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ABSTRACT 
 
 

Improving Students’ Mathematics Self-Concept Through Relational Instruction and 

Caring: A Multilevel Investigation of the High School Longitudinal Survey of 2009 

 
by 
 
 

Sandra J. Miles 

Utah State University, 2024 
 
 

Major Professors: Katherine N. Vela, Ph.D. & Mario I. Suarez, Ph.D. 
Department: School of Teacher Education and Leadership 
 
 

Students’ self-concept for learning mathematics is an important construct in 

mathematics education as it relates positively to greater achievement and engagement in 

mathematics and positively predicts entry into a career in science, technology, 

engineering, or mathematics (STEM). Though the benefits of self-concept are strongly 

supported in the literature, there is little research which tries to identify specific 

components of mathematics self-concept or investigate the role teachers may play in 

strengthening their students’ self-concept. This study investigates how relational 

instruction, and the creation of caring learning environments, contribute to the 

development of student mathematics self-concept, and how those factors influence 

students differently according to gender and race. I analyzed data from a nationally 

representative sample of over 22,000 students who participated in the High School 

Longitudinal Study, 2009. Using data from student surveys taken at three waves of data 
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collection, student algebraic reasoning scores from the first two timepoints, and surveys 

from the student’s mathematics teacher and parent(s) taken at the baseline year, I 

examined student trajectories for self-concept between 2009 and 2016. I then used 

multilevel modeling techniques to examine the influence of relational instruction and 

caring and supportive learning environments on student self-concept. Findings show that 

individual self-concept was very dynamic in high school and that the gender gap in self-

concept grew while students were in high school. I found a positive association for 

student self-concept in ninth grade with caring and supportive learning environments and 

found that relational instruction positively influenced self-concept over time. An 

interaction between race and relational instruction supports the need for higher quality 

instruction among traditionally underserved populations to increase their self-concept in 

mathematics. 

(175 pages) 
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PUBLIC ABSTRACT 
 
 

Improving Students’ Mathematics Self-Concept Through Relational Instruction and 

Caring: A Multilevel Investigation of the High School Longitudinal Survey of 2009 

 

Sandra J. Miles 

 
The purpose of this research is to look for ways mathematics teachers can 

increase their students’ mathematics self-concept (i.e., achievement, confidence, and 

interest). Many students avoid taking upper-level mathematics classes or pursuing careers 

in science, technology, engineering, or mathematics (STEM). However, the need for 

STEM professionals in the workforce will increase in future years and there is a projected 

shortage of students who will be trained to fill the demand. This research proposes that 

mathematics teachers can actively work to improve their students’ self-concept by 

providing a caring and emotionally supportive learning environment as well as providing 

instruction that builds students’ conceptual understanding of mathematics instead of 

focusing on memorization of procedures and test preparation. To investigate the influence 

mathematics teachers have in building student mathematics self-concept, I analyzed 

survey data from the High School Longitudinal Study, 2009 (HSLS:09). The HSLS:09 

study was sponsored by the National Center for Education Statistics and followed over 

23,000 U.S. high school students for a period of seven years, beginning in ninth grade. 

The NCES gathered data describing students’ achievement, attitudes, and perceptions 

about a variety of educational topics, including mathematics. I used these surveys, along 
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with surveys from their ninth-grade mathematics teacher to examine the influence that 

providing conceptually focused mathematics instruction in a caring and supportive 

learning environment had on student self-concept. I found that the self-concept of female 

students decreased throughout high school while that of male students increased, and that 

both instruction and environment positively influenced self-concept. Additionally, I 

found the influence of conceptually focused instruction had a long-term influence and 

that it was especially important for Hispanic students. These results should be used to 

inform future professional development, pre-service teacher instruction, and curriculum 

development so educators can take a conscious, active role in providing instruction in 

mathematics which will build the mathematics self-concept of their students. 
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CHAPTER I  

INTRODUCTION 

 
 Research shows that self-concept is an important construct in mathematics 

education. Students who have strong self-concept in mathematics tend to demonstrate 

increased achievement (Arens et al., 2017), motivation (Seaton et al., 2014), and 

continued engagement with mathematics (Eccles & Wang, 2016). Conversely, students 

with low levels of self-concept exhibit lower levels of confidence and avoid situations 

that involve mathematics (Bong & Skaalvik, 2003; Hussain et al., 2017). Despite the 

observed benefits of a strong self-concept in mathematics, there is little research that 

investigates the influence teachers can have on strengthening their students’ self-concept. 

The purpose of this study is to investigate the influence that (a) teaching mathematics for 

relational understanding and (b) creating a caring and supportive learning environment 

may have on the development of student self-concept. 

Background of the Problem 

Self-concept has been an important construct in educational psychology for the 

past few decades (Arens et al., 2017; Marsh & Parker, 1984). It originated as a general 

construct that referred to an individual’s self-perceptions formed through experience with 

and interpretations of their environment (Shavelson et al., 1976) but was later defined for 

mathematics specifically as “the beliefs, feelings, or attitudes regarding one’s ability to 

understand or perform in situations involving mathematics” (Gourgey, 1982, p. 3). 

Mathematics self-concept includes both ability-based (cognitive) and emotion-based 
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(affective) components (Bong & Skaalvik, 2003) and influences how a student feels 

about and interacts with mathematics.  

Numerous studies demonstrate the positive connection between mathematics 

achievement and self-concept (Marsh & Parker, 1984; Parker et al., 2014; Trautwein et 

al., 2006; Van der Beek et al., 2017). As shown in Figure 1, this relationship is described 

as being reciprocal (Arens et al., 2017); so, not only does higher self-concept lead to 

increased achievement, but achievement also works to strengthen self-concept. The 

inverse relationship also exists where poor self-concept contributes to decreased 

achievement, which then leads to decreased self-concept. This relationship can be 

moderated by demographic factors (e.g., gender, Goldman & Penner, 2016), and 

environmental factors (e.g., relative school achievement, Chmielewski et al., 2013). 

Researchers also identified a similar, yet negative, reciprocal relationship between self-

concept and mathematics anxiety; as self-concept increases, the level of mathematics 

anxiety decreases (Ahmed et al., 2012). Additionally, increased self-concept is associated  

Figure 1 

Illustration of the Reciprocal Relationships Between Self-Concept, Achievement, 
and Anxiety 
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with increased enjoyment in mathematics (Van der Beek et al., 2017) and is a strong 

predictor of entry into a science, technology, engineering, or mathematics (STEM) 

related career (Eccles & Wang, 2016; Goldman & Penner, 2016). These findings suggest 

that efforts to improve student self-concept may have a positive effect on students’ 

affective experiences and continued engagement in mathematics. 

Research shows there are discrepancies between levels of self-concept and 

achievement for some students. It is theorized students base much of their self-concept on 

evaluations of their past performance in mathematics (Bong & Skaalvik, 2003). However, 

as self-concept includes both frame of reference effects and relative comparisons with 

others (Möller et al., 2011, 2016), these performance evaluations may be subjective. One 

example of this is the Big Fish Little Pond Effect (Marsh et al., 2008) which posits that 

students in learning environments with high average achievement will have lower self-

concepts than students with the same mathematical understanding in learning 

environments with low average achievement. These subjective evaluations may also 

contribute to the gender gap for self-concept. Female students generally report lower 

levels of self-concept than male students even when their performance and interest in 

mathematics is similar (Mejía-Rodríguez et al., 2021; Robnett & Thoman, 2017). 

Additionally, the self-concept of female students is more strongly related to their 

perception of teacher support than it is for male students while male students show a 

stronger association with learning goal structure than female students (E. M. Skaalvik & 

Skaalvik, 2013). These differences in self-concept may be explained by the subjective 

nature of self-evaluations. 
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An example of the influence of self-concept can be illustrated using the following 

example from an unpublished interview data set (Miles, 2020). In the data set, Brittany 

was one of eight undergraduate students who participated in interviews related to her 

experiences with mathematics. Brittany had low mathematics self-concept.1 She 

described the way she felt about mathematics by saying, “I’m terrible at math…I don’t 

speak math…math is scary,” and then cited the fact that she counts on her fingers to 

multiply as evidence of her lack of abilities. However, later in the interview Brittany 

explained, 

If I knew the critical thinking of where I’m trying to get, and this is how you get 
there, I’m good at that and I can do that…If I turn it into a word problem…that’s 
the only way I get through it. (p. 6) 
 

Though Brittany could apply critical thinking and reasoning to mathematics in context, 

she maintained a belief that she could not do mathematics because of her interpretation of 

what “doing mathematics” looks like. This example demonstrates one way that 

mathematics self-concept may be influenced by factors other than achievement, making it 

subject to students’ attitudes and perceptions about mathematics.  

  Given the subjective nature of student self-concept, it seems reasonable there 

would be ways to support students in developing stronger self-concepts. Education 

research has expanded over the years to include affective components (e.g., anxiety, 

interest, motivation) in addition to cognitive ones. Research on affective components in 

education shows attitudes, emotions, and beliefs of students are very influential on 

educational outcomes (Hannula et al., 2018; Middleton et al., 2017). The way a student 

 
1 Brittany scored in the bottom quartile on five different measures of self-perceptions in mathematics but 
had mean level achievement in her undergraduate quantitative reasoning course. 
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views themselves and their abilities has a significant impact on the way they engage in 

learning (Nagy et al., 2010; Ng, 2021; Tirri & Nokelainen, 2010) and can influence their 

interest, persistence, and achievement in learning mathematics (Trautwein et al., 2006). 

With all the associated positive outcomes, conducting research on avenues that may 

strengthen student self-concept in mathematics is vital. 

This dissertation focuses on two possible avenues teachers can utilize to improve 

self-concept in their students, namely, through providing a) relational instruction and b) 

caring and supportive learning environments in mathematics. Relational instruction in 

mathematics is instruction that builds students’ relational (conceptual) understanding. 

With relational instruction students understand “both what to do and why” (Skemp, 2012, 

p. 9). Along with relational instruction teachers can provide caring and supportive 

learning environments where they develop appropriate student/teacher relationships that 

(a) convey feelings of care and respect, (b) attend to students’ physical, emotional, and 

academic needs, and (c) maintain high expectations while providing the supports students 

need to be successful (Hamre et al., 2013; Martin & Rimm-Kaufman, 2015; Sakiz et al., 

2012). As teachers build caring and supportive learning environments and practice 

relational instruction, they can influence the way students view themselves and their 

abilities in mathematics resulting in strengthened self-concept. 

Purpose of the Study 

The purpose of this study was to investigate how relational instruction and the 

creation of a caring and supportive learning environment contribute to the development 
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of student mathematics self-concept, and how those factors influence students differently 

according to various demographic factors. This dissertation used data from the High 

School Longitudinal Study, 2009 (HSLS:09, Ingels et al., 2011), which provided 

information from students, teachers, and parents to address this purpose. Identifying ways 

that educators can positively influence students’ self-concept reveals an additional avenue 

for improving student engagement and achievement in mathematics. This dissertation 

shows that teachers can influence students’ self-concept through their instructional 

practices, as well as through the environment they create in their classrooms.  

Research Questions 

 Four research questions guided my investigation of mathematics self-concept in 

this dissertation. Question 1 was meant to model the growth trajectory for self-concept so 

that it could then be used to investigate the other questions. Questions 2 and 3 identified 

the potential effects of relational instruction and the creation of caring and supportive 

learning environments on self-concept. For these questions I include associated research 

and null hypotheses. Question 4 was exploratory and does not include a specific research 

hypothesis. 

1. How does student mathematics self-concept change during students’ 
secondary education years as measured on the HSLS:09? 

2. How does an emphasis on relational instruction in mathematics influence 
change in student mathematics self-concept as measured on the HSLS:09 
(Ingels et al., 2011)? 

H0 – There is no significant difference in average level of mathematics 
self-concept for students whose ninth-grade mathematics teachers focus on 
relational instruction. 
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Ha – Students whose ninth-grade mathematics teachers focus on relational 
instruction will have significantly higher levels of mathematics self-
concept than students whose teachers do not focus on relational 
instruction. 

3. How do student perceptions of a caring and supportive learning environment 
influence change in student mathematics self-concept as measured on the 
HSLS:09 (Ingels et al., 2011)? 

H0 – There is no significant difference in average level of mathematics 
self-concept for students who perceive their ninth-grade mathematics 
teachers as providing a caring and supportive learning environment. 

Ha – Students who perceive their ninth-grade mathematics teachers as 
providing a caring and supportive learning environment will have 
significantly higher levels of mathematics self-concept than students who 
do not have this perception. 

4. Are there differences based on demographic factors such as gender and race? 

Significance of the Problem 

There is much research needed to improve our understanding of self-concept. 

Student perceptions of their own competence in mathematics contribute significantly to 

their self-concept (Bong & Skaalvik, 2003; Marsh et al., 2019) but it is still unclear 

exactly how those perceptions can be influenced by frames of reference, causal 

attributions, appraisals from significant others, attitudes about mathematics, and past 

affective experiences. In 2003, Bong and Skaalvik called for research that would separate 

“perceived competence components from other elements and [examine] the specific 

contribution of each major constituent” (p. 30), but research has not yet clarified the 

specific contributors to self-concept or exactly why it predicts entry into STEM fields. 

Some research suggests the perceived characteristics of a STEM career do not align with 

students’ vision for their lives and that is what decreases their interest in STEM pathways 
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(Eccles & Wang, 2016). However, self-concept could also be influenced by specific 

attitudes and beliefs related to mathematics that students hold. Similarly, it may be 

influenced by affective experiences in mathematics classes or stereotypical gender beliefs 

about mathematics. Teachers have the power to influence these factors through 

instruction that places more emphasis on reasoning than memorization and by providing 

caring and supportive learning environments, but there is little research that investigates 

the influence these different factors have on self-concept. There is a need to clarify how 

these different factors influence students’ mathematics self-concepts and the role 

educators play in developing and improving them in their students. 

Kaskens et al. (2020) recommended teachers “attend more to the self-concepts of 

their students in general and their math self-concepts in particular” (p. 11). This 

dissertation seeks to inform our understanding of self-concept and suggest ways teachers 

can actively work to improve the self-concept of their students. The significant sample 

size of the HSLS:09 data provides an opportunity to investigate the influence teachers 

who focus on relational instruction or provide caring and supportive learning 

environments have on the self-concept of their students. These findings will contribute to 

teacher training and instructional practices that strengthen student mathematics self-

concept, leading to increased achievement in mathematics and entry into STEM careers. 

There is a need to encourage students in learning mathematics and prepare them 

for entry into mathematics related fields. As the world becomes more global and 

dependent on technology there will be a need for more individuals in STEM careers. The 

Bureau of Labor and Workforce Services (Fayer et al., 2017) reported the number of 
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STEM occupations grew by 10.5% between 2009 and 2015 while non-STEM 

occupations only grew by 5.2%. This growth is projected to continue with the greatest 

growth occurring in mathematical science (e.g., quantitative biology or data science) and 

computer occupations. In addition to preparing students to fulfill a future need in our 

society, preparing students for jobs in STEM will also help them have a better financial 

future since 93% of STEM occupations have wages above the national average.  

A student with low self-concept may place limitations on themselves related to 

their future education, career, and even family life. Brittany illustrated this impact on her 

career goals when she said, 

I’ve always wanted to start my own business…I would love to create my own 
after school program…But…I would have to do all the programming and hire 
someone else to do all the business type stuff because I don’t know how to figure 
out any of that. But I wish I could…I’ll just work for somebody else forever. I 
don’t want to be an entrepreneur. It’s too hard. It’s too much math. (Miles, 2020, 
p. 13) 
 

For Brittany, her low self-concept even influenced her decisions on dating and marriage. 

She said, “Even with dating I’m like, ‘Are you good at math? Because one of us has to be 

and it’s not gonna be me” (p. 1). Brittany’s comments illustrate how influential self-

concept can be for students even after they complete their K-12 education. With all the 

research that demonstrates the importance of self-concept in helping students in their 

educations and future careers, it would benefit students greatly if teachers could work to 

strengthen their students’ self-concept for mathematics. 

Summary of Research Study Design 

 To investigate the influence of relational instruction and creating a caring and 
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supportive learning environments on student self-concept, I conducted a secondary data 

analysis (Johnston, 2014) applying multilevel modeling techniques on longitudinal data 

(Singer & Willett, 2003). The study utilized quantitative data from the HSLS:09 collected 

from a large nationally representative sample at three timepoints. The large data set 

allowed for complex statistical analyses and examination of the self-concept trajectory in 

various demographic groups. Data came from student, parent, and mathematics teacher 

questionnaires. The data analysis included descriptive statistics, growth curve modeling, 

building and evaluating a series of models utilizing full likelihood estimation and model 

fit comparisons, and examining interactions utilizing simple slopes. These techniques 

allowed me to identify the amount of variation in student mathematics self-concept that 

was related to relational instruction and caring and supportive learning environments. 

Further, they identified differences based on gender and race to see how students from 

certain demographic groups benefitted more than others from these teacher-level 

variables. 

Delimitations 

There are two related constructs or issues related to the study of student 

mathematics self-concept that I intentionally chose to omit from this study. The first is 

the construct of self-efficacy. Self-efficacy is like self-concept in that it describes a 

student’s beliefs about their abilities in mathematics (Pajares, 1996) but research has 

repeatedly demonstrated discriminant validity between the two constructs (Huang, 2012; 

Lent et al., 1997). Self-concept has different theoretical contributors and predictive 
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abilities when compared to self-efficacy, but the scope of this dissertation does not 

include a detailed comparison of the two constructs. Due to their collinearity, self-

efficacy was not included in the models for this study as it would account for much of the 

same variation as self-concept. However, due to the similar nature of these two self-

perceptions some research related to self-efficacy is applicable to a discussion of self-

concept and the development of the theoretical argument put forth in this dissertation so it 

will be included in the literature review.  

The second intentional constraint on this dissertation is that the examination of 

variation in self-concept that is attributed to race was only considered from an intra-

country perspective. The cultural and social implications of different racial groups can 

vary greatly between countries. The discussion of race in this project is only meant to 

describe its influence for students in the U.S. and not be generalized to other countries. 

Glossary of Terms 

The following is a list of terms used in this study and how they are being defined. 

Attributions of success – the perceived causes that an individual perceives as 

leading to a successful outcome (Marsh et al., 1984). 

Big Fish Little Pond Effect - “predicts that students have lower academic self-

concepts (ASC) when attending schools where the average ability levels of other students 

is high compared to equally able students attending schools where the school-average 

ability is low” (Marsh et al., 2008, p. 320). 

Caring learning environments - a learning environment with appropriate 
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student/teacher relationships that (a) convey feelings of care and respect; (b) attend to 

students’ physical, emotional, and academic needs; and (c) maintain high expectations 

while providing the supports students need to be successful (Hamre et al., 2013; Martin & 

Rimm-Kaufman, 2015; Sakiz et al., 2012) 

Frame of Reference Effects – When evaluating their self-concept students 

“compare their perceived competence in one area with their peers' ability in the same area 

(i.e., external, social comparison) as well as with their own academic ability in the other 

areas (i.e., internal, self-comparison” (Bong & Clark, 1999, p. 142). 

Level one growth plots – Plots that show the change in a dependent variable over 

time for each individual – used to verify the shape of a proposed model before analyses 

(Singer & Willett, 2003). 

Mathematics Self-Concept – “the beliefs, feelings or attitudes regarding one’s 

ability to understand or perform in situations involving mathematics” (Gourgey, 1982, p. 

3). 

Q-Q plots/normality tests – Ways to determine whether a variable is normally 

distributed. Common normality tests include the Shapiro-Wilks and the Kolmogorov-

Smirnov tests (B. H. Cohen, 2008). The quartile-quartile plot is a visual test for 

evaluating normality. 

Relational instruction – Instruction that focuses on helping students to 

“understand both what to do and why” (Skemp, 2012, p. 9). 

