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ABSTRACT

Development, Modeling, Identification, and Control of Tilt-Rotor eVTOL Aircraft

by

Clayton T. Spencer, Master of Science

Utah State University, 2024

Major Professor: Tianyi He, Ph.D.
Department: Mechanical and Aerospace Engineering

This thesis includes the development, modeling, identification, and control of an electric-

Vertical-Take-Off-and-Landing (eVTOL) aircraft with tiltable rotors. The front two rotors

have tilting capability for transition flight from vertical-take-off to forward-level flight. In

the design and analysis of an eVTOL aircraft platform, we study and characterize the layout

and system architecture, select system components such as electric motors, batteries, and

controllers, and integrate these components into the overall aircraft system. After that,

a Six-Degree-of-Freedom (6-DoF) dynamical model is derived as a nonlinear equation and

is further reduced to longitudinal motion. Afterwards, a Least-Squares-regression (LSR)

method that can handle parameter constraints is developed to identify unknown system

parameters using the real flight data. Lastly, this study performs an optimization of the

Proportional Integral Derivative (PID) gains based on the identified model parameters using

MATLAB.

(144 pages)
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PUBLIC ABSTRACT

Development, Modeling, Identification, and Control of Tilt-Rotor eVTOL Aircraft

Clayton T. Spencer

This thesis includes the development, modeling, identification, and control of an electric-

Vertical-Take-Off-and-Landing (eVTOL) aircraft with tiltable rotors. The front two rotors

have tilting capability for transition flight from vertical-take-off to forward-level flight. This

work details the development of an eVTOL aircraft and the selection of sub components

such as electric motors, batteries, and controllers. After the aircraft build, mathemati-

cal model is derived to describe the motion of the aircraft. Unknown parameters in the

mathematical model are identified using a Least-Squares-regression (LSR) method that can

handle parameter constraints. This is done using real flight data collected from the aircraft.

Lastly, this study performs an optimization of the Proportional Integral Derivative (PID)

gains based on the identified model parameters using MATLAB.
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CHAPTER 1

INTRODUCTION

The concept of eVTOL aircraft emerged many years ago and has received attentions

again in recent years in both civilian and military contexts. The great advances in Dis-

tributed Electric Propulsion (DEP) has overcome several technical challenges of propulsion

systems and enabled a new system-level design of eVTOL aircraft. DEP systems use multi-

ple electric motors to power an aerospace vehicle. These motors are distributed across the

airframe. The electric motors are typically smaller and lighter than traditional jet or piston

engines, and they can be placed in locations that improve efficiency, reduce noise, augment

maneuverability, and increase safety. The eVTOL aircraft can be manned or unmanned, and

this thesis focuses on Unmanned Aerial Vehicles (UAVs). The proposed research seeks to

gain the understanding about the aerodynamics and propulsor dynamics during transition

flight through the collection of experimental data. Flight data is then used to perform sys-

tem identification to determine unknown system parameters and provide a dynamic model

for control design.

1.1 Examples of VTOL Aircraft

There are many types of VTOL or Short-Take-Off and Landing (STOL) aircraft to-

day. VTOL aircraft are commonly broken up into a few categories such as tail-sitters [5],

copters [6], and launchers or STOL UAVs [7]. There are other sub-categories, however, the

previously mentioned categories cover the vast majority of VTOL aircraft. Some aircraft are

a combination of the various categories which combine traits of the aggregate categories and

avoid problems associated with each of the categories. These make up the hybrid VTOL

category of vehicles. These aircraft can employ various types of propulsion systems and

configurations, however, this study focuses on a subcategory of copters called hybrids. An
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example of a hybrid VTOL is a tilt-rotor or tilt-wing aircraft as studied by the following

sources [5, 8, 9]. This research uses a hybrid electric VTOL with tilting rotors and fixed

wings.

1.2 Characteristics of hybrid VTOL Vehicles

Hybrid VTOL aircraft combine the benefits of a multi-copter, such as a quad-copter,

and a fixed-wing airplane. Multi-copters offer advantages such as not requiring an airstrip,

strong hovering capabilities, high maneuverability, and low sensitivity to wind. In contrast,

fixed-wing aircraft have better fuel efficiency, longer flight duration, higher speeds, and a

greater payload capacity. Tilt-rotor eVTOL aircraft have the ability of taking off verti-

cally and then transition from vertical take-off to fixed-wing forward flight. The transition

mechanism is the key feature that distinguishes different variants of hybrid eVTOL aircraft.

These aircraft variants include: 1) fixed push/lift rotors; 2) tilt-rotors; 3) tilt-wing; and 4)

tail-sitter.

Fixed push/lift rotor aircraft usually have one or more dedicated motors responsible

for providing thrust during fixed-wing mode. These motors are then deactivated when the

aircraft transitions to VTOL mode. Tilt-wing aircraft are distinguished by the ability to

tilt the entire main lifting surfaces during flight. By tilting the wings of the aircraft, the

vehicle can transition to fixed-wing mode while minimizing the number of necessary motors

required for either flight mode. Tail-sitter aircraft do not have rotating motors or wings but

execute VTOL operations by orienting the aircraft such that the thrust of the fixed-wing

motors allows the vehicle to hover or vertically take off.

Tilt-rotor aircraft usually have two or more motors that can tilt forward or backward to

transition from VTOL mode to fixed-wing mode. It is common to have one or more motors

deactivate when the aircraft transitions to fixed-wing mode. This work studies a hybrid

UAV with a tilt-rotor and fixed-wing configuration during the transition phase of flight.

The aim is to enhance understanding of the aircraft system and dynamics throughout this

intricate flight phase.
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1.3 Components of eVTOL Vehicles

There are several key components of electric VTOL aircraft that enable different func-

tionalities. (1) Electric motors. They convert electrical energy from the battery into rota-

tional energy that drives the propellers or rotors. (2) Batteries. Electric VTOL aircraft rely

on batteries to store and supply the electrical energy needed to power the electric motors.

They are usually lithium-ion batteries and are placed strategically in the aircraft to opti-

mize weight distribution and Center of Gravity (CG). (3) Flight control system. The flight

control system is essential and is responsible for controlling the aircraft’s movement and

stability during flight. The flight control system includes control hardware and software

that work together to maintain the aircraft’s position and orientation or follow a designated

flight trajectory. (4) Propellers or rotors. Propellers or rotors are the blades that convert

the rotational energy from the electric motors into thrust. In eVTOL aircraft, they are

often mounted on tilting arms or swiveling rotors that allow the aircraft to transition from

vertical takeoff to horizontal flight. (5) Avionics. Avionics are the electronic systems that

control and monitor the aircraft’s performance. They include instruments, sensors, com-

munication equipment, and navigation systems that provide the human or software pilot

with real-time information about the aircraft’s status and surroundings. (6) Airframe. The

airframe is the physical structure of the aircraft, including the wings, fuselage, and landing

gear. In eVTOL aircraft, the airframe is designed to be lightweight and aerodynamically

efficient to maximize efficiency and range.

1.4 Brief Literature Review

The test vehicle in this work, called Utah State University Unmanned Aircraft1 (USUUA1),

has a 2+2 tilt-rotor configuration. This means that the aircraft has four motors in total.

The two front-mounted motors can tilt forward 90 degrees to transition the aircraft to fixed-

wing mode. The back two motors do not tilt but deactivate when the aircraft successfully

transitions from VTOL mode to fixed-wing mode. An example of a tilt-rotor aircraft is

the MV-22B Osprey [10]. Motivation for this study is to understand how tilt-rotors and

tilt mechanisms affect the state of the aircraft in transition flight. Characterizing system
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parameters in transition flight can increase the understanding of how tilt-rotors and tilt

mechanisms affect the aerodynamics of the vehicle.

While tilt-rotor aircraft are not a new concept, there is still much to be learned about

them. This proposal seeks to identify model parameters using LSR which is a common

method to estimate unknown system parameters [11]. The transition phase of flight for

hybrid VTOL vehicles is complex not only due to the aerodynamic effects of tilting rotors

but also the gyroscopic effects of the tilting action itself.

To reduce the complexity of this study, only the longitudinal aircraft dynamics are

considered. Although this method is an approximation, separating the longitudinal and

lateral aircraft dynamics simplifies the vehicle model and still gives insight about the system

[12]. This approximation is useful as long as the maneuvers the test vehicle is subjected

to do not significantly excite the lateral dynamics of the vehicle. These maneuvers are

discussed later in this work.

1.4.1 Dynamic Model Development

An essential component of this work is the model of the aircraft. The mathematical

model of an eVTOL aircraft plays a critical role in control system design and vehicle per-

formance predictions. However, modeling the tilt-rotor eVTOL aircraft presents several

challenges, such as the complex aerodynamics involved in transitioning from vertical to for-

ward flight, aerodynamic interactions between fixed-wings and propellers, and the complex

dynamics in transition phase [3]. One common approach of the modeling of eVTOL aircraft

is to combine rigid-body dynamics and aerodynamics, where the aircraft is modeled as a

set of interconnected rigid bodies subject to aerodynamic forces and moments.

Aero-propulsive modeling is a term used to describe the mathematical modeling of

the aerodynamics and propulsor dynamics of aircraft [13]. Much work has been done to

accurately model many different UAVs over various flight envelopes. It is common to begin

modeling hybrid VTOL UAVs by using a standard set of assumptions for a rigid body

aircraft [14].



5

1.4.2 System Identification of eVTOL UAV’s

Many strategies for system identification are available. The three main categories of

system identification or parameter estimation are white box, grey box, and black box meth-

ods. White box methods involve developing physics models and mathematical equations

that accurately describe the motion of the vehicle. This involves developing a mathematical

model of the vehicle dynamics that descries what inputs relate to what outputs of the sys-

tem. Examples of white box modeling can be found in [14–16]. White box methods require

accurate knowledge of the model structure and have the advantage of well-understanding

and accurate predictions of input-output relationships. However, white box methods strug-

gle when the physical system becomes highly complex and coupled. This is often the case

for hybrid VTOL aircraft.

Black box system identification strategies usually involve data-driven modeling. This

means that data is used to train a machine learning algorithm, such as a neural network, in

order to develop a model for the aircraft. This method usually requires a significant amount

of data and computing power to be able to properly train the machine learning algorithm. If

the training data is of high quality and there is enough of it, black box methods can develop

complicated models that describe the motion of the aircraft accurately. The performances

of the black-box models are determined by data quality, and they are often valid for the

operating conditions covered by the data. It is not uncommon for these algorithms to

struggle when compared to validation data. This leaves some undesired uncertainty and

lacks physical trustworthiness in the model. An example of a black box method is discussed

in [17].

Grey box strategies are a combination of white box and black box methods. Combining

the explicit physical knowledge of the system from white box methods and the learning

capability of black box methods, grey box methods can use a mathematical description

of the vehicle and data to identify the unknown parameters of the model. This approach

leverages physical knowledge of the system and data. Examples of grey box methods can

be found in [13, 18–20]. This work uses a grey box method to estimate parameters of a
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dynamic model of a hybrid VTOL UAV. The approach used in this research for parameter

estimation is an LSR method. A similar algorithm can be found in [21].

1.4.3 UAV Control Strategies

There are many control strategies available for all types of UAVs. Control strategies can

be broken down into two main categories which are model-based and model-free methods.

Model-based control algorithms rely on a mathematical model to design aircraft control.

[16] developed a unique Linear Parameter-Varying Model Predictive Control (LPV-MPC)

algorithm. Such a control method has also been successfully applied to the modeling and

control of autonomous vehicles [22–24]. An hierarchical MPC controller was developed

in [25]. These methods often rely on the dynamic model to predict vehicle behaviors in

the prediction horizon. Often, they rely on the dynamic model to formulate and solve

optimization problems to determine the control inputs.

Model-free algorithms are advantageous in the aspect that the complicated aircraft

dynamics do not need to be modeled in these control algorithms. Besides, the model-free

control provides an adaptive method for various operating conditions across different types

of VTOL aircraft. However, these methods often require extensive tuning and testing to

result in a good controller. [26] used a sliding mode control as well as an iterative learning

control. An improved version of a Proportional Integral Derivative (PID) controller was

presented in [27]. This research will use a PID controller developed by Ardupilot for flight

data collection [3].

Recent works [28] on combining model-based and model-free control are attractive,

particularly for the VTOL aircraft under complex uncertainty, but need more theoretical

development for the stability and convergence analysis.
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CHAPTER 2

RESEARCH OBJECTIVES FOR USUUA1 AND TECHNICAL APPROACH

2.1 Research Objectives and Milestones

Success of this research work is measured using three main objectives. (1) Develop

and evaluate the performance of aircraft components and the aircraft system as a whole.

(2) Identify aircraft parameters in dynamic model from real flight data. (3) Develop a PID

controller for the pitch angle and optimize the PID gains to achieve specific performances.

Individual tasks for each objective are listed below with milestones called out.

1. Develop and evaluate the performance of components and aircraft system.

(a) Procure airframe and subsystem components.

(b) Build Wings and fuselage using procured materials and tools.

(c) Assemble wings and fuselage and create wiring system and diagram. Milestone:

Develop a working tilt-rotor UAV.

(d) Test subsystems on the ”bench” in a laboratory environment and test aircraft

hover capability.

(e) Test the aircraft transition capability from quadcopter to fixed-wing flight. Mile-

stone: Complete a forward and backward transition in flight autonomously.

2. Identify aircraft parameters in dynamic model from real flight data.

(a) Develop the dynamic model and equations of motion for the aircraft and an LSR

model to estimate parameters in the dynamic model.

(b) Collect Data via flying the aircraft.

(c) Write code to collect and post-process the flight data. Milestone: Code can unify

flight data, separate transition data, and compute LSR with data.



8

(d) Validate the model with validation data. Milestone: model validated within 25

percent accuracy of validation data.

3. Develop a PID controller for the pitch angle of the vehicle.

(a) Using MATLAB Simulink, create a control model to control the identified model

of USUUA1.

(b) Tune the PID gains of the identified model using the MATLAB PID tuner.

2.2 Aircraft Development and Component Selection

Most of the aircraft build and test for USUUA1 was completed in the fall of 2022. Bench

testing and debugging was done in the spring of 2023. Flight testing began in the summer of

2023 and ended in the fall of 2023. After successful build and test of the USUUA1 aircraft,

data must be collected from various flights. To identify the necessary parameters of the

dynamic model the system must be perturbed using the tilt mechanism. To do this, various

parameters in the flight control software are changed for each data collection flight. This

method perturbs the system enough to identify the unknown system parameters developed

in the modeling section of this document.

Data collection can be restricted by weather, time, and hardware constraints. These

restrictions make data collection relatively difficult. Part of the collected data must be

reserved for model validation purposes. Table 2.1 shows the data collection flight plan.

Table 2.1: Data collection plan using USUUA1.

Q TLT MAX (deg) Q TLT RATE DN (deg/s)

12 14

35 Test 1.1 Test 2.1

45 Test 1.2 Test 2.2

55 Test 1.3 Test 2.3

65 Test 1.4
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The two main parameters changed to perturb the system are Q TLT MAX and

Q TLT RATE DN . These adjust the max tilt angle before transition completion and

the max downward tilt rate respectively. Flight data is collected from the various sensors

onboard USUUA1 and the data is logged by the Pixhawk flight controller. The data can

be viewed and plotted in the Mission Planner software or in Matlab and is used to identify

unknown parameters in the dynamic model of the aircraft.

2.3 Data Extraction and Unification

Mission Planner uses a built-in tool to convert the flight log data to a .mat file [3]. From

the .mat file, the data can be processed and structured for use in system identification. The

various sensors onboard USUUA1 have different sampling frequencies which poses a problem

for data processing. Because all the data corresponds to different timestamps, it is hard to

index and process the data with common Matlab functions. To get around this issue, code

was developed to unify the lengths and timescales of the data vectors containing the flight

log data.

The function simple data manipulation found in Appendix B takes in flight data, and

outputs is the same data from the transition period of the flights. The driver code in

Appendix B runs the data post-processing. An lsr function computes the LSR of the flight

data and uses it to estimate unknown parameters in the system. All related functions and

code for data post-processing are given in Appendix B. An example of work that employs

a similar data manipulation technique is given in [29].

