that a continuous group has 

its elements labeled by a set of continuously varying parameters or 

set of functions. A group is called an r-parameter continuous group 

if its elements can be labeled by r continuously varying real parameters 

a
1

, a
2

, ... ,ar. The elements of the group are designated R(a) 

R(a
1

,a
2

, ... ,ar). Note , therefore, that the group of rotations about a 

fixed axis is a 1-parameter continuous group . 

Lie groups. With continuous groups defined, the definition which we 

have been building toward may now be given. It is the concept of a Lie 

group. We stated above that the elements of a continuous group rnay be 

infinitesimally close to each other. Hence, the concept of an infini-

tesimal transformation within the group emerges. No te that an infini-

tesimal transformation is impossible for the discreet group described in 

the last section. Weyl stated "S. Lie was the first to undertake a 

systematic study of the construction of transformation groups from their 

infinitesimal elements." (Wey l, 1930, p. 176) 

A Lie group as defined by Hamermesh (1962) is as follows: for a 

group with elements R(a) such that R(c) = R(b)R(a) and the parameter c 

is a real valued function of the real parameters a and b, i.e. c. 
l 

F.(a
1

, ... ,a :b
1

, ... ,b) one adds the following conditions. First the 
l r r 

function F. must be differentiable for all orders of differentiation 
l 

with respect to parameters a. and b .. This condition assures that the 
l l 

parameter of a produc t will be an analytic function of the parameters 
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of the factors . Second, given the identity element of the group R(O) 

and an element R(a) and R(a') such that R(a)R(a' ) = R(O), the parameter 

a' must be an ana lytic function of a . A group satisfying these con-

ditions is called an r-parameter Lie group. 

Infinitesimal transformations. Many of the applications of group 

theory to physics are in terms of infinitesimal transformations. Some 

of their applications are presented in the next section of this paper, 

"Applications of Group Theory to Elementary Particles." Consequently, 

a detailed development and definition of infinitesimal transformations 

is given at this point. 

We begin with an infinitesimal transformation x! = f.(x
1

, ... ,x ; 
l l n 

a1 , ... ,ar) fori= 1, ... ,n. Applying the standard definition of the 
r 

differential of a function gives dx: 
l 

L: 
k=l 

f.(x
1
', ... ,x';a

1
, ... ,a) 

l n r 

oa = 
k 

oak 
r 

L: uik(x') cak. So for a function F changed by this infini-
k=l 

tesimal transformation we have equation 8-45 from Hamermesh (1962) 

dF 

dx .. 
l 

F 

n 
L: 
i=l 

aF 
'"' dx. ax. l 

l 

n 
L: 
i=l 

aF 
ax . 

l 

r 

L: uil (x) cal 
1=1 

r n 

after substituting for 

This may be written as dF = L: ca
1

( 
1=1 

L: u il (x) _a_) 
i=l axi 

The operators X 
p 

n 

L: 
i=l 

u. (x) a 
lp ax. 

l 

are the infini-

tesimal operators of the group. 

For example consider the group of transformations x' =ax + b. 

The infinitesimal transformations are x ' = X + xca + ob and dx = xca + 

cb . For the ca then u. 
af 

So x
1 

= x a For the parameter 
lp aa = x. ax 

cb then 1. Hence x2 
a parameter u. = lp ax 
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An important property of operators are their commutation relations 

or commutators. The commutator of x
1 

and x
2 

for this example is 

-a [X1 ,x2J = [x1x2 - x2x1J = ax = -x2. It is important that the result of 

the commutator is not a new operator, but one of the infinitesimal trans-

formations of the group. This property will be discussed in more detail 

later. 

Another example of infinitesimal operators is the set of operators 

of the rotation group in two dimensions. The rotation group is given 

by x' = x cos(8) - y sin(8) andy' = x sin(8) = y cos(8). This trans-

formation will rotate a point in the plane through an angle e a bout the 

origin. To obtain the infinitesimal transformation the angle 8 is ex-

panded an infinitesimal amount about e = 0. This gives x' = X - yo8 

and y' = xo8 + y. Applying the formula for the operator X with 8 as 
p 

h . x a t e parameter g lves = x ay a 
y ax· This is the angular momentum 

operator for two dimensions. 

Structure constants. We have shown for the linear transformation 

x' = ax + b that the commutator of the infinitesimal operators is x
1

,x
2 

= - x
2

. We see then that the commutator of the operators can be ex-

pressed as a linear combination of the operators of the group. In this 

case the linear combination is simple. The coefficient is merely -1. 