Self-concept – a person’s self-perceptions formed through experience with and 

interpretations of their environment (Shavelson et al., 1976). 
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CHAPTER II 

LITERATURE REVIEW 

The purpose of this study was to investigate how relational instruction and the 

creation of caring learning environments contribute to the development of student 

mathematics self-concept, and how those factors influence students differently according 

to race and gender. Though some of the variables that contribute to a student’s self-

concept are not subject to direct influence from educators (e.g., parental reinforcement), 

instructional practices and the school learning environment are more open to influence 

from teachers, staff, and administrators. Thus, it is important to understand the influence 

of these contextual factors so educators can work to enhance student self-concept. This 

research investigates how instructional and environmental factors that educators have 

influence over have the potential to positively influence students’ self-concept.  

This chapter presents the framework which forms the foundation for the current 

study and a review of related empirical research. First, I discuss literature related to self-

concept: its association between self-concept and other educational outcomes, and its 

development. I then outline literature focused on relational instruction in mathematics 

along with the importance of creating caring and supportive classroom environments, and 

how they contribute to students’ self-concept. Finally, I describe the conceptual 

framework used to interpret and analyze the research described.  

Description of Self-Concept 

Self-concept is a structured, multidimensional, and hierarchical construct that 
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expresses a persons’ perceptions of their abilities interpreted within their social 

environment (Marsh et al., 2019). It is an individual’s evaluation of their abilities in 

relation to internal and external frames of reference, reinforcement and evaluations of 

others, causal attributions, and attitudes related to the subject under consideration (Bong 

& Skaalvik, 2003; Marsh et al., 2019). Self-concept is a key focus of this study due to its 

significant influence on student motivation and engagement in mathematics. Students 

with higher levels of self-concept are more likely to learn mathematics at a deeper level 

and take more mathematics classes than students with lower self-concept (McInerney et 

al., 2012; Parker et al., 2014). Given the positive influence of self-concept, it is an 

important construct to understand and to develop in students. 

Shavelson et al. (1976) describe a nested, hierarchical model of self-concept 

where various mutually exclusive dimensions of self-concept are situated within others. 

As seen in Figure 2, general self-concept is at the top of the hierarchy and is composed of 

both academic and nonacademic self-concepts. Academic self-concept subdivides into 

different subject matter areas, or domains, one of which is mathematics. Shavelson’s 

model suggests that within each of these domains, self-concept could be further 

subdivided, but he does not specify the categories it would divide into. Most research in 

education considers academic self-concept or self-concept for a specific domain. For this 

dissertation study, self-concept will refer to the domain-level measure of mathematics 

self-concept which describes the “beliefs, feelings or attitudes regarding one’s ability to 

understand or perform in situations involving mathematics” (Gourgey, 1982, p. 3). As 

described, self-concept measures a student’s confidence for doing mathematics as well as 
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the feelings they have about mathematics. 

Figure 2 

Model of Self-Concept Showing its Hierarchical, Nested Structure (Shavelson et al., 1976) 

 

When an individual evaluates their self-concept, they consider their abilities in 

relation to internal and external frames of reference, reinforcement and evaluations of 

others, causal attributions, and their attitudes towards mathematics (Bong & Clark, 1999; 

Bong & Skaalvik, 2003; Shavelson et al., 1976). An individual uses internal frames of 

reference when they compare their performance in mathematics with that in other 

subjects (Marsh, 1990). They use external frames of reference when they compare their 

performance in mathematics with the performance of their peers (Marsh et al., 2019; 

Trautwein et al., 2006). The different evaluative and comparative criteria students use 

when evaluating their self-concept make self-concept a subjective construct but may also 

provide avenues by which self-concept can be strengthened. 

Students’ self-concept also incorporates verbal and nonverbal reinforcements or 

evaluations of others (Harter, 1988). This information is received through both verbal and 

non-verbal sources. Reinforcement can be either positive or negative and can be 
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communicated through grades and feedback on assignments, responses to questions or 

comments the individual makes related to mathematics, the mathematics related 

stereotypes they hear expressed, or the degree to which others validate their knowledge 

(i.e., asking them to help with homework or verify answers). Positive messages from 

influential adults will result in higher levels of self-concept, while negative messages will 

serve to decrease an individual’s self-concept. 

The attributions of success an individual makes also influences their self-concept 

(Marsh & Parker, 1984). With each success or failure an individual experiences they 

identify factors to which they can attribute it. Failure can be attributed to external sources 

(e.g., the difficulty of the task or bad luck), or internal sources (e.g., a lack of effort or a 

lack of ability) (Cortes-Suarez & Sandiford, 2008). In a mathematics classroom, if a 

student attributes failure to external sources they are less likely to internalize that failure 

in a way that decreases their self-concept. Similarly, if a student attributes a successful 

experience in mathematics to their own abilities or effort, they are more likely to 

internalize it in a way that strengthens their self-concept (Marsh et al., 1984). Marsh et al. 

found a strong correlation between ability attributions in mathematics and self-concept 

such that students with strong self-concepts are more likely to attribute successes to their 

own abilities and efforts while attributing failure to outside sources. Thus, instruction that 

allows students to use mathematical reasoning to solve problems independently will 

facilitate successful experiences that students can attribute to their own efforts and 

understanding, thereby increasing their self-concept. 

Finally, an individual’s attitudes towards mathematics can influence their 
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mathematics self-concept. Individuals who find mathematics interesting, useful, and 

applicable to their lives tend to have higher self-concepts (Marsh et al., 2005; Wang et 

al., 2021; Xu, 2018). However, attitudes are not universally included in descriptions of 

self-concept. Marsh and O’Neill (1984) included attitudes like interest and enjoyment as 

items measuring self-concept on the Self-Descriptive Questionnaire but other 

descriptions of self-concept do not make the same inclusion (Bong & Skaalvik, 2003), 

leaving researchers to include a separate measure of attitudes in their studies (Lazarides 

& Ittel, 2012). Though attitudes about mathematics influence self-concept, they are not 

always included in self-concept measurement instruments. Therefore, there is a lack of 

understanding in how influential attitudes are or whether changing students’ attitudes can 

change their self-concept. 

Mathematics self-concept is a complex construct that asks individuals to do more 

than just evaluate their objective abilities. It considers frames of reference, 

reinforcements from others, and attributions of success that give meaning to perceived 

success and failure (Bong & Skaalvik, 2003). Self-concept explains how an individual 

feels about their mathematics abilities, but it does not necessarily indicate a desire to 

work in a mathematics related field. Just as an individual may understand the mechanics 

behind how a car operates and can fix it when it breaks down, students can understand 

and be confident in their ability to solve problems using mathematics without considering 

themselves professionals in a mathematics field. This is what mathematics self-concept 

describes – an individual’s evaluative perceptions of their ability to understand and use 

mathematics. 



18 
 

Current Directions in Research on Self-Concept 

 Self-concept is studied with two general objectives. The first objective is to 

examine relationships to other academic outcomes: achievement, student goals and 

mindset beliefs, or continued study in science, technology, engineering, and mathematics 

(STEM) fields. The second objective is to identify trends in student self-concept related 

to demographic factors like age, gender, and socioeconomic status, and to examine the 

way culture and environment may alter its effect. Past research supports the idea that self-

concept is an important construct due to its positive and multifaceted association with 

students’ mathematics learning (Ahmed et al., 2012; Parker et al., 2014; E. M. Skaalvik 

& Hagtvet, 1990), but little research considers self-concept as a dependent variable or 

looks for ways to strengthen it. Past research also suggests that self-concept may develop 

differently for different student populations (e.g., female or black students; Evans et al., 

2011), but relevant research used large international samples comparing homogenous 

student groups in different countries. In this situation it is impossible to know how to 

interpret these differences. This dissertation study goes beyond the current research as it 

examines the trajectory of self-concept for different student populations within the U.S. 

and investigates the specific influence that relational instruction and caring learning 

environments have on it.  

How Self-Concept Relates to Achievement 

 One of the most common academic outcomes studied alongside self-concept is 

student achievement. Achievement can be described in different ways but for this 
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dissertation achievement will describe both student performance and understanding in 

mathematics. Research has repeatedly shown that domain level self-concept is strongly 

related to achievement within the same domain (Marsh, 1992; Parker et al., 2014; Van 

der Beek et al., 2017) but the way the relationship functions has been unclear. At times 

self-concept is found to be affected by achievement (Eccles & Wang, 2016) and at other 

times achievement is found to be affected by self-concept (Marsh et al., 2005). A 

reciprocal effects model (REM) (E. M. Skaalvik & Hagtvet, 1990) has been validated 

repeatedly in the literature (Arens et al., 2017; Seaton et al., 2014). This model posits a 

cyclical relationship where achievement and self-concept both affect one another so that 

high achievement strengthens a student’s self-concept in mathematics which then serves 

to increase future achievement. Inversely, low achievement reinforces negative self-

concept, contributing to decreased achievement in the future. 

Findings from International Studies 

 Due to this theorized relationship between self-concept and achievement many 

researchers have conducted studies to identify patterns in the development of self-concept 

(Goldman & Penner, 2016; Marsh et al., 2005, 2008; Seaton et al., 2014). By discovering 

patterns, researchers hope to discover ways to strengthen student self-concept. Many of 

these studies utilize large scale survey research designs (see Lee & Stankov, 2018; 

Yoshino, 2012). International assessments like the Program for International Student 

Assessment (PISA) and Trends in International Mathematics and Science Study (TIMSS) 

provide large samples of students from across the globe that enable researchers to look 

for patterns and trends in many different cultural subgroups.  
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 Goldman and Penner (2016) conducted an analysis of the 2007 TIMSS data to 

look for differences in eighth-grade student self-concept. They found U.S. students 

generally had lower mathematics self-concept than students in Sweden, but there was a 

greater gender gap in Sweden than in the United States. By running identical regression 

models for each of the countries in their sample, they found significant gender differences 

in 26 countries. In most of these countries male students had greater mathematics self-

concept than female students, but in Malaysia, Norway, Romania, Russia, and Ukraine, it 

was reversed; female students had stronger self-concept than males. Within the United 

States there was no significant difference in self-concept between male and female 

students. This finding conflicts with past research that showed male students had stronger 

self-concept for mathematics than female students (Eccles & Wang, 2016). One 

interpretation of this discrepancy in the literature is that the gender gap in mathematics 

self-concept among U.S. students is decreasing. However, the quantity of self-concept 

research has decreased in recent years among U.S. researchers, being replaced with 

constructs like self-efficacy or expectancy value. Though self-concept is still actively 

included in international research it is uncommon to see it studied in strictly U.S. 

samples. Further research, both within the U.S. and internationally, is needed before a 

general claim can be made that the gender gap in self-concept is decreasing. 

 In addition to the main effect of gender on student self-concept, researchers also 

investigated different moderation effects related to self-concept. In addition to the gender 

gap previously discussed, Goldman and Penner (2016) found that gender moderated the 

relationship between achievement and self-concept. In some countries, achievement had a 
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stronger effect on self-concept for female students than it did for male students. However, 

as the level of gender equality in the country increased, the gender gap in mathematics 

self-concept decreased. Goldman and Penner (2016) suggest this decrease in the gender 

gap for self-concept is due to female students in more egalitarian countries being free to 

choose a career based on the “gendered identities that they have internalized” (p.415), but 

there is little research to confirm this hypothesis. The research does demonstrate again the 

subjective nature of self-concept and how gender can influence it both directly and 

through interaction with other factors.  

The Big Fish Little Pond Effect 

 Incorporating external frames of reference into self-concept contributes to the Big 

Fish Little Pond Effect (BFLPE, Marsh et al., 2019; Marsh & Parker, 1984). The BFLPE 

suggests that the effect of achievement on self-concept is moderated by the academic 

environment the student is in. For instance, a student in a high achieving school, or an 

advanced classroom with high achievers, is more likely to have decreased levels of self-

concept, despite their own high achievement (Marsh et al., 2019). Seeing all the high 

achievers around them weakens their self-concept as they evaluate their abilities in 

comparison with their peers. Conversely, a student that has been tracked into a low 

achieving school or classroom is more likely to have an elevated level of self-concept 

since they are comparing their abilities with other low achievers. This effect has been 

observed by multiple researchers (Marsh et al., 2008, 2019; Marsh & Hau, 2003; 

Trautwein et al., 2006) and has the strongest negative effect for average achieving 

students in high achieving classrooms (Trautwein et al., 2006). However, these same 
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studies reported that students in advanced, or high achievement, classrooms tended to 

have stronger self-concept than those in the average or lower track classrooms. This 

indicates that while the BFLPE predicts environmentally produced variation to self-

concept among students at the same achievement level, it does not predict significant 

changes to self-concept among students across different achievement levels. 

 While there is a general consensus among researchers that self-concept is 

positively related to mathematics achievement, there are a variety of moderating variables 

that change the way this relationship functions. These moderators effectively designate 

the classroom environment as an external frame of reference that can significantly 

influence the perceived importance of mathematics and a student’s evaluation of their 

abilities.  

How Self-Concept Relates to Attitudes and  
Emotions in Mathematics 

 As self-concept incorporates both cognitive and affective judgements, it is 

important to consider how self-concept relates to affective components in mathematics 

education. Research strongly supports the idea that students’ emotions and attitudes 

significantly affect their motivation and ability to learn (Pekrun & Schutz, 2007; Wigfield 

& Eccles, 2000) so it is important for research to consider the relationship between self-

concept and non-cognitive outcomes. Some of the outcomes discussed in the research 

along with self-concept are anxiety, interest, and enjoyment. 

 Mathematics anxiety is a negative emotion that significantly impedes a student’s 

ability to learn mathematics (Ahmed et al., 2012). Van der Beek et al. (2017) used 

exploratory factor analysis to show mathematics self-concept and mathematics anxiety 
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are negatively related constructs. They also found students with low self-concept reported 

less enjoyment of mathematics. Students who do not enjoy or find interest in mathematics 

are likely to become bored in mathematics class. Boredom and anxiety are both negative 

emotions that correlate with the use of shallow learning strategies and decreased 

achievement in mathematics (Ahmed et al., 2013). This suggests that increasing student 

mathematics self-concept will decrease the level of negative emotions students feel while 

learning mathematics and increase achievement. 

 Research has shown strong associations between affective and emotional 

constructs, like interest or anxiety, and self-concept. Using path analysis, Ahmed et al. 

(2012) found support for a reciprocal, two-way relationship between self-concept and 

anxiety meaning that self-concept affected anxiety which then, in turn, affected self-

concept. However, the association from self-concept to anxiety was twice as strong as the 

association from anxiety to self-concept suggesting that self-concept has a stronger 

influence on anxiety. Other research found that the relationship between self-concept and 

emotions in mathematics was stronger than the relationship between self-concept and 

achievement (Van der Beek et al., 2017). This demonstrates a link between self-concept 

and affective constructs in education and suggests benefits from strengthening student 

self-concept. 

Self-Concept and Additional Educational Constructs 

 Another area of study related to self-concept investigates the relationship between 

self-concept and student learning goals. Student learning goals can be categorized into 

four types using two criteria. The first criterion distinguishes mastery goals from 
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performance goals. Mastery goals are goals that focus on developing abilities. They are 

related to having an incremental (or growth) mindset and strongly predict achievement in 

mathematics (Liu, 2021). Mastery-approach goals are goals where the student is trying to 

increase their learning while mastery avoidance goals would describe a student who 

wants to avoid learning or avoid a potential change in paradigm. Performance goals are 

more concerned with a desire to have others think positively about one’s abilities and are 

related to having an entity (or fixed) mindset. The second criterion considers whether a 

student is trying to approach or avoid an outcome. Performance-approach goals describe 

goals related to getting good grades or recognition while performance-avoidance goals 

are adopted by students who are trying to keep from being the lowest performing student. 

Students who adopt performance-avoidance goals may be concerned with getting high 

grades, but only because they want to avoid any negative consequences. Generally, 

students who adopt mastery approach goals engage more and use deeper learning 

strategies.  

Hussain et al. (2017) found a strong negative relationship between self-concept 

and mastery avoidance goal orientation, and a moderate positive correlation between self-

concept and mastery goal orientation. Students who have strong self-concept in 

mathematics tend to have goals focused on learning and internalizing the mathematics 

they are exposed to. Due to the comparative nature of self-concept, a connection to 

performance related goals is also expected. Because self-concept involves comparison to 

others, students are likely to have goals that position them to receive recognition or keep 

them from being perceived as low achieving. However, Hussain et al. found that the 
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correlation between performance goals and self-concept was not as strong as the 

correlation between mastery goals and self-concept. Thus, students with strong self-

concept are more likely to set learning goals based on personal growth and gaining 

knowledge, which will likely lead to increased achievement (Liu, 2021). This research 

supports the need for strengthening student self-concept to encourage adoption of 

mastery goals and improve achievement. 

This link between learning goals, mindset, and self-concept is not surprising. 

When a student has a strong self-concept, they are more confident in their ability to 

overcome challenges and be successful in mathematics. Self-concept includes more than 

just being able to reproduce mathematics previously demonstrated. It suggests that 

students understand mathematics well enough to adapt their knowledge to unique 

situations and use what Lithner (2008) refers to as creative reasoning. This research does 

suggest an important link between students’ implicit theories of intelligence and the 

development of self-concept. Students who endorse a fixed mindset are not likely to be 

responsive to practices or interventions designed to alter self-concept. Though learning 

goals and mindset are not constructs being examined in this study, the research discussed 

further demonstrates the importance of strengthening student self-concept to improve 

mathematics education.  

How Self-Concept Relates to Further 
Engagement in STEM 

  Multiple researchers have found mathematics self-concept to be a powerful 

predictor of entrance into a STEM field (Eccles & Wang, 2016; Goldman & Penner, 

2016; Parker et al., 2014). Self-concept is often compared to other predictive self-beliefs, 
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like self-efficacy, but research suggests that selection of a STEM major in college, or a 

STEM career is predicted by self-concept and not by self-efficacy (Parker et al., 2014). 

Goldman and Penner found that a career involving mathematics was predicted by self-

concept and that self-concept included both achievement and interest in mathematics. It is 

important to identify the elements of self-concept that contribute to a student’s desire to 

enter STEM fields to ensure that educators are not creating or perpetuating barriers that 

keep students from STEM. 

 As previously mentioned, not all measures of self-concept include interest as part 

of their scale. Bong and Skaalvik (2003) note that some researchers include interest and 

enjoyment as part of self-concept while other researchers consider these separate 

constructs. Further research that investigates the link between self-concept and interest 

would be valuable in clarifying self-concept and illuminating why it predicts entry into 

STEM fields. Can students only develop strong self-concepts for mathematics if they 

have an innate interest in the subject? If so, can interest in mathematics be increased 

through developing relational understanding, and will that also improve self-concept? 

This is one area where the research is still unclear and further investigation would be 

beneficial. 

Achievement, the number of math courses taken, and socioeconomic level all 

predict entrance into STEM fields (Eccles & Wang, 2016), but self-concept has been 

shown to be an even stronger predictor (Parker et al., 2014). Additionally, self-concept 

predicts student achievement more than standardized tests (Trautwein et al., 2006) or 

socioeconomic status (SES) (Gervasoni et al., 2012) and is significantly related to more 
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positive emotions in mathematics classrooms (Van der Beek et al., 2017), use of deeper 

learning strategies, and mastery goal orientations (Hussain et al., 2017). Because self-

concept contributes to deeper learning, more positive emotions, improved achievement, 

and entry into STEM fields, it is essential that researchers continue to study this complex 

construct to develop interventions and instructional practices that will serve to increase 

student self-concept for mathematics. 

Relational Instruction 

In this dissertation study the term relational instruction is used to indicate 

instruction focused on building the relational understanding of mathematics for students. 