Verification of the data processing code functionality is done by comparing data before

and after data processing as part of the post-processing algorithm. An example of this is

shown in Figs. 2.1 and 2.2.
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Fig. 2.1: Flight data before and after data unification during post-processing.
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By observing Figs. 2.1 and 2.2, it can be determined that the data vector contains all

the original data as well as the interpolated data from the post-processing described above.

Subjecting all the collected data to this process unifies the data regardless of the sampling

frequencies of the various sensors used for data collection.

2.4 Dynamic Model and EOM Derivation

Modeling USUUA1 entails deriving the equations of motion that govern the dynamics

of the aircraft. This was done by following similar derivations from other works [12, 14].

Because this work uses a grey box method for parameter identification, a dynamic model

must first be derived before the identification process can take place. The derivation for

the dynamic model is given in Chapter 4.

2.5 Control Algorithm for USUUA1

Ardupilot employs an inner-outer loop PID configuration to control aircraft that run the

Ardupilot software [3]. This work is not focused on changing Ardupilot’s control algorithm.

However, a model is developed in MATLAB Simulink to create a PID controller for the

pitch angle of the vehicle. The gain values are tuned in this work using MATLAB’s PID

Tuner. The gains are optimized to achieve the desired settling time.
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CHAPTER 3

DEVELOPMENT OF AIRCRAFT PLATFORM AND COMPONENT

CHARACTERIZATION

This section documents the development and system-level integration of USUUA1.

Development or optimization of individual UAV components is outside the scope of this

work. It is desired that the airframe and other components of USUUA1 be Commercial Off

The Shelf (COTS) parts which can easily be procured. To reduce the cost and complexity of

the research, the selected components range from hobby-grade to mid-grade, commercially

available components. This allows for rapid prototyping and repeatability. The overall

system design is presented in this section by first selecting a 2+2 tilt-rotor fixed-wing hybrid

VTOL airframe. Next, the flight control software platform is selected to control the aircraft

and its subsystems and provide autonomous flight capability.

Full trade studies for the airframe and individual components of USUA1 are outside

the scope of this work. The candidate components are not discussed in this work for brevity.

The selection criteria for the aircraft components are:

• Cost of each piece-part

• Commercial availability of components or subsystems

• Compatibility with other subsystems

• Size/Weight of individual components

• Modularity of integration into the overall system

• Connection Reliability and hardware durability

The selected airframe is the MakeFlyEasy (MFE) Freeman 2100 shown in Fig. 3.1.

This airframe comes as a kit and includes many supporting components such as motors,
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Fig. 3.1: USUUA1, the experimental aircraft platform.

propellers, servos, and some wires. This greatly reduces development time and effort. In

addition, the MFE Freeman 2100 is supported by setup documentation. The MFE Freeman

2100 is designed to work with the Ardupilot software for flight control and has documen-

tation supporting software installation and configuration. Ardupilot was selected as the

flight control software because it’s free, open-source, and supported by a community of

developers, and has comprehensive documentation [30].

3.1 System Layout

The main subsystems of the USUUA1 are power, communications, flight control,

propulsion, and actuation. The power subsystem provides power to the electronic com-

ponents of USUUA1 at the correct voltage. It is made up of the main flight battery, power

module, Power distribution board, and battery eliminator circuit. USUUA1 is a radio-

controlled (RC) UAV. To facilitate this, the communications subsystem uses a ground sta-

tion, telemetry radios, receiver, Pulse Position Modulation (PPM) converter, transmitter,

and antennas. Flight control is possible through the use of a flight control board, Iner-

tial Measurement Unit (IMU), gyroscope, airspeed sensor (optional), compass, buzzer, and

magnetometer. Some of these components are integrated into one unit such as the GPS

module which has a compass and a GPS receiver. Propulsion components include electronic

speed controllers (ESCs), motors, and propellers. The actuation subsystem is comprised of

digital servo motors that actuate control surfaces and mechanisms.
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The USUUA1 system is connected via wiring and each component is located in the

aircraft to be modular for future improvements to the system. Fig. A.1 shows the wiring

diagram for the system as a whole. The wiring diagram details the electronic layout of the

aircraft as well as the system/subsystem layout of the aircraft. Each of USUUA1’s wings

houses two different ESCs to control the front and back motors located on either end of the

carbon fiber motor pods. The wings also house one 3.6 kg and one 25 kg digital servo each

responsible for actuating the ailerons and tilting mechanism respectively.

3.2 Component Selection

The most important component besides the airframe is the flight control board. The

flight control board controls the other subsystems and relays system information back to

the ground station via the communication subsystem. The Pixhawk 2.4.8 was chosen as

the flight controller for USUUA1. The Pixhawk is compatible with the Ardupilot firmware

and has enough output ports to support the entire system without any split connections

like y-connectors. The Pixhawk is also capable of logging flight data onto an SD card for

post-flight data analysis which is essential to this research. The Pixhawk is shown in Fig.

3.2.

Fig. 3.2: Pixhawk 2.4.8. Image from [1].

Supporting components for the flight controller (Pixhawk) are the PPM converter,

buzzer (optional), and GPS module. The IMU and the gyroscope are internal to Pixhawk

itself. The PPM encoder converts the pilot commands through the radio transmitter into a
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PPM signal which is sent to the flight controller. The IMU measures acceleration in the x,

y, and z axes of the unit. The gyroscope measures rotation rates about the x, y, and z axes

of the unit. The Pixhawk also has an internal compass to determine the orientation of the

unit. An airspeed sensor can also be used with the Pixhawk, however, it is not required.

This is because the airspeed can be approximated using the IMU and GPS units.

Input commands are given by the USUUA1 pilot through a radio transmitter to a radio

receiver onboard the aircraft. The signal is then passed to the PPM encoder and then to

the flight controller. The selected transmitter is the Spectrum NX8 in Fig. 3.3a and the

selected receiver is the Spektrum AR8020T shown in Fig. 3.3b.

(a) Spektrum NX8 transmit-
ter. Image from [31].

(b) Spektrum AR8020T re-
ceiver. Image from [32].

(c) USUUA1 flight battery.
Image from [33].

These RC components are relatively reliable and provide a modular platform to link

control inputs from the transmitter to the flight controller. Telemetry radios and antennas

can also be included with the Pixhawk as was the case for the components selected for

USUUA1. The Mission Planner software downloaded onto any computer can be used as

the Ground Control Station (GCS) for USUUA1. The GCS communicates with the Pixhawk

via the telemetry radios. One telemetry radio is connected to the GCS and the other is

connected to a telemetry port on the Pixhawk.

Propulsion devices were selected from components available through MFE. The front

and rear motors are brushless 500 kV and 450 kV motors respectively. ESCs were also

selected from MFE. The front and rear ESCs are 40 A and 65 A ESCs respectively. the

front motors are slightly more powerful to be able to provide all the propulsion during fixed-
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wing flight. The digital servos were also selected from MFE as they seamlessly integrate

with the airframe and the MFE-supplied BEC.

Power for the entire system is provided by one 6-cell battery. The selected battery is

a Tattu, 16000 mAh, 22.2 V battery shown in Fig. 3.3c. This battery was chosen for its

relatively high discharge rating, medium capacity, and high cell count. The combination of

these parameters allows the battery to power the entire aircraft and provides enough power

for the aircraft to transition from fixed-wing to VTOL aircraft. MFE designed the Freeman

2100 airframe to use a 22000 mAh battery to extend aircraft flight time to 90 minutes. This

research doesn’t require 90 minutes of flight time, therefore, USUUA1 can use a smaller

battery. As indicated by Fig. A.1, the battery was selected to power the actuators, propul-

sion components, communication components, and flight control components in parallel.

The Holybro PM02 power module was selected to support the 6-cell flight battery and to

provide power to the flight controller.

3.3 Aircraft Assembly

Assembly of USUUA1 follows a similar process as outlined by MFE [34] in the Freeman

2100 documentation. First, the wing-to-fuselage connector was wired using standard sol-

dering techniques. The wires were then run out to the carbon fiber motor pod on each wing.

The motors and ESCs were then installed and wires were connected to the wing-to-fuselage

wires. The 3.6 kg and 25 kg servos were installed and connected to the wing-to-fuselage

wires. The aileron stiffeners were also installed using foam glue.

Assembly of the fuselage replicated the assembly of the fuselage shown in the MFE

documentation [34]. Next, the tail servos were installed in the aft section of the fuselage

and wired up to the main section of the aircraft. The wing and tail brackets were then

installed using foam glue. All hardware is included in the Freeman 2100 kit. After the

airframe components had all been installed and assembled, the electronic components were

installed.

The Pixhawk was located just aft and under the main fuselage carbon stiffener. This

was done to locate the Pixhawk as near to the CG of the aircraft as possible. This allows
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the readings from the Pixhawk internal sensors to be reliable for the aircraft as a whole.

The flight controller was installed first onto a vibration dampener. The dampener was then

secured to a 3D-printed locator board shown in Appendix A.2. After locating the flight

controller the power system was installed.

The battery was installed into the forward section of the aircraft where space allowed.

and a wire harness was created using solder and shrink wrap to connect the battery to

the actuator, propulsion, and flight control subsystems. One of the leads from the battery

harness connects to the power module which connects to the flight controller and the power

distribution board. The other lead connects to the BEC to power the servos. Installation

in this way allows the power module to regulate power to the flight controller to avoid

overpowering the flight control board. This also allows the BEC to regulate power to the

servos to avoid overpowering the actuator system. The battery was secured using a 3D

printed locator board shown in Appendix A.2.

Another crucial component to locate is the GPS module. Ardupilot [35] documents

how to locate the GPS module-compass combination. Because of magnetic interference,

the GPS module was put on top of a short mast in the forward section of the aircraft.

The remaining components were located in the midsection of the fuselage for easy access

and to keep the CG of the aircraft near the quarter-chord of the root of the main wing to

increase stability. To secure the various components during flight, another locator board was

designed and 3D-printed as shown in Appendix A.2. The components were then attached

to the locating boards with a combination of foam glue, double-sided foam tape, and fiber-

reinforced tape. Fig. 3.4 shows the location of the GPS module relative to the power

components of the aircraft. The location of the GPS module shown in Fig. 3.4 reduces the

magnetic interference of the compass to acceptable levels.
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Fig. 3.4: Simplified side view of the GPS module location.

3.4 Bench Testing and Component Characterization

This section follows closely to the Ardupilot Quadplane documentation and the MFE

Freeman 2100 setup documentation [4,30]. Downloading Mission Planner was the first step

to setting up USUUA1. Mission Planner can be downloaded from the Ardupilot website [36].

Calibration of the IMU, gyroscope, compass, and transmitter were completed by following

the Ardupilot setup process.

3.4.1 ESC Calibration and Verification

Calibrating the ESCs was conducted by completing the following procedure:

1. Remove the motor propellers.

2. Turn on the transmitter.

3. Disconnect power to the ESCs on the aircraft if not already done.

4. Connect power from the battery to the flight controller.

5. Change to calibration mode using the parameter Q ESC CAL = 1.

6. Change aircraft mode to QSTABILIZE if not already done.
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7. Arm the aircraft.

8. Move the throttle stick on the transmitter to maximum.

9. Re-connect power to the ESCs.

10. Wait for the beeping sound from the ESCs indicating they have registered maximum

throttle .

11. Lower throttle stick on the transmitter to minimum.

12. Wait for the beeping sound from the ESCs indicating they have registered minimum

throttle.

Once ESC calibration was complete, the calibration was verified by putting the aircraft

into QSTABILIZE mode, arming the aircraft, and raising/lowering the throttle quickly. If

the ESCs all begin to spin at approximately the same throttle input and increase speed by

raising the throttle, then the calibration is successful and a motor test can be conducted.

If the calibration is not successful, repeat the ESC calibration process.

3.4.2 Motor and Servo Spin Direction Test

Using the Graphical User Interface (GUI) from Mission Planner, the motor test was

conducted for USUUA1 to verify the orientation and spin direction of the motors. Fig. 3.5

shows the motor layout (1-4) and the motor test sequence (A-D).
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Fig. 3.5: Motor layout and motor test sequence.

After the motor test was conducted, the control surface deflection test was completed.

The control surface connections were first adjusted to be neutrally at zero degrees of deflec-

tion. Next, the aircraft was put into manual mode and the pilot gave roll, pitch, and yaw

inputs with the transmitter. control surface deflections were reversed as needed to make the

pilot inputs match the actual control surface deflections. Any slight variance in the neutral

point was adjusted electronically with the Ardupilot GUI and a straight edge.

3.4.3 Tilt Mechanism test and Motor Speed Characterization

Testing the tilting mechanism of USUUA1 was done to ensure the aircraft would tran-

sition to fixed-wing flight when commanded by the autopilot. This was accomplished by

changing the flight mode between a quadcopter mode, such as QSTABILIZE, and FBWA.

When changed to QSTABILIZE mode, and with all the necessary tilt-rotor parameters

enabled as detailed by Ardupilot [37], the tilt-rotors remained upright at zero degrees of

deflection. When changed to FBWA, the tilt-rotors rotated down to approximately 90 de-

grees of deflection. The min and max values were adjusted in the Mission Planner GUI

to allow the tilt-rotors to be at 0 degrees in QSTABILIZE mode and 90 degrees in FBWA

mode. This is an iterative process of selecting a trim signal value in the GUI and verifying

the angle a protractor.
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Once the Testing of the tilt mechanism was complete, the motors were characterized

using a PWM input signal. The output motor speed for each motor was measured using

an external, laser, tachometer. The output was plotted against the input and the resulting

plot is shown in Fig. 3.6. Motors 2 and 4 show a linear relationship with the PWM signal

which is desirable. Motors 1 and 3, which are the front tilting motors, show a nonlinear

relationship with the PWM signal. While not ideal, the mapping shown in Fig. 3.6 models

the output of motors 1 and 3 to an acceptable degree.

Fig. 3.6: Mapping of input PWM signal to output motor RPM.

Characterization of the tilting mechanism was carried out in a similar way as the motor

characterization. The input was the PWM signal and the output was the tilt angle measured

with a protractor. The resulting plot of the tilt mechanism input to output is shown in Fig.

3.7. From the results, the tilting motors reveal good linearity and accurate angular position

in the mapping of the PWM signal to the tilting angle. This result is consistent with the

truth that the tilting servo motors are closed-loop controlled.
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Fig. 3.7: Mapping of input PWM signal to output tilt angle.

3.4.4 Pre-Flight Checks

Before flying the aircraft, a pre-flight check was conducted before each flight. This helps

reduce issues with reliability and repeatability between multiple flights. Table A.1 shows

the pre-flight procedure to complete before each flight with USUUA1. Common problems

that arise during the pre-flight procedure can usually be resolved by re-calibrating either

the IMU or the compass on board the aircraft.

Failure to properly execute the pre-flight procedure can result in a failed flight or even

crashing the aircraft. Following Table A.1 helps verify the sensors onboard the aircraft are

outputting correct and usable data. Flights should not be conducted if any calibration or

verification fails.



23

CHAPTER 4

DYNAMIC MODELING OF USUUA1

In this chapter, the dynamic model of VTOL aircraft in the transition flight is derived as

a 6-DoF model and further reduced to the longitudinal motion. After that, the aerodynamic

coefficients will be identified using the real flight data.

4.1 Governing Equations of Motion in 6-DoF

In this thesis, the modeling of the VTOL aircraft makes the following assumptions:

1. Aircraft can be approximated as a symmetric, rigid-body.

2. Neglect flow changes and flow interactions over the wing due to tilt angle change.

3. Wind disturbances are not considered.

Deriving the governing equations of motion follows a similar approach in [14,16]. Ref-

erence frames are defined as follows: I = [O;xI ,yI , zI ] is an inertial frame with origin O,

and B = [G;xB,yB, zB] is the body-fixed frame with the aircraft center of mass G. In the

body-fixed frame, xB points forward, yB points to the right wing, and zB points downward

by right-hand-rule convention. Fig 4.1 shows the coordinate system of the aircraft.

