Low-Resource CubeSat-scale Sensorcraft for Auroral and Ionospheric Plasma Studies

Phillip Bracikowski
Prof. Kristina Lynch, Lisa Gayetsky
Lynch Rocket Lab, Dartmouth College, Hanover, NH

Small Satellite Conference
Utah State University, Logan, Utah
August 11, 2010
Who We Are:

DARTMOUTH COLLEGE
Department of Physics and Astronomy
Lynch Rocket Lab Group

- Prof. Kristina Lynch - Principal Investigator
- Phillip Bracikowski - RocketCube (Graduate MS)
- Lisa Gayetsky - PhD Candidate
- 4 Graduate Students
- 7-10 Undergraduates
What We Study:

- The structure and dynamics of auroral particle acceleration
What We Study:

- The structure and dynamics of auroral particle acceleration
 - Principally from Sounding Rockets
What We Study:

- The structure and dynamics of auroral particle acceleration
 - Principally from Sounding Rockets
- Simulations of the ionospheric plasma environment in our vacuum chamber
 - Used to calibrate and test the operation of our instruments
Unmet Challenge of Auroral studies:

• Auroral phenomena are highly structured

\[\frac{d}{dt} \text{ vs } \frac{d}{dx} \]
Unmet Challenge of Auroral studies:

• Auroral phenomena are highly structured
• How do you tell a change in time from a change in position?

\[
\frac{d}{dt} \text{ vs } \frac{d}{dx}
\]
Unmet Challenge of Auroral studies:

- Auroral phenomena are highly structured
- How do you tell a change in time from a change in position?
- How to quantify these changes?

\[\frac{d}{dt} \text{ vs } \frac{d}{dx} \]
Unmet Challenge of Auroral studies:

- Auroral phenomena are highly structured
- How do you tell a change in time from a change in position?
- How to quantify these changes?
- Multi-Point Measurements

\[\frac{d}{dt} \text{ vs } \frac{d}{dx} \]
Unmet Challenge of Auroral studies:

- Previous multipoint Sounding Rockets
 - Cascades 2 (2009); 5 pt
 - AMICIST (1995); 2 pt
 - Enstrophy (1999); 5pt
 - Auroral Turbulence 2 (1997); 3 pt
 - ROPA (2007); 3pt
 - SCIFER 2 (2008), 1 pt

\[
\frac{d}{dt} \text{ vs } \frac{d}{dx}
\]
Unmet Challenge of Auroral studies:

• 5 points is not enough! We want more!

\[\frac{d}{dt} \text{ vs } \frac{d}{dx} \]
Unmet Challenge of Auroral studies:

• 5 points is not enough! We want more!
• Recently proposed a sounding rocket mission, called PALISADES, for 13 point-measurements of density and temperature irregularities
 • An array of 12 subpayloads and 1 main

\[\frac{d}{dt} \text{ vs } \frac{d}{dx} \]
Unmet Challenge of Auroral studies:

• 5 points is not enough! We want more!
• Recently proposed a sounding rocket mission, called PALISADES, for 13 point-measurements of density and temperature irregularities
 • An array 12 subpayloads and 1 main
• Each subpayload is a low resource cubesat-scale sensorcraft

d/dt vs d/dx

Small Satellite Conference 2010: SSC10-I-7
Our Solution:

Arrays of low-resource CubeSat-scale sensorcraft
Our Solution:

Arrays of low-resource CubeSat-scale sensorcraft

- 12 sensorcraft in an planar grid; How to coordinate measurements?
Our Solution:

Arrays of **low-resource** CubeSat-scale sensorcraft

- Low-Resource = Low voltage instruments, relatively easy to assemble, mass producible in our lab, relatively cheap
Our Solution:

Arrays of low-resource **CubeSat-scale** sensorcraft

- CubeSat-scale = ~3000cm³, 1-5kg, not tied to specific form factor
Our Solution:

Arrays of low-resource CubeSat-scale sensorcraft

• Sensorcraft = instrumented platform to measure the natural environment
Our Solution:

Arrays of low-resource CubeSat-scale sensorcraft

- Sensorcraft = instrumented platform to measure the natural environment

Our sensorcraft is called **RocketCube**
RocketCube: Many point Measurements

- Purpose: Proof of Concept - Can we build a sensorcraft?
RocketCube: Many point Measurements

- Purpose: Proof of Concept - Can we build a sensorcraft?
- Develop the systems and instruments to make multi-point measurements in the aurora and ionosphere from sounding rockets
RocketCube: Many point Measurements

- **Purpose:** Proof of Concept - Can we build a spacecraft?
- Develop the systems and instruments to make multi-point measurements in the aurora and ionosphere from sounding rockets
- **Instruments on board**
 - Thermal ion RPA: Petite Ion Probe (PIP)
 - 3-axis science grade magnetometer
 - GPS
PIP Instrument

- Based on an existing design for a mesospheric dust detector developed at UNH
PIP Instrument

- Based on an existing design for a mesospheric dust detector developed at UNH
- Is an RPA: Retarding Potential Analyzer
 - Works by rejecting ions based on their energy
PIP Instrument

- Based on an existing design for a mesospheric dust detector developed at UNH
- Is an RPA: Retarding Potential Analyzer
 - Works by rejecting ions based on their energy
- Allows the recreation of the ions’ distribution functions
 - Can study small scale irregularities in the ionospheric density and temperature
PIP Instrument

- Based on an existing design for a mesospheric dust detector developed at UNH
- Is an RPA: Retarding Potential Analyzer
 - Works by rejecting ions based on their energy
- Allows the recreation of the ions’ distribution functions
 - Can study small scale irregularities in the ionospheric density and temperature
- Undergoing testing in our plasma chamber
PIP Instrument

- Based on an existing design for a mesospheric dust detector developed at UNH
- Is an RPA: Retarding Potential Analyzer
 - Works by rejecting charged particles based on their energy
- Allows the recreation of the particles’ distribution functions
 - Can study small scale irregularities in the ionospheric density and temperature
- Undergoing testing in our plasma chamber
 - Look direction sensitive
RocketCube Requirements:
What we need in PALISADES

- Sounding Rocket: ~10 minute flight!
- Sband telemetry system for 1Mbit/s of data (ms level, 1km resolution)
- Spin stable platform for regular pattern of instrument look directions
- Accurate timing and synchronization between subpayloads

• Synchronization allows for analysis of data among each subpayload to separate events in time and events in space

\[\frac{d}{dt} \text{ v. } \frac{d}{dx} \]
RocketCube Systems

• Subsystems: Details in the paper
RocketCube Systems

- Electronics are a new design.
 - Moved from older 8051 technology to newer FPGA fabric.
 - Moved from through-hole components to entirely surface mount parts to reduce pcb size
 - Includes our own power system
RocketCube Systems

- Electronics
RocketCube Systems

- Electronics: Power
RocketCube Systems

- Electronics: Analog
RocketCube Systems

- Electronics: Digital
RocketCube Systems

- **Instrument:** Magnetometer
RocketCube: Current Status

- Electronics ver 1 is in testing
RocketCube: Current Status

- Electronics ver 1 is in testing
- Engineering model being built
RocketCube: Current Status

- Electronics ver 1 is in testing
- Engineering model being built
- PIP ver 1 is in testing
RocketCube: Current Status

- Electronics ver 1 is in testing
- Engineering model being built
- PIP ver 1 is in testing
- GPS currently being integrated
Future Work

• Integrate all components
• Full systems test in thermal plasma chamber
• Convert design to a cylindrical form factor for PALISADeS
Conclusion

• RocketCube is a 3U prototype sensorcraft for suborbital flights
Conclusion

• RocketCube is a 3U prototype sensorcraft for suborbital flights
• RocketCube enables our future science missions to study and understand the aurora.
Questions?

Contacts:

Phillip.J.Bracikowski _at_ Dartmouth.edu
603-646-2854
http://www.dartmouth.edu/~aurora/