In general, for more complicated groups, it can be shown (Hamermesh, 1962) 

k a k 
that the commutator can be expressed as [X ,X ] - c u --- - c X_ p s - ps jk 8x. - ps -K· 

k J 
The coefficients c are called the structure constants of the Lie group. 

ps 

Hamermesh (1962) also states the following properties of the structure 

constants: (1) ck = -ck and (2) the Jacobi identity provides the 
ps sp 
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u v u v u v 
condition that c c + c c + c c = 0, or equivalently, 

ps ut st up tp us 

((X ,X ] ,Xt] + ([X ,X ] ,X ] + ([X ,X ] ,X ] 0. 
p s s t p t p s 

Lie algebras. With the Lie group defined we now introduce the 

associated definition of a Lie algebra. Simply stated, the Lie algebra 

of a group is the set of all commutation relations among the operators 

of the group. 

The algebra can also be defined in a vector space formalism. We have 

shown that for a n r-parameter transforma tion group there are r linearly 

independent operators X . These operators can be thought of as a basis 
p 

for an r-dimensional vector space. Vectors in the space will have the 

form therefore of L a X , i.e. linear combinations of the operators with 
p p p 

real coefficients a . Multiplication of vectors in the space is defined 
p 

to be the commutator of the vectors. We have constructed then a vector 

space of quantities L a X which is closed under the multiplication de
p p p 

fined. These relationships among the vectors is the Lie algebra of the 

group. 

For example, suppose for a group G of operators X one defines 
p 

quantities A,B, ... in terms of the base vectors X by A= La X . For 
p p p p 

A,B, ... the structure constants must satisfy the conditions set forth 

in the preceding section . Then the quantities A,B, ... from which one 

can form linear combinations [A,B] = c
1

A + c
2

B + c
3
c + ... form the Lie 

algebra of the group. 

In summary, we have shown that for a group of infinitesimal trans-

formations or operators, the commutation relations of the operators may 

be found. From these commutation relations the Lie algebra of the Lie 



group is defined. However, in application of group theory to physical 

problems, we may know the Lie algebra of the group before knowing the 

transformations themselves. It is possible to find the Lie group from 

its algebra. 

Giv~n a real Lie algebra with preassigned structure con
stants c .•. [we may] ... construct the Lie group which has this 
algebra ~~ its Lie algebra. Stated in terms of transformations, 
the problem would be to find the finite transformations by inte
gration, starting from preassigned commutation relations of the 
infinitesimal operators. We state the result without proof: To 
every Lie algebra there corresponds a Lie group: the structure 
constants determine the Lie group loca lly (i.e., in the neighbor
hood of the identity element. (Hamermesh, 1962, p. 304) 
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For further information about Lie groups and algebras the reader is 

referred to Lipkin (1965). 

The Casimir operator. Any operator which commutes with all the 

operators of a group is called a Casimir operator. More formally, an 

operator C if a group of operators is a Casimir operator if for all the 

operators of the group A. then [C,A.] 
l l 

0. Note that A. may also be the 
l 

Casimir operator itself. Casimir oper a tor s are important in specifying 

the physical interpretation of a group. This is proven by the appli-

cation of Schur's l emma . As stated previously, Schur's lemma II states 

that any operator which commutes with all the operators of a group (the 

Casimir operators) in an irreducible representation is a scalar multiple 

of the identity operator. Thus C = ai. The two physical interpretations 

are, first, the numerical value of a can be used to characterize the 

irreducible representation, and second, that the operators are invariants 

of the group. 



For a suitable basis of a compact group the Casimir operator may 

2 
be written as C =LX (Hamermesh, 1962). For the rotation group 

p p 
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with operators Ju the Casimir operator is C = (J
1

)
2 

+ (J
2

)
2 

+ (J
3

)
2 

J
2

. 

This is the total angular momentum of a system which is, as expected, 

an invariant of a system. 

In general more than one Casimir operator is required to characterize 

an irreducible representation . The minimum number required is called 

the rank of the algebra. 
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ILLUSTRATIONS OF lThiTY THROUGH 

GROUP TEECRY 

Overview 

The purpose of this section is to srow that the group theor y de-

veloped in the first section brings increased unity to the theory of 

elementary particles. Examples of group theory models are explained to 

accomplish this. 