The dynamic equations of motion for a generic aircraft with external forces and torques,

using standard rigid-body assumptions, are shown in (4.1). The dynamic model is estab-

lished in the aircraft body-fixed frame, and it is denoted by the superscript B.
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Fig. 4.1: Coordinate system of USUUA1.

ṗB = vB − ω × pB

v̇B = −ω × vB + gRB
I z

I +
1

m
(FB

T + FB
a )

q̇B
I =

1

2

01×1 −ωT

ω −ω×

qB
I

NB ω̇ = −ω×N
Bω + ΓB

T + ΓB
a

(4.1)

From (4.1), qB
I = [q0,q

T
v ]

T is the attitude quaternion of the aircraft body-fixed frame

relative to the inertial frame and ω = [ωx, ωy, ωz]
T is the angular rate vector of the aircraft.

The vector pB = [pB
x ,p

B
y ,p

B
z ]

T is the position of the aircraft and vB = [vB
x ,v

B
y ,v

B
z ]

T is

the velocity vector of the aircraft. The mass of the aircraft is m, g is the acceleration due

to gravity, and zI is the direction of gravity in the inertial frame. The forces due to the

thrusting elements and aerodynamic elements of the aircraft are FB
T and FB

a respectively.

The torques due to the thrusting elements and aerodynamic elements of the aircraft are

ΓB
T and ΓB

a respectively. From (4.1), ω× is the skew-symmetric matrix related to the cross
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product [14,16]. In other words, u× v = u×v for any vector u,v. NB is the inertia tensor

of the aircraft, which is assumed to be diagonal, as shown in (4.2).

NB =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (4.2)

The rotation matrix RB
I , which describes the rotation from the inertial frame to the

body-fixed frame, is given by (4.3) where I3 is a 3 × 3 identity matrix. and qskew is given

in (4.4).

RB
I = I3 + 2q0qskew + 2(qskew)

2 (4.3)

qskew =


0 −qz qy

qz 0 qx

−qy qx 0

 (4.4)

The assumptions at the beginning of this section correspond to the aircraft in the transi-

tion flight regime where the aircraft converts to fixed-wing flight. Forces from the thrust

elements, or motors, as well as forces due to the aerodynamics of the aircraft, are expressed

as (4.5) and (4.6) respectively [14,16].

FB
T =

∑
i=1


cosχi 0 − sinχi

0 1 0

sinχi 0 cosχi




0

0

CTω
2
i

 (4.5)

FB
a =

ρ

2
S|vB |(CLv

⊥B − CDv
B ) (4.6)

In (4.5), χi is the tilt angle of the rotors, ωi is the rotor speed, and i ∈ {1,2,3,4}. The

tilting angle χi is defined positive in the counterclockwise. In (4.6), ρ is air density, S is

the reference wing area, CL is the aircraft coefficient of lift, CD is the aircraft coefficient of
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drag, and CT is a quasi-coefficient of the thrust of the motors. Unlike CL or CD, CT is not

assumed to be non-dimensional but follows the definition in (4.5) to map the squared rotor

speed to thrust force.

Torques from the thrusting elements and the aerodynamic surfaces are expressed as

(4.7) and (4.8) respectively.

ΓB
T =


cosχ 0 − sinχ

0 1 0

sinχ 0 cosχ



−CT l −CT l CT l CT l

−CT l CT l CT l −CT l

−CQ CQ −CQ CQ





ω2
1

ω2
2

ω2
3

ω2
4


(4.7)

ΓB
a =


CFa 0 0

0 CFvL
0

0 0 CFvR



δa

δvL

δvR

 (4.8)

In (4.7), l is the distance along the y-axis between the center of mass G and the center of

the propellers. The Euler angle representation of the aircraft orientation is given as (4.9)

where βBI = [ϕ, θ, ψ] and T is the matrix shown in (4.10).

β̇BI = Tω (4.9)

T =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ

 (4.10)

From (4.7)–(4.10), CQ is the coefficient of torque of the propellers, CF is the effectiveness

of the control surfaces, δa, δvL, δvR are the deflections of the ailerons, left v-tail, and right

v-tail respectively.
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4.2 Dynamic Model of Longitudinal Motion

Deriving the model for USUUA1 follows with various simplifications to reduce model

complexity, because this thesis focuses on the longitudinal motion, i.e. motion in the x-z

plane. The following assumptions are further made in the longitudinal motion:

1. Both of the front motors spin at the same rate, so that the torque is balanced during

the tilting of front motors. Similarly, the back motors also spin at the same rate. This

means ω1 = ω3, and ω2 = ω4.

2. Transition is executed using only the tilting front rotors, and only longitudinal motion

is activated in transition. During the transition, the lateral dynamics will not be

excited. This means χ = χ1 = χ3, and χ2 = χ4 = 0.

3. USUUA1 takes off vertically as a quad-copter and then begins transition when it

reaches the planned altitude. The control surfaces are not functioning in the take-off

phase and transition phase. Their contributions to aircraft motion are assumed as

neglected due to the slow speed during takeoff and transition.

Solving (4.1) for ω̇ results in (4.11).

ω̇ = (NB )
−1[−ω×N

Bω + ΓB
T + ΓB

a ] (4.11)

Using the previously stated assumptions and expressions of forces and torques, it can be

shown that the dynamic model of USUUA1 in longitudinal motion becomes (4.12).

ṗBx = vBx − ωyp
B
z

ṗBz = vBz + ωyp
B
x

v̇Bx = −ωyv
B
z − g sin θ +

2CT

m
[ω2

1 sinχ] +
ρS

2m

√
(vBx )

2 + (vBz )
2(CLv

B
z − CDv

B
x )

v̇Bz = ωyv
B
x + g cos θ − 2CT

m
[ω2

1 cosχ+ ω2
2] +

ρS

2m

√
(vBx )

2 + (vBz )
2(−CLv

B
x − CDv

B
z )

θ̇ = ωy

ω̇y =
2CT l(ω

2
1 − ω2

2)

IByy

(4.12)
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It should be noted that IByy is the moment of inertia about the y-axis of the aircraft in the

body-fixed frame. Starting here, the body-frame superscripts will be dropped for simplicity.

This work uses data collected from the open-loop system. Doing this, allows the modeling

of the aircraft to be done without considering the controller dynamics. This helps simplify

the dynamic model of the aircraft. The actuator dynamics are not included in this model

because it is assumed that there are no control surface deflections during the transition

phase. Additionally, it is assumed that the response speed of the rotors is high enough,

compared to the response of the system, such that the motor dynamics do not need to be

included in this model.

Based on the available onboard sensors and filtering algorithms [38], the following pa-

rameters in (4.12) are known: {px, pz, vx, vz, ωy, g, θ,m, ω1, ω2, ωy, l, ρ, S, χ}. The unknown

parameters are aerodynamic coefficients {CT , CL, CD}. Different models can also be used

for various parameters to increase model accuracy in future work. For example, CL or

CD can be assumed as constant during the transition flight or a higher degree polynomial

model could be used instead. However, increasing the order of the model does not always

guarantee increased accuracy. Increasing the order of the model does, however, increase the

complexity of modeling by adding additional unknown parameters to be identified.

4.3 Unknown System Parameter Identification By Quadratic Programming

with Constraints

After the model is derived, the unknown parameters are identified. Experimental flight

data from USUUA1 is to be used to drive a Least-Squares Regression (LSR) method to

identify the unknown parameters of the model [11,39].

This work develops a new LSR algorithm to identify the unknown model parameters

compared to the existing work in [13]. At first, the details of LSR in [13] are given. Let the

vector of parameters to estimate be η, and the regression equation to estimate the unknown

parameters be shown in (4.13).

ỹ = X̃η + ν̃ (4.13)
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Here, X̃ is a matrix of regressors, ỹ is the response vector, and ν̃ is the measurement error

which is considered to be zero-mean and uncorrelated. The matrix X̃ is considered to be

”error-free”. Solving for the unknown parameter vector in (4.13) involves minimizing the

cost function in (4.14) [13].

minJ(η) =
1

2
(ỹ − X̃η)T (ỹ − X̃η) (4.14)

It should be noted that the minimization problem is a convex optimization problem without

constraints. The analytical solution of the LSR optimization problem that can render the

optimal estimation of unknown parameters η is given in (4.15)

η̂ = [(X̃T X̃)]−1(X̃T ỹ) (4.15)

The response vector calculated from the estimated parameters is expressed as (4.16).

ˆ̃y = X̃η̂ (4.16)

Due to the experimental nature of the data collection process in this work, the data are

collected in discrete time [16, 40]. Therefore, a discrete-time model must be discretized

from the continuous-time model using the Euler discretization formula shown in (4.17).

Considering the nature of nonlinear systems, the sampling time selected must be small

enough to ensure the responses of the discretized model match with that of the continuous-

time model.

xk+1 = xk + ẋ∆t (4.17)

The LSR algorithm in [13] has an obvious drawback, that is, it cannot address the

constraints of the physical variables. However, in this thesis, the unknown aerodynamic

coefficients need to satisfy some physical constraints. For example, the thrust coefficient CT

is always positive. Next, the derivations of the new identification algorithm are presented.
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The new identification algorithm can address the constraints on the model parameters. This

helps constrain the model parameters to values which have physical meaning.

4.3.1 Parameter Estimation of Constant Values

We first assume that the unknown system parameters are constant values. Before

applying (4.17) the dynamic equations of motion are reduced to those containing unknown

parameters. The reduced-dimension version of (4.12) is given as (4.18)

v̇x = −ωyvz − g sin θ +
CT

m
[2ω2

1 sinχ] +
ρS

2m

√
v2x + v2z(CLvz − CDvx)

v̇z = ωyvx + g cos θ − CT

m
[2ω2

1 cosχ+ 2ω2
2]−

ρS

2m

√
v2x + v2z(CLvx + CDvz)

ω̇y =
2CT l(ω

2
1 − ω2

2)

Iyy

(4.18)

It should be noted here, (4.18) is still in the body-fixed frame but the superscripts are

omitted for simplicity. Applying (4.17) to (4.18) and writing in the form of (4.13) yields

(4.19), where k ∈ {1, 2, 3, ..., n}, is the index value of the current time step.


vx

vz

ωy


k+1

=


vx

vz

ωy


k

+


X11 X12 X13

X21 X22 X23

X31 X32 X33


k


CT

CL

CD


k

+∆t


−ωyvz − g sin θ

ωyvx + g cos θ

0


k

(4.19)

Here, the values for the elements of the regressor matrix X are given in (4.20)

X11 = ∆t
2ω2

1 sinχ

m
X12 = ∆t

ρSvz
√
v2x + v2z

2m
X13 = ∆t

ρSvx
√
v2x + v2z

2m

X21 = ∆t
−2ω2

1 cosχ− 2ω2
2

m
X22 = −∆t

ρSvx
√
v2x + v2z

2m
X23 = −∆t

ρSvz
√
v2x + v2z

2m

X31 = ∆t
2l(ω2

1 − ω2
2)

Iyy
X32 = 0 X33 = 0

(4.20)

In (4.20), ∆t is the discrete time step. Higher-order polynomial models for the unknown
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parameters can be used in (4.19). This would lengthen the unknown vector η and widen the

matrix of regressors X. A polynomial model is derived in the next section of this chapter.

Solving (4.1) for η gives (4.21)


X11 X12 X13

X21 X22 X23

X31 X32 X33


†

k




v̇x

v̇z

ω̇


k+1

−


vx

vz

ω


k

−∆t


−ωyvz − g sin θ

ωyvx + g cos θ

0


k

 =


CT

CL

CD


k

(4.21)

Here the X† is the pseudo inverse of the regressor matrix. This is necessary because X

is not guaranteed to be invertible. Stacking all of the data points up in (4.21) creates a

regressor matrix with dimensions 3 × 4n, where n is the number of data points collected.

This tall matrix is used to compute the LSR solution for η expressed in (4.21).

Using this method allows the unknown parameters to result in values which may not

make physical sense due to the lack of constraints on the parameters. To constrain the

parameters to retain physical meaning, this research poses a Quadratic Programming opti-

mization problem in (4.22).

min
1

2
ηTHη + fTη

s.t. η ≤ η ≤ η

(4.22)

Where, η, η are lower and upper bounds of η; H is the Hessian and is expressed as

H = 2XTX, and f = −2XTX†. This leads to a cost function which is equivalent to (4.14).

The derivation follows as (4.23)

(X† −Xη)T (X† −Xη)

= (X†T − ηTXT )(X† −Xη)

= X†TX† + ηTXTXη − ηTXTX† −X†TXη

(4.23)
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Because X†TX† does not depend on η, it does not affect the problem. The resulting

quadratic programming problem becomes (4.24)

ηTXTXη − 2X†TXη

=
1

2
ηT (2XTX)η + (−2XTX†)Tη

(4.24)

This optimization problem can be solved using the quadprog function in MATLAB’s

optimization toolbox [41]. This allows the resulting vector η to be constrained to more

physically meaningful values. Implementation of this technique can be seen in the LSR

code function found in Appendix B.

4.3.2 Parameter Estimation of Polynomial Dependency

The derivation of the model assuming polynomial unknown parameters is similar to

the constant case with some differences. For the polynomial case, (4.18) is the same except

for the unknown parameters. The polynomial version of the unknown parameters is shown

in (4.25), where the variable denoting the polynomial dependency is expressed as ν. This

means that the unknown coefficients are polynomial functions of the variable ν. For exam-

ple, ν could be assumed to be the absolute velocity of the vehicle which would mean that

the unknown coefficients would be functions of the absolute velocity of the aircraft.

CT = a1ν
2 + a2ν + a3

CL = b1ν
2 + b2ν + b3

CD = c1ν
2 + c2ν + c3

(4.25)

Here, ai, bi, and ci, i = 1, 2, 3 are the unknown coefficients of the unknown parameters

CT , CL, CD. The derivation follows by modifying (4.19) as (4.26).
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vx

vz

ω


k+1

=


vx

vz

ω


k

+

[
X 3×9

]
k

[
η9×1

]
k

+∆t


−ωyvz − g sin θ

ωyvx + g cos θ

0


k

(4.26)

Here X3×9 is the regressor matrix with dimension 3 × 9 and η9×1 is the vector of

unknowns with dimension 9× 1. These are given as (4.27) and (4.28).

X3×9 =


X11 X12 X13 X14 X15 X16 X17 X18 X19

X21 X22 X23 X24 X25 X26 X27 X28 X29

X31 X32 X33 X34 X35 X36 X37 X38 X39

 (4.27)

η9×1 = [a1, a2, a3, b1, b2, b3, c1, c2, c3]
T (4.28)

The elements of the regressor matrix X3×9 are given in (4.29)

X11 = (∆t)λν2 X12 = (∆t)λν X13 = (∆t)λ

X14 = (∆t)ξν2vz X15 = (∆t)ξνvz X16 = (∆t)ξvz

X17 = (∆t)ξν2vx X18 = (∆t)ξνvx X19 = (∆t)ξvx

X21 = (∆t)µν2 X22 = (∆t)µν X23 = (∆t)µ

X24 = (∆t)ξν2vx X25 = (∆t)ξνvx X26 = (∆t)ξvx

X27 = (∆t)ξν2vz X28 = (∆t)ξνvz X29 = (∆t)ξvz

X31 = (∆t)ζ X32 = (∆t)ζ X33 = (∆t)ζ

X34 = 0 X35 = 0 X36 = 0

X37 = 0 X38 = 0 X39 = 0

(4.29)
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Here, {λ, ξ, µ, ζ, ν} are given as (4.30) respectively. It should be noted that the expres-

sion for ν is not restricted to that of absolute velocity. However, this work uses ν = V ,

where V is absolute velocity.

λ =
2ω2

1 sinχ

m

ξ =
Sρ

2m
ν

µ =
2(ω2

1 cosχ+ ω2
2)

m

ζ =
2l(ω2

1 − ω2
2)

Iyy

ν =
√
v2x + v2z

(4.30)

The rest of the unknown polynomial parameter derivation is similar to the constant unknown

parameter case and follows from (4.21). Because the unknown coefficients in this derivation

take polynomial form, the constraints in (4.22) need to be modified. It is considered that

the parameter is separated in its range, with three values νmax, νmid, νmin which must be

evaluated. The constraints are shown in (4.31).