Relational understanding is described as “knowing both what to do and why” (Skemp, 

1976, p. 9). It is contrasted with instrumental understanding which is having “possession 

of such a rule, and the ability to use it” (Skemp, 1976, p. 9). Other terms used in 

mathematics education research to describe the same dichotomy are conceptual and 

procedural knowledge (Rittle-Johnson & Alibali, 1999), and creative and algorithmic 

reasoning (Jonsson et al., 2014). In this dissertation study all three semantic pairs will be 

included in the discussion of research and singularly referred to as relational or 

instrumental understanding. Research on relational understanding considers its 

relationship to achievement, and the role of instruction in its development. This section of 

the review discusses research focused on the benefits and development of relational 

understanding in mathematics and how it may relate to self-concept. 
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How Instruction to Build Relational 
Understanding Relates to Achievement  

When students engage in learning designed to develop relational understanding it 

can improve their achievement, decrease future cognitive effort, and help them develop 

the ability to explain their solution strategies, identify their own mistakes, and 

reformulate their solutions (Jonsson et al., 2014, 2016; Norqvist, 2018; Selman & Tapan-

Broutin, 2018). However, other research suggests that gains to achievement are 

associated with instruction that is teacher-led, emphasizes memorization of formulas and 

procedures, and does not concern the teacher with illustrating connections between 

mathematics and daily life (Eriksson et al., 2019; Mosimege & Winnar, 2021). Many 

teachers believe that effective instruction includes a mixture of student-led and teacher-

led activities (Khan et al., 2016), but the current research does not describe what that 

combination should look like. 

In a qualitative case study investigating geometry learning (Selman & Tapan-

Broutin, 2018), a small group of seventh-grade girls in Turkey used interactive Geometry 

software to learn about symmetry transformations. The research was based on the 

constructivist Theory of Didactical Situations (Brousseau, 2006) which outlines a five-

phase process for learning. The researchers had the students engage with the computer 

assisted geometry lesson over two days. The lesson was designed to help them discover 

their own knowledge and understanding. The students engaged in forming and testing 

conjectures and were able to informally explain ideas related to symmetry 

transformations. This lesson illustrated an effective way to help students develop 

relational understanding. 
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In two studies in northern Europe, identical sets of mathematical tasks were 

presented to students using three different approaches. Each approach required students 

to use one of three types of reasoning based on Lithner’s (2008) framework for 

mathematical reasoning (Jonsson et al., 2014, 2016; Norqvist, 2018). The imitative 

reasoning (IR) group required students to recall a memorized fact or formula to solve the 

problem. The algorithmic reasoning (AR) group required students to apply a learned 

process or algorithm to a problem that they had not seen before, and the creative 

reasoning (CR) group required students to develop their own strategy or derive their own 

formula to solve the problem. The CR group had the highest performance on the exam 

one week later. Further, students in the CR group required less cognitive effort when 

taking the exam when compared with the AR group. These findings align with other 

research which showed that teaching for relational understanding had a positive effect on 

student achievement while teaching that focused on procedural proficiency had a 

negative effect (Yu & Singh, 2018). When students develop relational understanding, 

they have increased achievement because they are able to reason through novel problems 

instead of having to rely on memorized procedures. 

In contrast to the previous studies, Eriksson et al. (2019) examined data from 

multiple waves of the TIMSS to investigate the relationship between instructional 

practices and achievement. They considered student reports of how often their teachers 

gave lecture-style presentations, related mathematics to their daily lives, or had them 

memorize formulas and procedures, and analyzed how well each frequency predicted 

scores on the TIMSS mathematics achievement score. They found that lecture-style 
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instruction in Sweden had a consistently positive relationship with achievement, but that 

relationship was only significant in 2007 (β = 18.68, SE = 4.64, p < .001) and 2011 (β = 

24.19, SE = 7.80, p < .001). The relationship was not significant in 2003 or 2015. 

Memorization of procedures was not measured in 2003 but was significant in the three 

later waves (β = 16.77-24.99, SE = 6.36 – 8.11, p < .01). Both practices are generally 

more associated with developing instrumental understanding in mathematics. Conversely, 

application of mathematics to daily life generally works to develop relational 

understanding, but Eriksson et al. found that it consistently had a negative association 

with achievement. Though this effect was not as strong (β = -11.39 – -14.69, SE = 5.84 – 

10.81), it was a surprising result when considering the direction of the relationship. 

Though these results were specific to Sweden, the patterns remained when all the 

international TIMSS countries were included in the analysis. 

In another study analyzing TIMSS data, Mosimege and Winnar (2021) looked at 

topic-specific achievement in over 12,000 South African students. They found that 

students in an algebra class whose teachers had them solve problems without providing 

direct guidance scored an average of 38 fewer points when compared to students who had 

more teacher guidance (p < .01). They found similar findings in analyses of students 

studying geometry, numbers, and data and chance. Students taught by teachers who 

provided more guidance during problem solving tasks had higher scores than those whose 

teachers provided less guidance.  

There could be a few explanations for these contradictory findings. First, the 

samples from the studies came from different countries. Students in Sweden and Finland 
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showed improved achievement when forced to complete tasks without teacher guidance 

while students in South Africa demonstrated higher achievement when they received 

guidance from their teachers. These findings may indicate cultural differences related to 

how students learn, the role of a teacher, or the role of struggle and persistence in 

learning. It is likely that students who are not regularly required to struggle during 

mathematics instruction may become confused and frustrated with this type of 

instructional strategy, resulting in decreased performance. Those same students, however, 

may use the guidance from teachers to help them make connections and think more 

deeply about mathematics. Understanding the educational norms in each country would 

illuminate possible explanations for the discrepancy. The conflicting results in these 

studies suggest the need for further research that investigates the relationship between 

relational instruction and student achievement, and how culture might mediate that 

relationship. 

Other reasons for the contradictory findings may be related to the measure of 

achievement used, or the temporal connection between the study and the measure of 

achievement. Sometimes achievement is measured using an assessment that clearly aligns 

with a recent intervention (Jonsson et al., 2014; Norqvist, 2018) and at other times it is 

measured by student engagement and participation in a discovery-based lesson (Selman 

& Tapan-Broutin, 2018). The TIMSS studies (Eriksson et al., 2019; Mosimege & 

Winnar, 2021) measured relationships between general teaching practices that were not 

explicitly tied to specific mathematics topics, nor associated with a specific time interval. 

It is possible that these variations in temporality or alignment between instruction and the 
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measure of achievement influence the results when measuring achievement. These 

variations in achievement measures may contribute conflicting messages when students 

evaluate their self-concept. Further research is necessary to delineate the different effects 

instructional practices have on short-term content-specific achievement as well as more 

general long-term achievement and how students incorporate the results of different 

achievement measures into their self-concept evaluations. 

Though the northern European studies (Jonsson et al., 2014, 2016; Norqvist, 

2018) analyzed content-specific results over a short term, the studies suggest positive 

long-term benefits for achievement. Results of the studies suggest that if students 

successfully complete tasks requiring creative reasoning, they have greater retention of 

the material and an ability to easily recreate what they had done in the practice session 

(Jonsson et al., 2014, 2016; Norqvist, 2018). Students in the CR group could quickly 

produce a needed formula while students in the AR group tried to recall a formula they 

had previously used but did not understand. When students develop a relational 

understanding of mathematics, they understand relationships in mathematics and can use 

mathematics creatively to solve problems. 

The goal of most educational reforms is to improve achievement for all students, 

but research has not yet reached a consensus on how to do this. At times reforms which 

increase rigor in mathematics instruction create difficulties for students who have a 

history of low achievement (Clotfelter et al., 2015), while at other times low achieving 

students show the greatest improvement when a focus on college readiness increases 

rigor (Edgerton & Desimone, 2018). To clarify this apparent contradiction in the 
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literature, Allensworth et al. (2021) suggested that researchers consider how past 

achievement moderates the relationship between instructional practices and student 

performance. To clarify how teachers’ instructional and supportive practices affect 

students differentially according to past mathematics achievement, the statistical models 

used to answer RQ2 included covariates to measure both past performance and 

understanding.  

Instruction that focuses on developing relational understanding may help equalize 

instructional quality among different groups of students. For students taught with reliance 

on memorization of algorithms, achievement was more strongly associated with innate 

cognitive abilities than for students who had to rely on conceptual understanding of 

relationships (Jonsson et al., 2014; Norqvist, 2018). Students in the CR group were 

building relational understanding and showed less variation due to cognitive abilities, 

though the groups were purposefully designed to represent similar levels of cognition. 

This suggests building relational understanding may minimize differences in achievement 

and provide better instruction for students who have not shown high previous aptitude for 

mathematics. 

How Relational Instruction May Influence Self-Concept 

There are potential positive and negative effects on students’ self-concept when 

instruction focuses on building relational understanding. A potential benefit is that 

students develop deeper understanding and greater flexibility in using mathematics. A 

potential drawback is that students may experience more struggle and frustration with 

relational instruction. These negative affective experiences could contribute to a decrease 
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in self-concept.  

Productive Struggle in Mathematics 

There is a great deal of research related to productive struggle in learning 

mathematics, but most of the research investigates its effect on achievement, with less 

focus on affective or emotional effects. Some results, however, present evidence that 

students who receive instruction designed to build relational understanding of 

mathematics experience more struggle during the learning process. In Norway, students 

who learned through tasks requiring creative reasoning initially struggled and required 

more time to complete the practice problems (Jonsson et al., 2014; Norqvist, 2018). This 

struggle could lead to decreased self-concept in multiple ways. First, the negative 

emotions that students experience while engaged in productive struggle may become 

associated with mathematics and cause them to view their relationship with mathematics 

negatively. Second, students may incorporate the struggle in their frame of reference 

evaluations and decide that since they do not experience the same struggle in another 

class, or they experience more struggle than another student, they are less competent in 

mathematics. 

  One area of current research pertains to the role of struggle in mathematics 

education and different strategies used to alleviate it. In accordance with previous 

research (Renkl, 1999), Norqvist et al. (2018) tried to alleviate struggle while maintaining 

instructional quality by adding conceptual explanations to worked examples of 

algorithmic problems. However, they did not find an increase in students’ achievement or 

a decrease in the amount of cognitive strain required to complete the exam. Their 
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findings indicated that providing worked examples is not enough to get students thinking 

deeply about mathematics or reduce the amount of struggle students experience.  

Kapur (2014) described the benefits of productive struggle in mathematics. He 

compared the achievement and cognitive strain between students who received a lecture 

related to standard deviation before or after engaging in problem solving. He found that 

the students in the productive failure group, who engaged in problem solving before the 

lecture, attained the same level of instrumental understanding as the direct instruction 

group, but outperformed the direct instruction group on relational understanding (d = 

2.00). However, these students also reported greater mental effort during both the 

problem-solving phase (d = 1.70) and the lecture phase (d = 1.66). When students 

experience similar situations of high cognitive strain in mathematics, they may interpret 

them as a lack of ability which would negatively affect their self-concept.  

Skemp (1976) suggested that when students have relational understanding in 

mathematics, they experience greater achievement. The other research cited in this 

section (Jonsson et al., 2014; Kapur, 2014; Norqvist, 2018) indicates that students who 

develop relational understanding have better retention and flexibility with mathematics, 

and they experience fewer negative emotions related to mathematics learning. However, 

there is also evidence to suggest that relational instruction may lead to increased anxiety 

and frustration (Jonsson et al., 2014). Though I do not measure anxiety in this 

dissertation, I investigate the interaction between relational instruction and supportive 

and caring learning environments to see how they work together to influence student self-

concept. The caring and supportive learning environment should mitigate the potential 



36 
 
negative effects of instruction that builds relational understanding.  

Caring and Supportive Learning Environments 

 A third factor that likely contributes to students’ self-concept is the degree to 

which they feel cared for and supported in their learning environment. Many researchers 

have studied how students are affected by having caring, supportive teachers (Kashy-

Rosenbaum et al., 2018; Ruzek et al., 2016; Sakiz et al., 2012; Yıldırım, 2012). Because 

of the demonstrated importance of caring teachers, the School Center for Advanced 

Study of Teaching and Learning developed the Classroom Assessment Scoring SystemTM 

(CLASSTM) (Pianta et al., 2008) to evaluate the quality of classroom instruction. This 

observational assessment tool has been used repeatedly in research on mathematics 

education (Allen et al., 2013; Virtanen et al., 2018) and includes a measure of 

emotionally supportive classrooms. It is based on Self-Determination Theory (SDT, Ryan 

& Deci, 2000) and measures teacher/student interactions that affect a student’s feelings of 

competence, belonging, and autonomy. This section of the literature review presents 

research related students having a caring and supportive learning environment and how it 

may influence their self-concept. 

 According to Hamre et al. (2013), an emotionally supportive environment is one 

with warm, caring relationships where the teachers are sensitive to students’ behavioral, 

affective, and academic needs, while also being respectful of students’ perspectives and 

ideas. Similarly, Martin and Rimm-Kaufman (2015) stated that caring is expressed as 

teachers are sensitive, genuinely kind, and aware of students’ interests and needs. Other 
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research has suggested that students want teachers who care and hold them to high 

expectations (Sakiz et al., 2012). Sakiz et al. also found teacher behavior that 

communicates caring was positively associated with students’ feelings of belonging (see 

also Ruzek et al., 2016), as well as increased enjoyment and confidence in academics 

while being negatively associated with hopelessness. Based on this research I hypothesize 

that positive emotional outcomes in a mathematics classroom improve student 

engagement and achievement in school (Ahmed et al., 2013; Martin & Rimm-Kaufman, 

2015) and likely contribute to increased self-concept. 

How Caring and Supportive Learning 
Environments Relate to Achievement 

Research suggests that teachers who provide a caring and supportive learning 

environment may help improve their students’ achievement. A cross-country analysis of 

2012 PISA data (OECD Publishing, 2013) showed that emotional support from teachers 

had a weak, yet significant, positive correlation with student mathematics achievement (r 

= .13, p < .001) and significantly predicted achievement even when controlling for 

student country and sex (Oda et al., 2021). In another study, researchers used hierarchical 

linear modeling (HLM) and found that the degree of emotional support high school 

students received from their homeroom teacher significantly predicted their grade point 

average (b = 3.33, SE = 1.34, p < .05) (Kashy-Rosenbaum et al., 2018). When students 

feel emotionally supported by their teachers, they show increased achievement. 

Though the effects are moderate, they suggest that emotionally supportive 

teachers may have a positive influence on achievement. However, they leave questions 

concerning the strength of the effect. The measure of emotional support in the Oda et al. 
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(2021) study asked students to consider the emotional support they received from “most 

teachers” (p. 47). Thus, the study reported how a general feeling of care from all teachers 

influenced mathematics achievement. Kashy-Rosenbuam et al. (2018), however, reported 

how a single teacher’s level of emotional support influenced general academic 

achievement. Research is needed that examines the specific effect a caring and supportive 

environment in a mathematics classroom has on student self-concept.  

Given the research related to emotions is correlational, we cannot say that positive 

emotions contribute to improved academic achievement. Ruzek et al. (2016) pointed out 

that although research has repeatedly connected student motivation and engagement with 

teacher emotional support, the nature of the relationship has not been explained. It may 

be that students in the Oda et al. (2021) study were assigned to homeroom classes based 

on their past performance, or their current schedule, which would bias the results. 

However, there are several reasons why it is reasonable to argue the emotional support 

students receive from teachers will contribute to increased achievement. First, as students 

feel supported, they are more likely to be attentive and engage in the learning process 

(Murdock & Miller, 2003; Noddings, 2012). Second, when students struggle or make 

mistakes, they are more willing to seek help from their teachers and correct errors or 

misconceptions (E. M. Skaalvik & Skaalvik, 2013). Finally, if students feel emotional 

support from their teachers, it will decrease the influence of negative emotions related to 

learning mathematics (Kashy-Rosenbaum et al., 2018). When experienced, these negative 

emotions increase cognitive strain and create a barrier to learning so if they are reduced, 

students can put more cognitive energy into understanding mathematics relationally. 
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Additional evidence for the beneficial effects of teacher emotional support can be 

seen by looking at interaction effects. For students with high levels of confidence in 

mathematics teacher caring did not have as strong of an effect as it did on students with 

low levels of confidence (Lewis et al., 2012; Martin & Rimm-Kaufman, 2015). Similarly, 

when comparing the effects of teacher caring between English fluent students and 

English learners, researchers found that teacher caring had a stronger effect for students 

who were learning English than for students who spoke English fluently (Lewis et al., 

2012). For English learners a 1.0 standard deviation increase in teacher caring predicted 

an increase of 1.043 standard deviations in mathematics achievement. This result is 

supported by other research which found that mathematics achievement for students 

categorized as high risk was substantially influenced by the teacher level of caring, and 

that the level of caring mitigated the negative effect of being labeled at-risk (Muller, 

2001). Though main effects of teacher caring are often judged to be insignificant (Lewis 

et al., 2012; Muller, 2001), these studies suggest positive results due to how the caring 

environment moderates other variables. When teachers provide caring and emotionally 

supportive learning environments for students, they can improve the achievement of 

students who face other cognitive, social, and affective disadvantages. In this dissertation 

study I examine the effect that student perceptions of the learning environment their 

mathematics teacher creates had on student self-concept.  

Caring and Supportive Learning Environments 
Promote Positive Affective Experiences 

In addition to positive associations with achievement, providing students with 

caring and emotionally supportive learning environments positively relates to additional 
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beneficial affective outcomes that may influence self-concept. Emotionally supportive 

environments help to increase student engagement and feelings of autonomy (Ruzek et 

al., 2016; E. M. Skaalvik & Skaalvik, 2013). They also have a negative association with 

harmful emotions such as mathematics anxiety (Oda et al., 2021) and academic 

hopelessness (Sakiz et al., 2012). Caring and emotionally supportive environments that 

increase student engagement while decreasing negative emotional experiences should 

strengthen student self-concept by increasing achievement and providing more positive 

affective experiences in mathematics classes. This claim is supported by E. M. Skaalvik 

and Skaalvik, who found that emotionally supportive teachers were more likely to have 

students with strong self-concept (see also Oda et al., 2021). Teachers who provide caring 

and supportive mathematics learning environments may serve to strengthen students’ 

self-concept for mathematics though both cognitive and affective relationships. The 

statistical models in RQ #3 allowed me to examine how creating a caring and supportive 

learning environment influenced student self-concept both directly and through its 

interaction with relational instruction. 

How Messages of Caring and Support Influence 
Self-Concept 

Though most individuals who enter the teaching profession are likely to claim 

they care for their students, that message is not always transmitted to those they teach. In 

a study looking at the interrelationships between self-concept and perceived instructional 

quality among secondary mathematics students, researchers found that only about 10% of 

students rated their teachers as providing high quality interactions, one aspect of which 

included social support (Lazarides & Ittel, 2012). In fact, half of the students perceived 
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their interactions with their teacher as being low quality. In the following paragraphs I 

discuss research which illuminates different ways teachers may convey caring and 

support to their students and how they may influence self-concept. 

The way teacher messages of caring and support contribute to self-concept can be 

influenced by teachers’ beliefs about intelligence. When teachers endorse entity (fixed) 

beliefs of intelligence, they attribute student success to factors outside of the student’s 

control (Rattan et al., 2012). They tend to relate poor grades to lack of intelligence rather 

than student effort or their own teaching practices and make these judgements after only 

one low test score. Rattan et al. found teachers had lower expectations for the students 

they considered low achieving and attributed continued low performance to a lack of 

ability. When teachers view their students as having an inadequate level of intelligence, 

the messages of support and caring they send may be detrimental to student self-concept. 

Teachers’ beliefs about intelligence influence the way they discuss poor 

performance with their students (Rattan et al., 2012). Rattan et al. found that teachers 

with entity (fixed) beliefs felt the most appropriate response to failure was to console 

their students for their lack of aptitude and try to make them feel better by suggesting 

“not everyone can be good at every subject.” (p. 731) Students who received this type of 

feedback had lower expectations for their future performance. Conversely, when teachers 

who endorsed incremental (growth) beliefs of intelligence discussed failure with their 

students they reviewed problems the student faced and developed strategies for 

improving performance in the future. These teachers maintained high expectations for 

their students and continued to put effort into helping them learn. When students receive 
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this type of support they experience more enjoyment and confidence in learning 

mathematics (Gervasoni et al., 2012). While both groups of teachers were trying to be 

supportive, the messages from teachers who held incremental beliefs of intelligence 

expressed confidence in the student. These messages are more likely to increase the 

student’s self-concept. Conversely, the lack of confidence communicated by teachers 

with entity beliefs is more likely to discourage students and contribute to low self-

concept. 