The homogeneous Lorentz group 

The Lorentz transformation. One very important transformation in 

physics is the Lorentz transformation. Einstein asserted in his Special 

Theory of Relativity that the distance between two events and the time 

separating them are not cons tant for all observers in inertial reference 

frames. He proved that it is the proper time and proper distance which 

are invariant. If x. 's are the distance coordinates between t\vO events 
l_ 

2 2 2 
and t is the time, then the proper distance is defined as S = x + y 

2 
+ z 

2 2 
c t . The proper time is T

2 2 s . One is motivated then to 

find a transformation which will transform the distance and time between 

two events in one reference to the distance and time between the same 

events as observed in another inertial reference frame. Einstein showed 

that the Lorentz transformation will do this and at the same time leave 

the proper time and proper distance invariant. For motion of one refer-

ence frame along the x axis of another, the Lorentz transformation is 
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x = x ' cosh(8) + t' sinh(8), t = x' sinh( 8 ) + t'cosh(8), y = y ', z = z'. 

e tanh\v/c) where v is the relative velocity of the reference frames 

and c is the speed of light. 

After the advent of Einstein's theory physicists were therefore com-

pelled to make any acceptable theory Lorentz invariant. Nature behaves 

that way, so the theories must follow suit. This gives the Lorentz trans-

formation a prominent role in all of physics. 

The homogeneous Lorentz group. We now give a physical and intuitive 

proof that the set of general Lorentz transformations are a group. The 

identity transforma tion just transforms a reference frame 0 into itself. 

Clearly such a transformation exists and its representative is just the 

unit matrix. The identity criterion is thu s verified . For each Lorentz 

transformation g from reference frame 0 to 0', there is an inverse 

-1 
transformation g from frame 0' to 0. This must be true because the 

choice of 0 is arbitrary. 
-1 

Hence gg I and the inverse property is 

established . Finally consider a Lorentz transformation L
1 

from frame 

0 to 0' and then a Lorentz transformation L
2 

from 0' to 0". Since these 

frames are arbitrary, we know there is a Lorentz transformation L
3 

which 

goes directly from 0' to 0". Thus, the composition of two Lorentz trans-

formations is also a Lorentz transformation. This concludes the proof 

that the set of Lorentz transformations are indeed a group. For a com-

plete treatment of the Lorentz group and its applications the reader is 

referred to Gel'Fand, Minlos, and Shapiro (1963). 
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The inhomogeneous Lorentz group 

Many physical applications of g roup theory are in terms of the in-

homogeneous Lor en tz group. Consequently we define it now before going 

on to the actual applications . The inhomogeneous Lorentz transforma tion 

is the combination of a homogeneous Lorentz transformation and a trans-

lation by a vector. We now invoke the background developed in the first 

portion of the paper. 

Description of elementary particles 

The concept of a n elementary system. As stated i n the INTRODUCTION, 

the purpose of science is to find unity in the descrip tio n of nature . 

Group theory plays a vital role in a ll quantum theory . In the search 

fo r unit y the q uestion, " Wha t is really meant by element a r y? " is e ncoun-

t e red. Natu r ally , to have the most unifi ed description of nature, one 

must do it in t erms of its most fundamental or elementary concepts and 

unit s . This i s a difficult but interesting problem. Schweber (1961) 

summarized this problem and the applicatio n of group theory t o it very 

clearly. Therefore the author quotes his analysis. 

What is meant by an e lementary par ti c l e is certainl y not clear 
and the elucidation of thi s concept i s one of the foremost pro
blems of theoretical phys i cs tod ay . Intuitively, one calls a 
particle of mass }1 and spin s an elementary particle, if for 

2 
time durations l arge compared with its natural unit of time h/mc , 
it can b e considered as an irreducible entity and not the union of 
the other particles. For s uch a system it is natural to require 
tha t it should not b e po ss ible to d ecompose i t s s t a t es into linea r 
s ubs e ts which are each inva riant unde r Lorentz transfo rmations: 
all the states of the syst em must be obtainable from linea r com
binations of the Lorentz tra n sfo rm of any one state. For if there 
wer e linear subse ts, each of which is invariant under Lorentz 
transformati ons, then this would i mply tha t there is a realtiv
istically inva ri a nt distinc tion between thes e sets of states of the 
system and one would logically call each subset of relativistically 



invar iant states a different ' e lementary sys t em .' Quite gen er
a lly , a system i s called an ' e lement a r y sys tem' if its manifo ld 
of states forms a set which is as small as possible consi s tent 
with the s up e rposi tion principle and which is invariant und er 
Lorentz transformations. The manifold of states of an elementary 
system ther efore constitutes a representation space for a n irre
ducibl e representa tion of the inhomogeneous Lorentz group . 
(Schweber, 1961, pp. 48, 49) 

The spin of a particle. We now illustrate how the inhomogeneous 
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Lorentz group provides a unifying description of the spin of a particle. 