The formulation of the constraints can be done by first expanding (4.25) to (4.31) and

then rearranging to give the form shown in (4.32).

CT (νmax) = a1ν
2
max + a2νmax + a3 ≤ κ1

CT (νmid) = a1ν
2
mid + a2νmid + a3 ≤ κ2

CT (νmin) = a1ν
2
min + a2νmin + a3 ≤ κ3

CL(νmax) = b1ν
2
max + b2νmax + b3 ≤ κ4

CL(νmid) = b1ν
2
mid + b2νmid + b3 ≤ κ5

CL(νmin) = b1ν
2
min + b2νmin + b3 ≤ κ6

CD(νmax) = c1ν
2
max + c2νmax + c3 ≤ κ7

CD(νmid) = c1ν
2
mid + c2νmid + c3 ≤ κ8

CD(νmin) = c1ν
2
min + c2νmin + c3 ≤ κ9

(4.31)
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Aη ≤ κ (4.32)

Here, A is a 9 × 9 matrix of maximum, middle, and minimum values of the polynomial

variable which each unknown coefficient is a function of. The symbol κ is a 9 × 1 vector

of bounding values. Expanding (4.32) yields (4.33), which can be directly implemented in

quadratic programming with constraints in MATLAB.

A =


Π 03×3 03×3

03×3 Π 03×3

03×3 03×3 Π



Π =


ν2max νmax 1

ν2mid νmid 1

ν2min νmin 1


η = [a1, a2, a3, b1, b2, b3, c1, c2, c3]

T

κ = [κ1, κ2, κ3, κ4, κ5, κ6, κ7, κ8, κ9]
T

(4.33)

These constraints are used to constrain the quadratic programming optimization prob-

lem described previously. This way, the unknown parameters can be constrained to some-

thing which has physical meaning. Without the constraints, the LSR algorithm can cause

the unknown coefficients to take values that have no physical meaning.
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CHAPTER 5

AIRCRAFT CONTROL AND PID GAIN OPTIMIZATION

5.1 Vehicle Control Algorithm

Because USUUA1 begins the flight as a quadcopter and finishes the transition as a fixed-

wing aircraft, it is necessary to understand the high-level control algorithm of the Ardupilot

software. This is especially true for when the aircraft is in quadcopter configuration because

quadcopters are inherently unstable. For this reason, this chapter focuses on quadcopter

mode controllers and algorithms. USUUA1 runs the Ardupilot firmware/software for flight

control. The flight control software uses nested PID loops to control the aircraft. Fig. 5.1

shows the control strategy of USUUA1 on a high level. This is Ardupilot’s high-level control

algorithm.

Fig. 5.1: High-level control algorithm for USUUA1.

Ardupilot’s position and navigation controller uses nested PID loops to control the

position and navigation of the aircraft [2]. Fig. 5.2 shows the Ardupilot position and

navigation control loops.
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Fig. 5.2: Control loops for the position controller from Ardupilot [2].

Here, ”leash” refers to a virtual ”rubber-band-like” guide for the aircraft [2]. To visu-

alize what is going on in this controller one can think of the vehicle attached to one end of

a rubber band. The other end is constantly moving to where the desired position is and

the vehicle follows as if it were attached via the rubber band. Position in the x and yaxies

are controlled by taking a position and passing it through a P controller to get a desired

velocity. The desired velocity is then passed through a PID controller to get the desired

acceleration. The desired lean angle is then calculated based on the desired acceleration

value and the result is passed to the attitude controller.

The control algorithm for attitude also uses nested PID control loops [3]. A diagram

of the attitude controller is shown in A.1. The attitude controller has an outer loop for

controlling the position and an inner loop for controlling the velocities of the aircraft. Fig.

5.3 shows the Ardupilot attitude control loops.
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Fig. 5.3: Control loops for the attitude controller from Ardupilot [3].

Here, the feed-forward term, or FF term, is used to help smooth the response of the

vehicle [3]. This allows the rate loop to be able to correct for the FF term separately from

The output of the angle loop. The square root controller for the angle loop is essentially a

proportional or, P, controller but it is an acceleration limiting approach to a P controller

which means this control strategy takes into account the acceleration rate limits of the air-

craft. Large errors can be handled with this strategy. This control algorithm is Ardupilot’s

low-level control. Above this is the position and navigation controller.

Altitude, or z axis, is controlled similarly to that of the x and y axes. The input z

position error is passed through a P controller to convert the error to a desired velocity. The

desired velocity is then passed through another P controller to convert the error to a desired

acceleration. Desired acceleration is then passed through a PID controller to convert the

acceleration to a throttle value. This throttle value is then sent to the attitude controller.

Vehicle performance and stability can be tuned via the Mission Planner GUI.
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5.2 Tuning PID Gain Values

User access to the controller parameters is provided in the Mission planner through the

tuning GUI which is found under the config tab shown in Fig. 5.4.

Fig. 5.4: Mission Planner GUI for tuning parameters [3].

From here, the pilot can make changes to the PID gain values and tune the aircraft

controllers. The manufacturer of the USUUA1 airframe [4] provides a parameter file with

the PID gain values tuned for their aircraft. However, the vehicle corresponding to the

provided tune could be significantly different than USUUA1. Therefore, the USUUA1 pilot

conducted a manual tune on the quadcopter configuration of the aircraft. Values for the

fixed-wing PID gains from the manufacture were found to be acceptable without further

tuning.

Ardupilot has an autotune feature within the Mission Planner, however, it requires

a basic, manual, tune for it to work properly. Even after conducting an autotune on an
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aircraft, the system may need small changes to be made for a better tune. Because of this,

the pilot of USUUA1 uses the simple manual tune for USUUA1. The tuning process is

detailed in the Ardupilot documentation [42].

5.3 PID Gain Optimization

Rather than rely on an onboard auto-tune from Ardupilot or a manual tune for

USUUA1, part of this work is to optimize the PID gain values for settling time. This

can be accomplished using a PID tuner from MATLAB [43]. This PID controller with op-

timized gain values for settling time is intended to give insight into the control parameters.

Applying the optimized PID gain values to the physical hardware is left as future work for

this research.

To simplify the state space model for control purposes, this work aims to control the

error between the predicted states of the aircraft and the measured states of the aircraft.

This is done by identifying the deviations, or error states, in the dynamic model of the

aircraft. This is done by deriving the error dynamics. The dynamic model of the error can

be derived using (5.1).

ẋ = f(x,u)

ẋ∗ = f(x∗,u∗)

xe = xe − x∗
e

ẋe = f(x,u)− f(x∗,u∗)

(5.1)

Here, x is the state vector, x∗, is the predicted state vector, u is the vector of inputs, and

u∗ is the predicted vector of inputs. It can be observed from (5.1) that the change in error

is defined by the difference of the actual dynamics and the predicted dynamics. Using a 1st

order Taylor expansion approximation on the dynamics gives (5.2)

f(x1, x2, ...) ≈ f(x∗1, x
∗
2, ...) +

∂f

∂x1
ex1 +

∂f

∂x2
ex2 + ... (5.2)
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Combining (5.2) with (5.1) gives (5.3).

ẋe =
∂f

∂x∗xe +
∂f

∂u∗ue (5.3)

Before applying (5.1), (5.2), and (5.3) to the equations of motion previously derived for

USUUA1, some assumptions and simplifications are made:

1. small angle approximation i.e. cos θ ≈ 1 and sin θ ≈ θ.

2. Tilt angle χ is a scheduled, non-perturbed value.

3. vz can be approximated as constant.

4. vx is 0 at the beginning of the transition flight.

Applying these and (5.3) to the equations of motion for USUUA1 results in (5.4).

ėx = −ewvz − geθ +
2CT

m
[(sinχ)eu1] + (

∂f

∂vx
|vx=vx0)ex + (

∂f

∂vz
|vz=vz0)ez

ėz = −2CT

m
[(cosχ)eu1 + eu2] + (

∂f

∂vx
|vx=vx0)ex + (

∂f

∂vz
|vz=vz0)ez

ėθ = eω

ėω =
2CT l

m
(eu1 − eu2)

(5.4)

Further simplification can be made by considering the control for only the pitch angle

of the aircraft. Because (5.4) is a linear approximation, the state space model can be derived

as (5.5)

ẋ = Ax+Bu (5.5)

Where {ẋ,A,B,u} are shown in (5.6)

 θ̇e
ω̇e

 =

0 1

0 0


θe
ωe

+

 0

2CT l
Iyy

 [u1− u2] (5.6)
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CHAPTER 6

RESULTS AND ANALYSIS

6.1 LSR Assuming Constant Parameter Estimation

The transition period data is collected by executing multiple aircraft transitions. The

constraints for the unknown parameters are η = [0,−1, 0]T and η = [1, 1, 1]T . Each tran-

sition corresponds to a different max tilt angle and max tilt speed as shown in Table 2.1.

Constants required for calculations are given in Table 6.1.

Table 6.1: Constant values used in LSR calculations.

Constant Values

∆t [s] 0.01

g [m/s2] 9.81

l [m] 0.362

m [kg] 11

ρ [kg/m3] 0.72

S [m2] 0.725

Fig. 6.1 shows the transition data of the system outputs and Fig. 6.2 shows the system

inputs.
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Fig. 6.1: Plots of states vx, vz, ωy, and θ.
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Fig. 6.2: Plots of inputs of rotor speeds and servos.

System inputs are M1 (motor 1 and 3 signals), M2 (motor 2 and 4 signals), and tlt

servo PWM (tilt servo signals). System outputs are speed in the x direction vx, speed in

the z direction vz, pitch rate ωy, and pitch angle θ. From the flight data collected, vx

is estimated using ground speed. This is done because it’s a relatively accurate way to

estimate the airspeed of the vehicle, without an airspeed sensor. An airspeed sensor was

not used because of reliability issues.
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The label [µs] is used to denote units of micro-seconds and the unit [index] is used

to denote the time index of the virtual time vector. These units describe the PWM signal

and the virtual time vector respectively. The term index refers to the virtual time step of

the data. For example, index 1 is an integer value used to denote the first time step. This

is done for visualization purposes. The actual time stamp for each test flight is measured

from the time the flight controller was powered on and is only used in this work during the

post-processing algorithm to unify the data vectors.

68% of the collected data is used to estimate the unknown parameters using the LSR

algorithm and the remaining 32% is used as validation data to compare the model to

experimental data. This results in at least two transition periods used for validation. The

resulting unknown parameters are given in Table 6.2.

Table 6.2: Unknown coefficient values assuming constant model.

Coefficients Values

CT 2.41× 10−6

CL 0.72

CD 0.23

The associated error, assuming constant coefficients, is 0.0047. This error comes from

applying the Relative Root Mean Square Error (RRMSE) (6.1).

error = |xk+1 − xk − rk −Xη|

xk+1 = [vTxk+1
, vTzk+1

]T

xk = [vTxk
, vTzk ]

T

rk = [−∆t(ωykvzk + gsin(θk))]

RRMSE =

√
1
n

∑n
k=1(error)

2∑n
k=1 |xk+1 − xk − rk|2

(6.1)
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Here, the matrix X, the vector η, and ∆t are the matrix of regressors, the vector of iden-

tified, unknown, parameters, and the time step respectively. Implementation of the error

calculation can be found in Appendix B. Using the validation data, the resulting states of

the aircraft are predicted using the LSR model. Figs. 6.3 and 6.4 show the predicted model

compared to the experimental data.
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Fig. 6.3: Comparison of the velocity in the x direction assuming constant coefficients.



47

0 5000 10000 15000

time [index]

-6

-4

-2

0

2

4

v z [m
/s

]

Estimated Data
Experimental Data

Fig. 6.4: Comparison of the velocity in the z direction assuming constant coefficients.

The plot for pitch rate, ωy, is not included here. This is because it’s a near perfect

match with the experimental data using the methods in this work. This occurs because

the equation for ωy depends only on the motor speed inputs of the system and not on the

states of the system. Constant values for the system are given in the code in Appendix B

and also in Table 6.1.

Using validation data, the predicted model compared to the experimental model is

shown in Figs. 6.5 and 6.6. This corresponds to the remaining 32% of the collected data.
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Fig. 6.5: Validation of the velocity in the x direction assuming constant coefficients.
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Fig. 6.6: Validation of the velocity in the z direction assuming constant coefficients.

Fig. 6.7 shows the resulting unknown coefficients for each test flight assuming the

coefficients are constants.
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Fig. 6.7: CT , CL, CD coefficients varying with tilt speeds.

These results correspond to data from Test 1.1 through 2.3. The transition data from

these test flights are fed into the LSR algorithm shown in Appendix B to determine the

unknown coefficients.

Fig. 6.7 shows results from assuming the unknown vector values to be constant. How-

ever, this assumption can be relaxed to allow the unknown parameters to take polynomial

form. By relaxing the constant parameter assumption, the constant case can be compared

to the polynomial case.
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6.2 LSR Assuming Polynomial Parameter Estimation

This section shows data resulting after relaxing the constant coefficient assumption to

allow the unknown coefficient model to take polynomial form. Specifically, the unknown

coefficients are assumed to take a 2nd order polynomial form. The unknown coefficients

are assumed to be functions of absolute velocity. Constraints for the polynomial case have

νmax = 25 m/s, νmid = 12.5 m/s, νmin = 0 m/s, where ν is the absolute velocity of

the aircraft. The bounding vector is κ = [0, 0, 0, 1, 1, 1, 0, 0, 0]. Figs. 6.8 and 6.9 show

the estimated model compared to the experimental data. This corresponds to 68% of the

collected data.
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Fig. 6.8: Comparison of the velocity in the x direction assuming polynomial coefficients.
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Fig. 6.9: Comparison of the velocity in the z direction assuming polynomial coefficients.

Figs. 6.10 and 6.11 show the validation between the estimated model and experimental

data using the remaining 32% of the collected data. The resulting unknown coefficients are

shown in Table 6.3.
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Fig. 6.10: Validation of the velocity in the x direction assuming polynomial coefficients.
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Fig. 6.11: Validation of the velocity in the z direction assuming polynomial coefficients.

Table 6.3: Unknown coefficient values assuming polynomial model.

Unknown Coefficients

CT a1 = 5.56× 10−6 a2 = −8.07× 10−5 a3 = 2.07× 10−4

CL b1 = 0.17 b2 = −6.48 b3 = 53.01

CD c1 = 0.049 c2 = −0.50 c3 = 4.47× 10−14

The polynomial model for the unknown coefficients has RRMSE = 0.0059. Figs.

6.12–6.14 show the plots for the unknown coefficients of the system assuming a polynomial

model. The state plots and model comparison plots for each individual test flight, both for

the constant coefficient and polynomial coefficient models, can be found in Appendices A.3

and A.4 respectively.
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Fig. 6.12: CT coefficients varying with tilt speed.
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Fig. 6.13: CL coefficients varying with tilt speed.
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Fig. 6.14: CD coefficients varying with tilt speed.

6.3 PID Gain Value Optimization Assuming Constant Model

Using the MATLAB PID Tuner, the gain values are optimized to reduce the settling

time of the system. The resulting PID gain values for the system at the beginning of

transition, with control matrix B = [0, 4.36× 10−6]T , are shown in Table 6.4 where P, I, D,

and N are the proportional, integral, derivative, and notch filter gains respectively.
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Table 6.4: Constant model PID values at the beginning of transition.

PID Gains System Performance

P 4136448.19 Rise Time [s] 0.15

I 1512150.32 Settling Time [s] 1.23

D 1803307.62 Overshoot [%] 14.3

N 1142.83 Peak 1.14

The controlled signal for the pitch angle is the difference between the front and back

rotor PWM signals squared. Nominal PWM signals are between 1000 (armed) and 2000

(max) µs. When squared this difference becomes order 106 which is the approximate order

of the PID gain values at the beginning of transition. This is because, at the beginning of

transition, the aircraft needs to have a large difference between the front and back rotor

speeds. The front rotors must spin much faster than the back rotors in order to keep

the vehicle level and execute the transition. To compensate for these large gain values, a

knockdown factor on the order of 10−6 could be added to the controller to account for this

and result in more ”nominal” gain values. The response of the system at the beginning of

transition is shown in Fig. 6.15.
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Fig. 6.15: PID control response of pitch angle at the beginning of transition.