In addition to the obvious ways students receive messages of caring (e.g., 

listening or showing interest in non-academic events in the student’s life) messages of 

caring and support can come through other interactions. Students feel increased caring 

and support when teachers work to meet their academic needs while being respectful of 

their unique perspectives (Hamre et al., 2013), acknowledging and respecting their 

interests (Martin & Rimm-Kaufman, 2015), and maintaining high expectations (Sakiz et 

al., 2012). Though the influence of these components on self-concept has not been tested 

empirically, theory related to self-concept suggests that each would have a strengthening 

effect. Respecting students’ unique interests and perspectives will allow teachers to 

validate students’ individual mathematical processes and help students see how 

mathematics applies to their lives. Maintaining high expectations, when coupled with 

academic support, will help students be successful and give them confidence that they are 

able to understand mathematics. As students develop confidence and see mathematics as 

relevant to their lives, they will have stronger self-concept. 
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Demographic Differences 

The main dependent variables in this dissertation are relational instruction and 

caring and supportive learning environments. However, research suggests that the way 

students evaluate their self-concept may be influenced by demographic characteristics 

like race and gender. Very little research investigates demographic differences in self-

concept though differences have been observed according to gender (Evans et al., 2011; 

Goldman & Penner, 2016; S. Skaalvik & Skaalvik, 2004), and race (Dasgupta et al., 

2022; Evans et al., 2011). With the demographic diversity that exists in classrooms it is 

important to understand how demographic factors play a role in the way students develop 

their self-concept. 

Though little exists in self-concept literature to explain the role of demographic 

characteristics in the way students evaluate their self-concept, the related construct of 

self-efficacy may provide insight. Differences related to gender and race were observed 

in studies on mathematics self-efficacy (Huang, 2013; Usher, 2009; Usher & Pajares, 

2006). Mathematics self-efficacy tends to be higher in male students than female students 

even when their performance in mathematics is similar. Additionally, Zeldin et al. (2008) 

found that adult women placed more emphasis on observation and verbal feedback of 

others when evaluating their self-efficacy while men placed more emphasis on past 

achievement. This research suggests that gender influences how students evaluate their 

self-perceptions. 

Gender can also interact with the main study variables to influence student self-

concept. Lazarides and Ittel (2012) found female students twice as likely to describe their 
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mathematics teachers as exhibiting low quality interactions than male students. They also 

found female students more likely to feel their teachers were not willing to take time to 

speak to their students. These findings suggest that there might be different gender effects 

related to instruction as well as students feeling that they have a caring and supportive 

learning environment. 

Research suggests that race also influences the way students evaluate their self-

perceptions. Huang (2013) suggested that self-efficacy is influenced by the socialization 

practices of different cultures. Though he did not find empirical evidence for this 

hypothesis, it is likely that cultural socialization will influence self-concept since it 

includes subjective evaluation components that self-efficacy does not. Some research has 

found race-based differences in self-concept, but it was observed when comparing 

different homogeneous samples (Yoshino, 2012). In a more recent study of 2,939 

adolescents, Dasgupta et al. (2022) found Black, Latinx, and Native American students 

had greater benefits to self-concept than white students when they understood how 

mathematics related to their societies and when they felt a greater sense of belonging in 

their classes. In this dissertation study I look at the effects of race on relational instruction 

and perceptions of a caring and supportive learning environment to see how they 

influence self-concept. 

Another demographic factor that may influence students’ self-concept is SES. 

Some scholars suggest that academic gaps which appear to be racially defined might be 

more appropriately attributed to SES than race (Gray-Little & Hafdahl, 2000; Ravitch, 

2016). Much of the research which supports the BFLPE compares student populations in 
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different schools or tracks, each with distinctly different levels of achievement. Because 

school assignment and placement into higher academic tracks are often correlated with 

SES, the observed BFLPE may be confounded by SES as well. It is important to 

distinguish the effect of SES from other demographic variables to develop interventions 

that increase student self-concept. As such, I included SES as a control variable in the 

multilevel models to separate its influence from the influence of race. 

The findings and suggestions in the research support the continued need to 

investigate demographic differences in how students evaluate their self-concept. If we 

know how different student populations interpret messages related to their self-concept, 

then we will be able to better tailor environmental and instructional conditions to increase 

student learning and achievement. To illuminate how demographic factors influence 

student self-concept and how they interact with relational instruction and student 

perceptions of a caring and supportive learning environment, the models for RQ #4 will 

include interactions between the main predictors (i.e. relational instruction and the 

creation of caring and supportive learning environments), race, and gender. 

Conceptual Framework 

This section explains the conceptual framework describing the theoretical 

foundation supporting this research. It presents a theoretical argument linking the 

instructional emphases of mathematics teachers and the classroom environment with the 

development of self-concept. This framework draws on theories related to: (a) relational 

understanding of mathematics, and (b) ethics of caring. The theoretical relationships 
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which explain how instructional and environmental factors may contribute to students’ 

self-concept are shown in Figure 3. 

Figure 3 

Conceptual Framework 

 

Explanation of Theoretical Constructs 

The first theoretical construct underlying the conceptual framework is the theory 

of relational/instrumental understanding in mathematics (Skemp, 1976, 2012). This 

theory is frequently used in mathematics education research and provides a framework 

for discussing different types of mathematical knowledge or understanding. In his book 

The Psychology of Learning Mathematics (Skemp, 2012), Richard Skemp described the 

difference between relational and instrumental knowledge using the analogy of 

navigating a new city. An individual can be given step-by-step directions that allow them 

to successfully reach their destination, but if a road is closed, the individual may find 

themselves helplessly lost. This is analogous to a student with instrumental, or 

procedural, understanding of mathematics. However, if the individual instead has a map 

and understands how to use it, then they will be able to find alternate routes to their 

destination without getting lost. This second scenario is analogous to a student who has 
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developed relational, or conceptual, understanding and uses their mental schemes (maps) 

to help them engage more flexibly in mathematics. The development of relational 

understanding contributes to increased flexibility, recall, transfer, enjoyment, and 

achievement in mathematics learning (Skemp, 1976). In this study achievement in 

mathematics includes both performance and understanding as relational instruction 

should result in both. The development of relational understanding in mathematics should 

strengthen students’ self-concept as it allows them to think flexibly and creatively with 

mathematics with a higher level of understanding. 

The second theoretical component is ethics of caring (Noddings, 1988). Noddings 

proposed a relationship between the carer (teacher) and the cared for (student) that would 

function as a mechanism for teaching ethical behavior. She explained that teachers should 

“treat students with respect and consideration and encourage them to treat each other in a 

similar fashion” (Noddings, 1988, p. 223). She claimed that this caring relationship is 

built on dialogue and an understanding of students’ background knowledge and 

experiences. Later researchers expanded on Nodding’s theory when they found that 

caring teachers improved academic motivation, and thereby performance, of students in 

mathematics (Lewis et al., 2012; Muller, 2001; Murdock & Miller, 2003; Noddings, 

2012; Valenzuela, 2010). In summary, they found that students “prefer to be cared for 

before they care about school” (Valenzuela, 2010, p. 342). If students feel emotionally 

cared for and supported by their mathematics teachers, the frequency and severity of 

negative affective experiences while learning mathematics should decrease, leading to a 

stronger self-concept. 



48 
 
Interrelationships Between the Constructs 

The conceptual framework is based on a set of premises which suggest 

relationships between teachers’ instructional emphases, classroom and school caring, and 

self-concept. First, this research presumes the activities and instructional techniques a 

mathematics teacher employs can strongly influence whether students develop relational 

or instrumental understanding in mathematics (Chapin et al., 2009; Stephens et al., 2015; 

Van de Walle et al., 2015). Activities that focus on connecting mathematics concepts 

(Stephens et al., 2015), having students explain their reasoning (Chapin et al., 2009), or 

engaging students in problem solving (Van de Walle et al., 2015) will help students to 

construct mental schema associated with relational understanding. If students develop 

relational understanding their self-concept should increase because they develop the 

ability to think flexibly with mathematics, see mathematics as more connected to their 

individual lives, and experience increased enjoyment and success.  

The second premise guiding this research is that students who feel that they are 

cared for and belong in their mathematics learning environment will engage more deeply 

in learning, and have fewer negative emotions related to mathematics. Many students 

experience stress, discouragement, or frustration when learning mathematics (Ahmed et 

al., 2012, 2013). Additionally, students experience uncertainty, sadness, and 

disappointment related to situations outside of the classroom which can create barriers to 

their motivation and learning (Joëls et al., 2006). However, when students perceive that 

their teachers care about them, respect them, and provide positive emotional support they 

feel an increased sense of belonging, and greater academic enjoyment (Sakiz et al., 
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2012). Based on E. M. Skaalvik and Skaalvik (2013) who found that students with caring 

teachers had deeper learning goals and put greater effort into learning, I hypothesized that 

if students felt a sense of belonging in their mathematics classrooms, they would be more 

engaged in the learning process and have increased motivation to do their best. Taken 

together, a caring and emotionally supportive learning environment should contribute to 

both cognitive and affective improvements that would then translate into an increase in 

student self-concept. 

The third premise, shown by the double headed vertical arrow in the conceptual 

framework, is that a reciprocal relationship exists between students’ cognitive and 

affective experiences in mathematics. This suggests that improvements in students’ 

understanding of mathematics will increase their positive affective experiences, and vice 

versa. In the framework there are also double-headed arrows indicating similar reciprocal 

relationships between self-concept and cognitive or affective experiences. As self-

concept increases, it will contribute to further increases in understanding and positive 

affective experiences. 

The framework described above provides a theoretical and conceptual basis for 

describing how the relational instructional practices of mathematics teachers and the 

caring, supportive environment they help create for students can have a positive effect on 

students’ self-concept. In the current study I examine these relationships through the 

following research questions. 

1. How does student mathematics self-concept change during students’ 
secondary education years as measured on the HSLS:09? 

2. How does an emphasis on relational instruction in mathematics influence 
change in student self-concept for mathematics as measured on the HSLS:09 
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(Ingels et al., 2011)? 

3. How do student perceptions of a caring learning environment influence 
change in student self-concept for mathematics as measured on the HSLS:09 
(Ingels et al., 2011)? 

4. Are there differences based on demographic factors such as gender and race? 

Conclusion 

The research reviewed in this paper presents evidence which suggests that self-

concept can be affected through teachers’ use of instructional activities that focus on 

building relational understanding in mathematics and the creation of emotionally caring 

and supportive environments. However, since self-concept has rarely been the main 

outcome of interest in studies on teacher/student interactions, the current study 

investigates the influence of relational instruction, and caring environments on student 

self-concept. Additionally, since research points to both cultural and gender differences 

in how self-concept perceptions are formed, this research investigates how relational 

instruction and caring environments may affect various student groups differently.  
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CHAPTER III 

METHODS 

The purpose of this study was to investigate how relational instruction and the 

creation of a caring learning environment contribute to the development of student 

mathematics self-concept, and how those factors influence students differently according 

to race and gender. To investigate these relationships, I conducted a secondary analysis of 

data from the High School Longitudinal Study of 2009 (HSLS:09) to answer the 

previously outlined research questions. The extensive data provided in the HSLS:09 

allowed for the identification of trends and relationships in student self-concept that have 

previously been undiscovered due to limitations of sample size. 

Research Design 

The design of this study was a quantitative secondary data analysis using 

multilevel regression techniques on longitudinal survey data. In secondary data analysis a 

researcher analyzes data that was collected by another individual or entity (Johnston, 

2014). Secondary analysis of the HSLS:09 data was beneficial for this study as the large 

nationally representative sample (a) provided statistical power for multilevel modeling 

techniques and (b) allowed for examination of variation in the development of self-

concept among different student populations.  

Regression is an inferential statistical method that allows a researcher to examine 

the relationships of multiple predictor variables on a single outcome (Montgomery et al., 

2021). According to Rabe-Hesketh and Skrondal (2008), the purpose of multilevel 
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modeling is to “model the relationship between a response variable and a set of 

explanatory variables … [which] involves units of observation at different ‘levels’” (p.1). 

When variables of interest are found at different nested levels, or clusters (i.e., 

individuals, classrooms, and schools), the use of standard regression models can lead to 

ecological or atomistic fallacies, and inaccurate standard errors. Ecological fallacies 

occur when aggregated level 2 data is interpretated in regards to lower level variables and 

atomistic fallacies are made when analyses of level 1 variables are used to make 

inferences at a higher level (Hox, 2010). Multilevel modeling overcomes these issues as 

it accounts for dependence of observations at each level and attributes unexplained 

variability to the different levels. Multilevel modeling was appropriate for this 

dissertation as it accounted for clustered variation due to students having a shared school 

environment. 

One additional reason a multilevel model was appropriate for this research is the 

longitudinal nature of the dependent variable. Longitudinal data are data that are 

collected at multiple time points on the same participants (Diggle et al., 2002). The 

repeated observation data are necessary for studying change over time (Singer & Willett, 

2003) and can be viewed as clustered data for inclusion in a multilevel model (Rabe-

Hesketh & Skrondal, 2008). Longitudinal data allows for examination of both within-

subjects and between-subjects change (Baltes & Nesselroade, 1979; Singer & Willett, 

2003). The longitudinal data found in the HSLS:09 allowed me to examine how student 

self-concept changes over time, the duration of the influence of the predictor variables on 

student self-concept, and how these findings change according to student demographics.  
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Data Source 

 The data for this analysis came from the restricted-use dataset from the HSLS:09 

study. The HSLS:09 is an extensive longitudinal study sponsored by the National Center 

for Educational Statistics (NCES) designed to investigate the transition of students from 

high school, through any post-secondary education, into adulthood and long-term careers. 

The unit of analysis in the HSLS:09 study is individual students which means the data set 

can only be used to investigate dependent variables at the student level. The NCES 

administered initial baseline year (BY) surveys to the sample of students in their ninth-

grade year, and gathered follow up survey data during students’ junior year (11th grade) 

in 2012 (F1) and three years after graduation from high school in 2016 (F2) (Ingels et al., 

2011). In addition to the student surveys, parents, teachers, school counselors, and school 

administrators completed surveys in 2009 to provide further contextual information. The 

HSLS:09 measured student achievement, attitudes, beliefs, experiences, and practices 

related to education, with an emphasis on mathematics and science.  

The data for this dissertation came from student surveys at multiple waves, along 

with teacher surveys in the 2009 baseline year. The data was downloaded as a data frame 

and formatted for use in the R statistical software. A separate Excel file was provided 

which listed all the included variables, their data file designation, and the data collection 

instrument that they came from. The HSLS:09 data set contains thousands of variables. 

The variables applicable to this dissertation provide demographic information (i.e., 

gender, race, and SES), measures of student achievement (i.e., class grades and 

standardized exam scores), student perceptions of their mathematics teacher (e.g., “My 
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math teacher treats students with respect”), and student perceptions of their abilities in 

mathematics (i.e., “I consider myself a math person”). The dataset also contains data 

from the math teacher survey which includes variables related to instructional foci in 

mathematics (e.g., math teacher’s “emphasis on connecting math ideas”). 

Procedures 

The HSLS:09 was administered by the NCES. The initial surveys took place in 

the fall of 2009 with follow-up surveys occurring Spring 2012, and February 2016. The 

deidentified HSLS:09 data are housed at the NCES website and freely available for 

download. However, for this dissertation I needed access to additional variables that 

contain linking or identifying information which can only be accessed following an 

extensive approval process and licensure from the US Department of Education. I gained 

access to these school identifiers through the license and access granted to Dr. Mario 

Suarez, one of my dissertation committee chairs. After completing the required training 

from the Institute of Education Sciences (IES) and submitting a notarized non-disclosure 

agreement, I was added to Dr. Suarez’s license as an approved researcher. As an 

approved researcher, I ran all analyses under Dr. Suarez’s supervision, in his office, on a 

secure computer which did not connect to the internet.  

Participants 

 The HSLS:09 used a nationally representative sample of over 23,000 ninth-grade 

students from more than 944 schools across the United States. The study used a two-stage 
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stratified random sampling process (Ingels et al., 2011), first identifying and selecting 

eligible schools to participate and then randomly selecting ninth-grade students from 

within the schools. Schools were categorized according to the following three criteria: (a) 

school type (i.e., public, private - Catholic, private – other), (b) region of the U.S. (i.e., 

Northeast, Midwest, South, West), and (c) locale (i.e., city, suburban, town, rural). These 

criteria were used to create 48 different sampling strata from which schools could be 

randomly selected to create a nationally representative sample of schools. Once the 

school sample was selected, between 20 and 50 students were selected from each school 

using a stratified systematic sampling procedure with sampling strata defined by student 

race or ethnicity. For this dissertation I analyzed pertinent data from the full HSLS:09 

student sample. However, missing data and survey attrition resulted in a final analytical 

sample that was smaller than the original HSLS:09 sample. Demographic information for 

the final analytical sample can be seen in Table 1. In compliance with requirements from 

the Department of Education, all sample sizes were rounded to the nearest 10. 

Table 1 

Demographic Information for the Sample 

Race # Males 
% of total 

sample 
# 

Females 
% of total 

sample 
White 6,250 24.8 6,010 23.9 
Hispanic 2,020 8.0 1,980 7.9 
Black 1,400 5.6 1,250 5.0 
Asian 1,060 4.2 1,040 4.1 
> 1 Race 1,000 4.0 950 3.8 
Native American/Alaskan/Hawaiian/Pacific Islander 150 .6 130 .5 
No race reported 980 7.6 940 3.7 
Totals 12,860  12,300  

Note. N = 25,160. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009.”  
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Data Analysis 

 The analysis for this dissertation occurred in three phases. In the first phase, I 

created a data set that included only the variables needed for my analysis and prepared 

the data for analysis by creating new composite variables and transforming the data set 

into long form. The statistical packages in R for analyzing longitudinal data require data 

to be organized in long form, where everyone has multiple rows in the data set (Singer & 

Willett, 2003). In the second phase, I ran exploratory analyses to describe the main 

variables of interest and investigate the trajectory for self-concept to answer the first 

research question. Finally, I built multi-level statistical models to answer the final three 

research questions. Table 2 provides a summary of the research questions, the source of 

the data for each question, and the types of data analyses that will be conducted.  

Variables 

 All variables used in the analysis came from the HSLS:09 data. Some were scales 

created by the NCES while others were created for this dissertation by combining 

individual items to generate new scales to measure the new predictor variables. 

Descriptions of the variables used in the study are listed below. Most of the HSLS:09 

items used to create the new predictor variables were Likert-type items measured on a 

four-point scale. Though Likert scales are discrete scales, studies have shown that Likert-

type scales with five or more response options can be treated as continuous in statistical 

analyses (Sullivan & Artino, 2013). Further, researchers observed that 4-point scales 

produced the same statistical values as higher point scales, even among elementary  
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Table 2 

Summary of Research Questions, Data Sources, and Method of Analysis 

Research questions Data source Data analysis 
1. How does student mathematics 

self-concept change during 
students’ secondary education 
years? 

 

HSLS:09 data 
Student baseline year, 1st and 
2nd follow up instruments. 
 
Math teacher instrument 

Descriptive statistics 
 
Longitudinal growth curve 
modeling (Singer & Willett, 
2003) 

2. How does an emphasis on 
relational instruction in 
mathematics influence change 
in student self-concept for 
mathematics as measured on 
the HSLS:09 (Ingels et al., 
2011)? 

HSLS:09 data 
Student baseline year, 1st and 
2nd follow up instruments. 
 