It is shown by Schweber (1961) that the spin of a particle can be repre-

sented by the ope rator A = M • EIP . Since ~ is the a ngular momentum 
0 

operator of the particle and E is the linear momentum operator, this 

equation states that the spin of a particle is the component of its 

angular momentum a long its direction of motion . This is consistent 

with our physica l intuition of wha t spin ought to be. 

For p a rticles with zero rest mass Schweber (1961) shows that the 

spin is an invariant or Casimir operator of the group. The consequence 

of this is tha t the representations of the spin variable are one dimen-

sional. Therefore the ir spin can have only t wo polarizations, parallel 

and antiparallel to the direction of motion. The d escription then of t 

the photon and neutrino are unified through the group theory model. In-

deed it is a g r ea t triumph for the theoretic a l mod e l that the predicted 

polariza tion states of these pa rticles have been experimentally verified. 

The purpos e of this por tion of the paper is not to pres ent the appli-

ca ti o ns in detail , but r a the r to illustrate and intuitively justify tha t 

g r oup theory is useful in unifying theore ti ca l models. Fo r furth e r de-

tails of the analysis of spin, the reader is referr ed to Schweber (1961), 

Gel'Fand, Minlos, Shapiro (1963) or Lyubarskii (1960). 
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Angular momentum of a particle. The total angular momentum of a 

particle is an invariant and therefore is of fundamental importance in 

the description of a classical or quantum system. As stated in the sec-

tion on the inhomogeneous Lorentz group, angular momentum operators are 

generators of infinitesimal rotations. The eigenvalue of t he operator 

is the value of the angular momentum for that operator . The example of 

the rotation group given previously may be extended to three dimensions 

and the operators found in the same manner. The operators are J 
X 

z..L-y..L J =x a za J =y a 
Cly Clz' y Clz - Clx' z ax 

- X 

that they satisfy the commutation relations 

[J ,J ] = J . 
Z X y 

2 
The Casimir operator is J 

a 
ay· It is easily verified 

[J ,J ] = J [J ,J ] = J , 
X y z' y Z X 

(J )2 + (J )2 + (J )2. 
X y Z 

This result also has the interpretation tha t since J
2 

commutes with 

2 
the separate components of the angular momentum that one can know J , 

the total angular momentum, and its component along one of the coordinate 

2 
axes. It is of profound importance that J cannot commute with all of 

the operators simultaneously. If it did the momentum would be specified 

exactly, thereby violating the Heisenberg Uncertainty Principle. 

This is an excellent example of the utility of group theory in physi-

cal applications. The operator model gives a mathematical representation 

to the angular momentum of a particle and also to the physically verified 

Heisenberg Uncertainty Principle. 

Representations and wave equations. In quantum field theory parti-

cles are often described by a relativistic wave equation. The Dirac 

equation for spin one-half particles and the Klein-Gordon equation for 



spin zero particle s for example. Concerning this Schweber states the 

important result, "A determination of all unitary representations of 

the inhomogeneous Lorentz group Wigner (1939), Bargmann (1948), 

Shirokov (1958a, b) is equivalent to a determination of all possible 

relativistic '"ave equations ." (Schweber, 1961, p. 17) The details of 

this application are beyond the scope of this paper. Nevertheless, by 

showing the equivalence of all unitary representations of a group and 

the relativistic wave equations a unifying bridge is built between the 

two formulations of quantum field theory. 
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Other illustrations. The illustrations presented are only the most 

basic ones. Additional applications are numerous. Unfortunately, they 

lie outside the complexity of this paper. In order to be more complete 

and to strengthen the case for the unifying ability of group theory, 

many such applications will now be listed with references for further 

study, but without detail. 

In the book An Introduction to Relativistic Quantum Field Theory 

Schweber (1961) proceeds from the Lorentz group to the Klein-Gordon and 

Dirac equations. He then treats second quantization based on group 

theoretic methods. Included in his treatment are the pion system and 

quantization of the Dirac and electromagnetic fields. In the treatment 

which follows that he analyzes the very core of physics. He treats the 

theory of interacting fields such as the electromagnetic interaction, 

the meson-nucleon interaction, the strong and weak interactions. 

Additionally, he treats the formal theory of scattering. 
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In The Theory of Groups and Quantum Mechanics Weyl (1930) describes 

the theory of the construction of molecules and the group theoretic 

classification of atomic spectra. Using the permutation group he treats 

the structure of the periodic table and quantization of the Maxwell

Dirace Field equations. 