The resulting PID gain values for the system at the end of transition, with input matrix

B = [0, 20.34]T , are shown in Table 6.5. The response of the system at the end of transition

is shown in Fig. 6.16.

Table 6.5: Constant model PID values at the end of transition.

PID Gains System Performance

P 1.11 Rise Time [s] 0.15

I 0.404 Settling Time [s] 1.23

D 0.48 Overshoot [%] 14.3

N 1142.83 Peak 1.14
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Fig. 6.16: PID control response of pitch angle at the end of transition.

6.4 PID Gain Value Optimization Assuming Polynomial Model

The optimized gain values for the polynomial model at the beginning of transition,

with input matrix B = [0, 8.79× 10−5], are shown in Table 6.6. The response of the system

at the beginning of transition is shown in Fig. 6.17.

Table 6.6: Polynomial model PID values at the beginning of transition.

PID Gains System Performance

P 255987.84 Rise Time [s] 0.15

I 93580.79 Settling Time [s] 1.23

D 111599.32 Overshoot [%] 14.3

N 1142.83 Peak 1.14
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Fig. 6.17: PID control response of pitch angle at the beginning of transition.

The PID gain values at the end of transition, with input matrix B = [0, 5.32 × 10−4],

are shown in Table 6.7. The response of the system at the end of transition is shown in Fig.

6.18.

Table 6.7: Polynomial model PID values at the end of transition.

PID Gains System Performance

P 42321.13 Rise Time [s] 0.15

I 15467.93 Settling Time [s] 1.23

D 18446.21 Overshoot [%] 14.3

N 1142.83 Peak 1.14
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Fig. 6.18: PID control response of pitch angle at the end of transition.
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CHAPTER 7

LESSONS LEARNED, CONCLUSIONS, AND FUTURE WORK

7.0.1 Lessons Learned From Aircraft Build

Some challenges with the build of the aircraft were part adhesion, wire sizing, electronic

connectors, and component location. The USUUA1 airframe is mainly comprised of foam,

plastic, and carbon fiber. Plastic interfaces are used to secure the foam pieces of the aircraft.

a foam-safe glue is used to adhere the plastic interfaces to the foam parts. Simply applying

foam glue to the parts and then pressing them together does not create a strong enough

bond to connect the parts. To increase the bond strength, light sanding or scoring should be

applied to the plastic and foam parts before the glue is applied. This improves the adhesion

of the glue with glued parts.

Another challenge is to size the wiring between all of the electronic components cor-

rectly. If the wiring gauge is too small then the wire can become hot enough to melt the

shielding during flight and melt surrounding components. To avoid this, the wires should be

sized according to the manufacturer’s specifications. A good rule of thumb for COTS parts

is the connecting wire should be the same gauge as the wiring that comes with each part.

While this may not be optimal, it can reduce the risk of melting electronic components and

connectors.

Because of the many electronic components within USUUA1, there are many electrical

connections. In many cases, it is best to use correctly soldered and insulated connections

between components. However, due to the experimental nature of the hardware, it was

necessary to connect and disconnect various components multiple times. Quick connectors,

such as bullet connectors, helped solve this modularity issue with USUUA1.
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7.0.2 Lessons Learned From Aircraft Test

When testing the aircraft and its subsystems it is best to start small. This means that

testing should be conducted on each subsystem individually before testing the system as a

whole. This helps troubleshoot problems with each subsystem. Many tests do not require

the propellers or wings to be installed such as testing GPS and compass data. In these

instances when certain components aren’t required for a given test, it is best to remove

or disable them until the test is completed. After, the components can be reinstalled or

re-enabled to test subsystem integration.

7.1 Conclusions from Results

This section gives the conclusions that can be drawn from this research. These conclu-

sions are based on the data and methods detailed in this work.

7.1.1 Data Processing Capability

Flight data collected from the aircraft can contain data for more than one flight. For this

reason, various toggles were included in the data post-processing code found in Appendix

B. These toggles can be used to analyze individual flight data. The code can extract

the transition data from ”.mat” files containing flight data. Because the various sensors

onboard the aircraft can have different sampling rates, the code is also able to unify the

vectors containing all of the data to the same size. After data post-processing, the code

also calculates the LSR of the data and estimates the unknown parameters. This is done

with no interaction from the user except to run the code and ensure all the flight data files

are found in the working directory.

At the end of the driver code, there is also a section to develop a PID controller to

control the pitch angle of the aircraft using Simulink. This functionality requires some

interaction from the user in the current state of the code. The user must run the PID tuner

to optimize the PID gain values. Future improvements to the code could help automate

the PID control development process. Results from the LSR algorithm are displayed on the

console as well as the calculated error.
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7.1.2 LSR Results Analysis

Observing the comparison and validation plots of the states of the aircraft shows that

both the constant and polynomial versions of the LSR match the experimental data rela-

tively closely. Interestingly, the constant unknown parameter case appears to match better

than the polynomial case. This suggests that the constant model is closer to the true

dynamics of the vehicle than the polynomial case.

For both the constant and polynomial cases, the comparison for vz does not match the

experimental data as well as vx. This could be due to the difference in magnitude between

the two. It could also be attributed to measurement noise being greater for the velocity

in the z-direction. Higher-quality sensors could improve accuracy and reduce errors due to

measurement noises.

Estimation of the unknown parameters for the constant and polynomial cases resulted

in typical values for CL and CD. However, CT resulted in a value much smaller than

anticipated. This may be due to the difference between the unknown parameter and typical

values given in manufacturer data sheets for the coefficient of thrust. Dimensional analyses

of the equations of motion reveal that the unknown parameter is not dimensionless and

must have a length and mass unit associated with it. In contrast, coefficients of thrust are

often reported by manufacturers as dimensionless like the coefficient of lift or drag. These

coefficients of thrust often correspond to the propellers alone and not the propulsion system

as a whole. The same discrepancy exists with the polynomial case but is not as clear due

to the 2nd order polynomial model. More investigation into the unknown parameter CT is

needed to understand the dimensional nature of the coefficient.

Identified parameter trends for the constant model, appear to have a similar pattern

between the 12 deg/s and the 14 deg/s data. The trends for the 14 deg/s case seem to

follow the 12 deg/s but shifted left. More data is needed to verify if there is any correlation

between these trends. The trends for the identified polynomial model do not appear to

have any distinguishable trend. This could be due to the actual dynamic model being more

similar to the constant model than the polynomial model. Another explanation could be
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due to neglecting changes to the airflow over the wing from the prop-wash of the tilt rotors

during the transition. Adding these effects to the dynamic model could help reveal the

effect this has on the aircraft during transition.

Based on the results, and the collected flight data in this work, it can be concluded that

the unknown parameters in the dynamic model of USUUA1 are more closely modeled as

constant values. These results are true for low-speed transitions with relatively slow tilting

speeds as shown in this research.

7.1.3 PID Control and System Response Analysis

Based on the results, the PID gain values are much smaller at the end of the transition

period than at the beginning. This is because the aircraft has transitioned to fixed-wing

mode and no longer needs to control the aircraft’s attitude with the difference between the

front and back rotor speeds. After the transition, the aircraft attitude is controlled using

the control surface deflections, which are assumed to be zero during the transition. This

can be seen by observing the values for the input matrix at the beginning and end of the

transition. The input matrix values are lower at the beginning of the transition and higher

at the end. This requires higher PID gain values at the beginning of the transition than at

the end. Creating a linear interpolation between the beginning and ending PID gain values

could produce a linear gain schedule for the pitch angle controller. More development is

needed to develop such a gain schedule.

7.2 Future Work and Refinements

There are many areas for potential improvement of this work. More research is needed

in the future to fully understand the dynamics of the transition flight period of eVTOL

aircraft. This future work includes the following:

1. Upgrade hardware and electronics to professional-grade components with redundant

sensors.
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2. Improve manual tune of PID gain values for data collection and include dynamic notch

filter and the other filter tuning to reduce the amount of noise in the system.

3. Include lateral dynamics and flow change effects due to tilt-able rotors to the dynamic

model for the aircraft.

4. Amplify data collection plan to include flight data for Q TLT MAX up to 70 deg and

Q TLT RATE DN up to 20 deg/s .

5. Compare the results of LSR results to that of a different identification algorithm .

6. Develop a gain scheduling control algorithm based on flight data for all states of the

aircraft.
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APPENDIX A

SUPPORTING INFORMATION FOR USUUA1

A.1 Supporting USUUA1 Information

Fig. A.1: USUUA1 system wiring diagram modified from [4].
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Fig. A.2: Control diagram for USUUA1 taken from [3].
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Table A.1: Pre-flight checklist for USUUA1.

Pre-flight Checklist

# Description

1 Connect telemetry radio to ground station and open Mission Planner.

2 Connect power to the fuselage of the aircraft and wait till the startup process

is completed.

3 Press the connect button in Mission Planner to connect to the vehicle via

telemetry radio.

4 Wait until the Pixhawk achieves a 3D GPS fix indicated by the HUD, audio

tone, and green blinking LED.

5 Begin the compass calibration in Mission Planner. Rotate at least 360 degrees

on all 6 sides. Repeat the calibration if compass errors occur.

6 Verify the IMU measurements by opening the raw data window in Mission

Planner and rotating the vehicle approximately ± 30 degrees for the pitch

and roll axes. Rotate to North, East, South, and West directions in the yaw

axis.

7 Disconnect power to the aircraft and connect the wings, tail pieces, and tail

servos.

8 Repeat Steps 2-4.

9 Ensure props will not contact the ground when rotated down then change the

flight mode to manual or a fly-by-wire mode.

10 Using the radio transmitter, verify the control surface directions. Change

directions if needed in Mission Planner.

11 Change the flight mode back to a qloiter or similar quadcopter mode.

12 verify the flight mission in Mission Planner if applicable.

13 Arm the aircraft. After arming, if flying an autonomous mission, switch to

auto mode and the aircraft will begin flight.
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A.2 Component Locator Boards

Fig. A.3: flight control locator board that secures the Pixhawk flight controller.

Fig. A.4: Locator board to secure the battery to the fuselage of USUUA1.

Fig. A.5: Locator board that secures the power distribution board and the BEC.
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A.3 Flight Data and LSR Results Assuming Constant Coefficients

This section shows state plots and model comparisons for flight tests using the constant

unknown coefficient LSR model. Figs. A.6–A.9 show the state outputs, state input, vx

comparison, and vz comparison plots.
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Fig. A.6: Test1.1 state plots.
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Fig. A.7: Test1.1 input plots.

0 500 1000 1500 2000 2500 3000

time [index]

0

5

10

15

v x [m
/s

]

Estimated Data
Experimental Data

Fig. A.8: Test1.1 comparison of the velocity in the x direction assuming constant coefficients.
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Fig. A.9: Test1.1 comparison of the velocity in the z direction assuming constant coefficients.
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Fig. A.10: Test1.2 state plots.
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Fig. A.11: Test1.1 state input plots.
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Fig. A.12: Test1.2 comparison of the velocity in the x direction assuming constant coeffi-
cients.
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Fig. A.13: Test1.2 comparison of the velocity in the z direction assuming constant coeffi-
cients.
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Fig. A.14: Test1.3 state plots.
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Fig. A.15: Test1.3 input plots.
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Fig. A.16: Test1.3 comparison of the velocity in the x direction assuming constant coeffi-
cients.
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Fig. A.17: Test1.3 comparison of the velocity in the z direction assuming constant coeffi-
cients.
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Fig. A.18: Test1.4 state plots.
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Fig. A.19: Test1.4 input plots.
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Fig. A.20: Test1.4 comparison of the velocity in the x direction assuming constant coeffi-
cients.
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Fig. A.21: Test1.4 comparison of the velocity in the z direction assuming constant coeffi-
cients.
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Fig. A.22: Test2.1 state plots.
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Fig. A.23: Test2.1 input plots.
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Fig. A.24: Test2.1 comparison of the velocity in the x direction assuming constant coeffi-
cients.
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Fig. A.25: Test2.1 comparison of the velocity in the z direction assuming constant coeffi-
cients.
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Fig. A.26: Test2.2 state plots.
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Fig. A.27: Test2.2 input plots.
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Fig. A.28: Test2.2 comparison of the velocity in the x direction assuming constant coeffi-
cients.
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Fig. A.29: Test2.2 comparison of the velocity in the z direction assuming constant coeffi-
cients.
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Fig. A.30: Test2.3 state plots.
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Fig. A.31: Test2.3 input plots.
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Fig. A.32: Test2.3 comparison of the velocity in the x direction assuming constant coeffi-
cients.
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Fig. A.33: Test2.3 comparison of the velocity in the z direction assuming constant coeffi-
cients.

A.4 Flight Data and LSR Results Assuming Polynomial Coefficients

This section shows model comparisons for flight tests using the polynomial unknown

coefficient LSR model. The state plots are the same as the constant unknown coefficient

case previously shown. This is because they correspond to the same data.
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Fig. A.34: Test1.1 comparison of the velocity in the x direction assuming polynomial coef-
ficients.
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Fig. A.35: Test1.1 comparison of the velocity in the z direction assuming polynomial coef-
ficients.
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Fig. A.36: Test1.2 comparison of the velocity in the x direction assuming polynomial coef-
ficients.
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Fig. A.37: Test1.2 comparison of the velocity in the z direction assuming polynomial coef-
ficients.
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Fig. A.38: Test1.3 comparison of the velocity in the x direction assuming polynomial coef-
ficients.
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Fig. A.39: Test1.3 comparison of the velocity in the z direction assuming polynomial coef-
ficients.
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Fig. A.40: Test1.4 comparison of the velocity in the x direction assuming polynomial coef-
ficients.
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Fig. A.41: Test1.4 comparison of the velocity in the z direction assuming polynomial coef-
ficients.
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Fig. A.42: Test2.1 comparison of the velocity in the x direction assuming polynomial coef-
ficients.
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Fig. A.43: Test2.1 comparison of the velocity in the z direction assuming polynomial coef-
ficients.

Test 2.2 plots:

0 500 1000 1500 2000 2500

time [index]

0

5

10

15

20

25

v x [m
/s

]

Estimated Data
Experimental Data

Fig. A.44: Test2.2 comparison of the velocity in the x direction assuming polynomial coef-
ficients.
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Fig. A.45: Test2.2 comparison of the velocity in the z direction assuming polynomial coef-
ficients.
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Fig. A.46: Test2.3 comparison of the velocity in the x direction assuming polynomial coef-
ficients.
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Fig. A.47: Test2.3 comparison of the velocity in the z direction assuming polynomial coef-
ficients.
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APPENDIX B

SUPPORTING MATLAB CODE FUNCTIONS AND ALGORITHMS

B.1 Code For Data Post-Processing Assuming Constant Unknown Coefficients

Listing B.1: Driver code for data processing, LSR , and PID control

1 % Clayton Spencer

2 % This script is driver code to manipulate and process experimental flight

3 % data in support of a Masters Thesis

4

5 close all; clear all; clc

6

7 % Add the names of all the .mat files that need to be read in

8 fltdat = [" Test1_1_1_2.mat", "Test1_1_1_2.mat", "Test2_1_2_2.mat", "Test2_3.

mat"];

9

10 % Toggle the below lines to analyse each individual flight

11 % fltdat = [" Test1_1_1_2.mat"];

12 % fltdat = [" Test1_3_1_4.mat"];

13 % fltdat = [" Test2_1_2_2.mat"];

14 % fltdat = [" Test2_3.mat"];

15 % fltdat = [" Test3_1.mat"];

16

17

18 % create the storage vectors for all the necessary parameters

19 u = []; w = []; q = []; theta = []; m1 = []; m2 = []; tlt = [];

20 time = cell(1, length(fltdat)); % time array for each flight time vector

21 timeL = [];

22

23 % Loop through all the flight logs to collect all of the flight data

24 % current data structure:

25 % data = [u,w,q,theta ,m1 ,m2 ,tlt]
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26 for i = 1: length(fltdat)

27 [tempt , tempd] = simple_data_manipulation(fltdat(i));

28

29 % concatenate all the data into their own column vectors

30 u = [u;tempd (:,1)]; w = [w;tempd (:,2)]; % velocities

31 q = [q;tempd (:,3)]; % rotation rate about y axis wy

32 theta = [theta;tempd (:,4)]; % Euler angles

33 m1 = [m1;tempd (:,5)]; m2 = [m2;tempd (:,6)]; tlt = [tlt;tempd (:,7)]; %

control signals

34

35 % Store the time vectors from each test flight

36 timeL = [timeL;tempt]; % long time vector of all the time stamps

concatenated

37 time{i} = {tempt }; % Cell array to contain columns of different lengths

38 end % i loop

39

40 % add all of the desired data into one vector

41 data = [u,w,q,theta ,m1,m2,tlt];

42

43 %% Virtualize the time stamps

44 % Because each flight during each test has different timestamps that

45 % relate to the Epoch 01/01/1970 , data cannot be plotted in time as is. To

46 % get around this , a "virtual timestamp" is created. Doing this will lose

47 % the actual reference to "real" time of the data. However , the data can be

48 % plotted in one large sequence to demonstrate the continuous nature of the

49 % data as it is fed into System Identification algorithms. The time vector

50 % will then be a sequence of integers corresponding to each new data point.