Math teacher instrument 
 

Confirmatory factor analysis 
(Levine, 2005) 
 
3-level MLM regression model 
(Gelman & Hill, 2006; Hox, 
2010; T. Snijders, 1996; T. A. 
Snijders & Bosker, 2011) 

3. How do student perceptions of 
a caring and supportive 
learning environment 
influence change in student 
self-concept for mathematics 
as measured on the HSLS:09 
(Ingels et al., 2011)? 

HSLS:09 data 
Student baseline year, 1st and 
2nd follow up instruments. 
 
Math teacher instrument 

3-level MLM regression model 
(Gelman & Hill, 2006; Hox, 
2010; T. Snijders, 1996; T. A. 
Snijders & Bosker, 2011) 

4. Are there differences based on 
demographic factors such as 
gender, race, SES, and parent 
education level? 

HSLS:09 data 
Student baseline year, 1st and 
2nd follow up instruments. 
 
Math teacher instrument 
Parent instrument 

3-level MLM regression model 
with interactions (Gelman & 
Hill, 2006; Hox, 2010; T. A. 
Snijders & Bosker, 2011) 
 
Plots of simple slopes (Aiken et 
al., 1991; Gelman & Hill, 
2006) 

Note. HSLS:09 = High School Longitudinal Survey, 2009. MLM = Multi-level model. All analyses will be 
conducted in RStudio (Version 4.1.1) using the packages levaan, and lme4. 
 

school children (Adelson & McCoach, 2010; Leung, 2011). However, for best 

methodological practices, I adjusted the commands in the statistical software to maximize 

the accuracy of the variable values and allow me to treat them as continuous in the multi-

level models. The adjustments are described in the upcoming data structure and analysis 

techniques section.  

Standardizing and mean centering variables allows for easier interpretation of 
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results when variables are measured on different scales and should always be done when 

interaction terms will be included (Gelman & Hill, 2006). Given that recommendation, I 

standardized all continuous variables to have X̄ = 0 and SD = 1. A description of the 

variables included in this analysis, along with their associated HSLS:09 source is 

included in Table 3. 

Self-Concept  

The dependent variable in this study is mathematics self-concept and is based off 

the NCES created MTHID variable. The MTHID variable is a two-item scale found in 

the first two waves of data collection. It was created using the items, “I see myself as a 

math person,” and “Others see me as a math person.” These items were combined using 

principal components analysis (PCA) weighted by the STUDENT1 and STUDENT2 

weighting variables (Ingels et al., 2011). Though the MTHID scale is not included in the 

data for the second follow up, the same two individual items were included on the 2016 

survey, therefore I used a similar process to create new variables for use in my analyses. 

Self-concept refers to the way an individual sees themselves but can be affected by 

perceived evaluations from others (Bong & Skaalvik, 2003). As such, these two HSLS:09 

items complement each other to describe a total measure of mathematics self-concept. I 

used these two items at each time point to create the variables self-concept 1, self-concept 

2, and self-concept 3 where higher values are associated with higher levels of self-

concept. Cronbach’s alpha is a measure of internal consistency and can be used as a 

measure of scale reliability (Cronbach, 1951). The NCES reports that each scale showed 

good reliability with αself-concept 1 = .84 and αself-concept 2 = .87 (Ingels et al., 2011). The 
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reliability for self-concept 3 was calculated during phase two of the analysis and also 

showed good reliability αself-concept 3 = .90. 

Time 

 The HSLS:09 study measured self-concept at three separate time points. An 

analysis of longitudinal data requires the inclusion of a time variable. For this study, the 

time variable was calculated by subtracting 2009 from the year the wave of the survey 

was administered. This means that the time value for data recorded during the baseline 

year (BY) was 2009 – 2009 = 0, the time value for data collected in the first follow up 

(F1) was 2012 – 2009 = 3, and the time value for data collected in the second follow (F2) 

up was 2016 – 2009 = 7. This method of transforming the time variable allowed for 

easier interpretation as the variable indicated the number of years since ninth grade. One 

of the main objectives of this dissertation is to investigate the effect of predictor variables 

that were measured in the ninth grade, so it makes sense to consider the timing of the 

dependent variable as beginning from the introduction of those predictors. 

Relational Instruction  

I included two new variables in my analysis to investigate the influence that 

teachers have on the development of their students’ self-concept. The first of these two 

variables was called relational instruction and relied on data from the mathematics 

teacher questionnaire. The ninth-grade mathematics teachers of all participants completed 

surveys that asked about their attitudes and practices related to teaching mathematics. 

The teachers responded to multiple items asking them to rate the level of instructional 

emphasis they placed on things like problem solving skills or speedy and accurate 
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computations. The complete list of items is in Appendix A. I identified items that theory 

suggests can contribute to instruction which builds relational understanding (e.g., 

reasoning mathematically and connecting math ideas) to create the relational instruction 

variable. I validated their inclusion in a single scale using confirmatory factor analysis 

(CFA; Levine, 2005). Once validated, I used factor scores from an additional CFA as 

individual values for this variable. Higher values on the relational instruction variable 

indicate instructional goals more likely to promote relational understanding of 

mathematics.  

Caring and Supportive Learning Environment 

 The second composite variable examined the influence of the learning 

environment on students’ self-concept. I created a scale to measure the degree to which 

students experience a caring and supportive learning environment in their mathematics 

classroom. This scale measures student perceptions of the environment created by their 

mathematics teachers. The HSLS:09 contains seven items on the student BY instrument 

which ask students to rate their agreement with statements like “My math teacher treats 

students with respect” and “My math teacher thinks all students can be successful.” Like 

the items for relational instruction, these items were examined and validated using CFA. 

Once the selection of items for the new scale was validated, I extracted and standardized 

the factor scores from an additional CFA to use as individual scores on the teacher caring 

variable. 

Level 3 Identification Variable 

The HSLS:09 has a nested data structure where time is nested within students 



62 
 

 

which are nested within classrooms. Ideally, the third level of the models would be a 

classroom or teacher level. However, for multilevel regression analysis it is 

recommended to have at least 100 groups at the highest level with a minimum of 10 

participants in each group (Hox, 2010; Lee & Hong, 2021). Though more than 100 

teachers are included in the data set, they do not typically have that many HSLS:09 

sample students in their classes. Because the students and their corresponding 

mathematics teachers are clustered within the same school, I chose instead to define the 

third level of the multilevel models as schools. This level 3 grouping variable accounted 

for the shared variance between students that was a result of being at the same school. 

This is a statistically effective grouping variable for the analyses because there are 944 

schools included in the data set with an average of 23 students at each school. 

Control Variables 

 I included multiple control variables (or covariates) in the analyses so the models 

could better identify the amount of variation in self-concept that is truly related to 

relational instruction and caring and supportive learning environments. The inclusion of 

demographic covariates also allowed me to identify how the predictor variables 

influenced self-concept differently for different student subpopulations. The following is 

a list of predictor variables taken from the student and parent BY instruments that were 

used as controls in my analyses. 

• SES – Taken from items on the parent BY survey, the X1SES_U variable 
provides a measure of relative student SES based on locale of the student’s 
school. It includes components that measure parent education and occupation, 
as well as family income, and accounts for differences based on the school 
locale. Recent research suggests that observed racial gaps in student 
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mathematics achievement may be related to SES instead of race (Ravitch, 
2016). Student SES is included in this study to ensure that any variation 
attributed to race or gender in the models is accurately attributed and not a 
result of student SES.  

• Gender – The X1SEX variable is a dichotomous variable measured in the 
baseline year surveys. Though it is a dichotomous variable, it is based on the 
way an individual views themselves, so I refer to it as gender in this 
dissertation. Responses from the student, parent, and school provided 
sampling roster were compared to check for consistency. If an inconsistency 
was found, the HSLS:09 team manually coded the variable based on review of 
the student’s first name. The gender variable was included to look for possible 
gender-based differences in how the main predictor variables influence self-
concept. 

• Race - Student race/ethnicity on the HSLS was recorded in the BY study 
using the X1RACE variable. Data are based mainly on responses from the 
student survey but if that information was missing the race/ethnicity 
information came from the school sampling roster or the parent survey. The 
HSLS dataset reports eight different categories for race/ethnicity. To provide 
greater statistical power, I consolidated some of the categories resulting in the 
following six categories: White, Black, Hispanic, American Indian/Pacific 
Islander, Asian, and more than one race. The race variable was included to 
look for possible interaction effects between race and the main predictor 
variables. 

• Math Grade (8) – Measured in the BY student survey, the S1M8GRADE 
variable reports the final grade the student earned in their most advanced 
eighth-grade mathematics class. Grades are reported as letter grades with 
possible responses of A, B, C, D, “Below D,” and “Class was not graded” 
(Ingels et al., 2011). This variable provides a measure of students’ previous 
success in school mathematics which contributes to student self-concept 
(Bong & Clark, 1999; Bong & Skaalvik, 2003). The inclusion of this variable 
allowed me to see if the main predictor variables had positive effects 
regardless of a student’s past experiences in mathematics. 

• MathScore – The HSLS:09 variables X1TXMTH and X2TXMTH report a 
norm referenced measure of student mathematics achievement taken during 
students’ ninth-grade year and during the first follow up. In addition to the 
survey measuring attitudes, experiences, and educational goals, students 
completed an algebraic reasoning assessment that measured their 
understandings across the six domains of algebraic content and four algebraic 
processes shown in Table 4. All students took the same first segment of the 
test then those results were used to route them into one of three second stage 
tests with varied levels of difficulty. The results from this assessment were 
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compiled to create a continuous, norm-referenced measure of achievement 
that describes student achievement relative to the entire sample of ninth 
graders. Most of the research studying self-concept investigates its link with 
achievement, but the purpose of this research is to examine the influence of 
relational instruction and a caring learning environment on self-concept. 
Including this measure of achievement clarifies whether changes in self-
concept can be attributed to the main predictor variables or if they appear to 
be tied to achievement. Because students did not complete the algebraic 
reasoning assessment at the third timepoint it could not be included in the 
models as a level 1 variable. Therefore, I averaged values on the two HSLS:09 
variables to create a level 2 variable which describes students’ average 
performance on the algebraic reasoning assessment over the two years. 

Table 4 

Summary of Content on the Algebraic Reasoning Assessment 

Content domains Processes 

Language of algebra Demonstrating algebraic skills 
Proportional relationships and change Representing algebraic ideas 
Linear equations, inequalities, and functions Performing algebraic reasoning 
Nonlinear equations, inequalities, and functions Solving algebraic problems 
Systems of equations  
Sequences and recursive relationships  

 

Data Structure and Analysis Techniques 

 In this section I outline the various statistical analysis techniques used in analysis. 

This includes an initial factor analysis to create composite variables, growth curve 

modeling to examine the self-concept trajectory, and multilevel modeling to examine the 

influence of the predictor variables. Occasionally, I had to make slight analytical changes 

or additions in response to findings from the preliminary analyses. Additional details 

explaining these specific changes and the findings which necessitated them will be 

included in the results section. 
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Because the main predictor variables are composite variables created from items 

in the HSLS:09 data set, I used CFA to validate their inclusion into a single scale. CFA 

can test to see if multiple items measure the same construct (Levine, 2005). This 

statistical procedure can be used when (a) multiple items are being used to measure a 

single construct, (b) there is a theory-based a priori idea of the item relationships, and (c) 

each scale item has a linear relationship with the scale total (or average). Traditional 

factor analysis techniques rely on variables being measured on a continuous numeric 

scale (Linting et al., 2007). Because the HSLS:09 items only included four Likert-type 

categories the CFA will be modified by including the “ordered=TRUE” argument to 

account for non-linear, ordinal data. I ran a series of two factor CFAs which included the 

items for both relational instruction and teacher caring.  

Inter-item correlations provide a measure of how scores on one item of a scale 

correlate with all the other items on the scale, giving an overall measure of how well the 

individual items are measuring the same content (R. J. Cohen et al., 1996). Inter-item 

correlations should fall between .20 and .40. An inter-item correlation weaker than .20 

indicates the items are not measuring the same overarching construct and an inter-item 

correlation stronger than .40 suggests the included items may be repetitive and not fully 

describing the construct. Before running the models, I calculated the inter-item 

correlations for the items to be included in each model to evaluate the strength of the new 

composite variables. 

After running the models, I evaluated multiple fit indices to determine the fit of 

the items into one scale (Hu & Bentler, 1995). Goodness of fit indices can either measure 
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absolute fit, fit adjusted for model parsimony, or incremental fit, and all three types 

should be included in an analysis (Brown, 2006). The standardized root mean square 

residual (SRMR) is a measure of absolute fit. It evaluates the likelihood of a model 

without consideration of complexity or comparison to other models. SRMR values closer 

to zero indicate a stronger model with anything less than .08 considered good. The root 

mean square error of approximation (RMSEA) is like an absolute fit statistic, but it 

penalizes complex models, encouraging researchers to balance accurate measurement 

with model parsimony. As with the SRMR, values closer to zero indicate better fit with 

anything less than .06 considered good. The comparative fit index (CFI) and the Tucker-

Lewis index (TLI) are both comparative fit indices that evaluate a model in comparison 

with a more restricted baseline model. Like the RMSEA, the TLI also includes a penalty 

for model complexity. Values on the CFI and TLI indices that approach one indicate 

better fit with anything above .95 considered strong. The two factor CFA served to 

validate the distinction between these two variables and indicate the proper combination 

of items to construct the composite variable most accurately. 

 Once the items were validated in the two factor CFA, I ran two additional CFA 

models to create the new variables. Each set of items verified in the first CFA were 

included in one of two separate one-factor CFA models. The purpose for these models 

was to provide scores on the variables for everyone in the data set. Because the items 

were measured on a four-point Likert scale, creating variable values using the sum or 

average of the individual items could result in biased variable values (Rhemtulla et al., 

2012). These straightforward approaches assume that the difference between strongly 
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disagree and disagree is equal to the difference between disagree and agree. Further, 

they assume that strongly agree is equivalent to four times strongly disagree, which is 

not a reliable assumption. Instead of using means or sums I extracted factor scores from 

each of the later CFAs to create individual variable scores (DiStefano et al., 2019). The 

factor scores are linear combinations of the measured items which take into account the 

amount of shared variance between the measured item and the factor. The CFA produced 

standardized scores that place everyone on the newly created factor. To further reduce 

bias which may be due to the factors being correlated I used a Ten Berges correction 

(Logan et al., 2022). This correction should be used when factors might be correlated and 

results in scores with minimal bias. These corrected scores were the values for the new 

continuous variables which were used in the multilevel model analysis. I only used CFA 

models to validate the two new variables and provide non-biased values for those 

variables. Once the variables were created, the CFA portion of the analyses was 

complete. 

The structure of the data and the specific research questions to be investigated in 

this dissertation require the use of multilevel modeling techniques. The HSLS:09 

variables I examined have a nested structure where the repeated measurements are nested 

within individuals which are nested within schools. My analyses involved multiple 

cycles, first looking at how self-concept changes over time, then examining the influence 

of the predictor variables on the self-concept trajectory, and finally, looking at 

interactions with race and gender.  

The first research question asks how students’ mathematics self-concept changes 
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during their secondary education years. To answer this question, I looked at the means 

and standard deviations of self-concept at all time points. I created plots that showed the 

growth trajectories of 12 different random subsamples of 50 students each, along with an 

average change trajectory for the entire subsample (Singer & Willett, 2003). I plotted 

average trajectories with the data divided by subgroups determined by gender and race to 

see if the average growth trajectories were noticeably different for different student 

groups. 

The second and third research questions investigate the influence of relational 

instruction and a caring or supportive learning environment on student self-concept. To 

investigate these questions, I estimated a series of multilevel models using either 

restricted (REML) or full (ML) maximum likelihood estimation. I used REML when 

calculating intraclass correlation coefficients to examine the amount of variation at each 

level of the model. However, following the advice of Singer and Willett (2003), I used 

ML estimation when comparing models that differed in fixed effects in addition to 

variance components. This estimation technique allowed me to compare the models in 

my study as covariates were added to assess the new model fit. I built a series of models 

examining both random slopes and random intercepts. In traditional regression, data from 

all students is aggregated so all students are given the same intercept, or base level self-

concept, and variations in self-concept are attributed to predictor variables consistently 

for all students. Using a random slopes and random intercepts model allows everyone in 

the analysis to have their own intercept and slope as predicted by the level two variables 

to see how the predictors influence the growth of self-concept. I evaluated model fit by 
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examining the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC). The AIC and BIC are relative goodness of fit indices which can be used 

to evaluate models that have different predictor variables (Singer & Willett, 2003). Both 

criteria penalize non-parsimonious models, and the BIC has an additional consideration 

for sample size. In very large samples the improvement to a model that comes from 

adding a new predictor variable must be great to get a better BIC score. For both the AIC 

and BIC smaller values indicate a better model. In addition to the AIC and BIC, I 

considered the deviance statistic when evaluating models that had the same predictor 

variables but differed in the random components. The deviance statistic is based on the 

log-likelihood statistic (LL) and found by the formula 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

 −2 [ 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 – 𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]. As with the AIC and BIC, lower values of the 

deviance statistic indicate better fitting models.  

The final research question investigates how gender and race interact with teacher 

caring and relational instruction to influence the self-concept trajectory. To look for these 

effects I ran the final models again with an additional interaction term. I first modeled 

interactions between race and the two predictor variables in two separate models and then 

replaced race with student gender to test the second set of interactions. When an 

interaction term showed statistical significance, I analyzed its meaning using plots of 

simple slopes (Aiken et al., 1991; Gelman & Hill, 2006). This technique allows for visual 

comparison of the regression lines across different student groups. I plotted regression 

lines by either gender or race for each of the significant interaction terms to compare 

differences in the variable relationships. All analyses were carried out in R Studio 4.3.1 
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(R Core Team, 2023) using the packages lavaan (Yves, 2012) and lme4 (Bates et al., 

2015). I also used the package sjPlot (Lüdecke, 2023) to create the model comparison 

table for the MLM. 

The Models 

I started the multi-level model (MLM) analysis by running a three-level 

unconditional model that did not include any predictor variables. This model identified 

the amount of variability found at each of the three levels and provided a baseline to 

compare with later models. If the amount of variability at a given level is large, predictors 

can be added to try and explain the source of the variability. In this model the intercept 

represented the average level of self-concept for all students in the study in the fall of 

their ninth-grade year. The equations for each level in the model were as follows: 

Level 1: Selfconcepttij = b0ij + b1ij(timetij)+ etij    (1) 

Level 2: b0ij = β00j + ζ0ij 

 b1ij = β10j +ζ1ij 

Level 3: β00j = γ000 + u00k       

β10j = γ100 + u10k        

Equations 2 and 3 can be substituted in to give a composite equation: 

Selfconcepttij = γ000 + γ100(timetij) + u00k + ζ0ij + u01k(timetij) + ζ1ij(timetij) + etij  (2) 

This equation predicts the self-concept at time t for individual i with teacher j. When the 

value of the time variable is zero, the equation simplifies to Selfconcepttij = γ000 + u00k + 

ζ0ij + etij. The γ000 term is the intercept for all students and represents the average 

self-concept for all individuals in all classrooms over time. The terms etij, ζ0ij, and u00k 
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represent the deviations from the intercepts at levels one, two, and three respectively. The 

deviations are assumed to be normally distributed around zero with common unexplained 

variance denoted by σ2 at level one, τb at level two, and τβ at level three. These values can 

be used to calculate the proportion of unexplained variability at each level using the 

following equations (Hox, 2010): 

Level one: 𝜎𝜎2

𝜎𝜎2+𝜏𝜏𝑏𝑏+𝜏𝜏𝛽𝛽
        (3) 

Level two: 𝜏𝜏𝑏𝑏
𝜎𝜎2+𝜏𝜏𝑏𝑏+𝜏𝜏𝛽𝛽

        (4) 

Level three 𝜏𝜏𝛽𝛽
𝜎𝜎2+𝜏𝜏𝑏𝑏+𝜏𝜏𝛽𝛽

         (5) 

The second model was an unconditional growth model (Singer & Willett, 2003). 