Lyubarskii (1960) in the book The Application of Group Theory in 

Physics treats the theory of crystals, absorption and Raman scattering 

of light, nuclear reactions and also Clebsch-Gordon and Racah co

efficients. 
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SUMMARY AND CONCLUSIONS 

Summary 

Summary of group theory. The motiva tion for applying group theory 

to physics is that the mathematical groups are well suited to describe 

physical models quantitatively. Lie groups are of particular importance 

because their continuous parameters corresponc meaningfully to physi

cally continuous quantities such as time, space, velocity, angles, and 

so forth. One of the prime motivations is to be able to describe the 

Lorentz transforma tions which are central to the Special Theory of Rela

tivity. Therefore a background of group theo ry is presented which en

ables one to define Lie groups, their representations, Lie algebras, 

and Casimir operators. Casimir operators are important because they 

are invariants of the group such as the total angular momentum operator 

of a particle. 

Sununary of illustrations of unity througt: group theory. Illus

trations are given showing how group theory brings increased unity to 

physics. The Lorentz transformation relates cbservations of physical 

laws and events from different reference frames. It is extremely impor

tant because the Special Theory of Relativity requires that all laws 

of nature be Lor entz invariant. Preliminary to the actual applications, 

we show that the homogeneous and inhomogeneou ~ Lorentz transformations 

each form a group. 

After d~scussing what is meant by an elenentary particle, we apply 

the inhomogeneous Lorentz group to the spin of an elementary particle. 
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The interpretation arrived at is that spin is the component of angular 

momentum along the direction of motion. The interesting result is also 

given that for zero rest mass particles such as the photon and neutrino 

the spin has only parallel and antiparallel polarizations. Thus, with 

the inhomogeneous Lorentz group the spin properties of widely differing 

particles are described with a single unifying theory. 

The rotation group which is used as an example throughout the paper 

is given a physical interpretation. Invariance of a wave function under 

infinitesimal rotations is physically interpreted as conservation of 

angular momentum. The generators of infinitesimal rotations are, there

fore, the angular momentum operators. These operators when combined in 

commutation relations define the Lie algebra of the group. Consequently 

the Casimir operator of the group is found to be the total angular 

momentum operator. 

Relativistic wave equations often describe classes of particles. 

Examp les are the Dirac equation for spin one-half particles and the 

Klein-Gordon equation for zero spin particles. We give the important 

result that a knowledge of all unitary representations of a relativity 

group is equivalent to a knowledge of all relativistic wave equations. 

This result serves to unify these two approaches to quantum field theory. 

Additional examples are numerous. Sources which describe in detail 

more complex applications are listed with many examples cited. They in

c lude quantization of the Dirac and electromagnetic fields, the theory of 

interacting fields, classification of atomic spec tra, abso rption and 

Raman scattering of light, and Clebsch-Gordon and Racah coefficients. 
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Conclusions 

The conclusion tha t group theory, particularly Lie groups and alge

bras, is a useful theoretical tool to bring unity to elementary particle 

theory is supported by many il l ustrations. The spin of an elementary 

particle can be described in terms of a Lie group called the inhomo

geneous Lorentz group . The spin is the component of the angular moment um 

along the direction of motion . Additionally zero rest mass particles 

have only parallel or antiparallel polarization of spin. Thus, the spin 

of widely differing particles such as the photon, neutrino, electron, 

and all others is quantitatively described in this unifying group theory 

model. 

The group of infinitesimal rotations provides an insightful model 

of angular momentum. The angular momentum is the eigenvalue of the 

rotation operator. Invariance of the wave function under such rotations 

gives a mathematical representation of the law of conservation of angular 

momentum. Likewise, invariance of the wave function under infinitesimal 

translations expressed conservation of linear momentum. Again group 

theory spreads a unifying base beneath these two great conservation laws 

as well as providing a quantitative method of finding the total angular 

momentum of a system and one of its components. 

Another illustration of the unifying ability of group theory is the 

resul t that a determination of all unitary representations of a rela

tivity group is equivalent to a determination of all relativistic wave 

equations. This provides a bridge from one formulation of quantum field 

theory to another. 
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Many other examples whose det ai ls lie outside the scope of this 

paper also support the conclusion simply because their variety is so 

great. Surely unity is achieved when such diverse topics as quanti

zation of the Dirac and electromagnetic fields, the meson-nucleon inter

action, strong and weak interactions, classification of atomic spectra, 

structure of the periodic table, the theory of crystals, absorption and 

Raman scattering of light, and Clebsch-Gordon and Racah coefficients 

are all able to be described with group theory models. 

Therefore, one may conclude that group theory brings unity to the 

description of elementary particles and many other aspects of physics. 

Its language of infinitesimal transformations, Lie groups and algebras, 

and Casimir operators give it great flexibility and unifying power in 

the formulation of a wide variety of physical theories. 
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