51

52 [virtime ,dt] = virtualize(timeL); % create the virtual time vector

53 dt = 0.01; % [s]

54 % Use the virtual time vector for plotting the concatonated flight data

55 % Use the virtual time vector for plotting the concatonated flight data

56 % State plots

57 figure

58 subplot (2,2,1)
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59 plot(virtime ,data (:,1))

60 % title(’Ground Speed ’,’FontSize ’,16)

61 % xlabel(’time [index]’,’FontSize ’,16)

62 ylabel(’Vx [m/s]’,’FontSize ’ ,16)

63 set(gca ,’FontSize ’ ,14);

64

65 subplot (2,2,2)

66 plot(virtime ,data (:,2))

67 % title(’Verticle Speed ’,’FontSize ’,16)

68 % xlabel(’time [index]’,’FontSize ’,16)

69 ylabel(’Vz [m/s]’,’FontSize ’ ,16)

70 set(gca ,’FontSize ’ ,14);

71

72 subplot (2,2,3)

73 plot(virtime ,data (:,3))

74 % title(’Pitch Rate ’,’FontSize ’,16)

75 xlabel(’time [index]’,’FontSize ’ ,16)

76 ylabel(’q [deg/s]’,’FontSize ’ ,16)

77 set(gca ,’FontSize ’ ,14);

78

79 subplot (2,2,4)

80 plot(virtime ,data (:,4))

81 % title(’Elevation Angle ’,’FontSize ’,16)

82 xlabel(’time [index]’,’FontSize ’ ,16)

83 ylabel(’\theta [deg]’,’FontSize ’ ,16)

84 set(gca ,’FontSize ’ ,14);

85

86 % Input signal plots

87 figure

88 subplot (3,1,1)

89 plot(virtime ,data (:,5))

90 % title(’Motor 1 and 3’,’FontSize ’,16)

91 % xlabel(’time [index]’,’FontSize ’,16)

92 ylabel(’M1 PWM [\mu/s]’,’FontSize ’ ,16)

93 set(gca ,’FontSize ’ ,14);
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94

95 subplot (3,1,2)

96 plot(virtime ,data (:,6))

97 % title(’Motor 2 and 4’,’FontSize ’,16)

98 % xlabel(’time [index]’,’FontSize ’,16)

99 ylabel(’M2 PWM [\mu/s]’,’FontSize ’ ,16)

100 set(gca ,’FontSize ’ ,14);

101

102 subplot (3,1,3)

103 plot(virtime ,data (:,7))

104 % title(’Tilt Servo L/R’,’FontSize ’,16)

105 xlabel(’time [index]’,’FontSize ’ ,16)

106 ylabel(’tlt servo PWM [\mu/s]’,’FontSize ’ ,16)

107 set(gca ,’FontSize ’ ,14);

108

109 %% LSR

110 % This section computes the Least Squares Regression for the data.

111 [eta ,output] = lsr_TH(data ,virtime ,dt); % computes the Least Squares

Regression to estimate eta

112

113 % Output the results

114 fprintf(’C_T: %f\n ’, eta (1))

115 fprintf(’C_L: %f\n ’, eta (2))

116 fprintf(’C_D: %f\n ’, eta (3))

117

118 %% PID Tuning

119 % Define the input and output of the system

120 n = round(length(output (:,1))*0.68);

121 vx = output (1:n,1); vxval = output(n:end ,1);

122 vz = output (1:n,2); vzval = output(n:end ,2);

123 wy = output (1:n,3); wyval = output(n:end ,3);

124 theta = output (1:n,4); thetaval = output(n:end ,4);

125 m1 = output (1:n,5); m1val = output(n:end ,5);

126 m2 = output (1:n,6); m2val = output(n:end ,6);

127 tlt = output (1:n,7); tltval = output(n:end ,7);
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128

129 % Create a State Space model for trim point 0

130 vx0 = 0; vz0 = vz(1); theta0 = 0; wy0 = 0; tlt0 = tlt (1); % initial

conditions

131 rho = 1.215; % density of air [kg/m^3]

132 S = 0.725; % Characteristic area [m^2]

133 m = 11; % aircraft mass [kg]

134 g = 9.81; % acceleration due to gravity [m/s^2]

135 l = 0.362; % Characteristic length [m]

136 h = rho*S/(2*m);

137 Iyy = 0.4;

138

139 % Create State Matrices

140 A0 = [0, 1;

141 0, 0];

142

143 B0 = [0;

144 2*eta (1)*l/Iyy];

145 C0 = [1, 0];

146 D0 = [0];

147

148 % Convert to transfer functions

149 [n0_1 ,d0_1] = ss2tf(A0 ,B0 ,C0 ,D0); % numerator and denominator corresponding

to the first input

150 G0_1 = tf(n0_1 ,d0_1) % transfer function corresponding to the first input

151

152 figure

153 load PID_output.mat

154 plot(ans.Time ,ans.Data (:,1));

155 hold on

156 plot(ans.Time ,ans.Data (:,2));

157 title(’Control Response ’,’FontSize ’ ,16);

158 xlabel(’Time [s]’,’FontSize ’ ,16);

159 xlim ([0 ,3]);

160 ylabel(’Pitch angle [rad]’,’FontSize ’ ,16);
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161 legend(’Target ’,’System Response ’);

162 set(gca ,’FontSize ’ ,14);

163 hold off

164

165 n = 2900; % data point number at end of first transition

166 vx1 = vx(n); vz1 = vz0; theta1 = theta(n); wy1 = wy(n); tlt1 = tlt(n); %

initial conditions

167

168 % Calculate C_T

169 th = output(n,1); % initial velocity

170 C_T1 = eta (1)*th^2 + eta (2)*th + eta (3);

171

172 % Create State Matrices

173 A1 = [0, 1;

174 0, 0];

175

176 B1 = [0;

177 2*C_T1*l/Iyy];

178 C1 = [1, 0];

179 D1 = [0];

180

181 % Convert to transfer functions

182 [n1_1 ,d1_1] = ss2tf(A1 ,B1 ,C1 ,D1 ,1); % numerator and denominator

corresponding to the first input

183 G1_1 = tf(n1_1 ,d1_1) % transfer function corresponding to the first input

184

185 figure

186 load PID_output_end.mat

187 plot(ans.Time ,ans.Data (:,1));

188 hold on

189 plot(ans.Time ,ans.Data (:,2));

190 title(’Control Response End’,’FontSize ’ ,16);

191 xlabel(’Time [s]’,’FontSize ’ ,16);

192 xlim ([0 ,3]);

193 ylabel(’Pitch angle [rad]’,’FontSize ’ ,16);



105

194 legend(’Target ’,’System Response ’);

195 set(gca ,’FontSize ’ ,14);

196 hold off

197

198

199 disp(’Program: Simple Driver Finished ’)

Listing B.2: Function which post-processes flight data

1 function [time ,data_o] = simple_data_manipulation(file_name)

2

3 % Clayton Spencer

4 % Flight Data collection and manipulation:

5 % The goal of this script is to parse data from a .mat file that contains

6 % all the flight data from the VTOL project flights and put them into a

7 % usable form: data = [vx ,vz ,wy ,theta ,m1 ,m2 ,tlt]

8

9 % Time the program

10 tic;

11

12 %% Read in the flight data.

13 load (file_name)

14

15 % Extract the data into sections

16 % Euler angles

17 time_euler = ATT(:,2); % time vector of the euler angle variables

18 theta = ATT(:,6); % elevation angle [deg]

19

20 % velocites

21 time_vel = GPS_0 (:,2);

22 u = GPS_0 (:,12); % ground speed vx [m/s]

23 w = GPS_0 (:,14); % vertical speed vz [m/s]

24

25 % Rate data

26 time_rate = RATE (:,2); % time vector of the rate variables

27 q = RATE (:,7); % pitch rate [deg/s]
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28

29 % Control data

30 time_control = RCOU (:,2); % time vector of the control variables

31 m1 = RCOU (: ,11); % pwm signal for motor1 and assumed motor 3

32 m2 = RCOU (: ,12); % pwm signal for motor2 and assumed motor 4

33 tlt = RCOU (:,7); % pwm signal for the left tilt -servo and assumed right tilt

servo

34

35 % plot an example of one of the pieces of data for later comparison

36 m2_copy = m2;

37 u_copy = u;

38 figure

39 hold on

40 plot(time_vel ,u_copy ,’b*’)

41 title(’Velocity Data Before Processing ’)

42 xlabel(’time [\mu s]’)

43 ylabel(’vx [m/s]’)

44

45 %% Create the master time vector

46

47 % add each time vector to the end of one master time vector

48 time_master = [time_euler;time_vel;time_rate;time_control ];

49 time = unique(time_master); % this command sorts the vector

50 % from smallest to greatest and deletes repeat values.

51

52 %% Adjust data vectors

53 % overwrite the velocity data vectors to adjust

54 [u,dtu] = get_common_data(time ,time_vel ,u);

55 [w,dtw] = get_common_data(time ,time_vel ,w);

56

57 % overwrite the rate data vectors to be the adjusted vectors

58 [q,dtq] = get_common_data(time ,time_rate ,q);

59

60 % overwrite the euler angle data vectors to be the adjusted vectors

61 [theta ,dttheta] = get_common_data(time ,time_euler ,theta);
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62

63 % overwrite the control data vectors to be the adjusted vectors

64 [m1 ,dtm1] = get_common_data(time ,time_control ,m1);

65 [m2 ,dtm2] = get_common_data(time ,time_control ,m2);

66 [tlt ,dttlt] = get_common_data(time ,time_control ,tlt);

67

68 data = [u,w,q,theta ,m1,m2,tlt];

69 [rows ,columns] = size(data); % get the number of columns of the data vector

70

71 plot(time ,u,’r.’)

72 title(’Velocity Data After Processing ’)

73 xlabel(’time [\mu s]’)

74 ylabel(’vx [m/s]’)

75 hold off

76

77 %% Single Flight Analysis

78 % Split the data into individual flights to determine the effects of tilt

79 % rate and max tilt angle if needed.

80

81 mid = round(length(u)/2); % toggle the next two lines with the 2 below it

82 % data = data (1:mid ,:); % First flight data

83 % time = time (1:mid ,:); % First flight time

84 % data = data(mid:end ,:); % Second flight

85 % time = time(mid:end ,:); % First flight time

86

87 %% Start Point

88 % if there is unwanted data at the beginning of the file , cut it out

89 % Use the minimum value for the tlt servo signal as a reference

90 ref = 1200;

91 iter = 0;

92 for i=1: length(time)

93 if tlt(i) > ref

94 iter = iter + 1; % increment the iteration counter

95 else %

96 % The signal for the tilt rotor has reached an acceptable start
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97 % point

98 break % exit the loop

99 end % > ref

100 end % i

101 iter = iter + 1; % increment one more time

102

103 % adjust the time vector

104 time = time(iter:end); % This cuts off the undesirable portion of the

beginning of the vector

105

106 % adjust the data vectors as well

107 dummy = [];

108 for i=1: columns

109 temp_data = data(:,i);

110 temp_data = temp_data(iter:end);

111 dummy = [dummy ,temp_data ]; % cut off the undesireable beginning of the

data

112 end % i

113 data = dummy; % overwrite the data vectors

114

115 % check to make sure the time vector and the data vectors are the same size

116 s = length(time) - length(data (:,1))

117

118 %% Extract transition period data

119

120 % Find the transition period using the tilt servo time signal as reference

121 transtime = transition(time ,data(:,end)); % output is the ref time vector

122

123 % Using the ref time vector , cut and keep only transition period data from

124 % the provided flight data.

125 dummy = [];

126 for i=1: columns

127 % add data corresponding to transition to the dummy data vector

128 dummy = [dummy ,cut(transtime ,time ,data(:,i))];

129 end % end i loop



109

130

131 % update the time vector and the data vector for output

132 time = transtime;

133 data_o = dummy;

134

135 % Stop the timer

136 elapsedTime = toc;

137

138 % Display the elapsed time

139 disp([’Elapsed time for each flight test: ’ num2str(elapsedTime) ’ seconds ’

]);

140

141 end % data_manipulation

Listing B.3: Function which unifies all the flight data vectors

1 function [new_data ,dt] = get_common_data(time_master ,time_reference ,data)

2 % This function takes a master time vector , a reference time vector , and a

3 % data vector and creates a new data vector of the same size as the master

4 % time vector. The latest data value is re -used when the time indeces of

5 % the master time vector and the reference time vector do not match.

6

7 % The master time vector contains all the values of a pool of time vectors.

8 % each reference time value is found in the master time vector.

9 % This results in the data vector having repeated values until reaching a

10 % reference time index that matches the master time vector. Then , the data

11 % vector value is updated in the new data vector.

12

13 % Find the average time step in the time vector

14 t1 = time_reference (1:end -1); % time vector without the last element

15 t2 = time_reference (2: end); % time vector without the first element

16 t1m2 = abs(t1 - t2); % absolute value of the difference between the values

17 tavg = mean(t1m2); % find the average time step value in [\mus]

18 dt = tavg *10^ -6; % convert from \mus to [s]

19

20 new_data = zeros(length(time_master) ,1); % initialize the new data vector
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21 new_data (1) = data (1); % set first data value

22 curr_ref_time = time_reference (2); % initialize the current reference time

value

23 curr_data_index = 2; % initial data vector index

24 for i=2: length(time_master)-1 % Loop through all the values of the master

time vector

25 % check if the reference data and time index need to be updated

26 if time_master(i) == curr_ref_time

27 new_data(i) = data(curr_data_index); % add a value to the new data

vector

28 curr_data_index = curr_data_index + 1; % increment data index

29

30 if curr_data_index < length(data)

31 curr_ref_time = time_reference(curr_data_index);

32 else

33 curr_ref_time = time_reference(curr_data_index -1);

34 end

35

36 else

37 new_data(i) = data(curr_data_index - 1); % add a value to the new

data vector

38 continue % move on to the next iteration

39 end

40

41 end % end for loop (i)

42 end % end get_common_data function

Listing B.4: Function which extracts the transition period flight data

1 function [tout ,dout] = transition(time ,data)

2 % This function finds the transition periods within test flight data. It

3 % then outputs a reference time vector that corressponds to data during

4 % transition periods only. This function assumes the data does not begin

5 % obove the threshold.

6

7 % set transition pwm signal thresholds using the tilt servo signal as
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8 % reference.

9 % below the threshold , the vehicle is in quadcopter mode

10 % above the threshold , the vehicle is in fixed wing mode

11 % within the threshold , the vehicle is transitioning from quad to fixed

12 % wing which is the time period of desired data.