This model only included the level 1 predictor of time and indicated the change in self-

concept for everyone that was due to time. The next set of models were conditional 

models that included the individual level predictors measured on the ninth-grade student 

survey. The first set of these models included the five control variables of SES, gender, 

race, MathGrade(8) and MathScore and provided a baseline model for comparison. The 

next models added the predictor of teacher caring followed by the predictor of relational 

instruction. These variables were added one at a time to allow calculation of the amount 

of additional variation explained by their inclusion. These models had random intercepts 

and random slopes for everyone predicted by the level two predictors. They also included 

a random intercept or random slope for schools. The equations for the first two levels of 

the final model without interactions was: 

Level 1: Selfconcepttij = b0ij + b1ij(timetij)+ etij      
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Level 2: b0ij = β0j + β1j(SESij) + β2j(genderij) + β3j(raceij) + β4j(MathGrade8ij) +    (6) 

β5j(MathScoreij) + β6j(TeacherCaringij) + β7j(Relational_Instructionij) + ζ0ij  

 b1ij = β10j + β11j(SESij) + β12j(genderij) + β13j(raceij) + β14j(MathGrade8ij) +   (7) 

β15j(mathscoreij) + β16j(TeacherCaringij)+ β17j(Relational_Instructionij) + ζ1ij 

Because three of the level-2 covariates are categorical variables a separate beta 

coefficient had to be estimated for each level of the variable, resulting in a total of 34 

betas estimated. That means that at level-3 there were 34 equations that each took the 

following form: 

βij = γj + uj       (8) 

All models that included covariates also included cross level interactions with time, but 

the only interactions that I investigated were those between the main predictor variables 

(i.e., TeacherCaring and Relational_Instruction) and the demographic variables (i.e., race 

and gender). The interaction terms identified differences in the effect of the main 

predictor variables that were related to student race and gender.  

 To investigate the interactions within level two variables, I ran the final model 

two more times including the interaction between teacher caring and gender first, 

followed by the interaction between teacher caring and race. Due to the complexity of the 

models, these interactions are difficult to interpret within the entire model, so the purpose 

of the models was to identify statistically significant interactions. Once identified I used 

plots of simple slopes (Aiken et al., 1991; Gelman & Hill, 2006) to illustrate and explain 

the meaning of each significant interaction.  

When analyzing multi-level models, it is important to look at the variance 

components that describe the residual variation at each level of the model. In the first 
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level of the model the residual is described by etij ~ N (0,𝜎𝜎𝜀𝜀2) meaning the level 1 residual 

is normally distributed around a mean of zero and a variance 𝜎𝜎𝜀𝜀2. This variance explains 

how much the level-1 residuals deviate from each individual’s true change trajectory. The 

level-2 and level-3 residuals are described by the following equations: 

�𝜁𝜁0𝑖𝑖𝜁𝜁1𝑖𝑖
�  ~ 𝑁𝑁 ��0

0� ,�𝜏𝜏00
2 τ01
τ10 𝜏𝜏112

�� - Level 2   

 (10) �
𝑢𝑢0𝑘𝑘
𝑢𝑢1𝑘𝑘�  ~ 𝑁𝑁 ��0

0� ,� , 𝜑𝜑0
2 𝜑𝜑01

𝜑𝜑10 𝜑𝜑12
�� - Level 3   

  (11) 

In these equations 𝜏𝜏002  and 𝜏𝜏112  express the amount of between student variability in the 

random intercept and random slope. The level-3 values of 𝜑𝜑02 and 𝜑𝜑12 express the amount 

of variability in the random intercept and random slope that is due to differences between 

schools. The other terms at each level explain the amount of covariance between the 

random slope and random intercept at each level, but they were not a major focus of my 

analysis. 

Assumptions 

 Running multi-level models with longitudinal data involves making assumptions 

in relation to the structural portion of the models as well as the stochastic portion 

(Anderson, 2012; Singer & Willett, 2003). Structurally, a researcher dictates the general 

shape of the proposed level one model (i.e., linear, logarithmic, polynomial) and specifies 

the relationship between the growth parameters and the predictor variables. 



74 
 

 

Stochastically, it is assumed that (a) the residuals of the dependent variable are normally 

distributed at level one (Singer & Willett, 2003; Snijders, 1996), (b) level two and three 

residuals have a multivariate normal distribution, and (c) residuals between levels are 

independent (Anderson, 2012). 

 Singer and Willet (2003) suggested that it is neither efficient or plausible to check 

every model for each assumption and proposed the following strategies to ensure 

assumptions are not violated. 

1. Plot level one growth plots with an OLS-estimated change directory 
superimposed to verify the shape of the proposed model. 

2. Create plots to compare each level two predictor with OLS estimates of the 
individual growth parameters. 

3. Create Q-Q plots or run normality tests to check for normality of the raw 
residuals at each level. 

Because the HSLS:09 data set only measures self-concept at three timepoints, only a 

linear model could be tested. However, I followed the above recommendations to ensure 

that the residuals were distributed normally and that the residuals at each level were 

independent from each other. 

Threats to Validity/Reliability 

 In any longitudinal study attrition and missing data create a serious threat to 

validity. However, the threat is mitigated in the HSLS:09 dataset because this was the 

first-year student surveys and assessments were administered by the NCES electronically. 

This data collection method allowed for continued collection even when students had left 

or switched schools, resulting in less missing data at the student level. The HSLS:09 
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dataset also includes a variety of analytic weights to account for missing data and make 

statistical analyses generalizable to the study population. In my multi-level analyses, I 

included a composite weight, created for longitudinal analyses, which utilizes both 

student and mathematics teacher data (W3W1MATHTCH) in order to adjust for missing 

data and increase generalizability. 

 The main limitations of this research are due to the use of secondary data. 

Because the HSLS:09 survey was not specifically designed with the intent of studying 

how teacher behaviors influence students’ mathematics self-concept, it does not include 

every item that would be desired to measure the composite variables of self-concept, 

relational instruction, and teacher caring. However, the wealth of data contained in the 

HSLS:09 data set and the large samples of minority students make the benefits of this 

research outweigh the limitations. The research outlined will help identify how teachers 

can contribute to the development of positive mathematics self-concept for their students. 

Additionally, the large representative sample allows me to look at self-concept among 

different student populations which have, in the past, been inaccurately treated as 

homogeneous.   
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CHAPTER IV 

RESULTS 

The objective of this dissertation was to determine how relational instruction and 

the creation of a caring learning environment contribute to the development of student 

mathematics self-concept, and how those factors influence students differently according 

to various demographic factors. To achieve this objective, I followed a multi-stage 

statistical analysis approach using confirmatory factor analysis and multilevel modeling 

techniques to analyze data from the High School Longitudinal Study of 2009 (HSLS:09). 

I ran all statistical analyses in RStudio (version 4.4.1) using the lavaan and lme4 

packages. In this chapter I present results from each phase of the analysis. First, I will 

describe the steps I took to prepare the dataset and my approach to missing data. Then, I 

present results related to the CFA and the creation of composite variables measuring 

relational instruction and caring and supportive learning environments. Finally, I present 

results from the multilevel model analysis in accordance with each of the four research 

questions. 

Before beginning any analyses, I had to prepare the data set. The HSLS:09 items 

included several different response categories for missing or incomplete data. I changed 

any responses that were categorized as “Unit non-response,” “Item legitimate skip/NA,” 

“Missing,” or “Item not administered: abbreviated interview” to “NA” so the R software 

would consider them missing data and not skew the results. I examined the missing data 

and observed that missing cases varied based on data type, data collection instrument, 

and wave of data collection. Descriptive student level data (i.e., gender, SES, parent 
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education level) had the lowest frequency of missing data with anywhere between 0-13% 

missing. As expected with data collected over an extended period, the percentage of 

missing data on items measuring student self-concept increased with each wave of data 

collection such that there was 15% missing at the baseline year, 20% missing in 2012, 

and 38% missing from the 2016 data. The items taken from the baseline student survey 

which were used to measure a caring classroom environment had 24%-25% missing, and 

the data taken from the baseline mathematics teacher survey which measured relational 

instruction had 44%-46% missing. The National Center for Education Statistics team that 

designed and conducted the HSLS:09 used multiple imputation techniques to create 

sampling weights which can be used to correct for missing data in the data set (Ingels et 

al., 2011). Because I used those weights in my analyses, I did not make further 

adjustments to accommodate missing data. 

After considering the missing data I turned my attention to the Likert-type items 

in the data set. The Likert categories in the HSLS:09 data set were set so that a score of 

one signified the highest level of agreement. To make the meaning of the scores more 

intuitive I reversed the Likert values so a score of one corresponded with Strongly 

Disagree and a score of four corresponded with Strongly Agree. However, several of the 

Likert-type items in the data were worded such that higher values indicated more 

negative responses (i.e., My math teacher treats some kids better than others) so I reverse 

coded these items so higher values on items consistently indicated more favorable 

perceptions. Additionally, Likert-type items that asked teachers to rate the degree of 

emphasis they placed on things like practicing speedy computations or teaching 
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procedures indicate instructional foci more strongly associated with instrumental 

(procedural) learning. Therefore, these items were also recoded so teachers who placed 

stronger emphasis on instrumental (procedural) instructional goals would have lower 

values on the relational instruction variable. All recoded items are indicated in the 

complete list of items in Appendix A. Once the data set was prepared, I began the 

confirmatory factor analysis (CFA) to create the composite variables for teacher caring 

and relational instruction.  

CFA and Variable Creation 

 Factor analysis assumes that variables are normally distributed (Brown, 2006) so I 

ran Mardia’s test for multivariate normality using the psych package in R. This test 

evaluates multivariate skew and kurtosis and conducts a significance test for normality. I 

ran separate analyses using complete observations for the items related to teacher caring 

and the items related to relational instruction. The results of the Mardia tests showed 

statistical significance for the teacher caring items (skew=8.65, p < .0001; 

kurtosis=129.3, p < .0001) as well as the relational instruction items (skew = 13.25, p < 

.0001; kurtosis=171.03, p < .0001). These results, along with the QQ-plots shown in 

Figure 4, which plot the expected values of a normal distribution versus the Mahalanobis 

distance for the items, indicated the data was not multivariate normal. To correct for this 

violation of multivariate normality I used robust standard errors in all my analyses. 

Confirmatory factor analysis (CFA) allowed me to determine which HSLS:09 

observed items should be included in the composite variables that would be used to 
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Figure 4 

QQ-plots for Teacher Caring Items (left) and Relational Instruction Items (right) 

 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009” & “Baseline Year, 
Mathematics Teacher Survey, 2009.”  

 
measure teacher caring and relational instruction. Because the HSLS:09 did not directly 

measure student perceptions of a caring learning environment or the degree to which a 

mathematics teacher emphasizes relational instruction, those constructs can only be 

measured by combining multiple observed variables which describe elements of the 

overarching construct. It was likely that some of the observed items would need to be 

eliminated and CFA allowed me to test different models to determine which items should 

be excluded when creating the composite variable.  

I began by examining correlations between the items included in each of the 

HSLS:09 question blocks related to the constructs of TeacherCaring and 

Relational_Instruction. The correlations between items in the TeacherCaring block 

ranged from .24 (teacher makes math interesting and teacher thinks mistakes okay as 
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long as student learns) to .79 (teacher treats all students fairly and teacher treats all 

students with respect). The correlations between items in the Relational_Instruction block 

were not as strong, ranging from .10 (focus on algorithms and focus on making math 

interesting) to .59 (focus on problem solving and focus on reasoning).  

I created three nested models using the observed items from the HSLS:09 dataset 

where each succeeding model was a subset of the previous model. The first model 

contained all eight items included in the relevant HSLS:09 question block for teacher 

caring and 11 of the 13 items from the HSLS:09 block asking about teachers’ 

instructional emphases. I chose not to include two items where teachers indicated the 

amount of emphasis placed on preparing students for future study in mathematics or 

business/industry applications. Preparing students for future study in mathematics or 

focusing on industry applications can be done in conceptual or procedural ways, so I did 

not think the items strongly indicated either relational or instrumental instruction and 

therefore excluded them from the analysis.  

The second model excluded items that did not seem theoretically related to the 

construct, (i.e., emphasis on teaching the history of mathematics) but did include items 

which were either positively or negatively related to the construct. I included the negative 

items (i.e., emphasis on developing computational skills) to see if they created a stronger 

model. I thought it possible that a teacher’s relational instruction could be measured by 

seeing what they chose not to emphasize along with what they chose to emphasize. For 

example, if a teacher gave very little emphasis to developing computational skills it may 

indicate a tendency toward teaching that builds relational understanding. This second 
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model included five positive items and two negative items for teacher caring as well as 

six positive items and four negative items for relational instruction.  

The third model was the theorized model and included only the items 

hypothesized to describe or positively contribute to the relevant construct. I hypothesized 

that creating composite variables using only the positive items directly related to the 

construct would create the strongest measure. This third model included five items which 

described elements of creating caring classroom environments and six items which 

described instruction that develops relational understanding in mathematics. I compared 

all models using the comparative fit index (CFI), the Tucker-Lewis index (TLI), the root 

mean square residual (SRMR), and the root mean square error of approximation 

(RMSEA). Comparison of all four fit indices indicated which combination of observed 

items would create the strongest scales to measure the caring learning environment and 

relational instruction. The items included in each model along with the inter-item 

correlations and associated model fit statistics are seen in Table 5. 

I fit the models using an adjustment for ordinal data with robust standard errors to 

account for the violation of multivariate normality. According to all fit criteria listed 

above, Model 3 is the strongest model because it is the only model that meets the 

requirements for good model fit on all four fit indices (CFI > .95, TLI > .95, RMSEA < 

.06, SRMR < .08). The inter-item correlation for relational instruction fell within the 

ideal range for creating a scale variable (.20 – .40) but the inter-item correlation for the 

teacher caring variable was higher than ideal. 
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Table 5 

Confirmatory Factor Analysis Models for Variable Creation 

Variable Model 1 Model 2 Model 3 
Teacher Caring    

s1mtchvalues X X X 
S1mtchrespct X X X 
S1mtchfair X X X 
S1mtchconf X X X 
S1mtchmistke X X X 
S1mtchtreat_r X X  
S1mtchdiff_r X X  
S1mtchintrst X   

Inter-item correlation .52 .54 .65 

Relational Instruction   
M1problem X X X 
M1concepts X X X 
M1reason X X X 
M1ideas X X X 
M1explain X X X 
M1logic X X X 
M1compskills_r X X  
M1algorithm_r X X  
M1test_r X X  
M1compute_r X X  
M1history X   

Inter-item correlation .08 .07 .38 

Robust Model Fit Statistics    
CFI .837 .838 .980 
TLI .815 .813 .975 
RMSEA .111 .118 .059 
SRMR .066 .071 .021 
N 10420 10490 10740 

Note. Per NCES requirement, all sample sizes are rounded to the nearest ten. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” & “Baseline Year, 
Mathematics Teacher Survey, 2009.” 

 

This suggests there are additional elements of a caring learning environment that are not 

represented in this scale, and I will discuss this result later. For the purposes of this 

dissertation, the strong fit indices support the use of the five teacher caring items to create 
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a variable describing the creation of a caring and supportive learning environment and the 

six relational instruction items to create a variable describing the degree to which a 

teacher emphasizes instruction which builds relational understanding.  

The parameter estimates shown in Table 6 indicate the contribution each observed 

item makes to the composite variable. When considering the variable measuring caring 

and supportive learning environments, a one standard deviation increase in the composite 

variable is associated with a .73 to .95 standard deviation increase on each of the  

Table 6 

Final Items for the Composite Variables 

Composite 
variable 

Observed item 
(HSLS Designation) 

Estimate 
(Robust SE) Variance 

Caring and 
Supportive 
Learning 
Environment 

...values and listens to students’ ideas 
(S1MTCHVALUES) 

.878 
(.003) 

.229 
 

…treats students with respect 
(S1MTCHRESPCT) 

.954 
(.002) 

.090 
 

…treats every student fairly 
(S1MTCHFAIR) 

.916 
(.002) 

.162 
 

…thinks every student can be successful 
(S1MTCHCONF) 

.834 
(.004) 

.305 
 

…thinks mistakes are okay as long as all students learn 
(S1MTCHMISTKE) 

.739 
(.005) 

.454 
 

Relational 
Instruction 

…emphasis on teaching math concepts 
(M1CONCEPTS) 

.595 
(.012) 

.647 
 

…emphasis on problem-solving skills 
(M1PROBLEM) 

.807 
(.007) 

.349 

…emphasis on reasoning mathematically 
(M1REASON) 

.891 
(.005) 

.206 

…emphasis on connecting math ideas 
(M1IDEAS) 

.774 
(.007) 

.401 

…emphasis on effectively explaining math ideas 
(M1EXPLAIN) 

.706 
(.007) 

.502 

…emphasis on logical structure of mathematics 
(M1LOGIC) 

.681 
(.007) 

.536 

Note. All estimates and variances are standardized. All estimates statistically significant (p < .001).  

Number of observations used is approximately 10,740.  

df  = 43. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study, 
2009 (HSLS:09), “Baseline Year, Student Survey, 2009” & “Baseline Year, Mathematics Teacher Survey, 2009.”  
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indicator variables. The relationships on the relational instruction variable are not quite as 

strong but a one standard deviation increase in relational instruction is associated with an 

increase of approximately .60 to .89 standard deviations on the indicator variables. 

Interestingly, the “teaching students mathematical concepts” item was the weakest item 

on the scale, showing only an increase of .60 standard deviations. This lower parameter 

estimate is unexpected because relational instruction, by definition, involves focusing on 

concepts, but I will provide possible explanations for this in the discussion. Despite 

having the lowest parameter estimate, the idea of teaching students mathematical 

concepts has a strong theoretical connection to relational instruction so I kept the item as 

part of the composite variable. The residual variances for each of the observed items are 

relatively large, suggesting substantial variation in how students with the same value on 

the composite scale responded to the individual items. A diagram depicting the final 

model with standardized factor loadings is shown in Figure 5. The bidirectional arrow 

between relational instruction and teacher caring indicates a reciprocal relationship 

between the two predictor variables. This means that an increase in teacher caring is 

associated with a slight increase in relational instruction and that an increase in relational 

instruction is similarly associated with an increase in teacher caring.  

I created the variables for caring environment and relational instruction by 

extracting factor scores from individual one-factor CFAs and applying a Ten Berges 

correction to reduce bias. Because the variables are measured on different scales, I 

standardized them to improve interpretation of the multilevel model outputs. I created the 

new variables by matching the 
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Figure 5 

Factor Loadings for Items Included in the Relational Instruction and Teacher Caring 
Variables 

 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009” & “Baseline Year, 
Mathematics Teacher Survey, 2009.”  

 

extracted factor scores to the main data set using student identification numbers. 

Descriptive details for each variable will be described later.  

I used principal components analysis (PCA) to create the self-concept variables at each 

timepoint. To test the validity of this method I compared the new variables to the 

HSLS:09 created variables of x1mthid and x2mthid. Figure 6 shows the distribution of 

each self-concept variable along with the distribution of the two mthid variables. The 

distributions of the new self-concept variables were very similar to the distributions of 

the mthid variables and the variables for self_concept1 and self_concept2 strongly 

correlated with the variables of x1mthid and x2mthid (σ1 > .99, σ2 > .99). The information 

in Table 7 further illustrates the statistical similarities between the two sets of variables. 

Because this procedure created variables that were statistically like the HSLS:09 

variables, I followed the same process to create the variable for self-concept3 at the third 

timepoint and used the newly created variables (self-concept1 and self-concept2) in my 
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analyses instead of the HSLS:09 variables (x1mthid and x2mthid). A statistical 

description of self-concept3 is also included in Table 7. 

Figure 6 

Histograms Comparing HSLS:09 “mthid” Variables with New Self-Concept Variables

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “First Follow-up, Student 
Survey, 2012,” & “Second Follow-up, 2016.”  
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Table 7 

Statistical Comparison of HSLS:09 “mthid” Variables and New Self-Concept Variables 

Variable n X̄ s Med Min Max Range Skew Kurtosis SE 
X1mthid 21160 .04 1 .03 -1.73 1.76 3.49 -.15 -.74 .01 
Self-concept1 21160 0 1 -.01 -1.76 1.72 3.48 -.15 -.73 .01 

X2mthid 20020 .05 1.02 .12 -1.54 1.82 3.36 -.01 -.86 .01 
Self-concept2 20020 0 1 .07 -1.57 1.74 3.31 0 -.86 .01 
Self-concept3 15690 0 1 -.05 -1.80 1.65 3.45 -.10 -.73 .01 

Note. Per NCES requirement, all sample sizes are rounded to the nearest 10. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “First Follow-up, Student 
Survey, 2012,” & “Second Follow-up, 2016.”  

Descriptions of All Variables 

 This section includes a statistical description of each variable used in the 

multilevel analysis. The dependent variable (self-concept) and the two main predictors 

(relational instruction and teacher caring) were all continuous, as were the control 

variables for socio-economic status (SES_U) and norm referenced mathematics 

achievement (MathScore). The remaining variables were categorical. 

Self-Concept 

Student mathematics self-concept (SC) was measured at three timepoints using 

the items, “I see myself as a math person,” and “Others see me as a math person.” 

Students answered on a scale from 1 (Strongly agree) to 4 (Strongly disagree) so I reverse 

coded the items so that higher values indicate stronger levels of agreement. Cronbach’s 

alpha for the items in  
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each self-concept variable showed strong internal reliability (αself-concept 2009 = .84, αself-

concept 2012 = .88, and αself-concept 2016 = .90). Statistical descriptions as outlined previously in 

Table 7 and Figure 6 show that the variables are not exactly normal, but multi-level 

modeling does not require input or outcome variables to be normally distributed so this is 

not a problem. The greatest gap between students with high and low self-concept 

occurred in 2009 (range = 3.49) and the smallest gap was in 2012 (range = 3.31). 

Teacher Caring 

The teacher caring variable (N = 18580) measures student perceptions of the 

learning environment in their ninth-grade mathematics class. High values on this variable 

signify perceptions that a teacher (a) values and listens to students’ ideas, (b) treats 

students with respect, (c) treats every student fairly, (d) believes every student can be 

successful, and (e) helps students understand that mistakes are okay if students learn. The 

items on this variable show strong internal reliability (α = .90) and variable values ranged 

from -2.60 to .90 with X̄ = 0 and SD = .70. As seen by the histogram in Figure 7, this 

variable was negatively skewed (skew = -.58 with kurtosis = .72) suggesting most 

students felt their mathematics teachers did at least a fair job at creating caring 

environments. The students who had very negative perceptions and did not feel their 

teachers provided a caring environment were outliers. 

Relational Instruction 

The relational instruction variable (N = 13,580) measures the amount of emphasis 

mathematics teachers place on instruction which develops relational (conceptual) 

understanding in mathematics. High scores on this variable indicate a teacher who tries to  
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Figure 7 

Histograms of the Four Continuous Independent Variables 

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “Baseline Year, Parent 
Survey, 2009,” & “Baseline Year, Mathematics Teacher Survey, 2009.”  
 

(a) teach concepts, (b) develop problem-solving skills, (c) effectively explain ideas in 

mathematics, (d) connect mathematical ideas, (e) reason mathematically, and (f) teach the 

logical structure of mathematics. Though teachers rated the amount of emphasis they 

gave to each topic on a scale from 1 (No emphasis) to 4 (High emphasis) the labels for 

four of the items were combined in the HSLS:09 data set to create a new scale from 1 

(Little or no emphasis) to 3 (High emphasis). The items show strong internal reliability (α 

= .79) and scores on this variable ranged from -3.59 to .60 with X̄ = 0 and sd = .56. This 
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indicates most mathematics teachers considered themselves as having a fairly strong 

focus on relational instruction. This variable was also negatively skewed (skew = -.96; 

kurtosis = .71) with extreme values representing teachers who gave little emphasis to 

relational instruction.  

Socio-economic Status (SES) 

The HSLS:09 variable of SES (N = 21,990) I used was a continuous composite 

variable that accounted for parent education level, occupation, income, as well as school 

locale. The variable was normally distributed (skew = .36, kurtosis = -.06) with a mean of 

.03, standard deviation of .79, minimum value of -1.92 and maximum value of 2.98. The 

histogram in Figure 7 shows a slight positive skew with extreme values representing 

students with higher SES. 

Math Score 

The MathScore variable (N = 18,620) records students’ mean performance on the 

2009 and 2012 HSLS:09 algebraic reasoning assessments. Just like the two original 

variables, the average scores are normally distributed (skew = .09, kurtosis = -.24) with a 

mean of .42 and standard deviation of .99. The correlations between the average variable 

and the scores from the two individual years are strong (r2009 = .92, r2012 = .95) suggesting 

students tended to have similar performance on the two assessments. Since the 

performance tends to be similar on both assessments, the use of an average score should 

provide an accurate way to control for student achievement in mathematics. 
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Gender/Race 

 The demographic variables of gender and race were student reported categorical 

variables provided in the HSLS:09 data. Gender was a dichotomous variable, and the race 

variable was condensed down to the six categories shown previously in Table 1.  

Grade in Eighth-Grade Mathematics Class 

Students in the HSLS:09 study self-reported the highest letter grade they received 

in their eighth-grade mathematics class. There were approximately 7730 students who 

reported getting As, 7820 who reported getting Bs, 3680 who reported getting Cs, 1030 

who reported getting Ds, and 570 who reported getting below a D. Approximately 170 

additional students indicated being in classes where they did not receive a grade. Overall, 

approximately 75% of the students who completed a graded mathematics class in eighth 

grade received a B or higher. 

 Research on self-concept suggests it is related to achievement and strengthened 

through successful experiences with mathematics (Marsh, 1992; Van der Beek et al., 

2017). The norm referenced MathScore variable and the MathGrade8 variable can both 

be interpreted as indicators of students’ achievement and successful experiences with 

mathematics, so I calculated Spearman correlations using complete observations between 

(a) students’ eighth-grade mathematics grade and their self-concept in the fall of ninth 

grade, and (b) between students’ scores on the algebraic reasoning assessment and their 

self-concept in ninth grade. There was a moderate positive correlation (r = .40) with 

grade in mathematics which means students with higher grades in their eighth-grade 

mathematics class were more likely to have stronger self-concepts in mathematics at the 
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start of their freshman year. There was a similar moderate positive correlation between 

the 2009 algebraic reasoning assessment score and students’ self-concept in ninth grade 

(r = .42). These results suggest a moderate positive relationship between students’ 

achievement in mathematics and their self-concept. 

Table 8 shows the correlations between the main study variables. The correlations 

between all measures of self-concept were moderately strong with the strongest 

correlation found between the second and third timepoints. The correlations show a 

positive but weak association between self-concept and the variables for caring teacher 

and relational instruction. This association is strongest at the first timepoint and then 

decreases as time passes. The correlations also show a moderate positive association 

between self-concept and the Math Score variable which is in harmony with current 

research. 

Table 8 

Descriptive Statistics and Spearman Correlations for Continuous Study Variables 

Variable n M SD 1 2 3 4 5 6 7 
1. SES 21990 0 1 1       
2. MathScore 18620 .42 .99 .43 1      
3. Teacher Caring 18580 0 .70 .05 .09 1     
4. Relational Instruction 13580 0 .56 .14 .24 .06 1    
5. SC 1 21160 0 1 .13 .44 .19 .12 1   
6. SC 2 20020 0 1 .14 .45 .10 .10 .58 1  
7. SC 3 15690 0 1 .07 .37 .06 .08 .49 .61 1 

Note. Per NCES requirement, all sample sizes are rounded to the nearest 10. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “Baseline Year, Parent 
Survey, 2009,” “Baseline Year, Mathematics Teacher Survey, 2009,” “First Follow-up, Student Survey, 
2012,” & “Second Follow-up, 2009.”  

  



93 
 

 

RQ1: Examining the Self-Concept Trajectory 

 Having completed the CFA and created variables to measure relational instruction 

and caring and supporting learning environments, I was ready to begin examining the 

trajectory of self-concept. I began by creating individual growth plots to compare to the 

growth of averages and visualize the direction of the self-concept trajectory. Because of 

the size of the dataset, a single plot of all participants would be unclear, so I plotted 

trajectories for random subsets of 50 participants. I resampled the data twelve times, 

creating new plots of 50 random participants each time, which are shown in Figure 8. In 

each plot, the black lines show individual change trajectories for the 50 subjects while the 

red line shows the average self-concept trajectory for the 50 subjects together. From the 

plots it is apparent that self-concept does not have a consistent trajectory. For many 

students the junior year (when wave 2 of the data was collected) marks a change point. 

Though the mean trajectory does not show substantial change, there was considerable 

variation in the individual trajectories. For some students, self-concept increased 

significantly between ninth and 11th grade and then decreased, while for others the 

opposite pattern is seen. These findings suggest that self-concept is not fixed when 

students enter high school but can be quite dynamic and illustrates the need for research 

which can determine the factors that exert the strongest influence on students’ 

mathematics self-concept. 

In addition to an aggregated average, I wanted to look at the growth trajectories 

with students subset into various demographic groups. Figure 9 shows the average 

trajectories of self-concept when comparing male and female students. On average, the  
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Figure 8 

Growth Plots of Self-Concept with Curve of Averages for 12 Random Subsamples 

 
Note. The average trajectory for the random subsample is in red. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “First Follow-up, Student 
Survey, 2012,” & “Second Follow-up, 2009.”  
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Figure 9 

Average Self-Concept by Gender 

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “First Follow-up, Student 
Survey, 2012,” & “Second Follow-up, 2009.”  

 

self-concept of male students increased over time while that of female students 

decreased. Figure 10 shows the average self-concept trajectories of students when 

considered by racial identity. Asian students had much higher levels of self-concept at the 

start of high school when compared to all other racial groups, but their self-concept 

tended to decrease over time. The average trajectory for students who identified as Native 

American, Alaskan, Hawaiian, or Pacific Islander showed significant increase between 

2009 and 2012 but then significant decrease between 2012 and 2016. This is a very 

heterogeneous group so it is not reasonable to draw any inferences from this observation. 

However, it suggests future research that takes a more nuanced approach would be 

beneficial. Black students showed an opposite average trajectory, first decreasing and  
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Figure 10 

Average Self-Concept by Race 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “First Follow-up, Student 
Survey, 2012,” & “Second Follow-up, 2009.”  
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then increasing. However, the amount of change was smaller than that of Native 

American, Alaskan, Hawaiian, and Pacific Islanders with a total net change close to zero. 

The only other racial group which demonstrated noticeable change in the self-concept 

trajectory is Hispanic students. The average self-concept trajectory for students who 

identified as Hispanic increased across all time points. These results provide evidence 

supporting the idea that demographic factors, like race and ethnicity, can contribute 

increased variation in how students’ self-concept develops. There are multiple possible 

explanations for this variance which will be discussed in the next chapter of this 

dissertation. However, these initial plots validate the inclusion of gender and race 

variables in the following multilevel model analysis. 

The Multi-Level Models 

 To answer the final three research questions, I ran a series of multilevel models. I 

systematically added predictors to the models and compared model fit indices to 

determine which model best fit the data. Most models included both random slopes and 

random intercepts at the student level, allowing each student to have their own intercept 

and slope when predicting self-concept. At the third level, I compared models that 

included both random intercepts and random slopes with models which just included 

random intercepts. A random intercept at the school level would measure differences in 

the 2009 self-concept of students that result from being at different schools. A random 

slope at the school level would measure the variation in the slope of the self-concept 

trajectory that is a result of being at different schools. When predictors are included in the 
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models, the random slopes and random intercepts measure variation which describes how 

well the predictor variables account for levels of self-concept when looking at individuals 

or schools. 

The Unconditional Model 

The first model (Model A) in my analysis was an unconditional intercepts-only 

model. This model did not include any predictors or random slopes but allowed for 

random intercepts at the individual and school levels. I ran this unconditional model as 

both a two-level and a three-level model to compare and see if the amount of variation 

due to students being nested within schools was large enough to warrant the three-level 

model. The AIC, BIC, and deviance statistics were all lowest with the three-level model, 

identifying it as the preferred model. To further validate using the three-level model, I ran 

a chi-squared test of significance which also indicated a statically significant 

improvement in using the three-level model (χ2 = 50.021, p <.001). The formula for this 

model was Selfconcepttij = γ000 + u00k + ζ0ij + etij where γ000 represented the average self-

concept for all students over time, ζ0ij represented the deviation from the intercept at the 

student level, u00k represented the deviation from the intercept at the school level, and etij 

reported the residual variance.  

This unconditional intercepts-only model served as a baseline model and allowed 

me to use equations 3, 4, and 5 to calculate the intraclass correlation coefficients (ICCs) 

to determine the amount of variation found at each level of the model. The level 1 ICC 

was .413/1.003 = .411 which means 41.1% of the variation in self-concept was found at 

level 1. This describes the amount of variance in self-concept that was due to within 
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subject change over time. The level 2 ICC was .571/1.003 = .569 which means 56.9% of 

the variation in self-concept was found at level 2. This between subject variation is due to 

individual level characteristics, or differences between students. The level 3 ICC was 

.019/1.003 = .019 which means only 1.9% of the variation in self-concept in this sample 

was found at level 3. This variation results from students being in different school 

environments. The high proportion of variance found at level 2 supported the need for a 

multilevel model and the inclusion of variables at the student level to help account for the 

variation. 

I ran 14 models during the analysis and evaluated them using the AIC, BIC, and 

deviance statistics. For each model, Table 9 shows the structure of the model (fixed and 

random components) and the fit indices which I analyzed to identify the final model. I fit 

Model A using restricted maximum likelihood estimation (REML) but fit all succeeding 

models using full maximum likelihood estimation because they had different fixed effects 

(predictor variables). To ensure the results would be generalizable to the sample 

population, I weighted all variables using the HSLS analytic weight w3w1mathtch. 

I ran chi-squared tests of significance using the anova function to compare models 

that included a random slope and intercept for schools with duplicate models that only 

included a random slope. For Models A, B, and C, the model that included a random 

slope at the school level showed statistical improvement over the random intercept only 

model (χ2 = 16.04, df = 2, p <.001). However, for the later models there was no 

statistically significant improvement from including a level 3 random slope, so evaluation 

of the models was based strictly on the fit indices.  
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There was substantial improvement in the AIC, BIC, and deviance statistics with the 

addition of all control variables and the two target predictors of teacher caring and relational 

instruction. The models that included interaction terms did not show significant improvement in 

the fit indices but model G2 had a statistically significant interaction between race and relational 

instruction. Though model G2 did not have the lowest values on the AIC and BIC, it did have the 

lowest deviance value (AIC = 119959, BIC = 120358, -2LL = 119861). The significant 

interaction and the low values on the fit indices provide statistical support for using model G2 as 

my final model and interpreting the influence of relational instruction and teacher caring using its 

parameters.  

Before interpreting the model, I checked to be sure it met the assumptions that the 

residuals were independent and normally distributed. The QQ-plot in Figure 11 shows the 

residuals close to a normal distribution and the plot of residuals in Figure 12 shows no obvious 

pattern, which means the residuals are independent. 

Figure 11 

QQ-Plot to Check Normal Distribution of Residuals (modG2)

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal 
Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “Baseline Year, Parent Survey, 2009,” Baseline 
Year, Mathematics Teacher Survey, 2009,” “First Follow-up, Student Survey, 2012,” & “Second Follow-up, 2009.”  
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Figure 12 

Plot of Residuals (modG2)

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal 
Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “Baseline Year, Parent Survey, 2009,” Baseline 
Year, Mathematics Teacher Survey, 2009,” “First Follow-up, Student Survey, 2012,” & “Second Follow-up, 2009.”  

 

The plot in Figure 13 plots the residuals against the predicted values for the model. Since 

there is no visible pattern in the graph, the level 1 residuals appear to be homogeneously 

distributed which indicates good model fit. Because the diagnostic charts indicate the 

assumptions are met, I now interpret the model parameters to answer the final three research 

questions. 

Interpreting the Final Model to Answer RQ2 – RQ4 

 Before specifically addressing the final three research questions, I explain some 

preliminary results seen in the models depicted in Table 10. As seen in the table, each of the 

independent variables appears multiple times. When the variable appears alone it represents the 

predicted contribution that variable makes to the intercept of an  
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Figure 13 

Plot of the Residuals vs. Fitted Values for Final Model 

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal 
Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “Baseline Year, Parent Survey, 2009,” Baseline 
Year, Mathematics Teacher Survey, 2009,” “First Follow-up, Student Survey, 2012,” & “Second Follow-up, 2009.”  

 

individual’s self-concept (SC) trajectory. Since the first wave of data collection was in 2009 the 

intercept represents a student’s mathematics self-concept in the fall of their freshman year. The 

second time each variable appears in the model it is part of an interaction with time, so it 

signifies the contribution the variable makes to the change in self-concept over time, or the slope 

of the self-concept trajectory. Table 10 illustrates how each control variable had a statistically 

significant effect on both the ninth-grade self-concept (intercept) and the rate at which a 

student’s self-concept changed over time (slope). Because the variables are reported in standard 

deviation units, I found the percent change attributable to each predictor by dividing the 

predictor estimate by the range of the self-concept variable (3.48). In the next section, I briefly 

explain the association between self-concept and each control variable included in the analysis.
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Influence of the Control Variables 

A student’s gender had a statistically significant association with ninth-grade self-

concept as well as the change in self-concept over time. In each model, female students 

had lower predicted self-concept in ninth grade when compared to male students by 

approximately 4.31% (β = -.15, p < .001), when keeping all other predictors constant. 

Additionally, the self-concept of female students decreased at a slightly faster rate than it 

did for male students (β = -.02, p < .001). These results indicate female students start high 

school with lower mathematics self-concept than their male counterparts and their self-

concept decreases more quickly. 

Students’ race also had a statistically significant association with self-concept. 

Students who identified as Black, Hispanic, or Asian had higher predicted levels of 

mathematics self-concept in ninth grade when compared to their white peers. This 

difference was strongest for Black students (β = .30, p < .001) who had predicted levels 

of self-concept approximately 8.62% higher than white students in the final model. The 

influence of race was not seen when considering the slope of the self-concept trajectory 

for Black or Hispanic students and only showed significance for Asian students in models 

B and C. Once the variables for relational instruction and teacher caring were included, 

race no longer influenced the change in self-concept over time. There was no statistically 

significant influence on self-concept for students who identified as Native American, 

Alaskan, Hawaiian, or Pacific Islander. However, the sample for this group was small so 

it is likely there was not sufficient statistical power to detect an effect even if one existed. 

Additionally, combining so many racial groups resulted in a heterogeneous category that 
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would not be theoretically reasonable to interpret so I chose not to make any inferences 

regarding this racial category. The racial category more than one race also had a 

statistically significant positive influence on student self-concept in ninth grade (β = .10, 

p < .001), but this effect was only seen in the later models that included teacher caring 

and relational instruction. It was not significant in Model C which only included the 

control variables. Due to the many ways students may consider themselves to be of more 

than one race, this category can also be difficult to interpret. The research does not 

suggest any common characteristics or shared experiences that would relate to all 

multiracial students. Further research would need to be done which could take a more 

detailed look at race to determine any possible relationship between self-concept and 

these more heterogeneous racial categories. 

Student SES had a statistically significant relationship with self-concept in ninth 

grade (β = -.11, p < .001) but it did not significantly influence the change in self-concept 

over time. Surprisingly, the relationship between SES and self-concept was a negative 

one where students who came from higher SES homes had lower levels of self-concept. 

A one standard deviation increase on the SES scale was associated with a decrease in 

ninth-grade self-concept of about 3.16%. 