13 min = 1275; % min pwm signal where transition begins

14 max = 1880; % max pwm signal where transition completes

15

16 % storage arrays

17 tout = [];

18 dout = [];

19 fwd = false; % flag , true if vehicle is transitioning forward and false if

transitioning backwards

20 for i=2: length(time) % loop through every data point

21

22 if data(i-1) < min && data(i) > min % detect if flag needs to be changed

23 fwd = true;

24 elseif data(i-1) > max && data(i) < max % detects backwards transition

25 fwd = false;

26 else % transition hasn ’t changed

27 % continue with the current falg value

28 end % end flag changing condition

29

30 if fwd % if in forward transition

31 if data(i) < max && data(i) > min % if transition hasn ’t completed

32 tout = [tout;time(i)]; % add time index during transition

33 else % vehicle has transitioned completely

34 % This case should never be reached

35 end % end min <data <max

36

37 else % not in forward transition

38 % do nothing

39 end % end data(i-1) ....

40

41 end % end i loop
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42

43 end % end transition

Listing B.5: Function which cuts away non-transition period flight data

1 function dout = cut(reftime ,time ,data)

2 % reftime is a reference (correct) time vector

3 % time is a vector of timestamps associated with the data vector

4 % data is the data associated with the time vector

5

6 % This function keeps only the data points where the timestamp is also in

7 % the reftime. The returned value is a vector which now coincides with the

8 % reference time vector

9 dout = [];

10 for i=1: length(time)

11 if ismember(time(i),reftime) % the current timestamp is in reftime

12 dout = [dout;data(i)]; % add the data to the output vector

13 else % the current timestamp isn ’t in the reftime

14 % do not add the data at this timestamp to the output vector

15 end % ismember

16 end % end i loop

17 end % cut

Listing B.6: Function which creates a virtual time vector for visualization purposes

1 function [virtime ,dt] = virtualize(time)

2 % This function finds the average timestep of a time vector. This function

3 % also takes in a vector of time stamps and outputs a vector of

4 % "virtual" timestamps. The virtual timestamps are an integer sequence from

5 % 1 to the number of timestamps in the original time vector

6

7 t1 = time (1:end -1); % time vector without the last element

8 t2 = time (2: end); % time vector without the first element

9 t1m2 = abs(t1 - t2); % absolute value of the difference between the values

10 tavg = mean(t1m2); % find the average time step value in [\mus]

11 dt = tavg *10^ -6; % convert from \mus to [s]

12



113

13 virtime = zeros(length(time) ,1); % pre -allocate the virtual time vector

14 for i=1: length(time)

15 virtime(i) = i; % use the loop iteration as the counter and the virtual

value

16 end % i loop

17

18 end % virtualize

Listing B.7: Code which computes the LSR for estimating the constant unknown parameters

1 function [eta1 ,output] = lsr_TH(data ,time ,dt)

2 % This function computes the Least Squares Regression for flight data. The

3 % result is the estimated unknown parameters of the dynamic model of the

4 % aircraft

5

6 % Parse the data out into individual signals for readability ’s sake. The

7 % expected order of the data is: data = [vx ,vz ,wy ,theta ,m1 ,m2 ,tlt];

8 vx = data (:,1); % aircraft velocity in the x direction [m/s]

9 vz = data (:,2); % aircraft velocity in the z direction [m/s]

10 wy = data (:,3); % angular velocity about the y-axis [rad/s]

11 theta = data (:,4); % elevation angle [deg]

12 m1_pwm = data (:,5); % PWM signal for motor 1 and 3 [\mus]

13 m2_pwm = data (:,6); % PWM signal for motor 2 and 4 [\mus]

14 tlt_pwm = data (:,7); % PWM signal for tilt servos left and right [\mus]

15

16 % The PWM signals need to be converted into angular velocites. This is done

17 % using experimental mappings

18 % initialize vectors for the motors and the tilt servo

19 m1rad = zeros(length(m1_pwm) ,1);

20 m2rad = zeros(length(m2_pwm) ,1);

21 tltdeg = zeros(length(tlt_pwm) ,1);

22 tltrad = zeros(length(tlt_pwm) ,1);

23 thetarad = zeros(length(theta) ,1);

24

25 % Loop through the motor and tilt servo signals to convert the signals from

26 % their raw form to standard units
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27 m1 = zeros(length(m1_pwm) ,1);

28 m2 = zeros(length(m2_pwm) ,1);

29 for i=1: length(m1_pwm)

30 % Conversions for calculation and plotting

31 m1(i) = ( -0.0175* m1_pwm(i)^2 + 61.681* m1_pwm(i) - 42981); % [RPM]

32 m2(i) = (10.692* m2_pwm(i) - 10777); % [RPM]

33 tltrad(i) = deg2rad (( tlt_pwm(i) - 1180) /7.7396); % [rad]

34 m1rad(i) = (2*pi/60)*(m1(i)); % [rad/s]

35 m2rad(i) = (2*pi/60)*(m2(i)); % [rad/s]

36 tltdeg(i) = rad2deg(tltrad(i)); % [deg]

37 thetarad(i) = deg2rad(theta(i)); % [rad]

38 end % i loop

39

40 % Output the converted data

41 output = [vx,vz,wy,thetarad ,m1rad ,m2rad ,tltrad ];

42

43 % % initialize necessary values

44 rho = 1.215; % density of air [kg/m^3]

45 S = 0.725; % Characteristic area [m^2]

46 X = zeros(length(data (1)) ,4);

47 m = 11; % aircraft mass [kg]

48 g = 9.81; % acceleration due to gravity [m/s^2]

49 L = 0.362; % Characteristic length [m]

50 X = []; % matrix of regressors

51 xkp1 = []; % state values at x_k+1

52 xk = []; % state values at x_k

53 rem = []; % remaining values

54 for i=1: length(data)-1

55 % Calculate the regressors

56 x11 = dt*(2* m1rad(i)^2* sin(tltrad(i)));

57 x12 = dt*(rho*S*vz(i)*sqrt(vx(i)^2 + vz(i)^2))/(2*m);

58 x13 = -dt*(rho*S*vx(i)*sqrt(vx(i)^2 + vz(i)^2))/(2*m);

59 x21 = -dt*(2* m1rad(i)^2* cos(tltrad(i)) + 2* m2rad(i)^2)/m;

60 x22 = -dt*(rho*S*vx(i)*sqrt(vx(i)^2 + vz(i)^2))/(2*m);

61 x23 = -dt*(rho*S*vz(i)*sqrt(vx(i)^2 + vz(i)^2))/(2*m);
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62

63 Xtemp = [x11 ,x12 ,x13;

64 x21 ,x22 ,x23];

65 X = [X;Xtemp]; % Stack up the regressor matrix

66

67 % Calculate x_k+1

68 xk1_1 = vx(i+1);

69 xk1_2 = vz(i+1);

70 xkp1 = [xkp1;xk1_1;xk1_2 ]; % Stack up the vector truth value

71

72 % Calculate x_k

73 xk1 = vx(i);

74 xk2 = vz(i);

75 xk = [xk;xk1;xk2]; % Stack up the vector

76

77 % Calculate he remaining values

78 rem1 = dt*(-wy(i)*vz(i) - g*sin(thetarad(i)));

79 rem2 = dt*(wy(i)*vx(i) + g*cos(thetarad(i)));

80 rem = [rem;rem1;rem2]; % Stack up the vector

81

82 end % i loop

83

84 % Check the condition number of the matrix

85 condition = cond(X);

86

87 % Estimate the unknown parameters [C_T ,C_L ,C_D]

88 % Use the first 68% of the data for LSR and the last 32% for validation

89 n = round(length(xkp1) * 0.68); % index for the first 68% of the data

90

91 % Use optimization to introduce upper and lower bounds to the unknowns

92 % eta1 = pinv(X)*(xkp1 - xk - rem);

93 eta1 = quadprog (2*((X) ’)*X,-2*(X) ’*(xkp1 - xk - rem)

,[] ,[] ,[] ,[] ,[0; -1;0] ,[1;1;1]);

94

95 % Check regression error
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96 err = sqrt((norm((xkp1 - xk - rem) - X*eta1))^2/( length(xkp1)*(norm(xkp1 -

xk - rem))^2))

97 singval = svd(X);

98

99 % Compare model and experiment

100 xkp1m = xk(1:n) + X(1:n,:)*eta1 + rem(1:n); % regular data

101 xkp1m_val = xk(n+1:end) + X(n+1:end ,:)*eta1 + rem(n+1:end); % validation

data

102

103 % seperate the states for comparison with vx ,vz

104 vxm = []; % modeled vx

105 vzm = []; % modeled vz

106 for i=1:2: length(xkp1m)-1

107 vzm = [vzm;xkp1m(i+1)]; % This may need to be vzm depending on n

108 vxm = [vxm;xkp1m(i)]; % This may need to be vxm depending on n

109 end % i loop

110 t = linspace(1,length(vxm),length(vxm))’;

111

112 % seperate the states for validation with vx ,vz

113 vxmval = []; % modeled vx

114 vzmval = []; % modeled vz

115 for i=1:2: length(xkp1m_val)-1

116 vxmval = [vxmval;xkp1m_val(i+1)]; % This may need to be vzm depending on

n

117 vzmval = [vzmval;xkp1m_val(i)]; % This may need to be vxm depending on n

118 end % i loop

119 tval = linspace(1,length(vxmval),length(vxmval)) ’;

120

121 % Plot comparisons for regular data

122 figure

123 plot(t,vxm ,’b’)

124 hold on

125 plot(time (1: length(t)),vx(1: length(t)))

126 title(’Vx Comparison ’,’FontSize ’ ,16)

127 ylabel(’vx [m/s]’,’FontSize ’ ,16)
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128 xlabel(’time [index]’,’FontSize ’ ,16)

129 legend(’Estimated Data’, ’Experimental Data’)

130 set(gca ,’FontSize ’ ,14);

131 hold off

132

133 figure

134 plot(t,vzm ,’b’)

135 hold on

136 plot(time (1: length(t)),vz(1: length(t)))

137 title(’Vz Comparison ’,’FontSize ’ ,16)

138 ylabel(’vz [m/s]’,’FontSize ’ ,16)

139 xlabel(’time [index]’,’FontSize ’ ,16)

140 legend(’Estimated Data’, ’Experimental Data’)

141 set(gca ,’FontSize ’ ,14);

142 hold off

143

144 % Plot comparisons for validation data

145 figure

146 plot(tval ,vxmval ,’b’)

147 hold on

148 plot(tval ,vx(length(t):end -abs(length(vx(length(t):end)) - length(tval))))

149 title(’Vx Validation ’,’FontSize ’ ,16)

150 ylabel(’vx [m/s]’,’FontSize ’ ,16)

151 xlabel(’time [index]’,’FontSize ’ ,16)

152 legend(’Estimated Data’, ’Experimental Data’)

153 set(gca ,’FontSize ’ ,14);

154 hold off

155

156 figure

157 plot(tval ,vzmval ,’b’)

158 hold on

159 plot(tval ,vz(length(t):end -abs(length(vz(length(t):end)) - length(tval))))

160 title(’Vz Validation ’,’FontSize ’ ,16)

161 ylabel(’vz [m/s]’,’FontSize ’ ,16)

162 xlabel(’time [index]’,’FontSize ’ ,16)
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163 legend(’Estimated Data’, ’Experimental Data’)

164 set(gca ,’FontSize ’ ,14);

165 hold off

166

167 end % lsr

B.2 Code For Data Manipulation Assuming Polynomial Unknown Coefficients

The driver code and the LSR code is slightly different for the polynomial unknown case.

The following code has been modified from the code for the constant unknown parameter

case.

Listing B.8: Driver code for data processing, LSR , and PID control

1 % Clayton Spencer

2 % This script is driver code to manipulate and process experimental flight

3 % data in support of a Masters Thesis

4

5 close all; clear all; clc

6

7 % Add the names of all the .mat files that need to be read in

8 fltdat = [" Test1_1_1_2.mat", "Test1_3_1_4", "Test2_1_2_2", "Test2_3.mat",];

9

10 % Test individual flight files using the below toggles

11 % fltdat = [" Test1_1_1_2.mat"];

12 % fltdat = [" Test1_3_1_4.mat"];

13 % fltdat = [" Test2_1_2_2.mat"];

14 % fltdat = [" Test2_3.mat"];

15 % fltdat = [" Test3_1.mat"];

16

17 % create the storage vectors for all the necessary parameters

18 u = []; w = []; q = []; theta = []; m1 = []; m2 = []; tlt = [];

19 time = cell(1, length(fltdat)); % time array for each flight time vector

20 timeL = [];

21

22 % Loop through all the flight logs to collect all of the flight data
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23 % current data structure: data = [u,w,q,theta ,m1 ,m2 ,tlt]

24 for i = 1: length(fltdat)

25 [tempt , tempd] = simple_data_manipulation(fltdat(i));

26

27 % concatenate all the data into their own column vectors

28 u = [u;tempd (:,1)]; w = [w;tempd (:,2)]; % velocities

29 q = [q;tempd (:,3)]; % rotation rate about y axis wy

30 theta = [theta;tempd (:,4)]; % Euler angles

31 m1 = [m1;tempd (:,5)]; m2 = [m2;tempd (:,6)]; tlt = [tlt;tempd (:,7)]; %

control signals

32

33 % Store the time vectors from each test flight

34 timeL = [timeL;tempt]; % long time vector of all the time stamps

concatenated

35 time{i} = {tempt }; % Cell array to contain columns of different lengths

36 end % i loop

37

38 % add all of the desired data into one vector

39 data = [u,w,q,theta ,m1,m2,tlt];

40

41 %% Virtualize the time stamps

42 % Because each flight during each test has different timestamps that

43 % relate to the Epoch 01/01/1970 , data cannot be plotted in time as is. To

44 % get around this , a "virtual timestamp" is created. Doing this will lose

45 % the actual reference to "real" time of the data. However , the data can be

46 % plotted in one large sequence to demonstrate the continuous nature of the

47 % data as it is fed into System Identification algorithm. The time vector

48 % will then be a sequence of integers corresponding to each new data point.

49

50 virtime = virtualize(timeL); % create the virtual time vector

51

52 % Use the virtual time vector for plotting the concatonated flight data

53 % State plots

54 figure

55 subplot (2,2,1)
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56 plot(virtime ,data (:,1))

57 % title(’Ground Speed ’,’FontSize ’,16)

58 % xlabel(’time [index]’,’FontSize ’,16)

59 ylabel(’Vx [m/s]’,’FontSize ’ ,16)

60 set(gca ,’FontSize ’ ,14);

61

62 subplot (2,2,2)

63 plot(virtime ,data (:,2))

64 % title(’Verticle Speed ’,’FontSize ’,16)

65 % xlabel(’time [index]’,’FontSize ’,16)

66 ylabel(’Vz [m/s]’,’FontSize ’ ,16)

67 set(gca ,’FontSize ’ ,14);

68

69 subplot (2,2,3)

70 plot(virtime ,data (:,3))

71 % title(’Pitch Rate ’,’FontSize ’,16)

72 xlabel(’time [index]’,’FontSize ’ ,16)

73 ylabel(’q [deg/s]’,’FontSize ’ ,16)

74 set(gca ,’FontSize ’ ,14);

75

76 subplot (2,2,4)

77 plot(virtime ,data (:,4))

78 % title(’Elevation Angle ’,’FontSize ’,16)

79 xlabel(’time [index]’,’FontSize ’ ,16)

80 ylabel(’\theta [deg]’,’FontSize ’ ,16)

81 set(gca ,’FontSize ’ ,14);

82

83 % Input signal plots

84 figure

85 subplot (3,1,1)

86 plot(virtime ,data (:,5))

87 % title(’Motor 1 and 3’,’FontSize ’,16)

88 % xlabel(’time [index]’,’FontSize ’,16)

89 ylabel(’M1 PWM [\mu/s]’,’FontSize ’ ,16)

90 set(gca ,’FontSize ’ ,14);
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91

92 subplot (3,1,2)

93 plot(virtime ,data (:,6))

94 % title(’Motor 2 and 4’,’FontSize ’,16)

95 % xlabel(’time [index]’,’FontSize ’,16)

96 ylabel(’M2 PWM [\mu/s]’,’FontSize ’ ,16)

97 set(gca ,’FontSize ’ ,14);

98

99 subplot (3,1,3)

100 plot(virtime ,data (:,7))

101 % title(’Tilt Servo L/R’,’FontSize ’,16)

102 xlabel(’time [index]’,’FontSize ’ ,16)

103 ylabel(’tlt servo PWM [\mu/s]’,’FontSize ’ ,16)

104 set(gca ,’FontSize ’ ,14);

105

106 %% LSR

107 % This section computes the Least Squares Regression for the data.

108 [eta ,output] = lsr(data ,virtime); % computes the Least Squares Regression to

estimate eta

109

110 % Output the results

111 fprintf(’a1: %f\n ’, eta (1))

112 fprintf(’a2: %f\n ’, eta (2))

113 fprintf(’a3: %f\n ’, eta (3))

114 fprintf(’b1: %f\n ’, eta (4))

115 fprintf(’b2: %f\n ’, eta (5))

116 fprintf(’b3: %f\n ’, eta (6))

117 fprintf(’c1: %f\n ’, eta (7))

118 fprintf(’c2: %f\n ’, eta (8))

119 fprintf(’c3: %f\n ’, eta (9))

120

121 %% PID Tuning

122 % This section creates a linearized state space model and transfer function

123 % for the system. This allows the use of the PID tuner within simulink.

124 % Define the input and output of the system
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125 n = round(length(output (:,1))*0.68);

126 vx = output (1:n,1); vxval = output(n:end ,1);

127 vz = output (1:n,2); vzval = output(n:end ,2);

128 wy = output (1:n,3); wyval = output(n:end ,3);

129 theta = output (1:n,4); thetaval = output(n:end ,4);

130 m1 = output (1:n,5); m1val = output(n:end ,5);

131 m2 = output (1:n,6); m2val = output(n:end ,6);

132 tlt = output (1:n,7); tltval = output(n:end ,7);

133

134 % Create a State Space model for trim point 0

135 vx0 = 0; vz0 = vz(1); theta0 = 0; wy0 = 0; tlt0 = tlt (1); % initial

conditions

136 rho = 1.215; % density of air [kg/m^3]

137 S = 0.725; % Characteristic area [m^2]

138 m = 11; % aircraft mass [kg]

139 g = 9.81; % acceleration due to gravity [m/s^2]

140 l = 0.362; % Characteristic length [m]

141 h = rho*S/(2*m);

142 Iyy = 0.4;

143

144 % Calculate C_T

145 th = sqrt(output (1,1)^2 + output (1,2)^2); % initial pitch angle

146 C_T = eta (1)*th^2 + eta (2)*th + eta (3);

147

148 % Create State Matrices

149 A0 = [0, 1;

150 0, 0];

151

152 B0 = [0;

153 2*C_T*l/Iyy];

154 C0 = [1, 0];

155 D0 = [0];

156

157 % Convert to transfer functions
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158 [n0_1 ,d0_1] = ss2tf(A0 ,B0 ,C0 ,D0); % numerator and denominator corresponding

to the first input

159

160 G0_1 = tf(n0_1 ,d0_1) % transfer function corresponding to the first input

161

162 figure

163 load PID_output.mat

164 plot(ans.Time ,ans.Data (:,1));

165 hold on

166 plot(ans.Time ,ans.Data (:,2));

167 title(’Control Response ’,’FontSize ’ ,16);

168 xlabel(’Time [s]’,’FontSize ’ ,16);

169 xlim ([0 ,3]);

170 ylabel(’Pitch angle [rad]’,’FontSize ’ ,16);

171 legend(’Target ’,’System Response ’);

172 set(gca ,’FontSize ’ ,14);

173 hold off

174

175 % Define state at end of transition

176 n = 2900; % data point number at end of first transition

177 vx1 = vx(n); vz1 = vz0; theta1 = theta(n); wy1 = wy(n); tlt1 = tlt(n); %

initial conditions

178

179 % Calculate C_T

180 th = sqrt(output(n,1)^2 + output (1,2)^2); % initial velocity

181 C_T1 = eta (1)*th^2 + eta (2)*th + eta (3);

182

183 % Create State Matrices

184 A1 = [0, 1;

185 0, 0];

186

187 B1 = [0;

188 2*C_T1*l/Iyy];

189 C1 = [1, 0];

190 D1 = [0];
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191

192 % Convert to transfer functions

193 [n1_1 ,d1_1] = ss2tf(A1 ,B1 ,C1 ,D1 ,1); % numerator and denominator

corresponding to the first input

194

195 G1_1 = tf(n1_1 ,d1_1) % transfer function corresponding to the first input

196

197 figure

198 load PID_output_end.mat

199 plot(ans.Time ,ans.Data (:,1));

200 hold on

201 plot(ans.Time ,ans.Data (:,2));

202 title(’Control Response End’,’FontSize ’ ,16);

203 xlabel(’Time [s]’,’FontSize ’ ,16);

204 xlim ([0 ,3]);

205 ylabel(’Pitch angle [rad]’,’FontSize ’ ,16);

206 legend(’Target ’,’System Response ’);

207 set(gca ,’FontSize ’ ,14);

208 hold off

209

210

211 disp(’Program: Simple Driver Finished ’);

Listing B.9: Code which computes the LSR for estimating the polynomial unknown param-

eters

1 function [eta1 ,output] = lsr(data ,time)

2 % This function computes the Least Squares Regression for flight data. The

3 % result is the estimated unknown parameters of the dynamic model of the

4 % aircraft

5

6 % Parse the data out into individual signals for readability ’s sake. The

7 % expected order of the data is: data = [vx ,vz ,wy ,theta ,m1 ,m2 ,tlt];

8 vx = data (:,1); % aircraft velocity in the x direction [m/s]

9 vz = data (:,2); % aircraft velocity in the z direction [m/s]

10 wy = data (:,3); % angular velocity about the y-axis [rad/s]
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11 theta = data (:,4); % elevation angle [deg]

12 m1_pwm = data (:,5); % PWM signal for motor 1 and 3 [\mus]

13 m2_pwm = data (:,6); % PWM signal for motor 2 and 4 [\mus]

14 tlt_pwm = data (:,7); % PWM signal for tilt servos left and right [\mus]

15

16 % initialize vectors for the motors and the tilt servo

17 m1rad = zeros(length(m1_pwm) ,1);

18 m2rad = zeros(length(m2_pwm) ,1);

19 tltdeg = zeros(length(tlt_pwm) ,1);

20 tltrad = zeros(length(tlt_pwm) ,1);

21 thetarad = zeros(length(theta) ,1);

22

23 % The PWM signals need to be converted into angular velocites. This is done

24 % using experimental mappings.

25 % Loop through the motor and tilt servo signals to convert the signals from

26 % their raw form to standard units

27 m1 = zeros(length(m1_pwm) ,1);

28 m2 = zeros(length(m2_pwm) ,1);

29 for i=1: length(m1_pwm)

30 % Conversions for calculation and plotting

31 m1(i) = ( -0.0175* m1_pwm(i)^2 + 61.681* m1_pwm(i) - 42981); % [RPM]

32 m2(i) = (10.692* m2_pwm(i) - 10777); % [RPM]

33 tltrad(i) = deg2rad (( tlt_pwm(i) - 1180) /7.7396); % [rad]

34 m1rad(i) = (2*pi/60)*(m1(i)); % [rad/s]

35 m2rad(i) = (2*pi/60)*(m2(i)); % [rad/s]

36 tltdeg(i) = rad2deg(tltrad(i)); % [deg]

37 thetarad(i) = deg2rad(theta(i)); % [rad]

38 end % i loop

39

40 % Output the converted data

41 output = [vx,vz,wy,thetarad ,m1rad ,m2rad ,tltrad ];

42

43 % % initialize constant values and storage vectors

44 dt = 0.01; % time step [s]

45 rho = 1.215; % density of air [kg/m^3]
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46 S = 0.725; % Characteristic area [m^2]

47 X = zeros(length(data (1)) ,4); % regressor matrix

48 m = 11; % aircraft mass [kg]

49 g = 9.81; % acceleration due to gravity [m/s^2]

50 L = 0.362; % Characteristic length [m]

51 X = []; % matrix of regressors

52 xkp1 = []; % state values at x_k+1

53 xk = []; % state values at x_k

54 rem = []; % remaining values

55 for i=1: length(data)-1

56 % Calculate reused values

57 lam = (2*sin(tltrad(i))*m1rad(i)^2)/m;

58 mu = 2*( m1rad(i)^2* cos(tltrad(i)) + m2rad(i)^2)/m;

59 xci = (rho*S/(2*m))*sqrt(vx(i)^2 + vz(i)^2);

60 V = sqrt(vx(i)^2 + vz(i)^2);

61

62 % Calculate the regressors for the first diff eq

63 x11 = dt*lam*V^2; % order 2

64 x12 = dt*lam*V; % order 1

65 x13 = dt*lam; % order 0

66 x14 = dt*xci*V^2*vz(i); % order 2

67 x15 = dt*xci*V*vz(i); % order 1

68 x16 = dt*xci*vz(i); % order 0

69 x17 = -dt*xci*V^2*vx(i); % order 2

70 x18 = -dt*xci*V*vx(i); % order 1

71 x19 = -dt*xci*vx(i); % order 0

72

73 % Calculate the regressors for the second diff eq

74 x21 = -dt*mu*V^2; % order 2

75 x22 = -dt*mu*V; % order 1

76 x23 = -dt*mu; % order 0

77 x24 = -dt*xci*V^2*vx(i); % order 2

78 x25 = -dt*xci*V*vx(i); % order 1

79 x26 = -dt*xci*vx(i); % order 0

80 x27 = -dt*xci*V^2*vz(i); % order 2
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81 x28 = -dt*xci*V*vz(i); % order 1

82 x29 = -dt*xci*vz(i); % order 0

83

84 % Organize into the regression matrix

85 Xtemp = [x11 ,x12 ,x13 ,x14 ,x15 ,x16 ,x17 ,x18 ,x19;

86 x21 ,x22 ,x23 ,x24 ,x25 ,x26 ,x27 ,x28 ,x29];

87

88 % Stack up the regressor matrix

89 X = [X;Xtemp];

90

91 % Calculate x_k+1

92 xk1_1 = vx(i+1);

93 xk1_2 = vz(i+1);

94 xkp1 = [xkp1;xk1_1;xk1_2 ]; % Stack up the vector truth value

95

96 % Calculate x_k

97 xk1 = vx(i);

98 xk2 = vz(i);

99 xk = [xk;xk1;xk2]; % Stack up the vector

100

101 % Calculate he remaining values

102 rem1 = -dt*(wy(i)*vz(i) + g*sin(thetarad(i)));

103 rem2 = dt*(wy(i)*vx(i) + g*cos(thetarad(i)));

104 rem = [rem;rem1;rem2]; % Stack up the vector

105

106 end % i loop

107

108 % Check the condition number of the matrix

109 condition = cond(X);

110

111 % Estimate the unknown parameters [C_T ,C_L ,C_D]

112 % Use the first 68% of the data for LSR and the last 32% for validation

113 n = round(length(xkp1) * 0.68); % index for the first 68% of the data

114

115 % Use optimization to introduce upper and lower bounds to the unknowns
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116 Xqp = X(1:n,:);

117 xkp1qp = xkp1 (1:n);

118 xkqp = xk(1:n);

119 remqp = rem(1:n);

120 thMID = 12.5; % min V value

121 thmax = 25; % max V value

122 A = [-thMID^2,-thMID ,-1,0,0,0,0,0,0; % A matrix from Constraints for Ax =< b

123 -thmax^2,-thmax ,-1,0,0,0,0,0,0;

124 0,0,-1,0,0,0,0,0,0;

125 0,0,0,-thMID^2,-thMID ,-1,0,0,0;

126 0,0,0,-thmax^2,-thmax ,-1,0,0,0;

127 0,0,0,0,0,-1,0,0,0;

128 0,0,0,0,0,0,-thMID^2,-thMID ,-1;

129 0,0,0,0,0,0,-thmax^2,-thmax ,-1;

130 0,0,0,0,0,0,0,0,-1;];

131 b = [0;0;0;1;1;1;0;0;0]; % b vector from Constraints for Ax =< b

132 eta1 = quadprog (2*(( Xqp) ’)*Xqp ,-2*(Xqp) ’*(xkp1qp - xkqp - remqp),A,b

,[] ,[] ,[] ,[]);

133

134 % Check regression rrms error

135 % err = norm((xkp1 - xk - rem) - X*eta1)/norm(length(xkp1))

136 err = sqrt((norm((xkp1 - xk - rem) - X*eta1))^2/( length(xkp1)*(norm(xkp1 -

xk - rem))^2))

137 singval = svd(X);

138

139 % Compare model and experiment

140 xkp1m = xkqp + Xqp*eta1 + remqp; % regular data

141 xkp1m_val = xk(n+1:end) + X(n+1:end ,:)*eta1 + rem(n+1:end); % validation

data

142

143 % seperate the states for comparison with vx ,vz

144 vxm = []; % modeled vx

145 vzm = []; % modeled vz

146 for i=1:2: length(xkp1m)-1

147 vzm = [vzm;xkp1m(i+1)]; % This may need to be vzm depending on n
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148 vxm = [vxm;xkp1m(i)]; % This may need to be vxm depending on n

149 end % i loop

150 t = linspace(1,length(vxm),length(vxm))’;

151

152 % seperate the states for validation with vx ,vz

153 vxmval = []; % modeled vx

154 vzmval = []; % modeled vz

155 for i=1:2: length(xkp1m_val)-1

156 vxmval = [vxmval;xkp1m_val(i+1)]; % This may need to be vzm depending on

n

157 vzmval = [vzmval;xkp1m_val(i)]; % This may need to be vxm depending on n

158 end % i loop

159 tval = linspace(1,length(vxmval),length(vxmval)) ’;

160

161 % Plot comparisons for regular data

162 figure

163 plot(t,vxm ,’b’)

164 hold on

165 plot(time (1: length(t)),vx(1: length(t)))

166 title(’Vx Comparison ’,’FontSize ’ ,16)

167 ylabel(’vx [m/s]’,’FontSize ’ ,16)

168 xlabel(’time [index]’,’FontSize ’ ,16)

169 legend(’Estimated Data’, ’Experimental Data’)

170 set(gca ,’FontSize ’ ,14);

171 hold off

172

173 figure

174 plot(t,vzm ,’b’)

175 hold on

176 plot(time (1: length(t)),vz(1: length(t)))

177 title(’Vz Comparison ’,’FontSize ’ ,16)

178 ylabel(’vz [m/s]’,’FontSize ’ ,16)

179 xlabel(’time [index]’,’FontSize ’ ,16)

180 legend(’Estimated Data’, ’Experimental Data’)

181 set(gca ,’FontSize ’ ,14);
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182 hold off

183

184 % Plot comparisons for validation data

185 figure

186 plot(tval ,vxmval ,’b’)

187 hold on

188 plot(tval ,vx(length(t):end -abs(length(vx(length(t):end)) - length(tval))))

189 title(’Vx Validation ’,’FontSize ’ ,16)

190 ylabel(’vx [m/s]’,’FontSize ’ ,16)

191 xlabel(’time [index]’,’FontSize ’ ,16)

192 legend(’Estimated Data’, ’Experimental Data’)

193 set(gca ,’FontSize ’ ,14);

194 hold off

195

196 figure

197 plot(tval ,vzmval ,’b’)

198 hold on

199 plot(tval ,vz(length(t):end -abs(length(vz(length(t):end)) - length(tval))))

200 title(’Vz Validation ’,’FontSize ’ ,16)

201 ylabel(’vz [m/s]’,’FontSize ’ ,16)

202 xlabel(’time [index]’,’FontSize ’ ,16)

203 legend(’Estimated Data’, ’Experimental Data’)

204 set(gca ,’FontSize ’ ,14);

205 hold off

206

207 end % lsr
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