In alignment with the correlations reported previously, the multi-level regression 

results show a significant predictive effect of the grade students received in their eighth-

grade mathematics class and their ninth-grade self-concept. Students in all groups had 

predicted values of self-concept in 2009 significantly lower than students who received 

an A in their eighth-grade mathematics class and the effect increased as the grade 
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dropped lower and lower. Students who had received a B in eighth grade had self-concept 

approximately 10.63% lower than those who received an A. Students who received a C, 

D, or below D had self-concept in 2009 approximately 19.25%, 22.13%, and 24.71% 

respectively lower than students who received an A the year before. A significant 

negative effect on ninth-grade self-concept was also associated with being in an ungraded 

class but the reason for students being in an ungraded class is unclear so these results are 

not interpretable in terms of influencing students’ mathematics self-concept. Overall, the 

higher the grade a student received in their eighth-grade mathematics course, the higher 

their self-concept was at the start of ninth grade. 

The grade a student received in their eighth-grade mathematics class also had a 

statistically significant influence on change in self-concept over time, but it was in the 

opposite direction. While keeping all other covariates constant, the lower the grade a 

student received in eighth grade, the more quickly their self-concept grew over time. 

Students who received lower than an A had predicted increases in their self-concept .57% 

- 2.30% more each year when compared to students who received an A. This result is not 

terribly surprising. It is reasonable that the greatest growth in self-concept would be 

predicted in students who started with the lowest self-concept. Students who had the most 

negative experiences in their eighth-grade mathematics class are likely to have more 

positive experiences in later years which would contribute to increased self-concept over 

time. 

The second measure of student achievement, students’ scores on the algebraic 

reasoning assessment, was also a statistically significant predictor of mathematics self-
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concept and had the strongest effect on students’ self-concept in ninth grade (β = .36, p < 

.001). Holding all other predictors constant, an increase of one standard deviation higher 

on the algebraic reasoning assessment was associated with approximately a 10.34% 

increase in self-concept in ninth grade. When considering the influence performance on 

the algebraic reasoning assessment had over time, there is a small but significant effect (β 

= .01, p < .01). In addition to having higher initial self-concept in ninth grade, students 

who scored one standard deviation higher on the algebraic reasoning assessment had their 

self-concept grow approximately .29% per year faster. 

In accordance with the current literature, each of the control variables had a 

significant influence when predicting both initial levels of self-concept in ninth grade and 

the rate of change in self-concept over time. Because the control variables were all level-

2 predictors, I examined the proportion of residual level-2 variance explained by 

including these predictors using the formula (Singer & Willett, 2003): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅2 =  𝜏𝜏00 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵.0)−𝜏𝜏00 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶.0) 
𝜏𝜏00 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵.0)

   (12) 

Applying this formula reveals that an additional 34.62% of the between-subjects variance 

was explained by the addition of these control variables. Therefore, including these 

variables while investigating the influence of relational instruction and the creation of a 

caring and supportive classroom environment will help isolate the influence these new 

variables have on student self-concept. 

The Influence of Relational Instruction and a 
Caring Learning Environment 

 Model D added the level-2 variable of Teacher Caring which was a statistically 
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significant predictor of student self-concept in ninth grade (β = .19, p < .001). This model 

explained an additional 38.46% of the between-subject variance when compared to the 

unconditional growth model which means this predictor alone explained approximately 

3.84% of the between-subjects variance. Keeping all other variables constant, a one 

standard deviation increase in students’ perceptions of having a caring and supportive 

mathematics teacher predicted an increase of approximately 5.46% in mathematics self-

concept in the fall of ninth grade. However, this effect does not appear to be lasting 

because that same standard deviation increase in Teacher Caring in ninth grade was also 

associated with an additional .86% decline in self-concept each year after ninth grade (β 

= -.03, p < .001). Models F1 and G1 (not shown above) included interactions terms for 

student gender and Teacher Caring as well as student race and Teacher Caring but the 

interactions were not statistically significant. This indicates a student’s perception of 

having a caring and supportive classroom environment had a similar effect for all 

students regardless of their gender or racial identity. 

 Model E added the level-2 variable of relational instruction. This variable did not 

show statistical significance, however, this model explained an additional 44.87% of the 

between-subject variance when compared to the unconditional growth model. This means 

that the addition of relational instruction as a predictor explained an approximately 6.41% 

of the between-subject variation. The decrease in unexplained variance, along with the 

sharp drop in all three fit indices suggest that relational instruction is in fact a significant 

predictor of self-concept. Statistical significance is often determined in statistical 

software by conducting Wald tests, but these are often inaccurate in longitudinal analyses 
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where variables are allowed to violate the assumption of normality (Singer & Willett, 

2003). The relational instruction variable used in this analysis was negatively skewed so 

the Wald test is not expected to be accurate. Therefore, I accepted relational instruction as 

statistically significant and continued with my planned outline, running models that 

included interactions with gender (Model F2) and race (Model G2). I did not find a 

significant interaction between gender and relational instruction but Model G2 revealed a 

statistically significant interaction with race in the random intercept (βHispanicXRelational_Inst = 

.1, p < .05) and the random slope (βHispanicXRelational_InstXTime = -.02, p < .05). Hispanic 

students whose ninth-grade teacher placed greater emphasis on relational instruction had 

a predicted self-concept in ninth grade about 2.87% higher than Hispanic students whose 

teachers only provided an average level of relational instruction.  

A statistically significant interaction also occurred for students who identified as 

more than one race. For these students, relational instruction did not predict their self-

concept in ninth grade, but their self-concept decreased over time by an additional 1.15% 

a year (β = -.04, p < .01). The interaction for both races is shown visually in Figure 14 but 

as previously discussed, any effects related to students having a multiracial identity is not 

interpretable so I limit my interpretation to students who identified as Hispanic. This 

chart shows how the relationship between relational instruction and race changes over 

time. In ninth grade, white students whose teachers placed greater emphasis on relational 

instruction had weaker predicted self-concept than white students whose teachers did not 

emphasize relational instruction, but the opposite trend is seen for Hispanic students. For 

Hispanic students, having a teacher who emphasized relational instruction predicted 
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higher levels of self-concept. This pattern is repeated for Hispanic students during their 

junior year, but not for multi-racial students. For Hispanic students, having a teacher in 

ninth grade who emphasized relational instruction continued to predict higher levels of 

self-concept two and a half years later.  

Figure 14 

Plot Showing the Interaction Between Race and Relational Instruction Over Time 

 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study, 2009 (HSLS:09), “Baseline Year, Student Survey, 2009,” “Baseline Year, 
Mathematics Teacher Survey, 2009,” “First Follow-up, Student Survey, 2012,” & “Second Follow-up, 
2009.”  

 

This positive trend does not continue into 2016 though. The graph of the third 

timepoint, which occurred two or three years after students left high school, shows an 

opposite result. At this timepoint relational instruction appears to positively predict self-

concept for white students and negatively predict self-concept for Hispanic students. As 

this final timepoint occurs six years after leaving the mathematics class where relational 
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instruction was measured, it is not reasonable to conclude relational instruction is 

continuing to have an effect. At this point in students’ lives they are either continuing 

their education or have entered the workforce where other factors may be more 

influential in shaping their mathematics self-concept. Therefore, the relationship at the 

third timepoint should be considered critically and will not be discussed further in this 

dissertation. 

The interaction with the most statistical strength relates to how relational 

instruction predicts self-concept for Hispanic students. The trend for Hispanic students 

was consistent across the first two timepoints suggesting that relational instruction had a 

positive influence on the mathematics self-concept of Hispanic students. Holding all 

other variables constant, Hispanic students whose mathematics teachers emphasized 

relational instruction had higher predicted levels of self-concept when compared to their 

Hispanic peers whose teachers did not emphasize relational instruction. 

Interpreting the Random Effects 

 The fixed effects in the multi-level models contain the information relevant to 

answering the research questions posed in this dissertation. The random effects are not 

directly relevant to the research questions but were necessary to control for the clustered 

nature of the data. Though the random effects are not immediately relevant to answering 

the research questions, I briefly explain what they signify and any trends that appeared in 

the analysis. 

 The first random effect reported is σ2 and represents the amount of unexplained 

variability at level 1. It explains how much an individual’s predicted self-concept varies 
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around their true change trajectory. This value was about .25 standard deviations until 

relational instruction was introduced as an independent variable at which point it jumped 

to .4 standard deviations. This is a high proportion of within person variability that could 

indicate the need for additional time-varying covariates at level 1 to help explain the 

within person variability. 

 The effects τ00 and τ01 represent the amount of between person variability in the 

random intercept and the random slope after controlling for all level-2 covariates and 

their interactions with time. Since τ00 = .43 there is a substantial amount of between 

subject variability even after controlling for gender, race, SES, past achievement, 

perceptions of teacher caring and relational instruction. The amount of variability in the 

random slope is small (τ01 = .01), which indicates students’ true self-concept trajectories 

change very closely to the predicted rate. This means that although the covariates are not 

adequate for predicting a student’s starting self-concept in ninth grade, they are fairly 

accurate at predicting how the self-concept will change over time. 

 Overall, the results of the CFA and multi-level analysis bring additional clarity to 

our understanding of mathematics self-concept and how it develops. The examination of 

the self-concept trajectory showed self-concept to be a dynamic construct which is 

subject to change throughout high school and moderated by student race and gender. 

These results set the stage for the multi-level model stage of the analysis which found a 

positive relationship between creating a caring and supportive learning environment and 

student self-concept for all student groups. Evaluation of model fit suggests relational 

instruction was also significant in predicting self-concept and further analysis revealed a 
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significant interaction with race which showed that Hispanic students in the sample were 

more strongly influenced by having a mathematics teacher who taught in a way that 

focused on building relational understanding. 
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CHAPTER V  

DISCUSSION 

The purpose of this dissertation was to investigate how relational instruction and 

the creation of caring learning environments contributed to the development of student 

mathematics self-concept, and how those variables influenced students differently 

according to various demographic characteristics. The multi-stage analysis produced 

findings which clarified the nature of mathematics self-concept development, displayed a 

positive association with both caring and supportive learning environments and relational 

instruction, and revealed an interaction with race which suggests the self-concept of 

Hispanic students would especially benefit from teachers who place emphasis on 

relational instruction. In the following chapter I discuss the significance of each of these 

findings along with implications and suggestions for future research. However, before 

discussing the main findings I discuss interesting findings from the CFA analysis. 

Findings from the CFA 

Though not the focus of this research, the CFA results are worth mentioning 

because they provide insight into the main predictors of relational instruction and caring 

and supportive learning environments. The six items from the math teacher survey 

created a strong variable for measuring relational instruction. The coefficient alpha was 

high which indicated strong internal reliability, the inter-item correlation was in the ideal 

range for creating a scale variable, and the factor loadings for most items were high, 

which means the items strongly contributed to the composite variable. The item about 
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placing emphasis on teaching mathematical concepts was the weakest with a factor 

loading of only .59 but that is well above the minimum factor loading value of .3 

(Tavakol & Wetzel, 2020) so it still relates strongly to the composite variable.  

There is a theoretical explanation that may explain why the teaching mathematical 

concepts item had the weakest factor loading. There is a current push in mathematics 

education to focus on teaching students concepts instead of just procedures (see NCTM, 

2014; Rodríguez-Martínez et al., 2020; Russell et al., 2020). This emphasis is discussed 

in both popular and academic writing and has likely been a topic for many professional 

development programs (see Boaler, 2015; Stein et al., 2013). This emphasis could 

contribute to teachers being more likely to rate themselves as having a strong emphasis 

on teaching concepts, possibly contributing to an inflated value on the teaching 

mathematical concepts item which would cause it to not align with results on the other 

five items. This would happen if teachers rated themselves highly on teaching 

mathematical concepts even though they were less likely to emphasize other aspects of 

relational instruction. Another possible explanation for the weak factor loading on the 

teaching mathematical concepts item is that the idea of focusing on concepts is somewhat 

vague and abstract so teachers may not have known how to evaluate their emphasis. 

Though the lower factor loading on the teaching mathematical concepts item was 

surprising, it was still high enough to support its inclusion in the composite variable and 

the loadings on the other five items were strong enough to support the use of the 

relational instruction variable. Future research should be aware, however, of the 

possibility that self-reports by teachers of how much emphasis they put on teaching 
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mathematical concepts may be influenced by ongoing conversations and contribute to 

inflated responses. 

Though the teaching mathematical concepts item did not align as well as expected 

with the relational instruction variable, the other items on the scale all had strong factor 

loadings and provided an effective scale for measuring relational instruction. I have not 

been able to find an existing scale for measuring relational instruction and though the 

creation and validation of an official scale is beyond the scope of this dissertation, this 

composite variable can serve as a starting point in the development of such a scale. Aside 

from scale or variable creation, the results from the CFA help to operationalize the idea 

of relational instruction. Like conceptual teaching, relational instruction is a vague, 

abstract concept and even if teachers want to provide such instruction in their classes, 

they may struggle in knowing how to do that. The items in the composite variable suggest 

that if teachers focus on problem solving, connecting mathematical ideas, mathematical 

reasoning, the logical structure of mathematics, and explaining mathematical ideas, then 

they will be providing relational instruction. These less abstract, more observable ideas 

are easier to define, teach in professional development, observe, and incorporate into 

lesson plans. Though future research should work towards developing and validating an 

official scale to measure relational instruction, the findings in this dissertation provide not 

only a starting point for scale development, but also a more operationalized 

understanding of relational instruction which can be used to plan teacher training and 

professional development. 
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Findings Related to the Self-Concept Trajectory 

The first research question in this dissertation concerns the trajectory of 

mathematics self-concept as students progress through high school and past graduation. 

One significant finding is that students’ mathematics self-concept is dynamic and can 

change considerably throughout high school. This finding contradicts previously held 

beliefs that self-concept becomes stable around eighth grade and is not as prone to change 

in high school (Harter, 1990; Shavelson et al., 1976; Simmons & Blyth, 1987). This is 

important because the belief that self-concept becomes stable as students get older 

contributes to a failure to look for ways to strengthen self-concept in high school. This 

dissertation study was unique in that it mapped the self-concept trajectory over a period 

that covered students’ entire experience in high school. Longitudinal research on self-

concept is rare and students in elementary and middle grades are usually the target 

population (see Arens et al., 2017; Viljaranta et al., 2014). While preparing for this 

research, I was unable to find longitudinal studies which examined the self-concept of 

high school students. Understanding the dynamic nature of self-concept in the higher 

grades may act as a catalyst to place renewed focus on research designed to increase self-

concept for students in mathematics classes from ninth through 12th grade. As students 

go through high school, they spend more time thinking about what they want to do as a 

career. Because self-concept is positively associated with enjoyment in mathematics (Van 

der Beek et al., 2017) and strongly predicts entry into STEM fields (Eccles & Wang, 

2016; Goldman & Penner, 2016), a focus on improving mathematics self-concept among 

students at this time in their lives may encourage more students to pursue further study in 
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mathematics related fields. 

Although the data shows self-concept to still be dynamic in high school there is 

evidence that self-concept stabilizes over time. With repeated measurements it is typical 

that correlations are strongest when measures are separated by shorter amounts of time. 

Measurements that have a longer window of time between them typically have weaker 

correlations. However, this was not the case when examining self-concept. Though there 

was a smaller window of time between the first two timepoints, the correlation between 

those measures of self-concept was weaker than the correlation between the second two 

measures of self-concept, indicating less change between the second two time points. 

This supports the theory that students’ self-concept is more dynamic in their younger 

teenage years but then becomes more stable as they approach adulthood (Harter, 1990; 

Marsh, 1990). However, though the results of this dissertation do indicate that change in 

self-concept decreases in magnitude as students get older, the direction of the change still 

fluctuates. This finding should not be taken as evidence that self-concept itself becomes 

more stable, or resistant to change, as students age. That is possible, but it is also possible 

that as students reach their later high school years their experiences in mathematics 

become more stable, maintaining the status quo. Tracking practices which separate 

students into perceived ability levels are common in U.S. schools and movement from a 

lower track into a higher one is extremely difficult. Unfortunately, the learning 

experiences at the various levels can differ considerably in such a way that experiences in 

a certain class could serve to reinforce students’ current self-concept. The self-concept 

trajectories in this paper show a general convergence for different student groups after 
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leaving high school. This could be interpreted as evidence that self-concept changes less 

in the later high school years partially because of the current educational practices that 

maintain the status quo. Then, following high school, self-concept adjusts because 

students’ experiences change. Future research should consider how student experiences 

in different levels of mathematics classes differ in high school and how those differences 

influence student self-concept. It is important that educators are always working to 

strengthen student self-concept and never reinforcing negative student self-beliefs.  

Findings Related to the Influence of Relational 
Instruction and Caring Learning Environments 

 Bong and Skaalvik (2003) called for further research which would identify 

contributors to self-concept, which are distinct from student perceptions of competence. 

In this dissertation I responded to their call in the second and third research questions, 

investigating the association between self-concept and relational instruction as well as the 

association between self-concept and the creation of caring and supportive learning 

environments. Both relational instruction and the creation of caring and supportive 

learning environments had positive relationships with self-concept for all students, 

meaning that students who experienced more caring and supportive learning 

environments, or had mathematics teachers who provided higher levels of relational 

instruction, were more likely to have higher levels of self-concept. This aligns with 

research which found that mathematics self-concept had stronger associations with 

emotions than with achievement (Van der Beek et al., 2017). A detailed understanding of 

the relationship between self-concept and caring and supportive learning environments 

cannot be determined from this dissertation. It may be that as students’ self-concept 
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increases, they experience the classroom environment in a way that increases their 

perception of a caring and supportive learning environment. Conversely, it could be that 

as teachers create a more caring and supportive learning environment, their students 

experience more support and success which leads to an increase in self-concept. I 

hypothesize a reciprocal relationship like the one observed between mathematics anxiety 

and self-concept (Ahmed et al., 2012). However, whereas Ahmed et al. found the 

pathway from self-concept to anxiety to be the more powerful of the two directions, I 

predict that student perceptions of having a caring and supportive learning environment 

will have a more powerful effect on self-concept while self-concept will only have a 

minor effect on students’ perceptions of the learning environment. More research is 

needed to confirm the way the relationship between self-concept and caring and 

supportive learning environments functions, but these findings suggest the need for 

teachers to be deliberate in creating classroom environments where students feel listened 

to, respected, and treated fairly. This type of classroom environment will help to increase 

students’ self-concept, which should then decrease the anxiety they experience when 

learning mathematics (Van der Beek et al., 2017) and improve achievement (Ahmed et 

al., 2013; Liu, 2021) and future engagement (Goldman & Penner, 2016) in mathematics. 

Findings Related to Race and Gender 

 The final research question investigated the role of race and gender as moderators 

in the development of self-concept. The findings related to gender in this study are in 

harmony with findings in previous U.S. focused research, which found female students 

had decreased self-concept when compared to their male peers (Mejía-Rodríguez et al., 
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2021; S. Skaalvik & Skaalvik, 2004). However, the research in this dissertation goes a 

step further and shows that the gender gap in self-concept continued to grow throughout 

high school. The average self-concept for female students decreased over time while that 

of male students increased. This contrasts with findings of previous longitudinal research 

which also found that female students started with lower levels of self-concept but noted 

that the gap between gender groups remained constant over time (Nagy et al., 2010). This 

discrepancy may be related to how students of different races or ethnicities experience 

mathematics education, as the sample in the Nagy et al. study was predominantly white 

and White students showed the least variation in self-concept in this dissertation. 

However, more longitudinal research is needed which looks in depth at trends in self-

concept related to gender. In addition, none of the predictor variables included in this 

analysis accounted for the gender discrepancy in self-concept so further research is 

needed to determine the mechanisms contributing to this gender gap. One possibility is 

that an individual’s gender identity influences the way they experience and assimilate 

different situations that contribute to self-concept development. For example, Zeldin’s 

(2008) findings that women considered the feedback of others when evaluating their self-

efficacy while men considered past achievement, may also extend to self-concept. 

Another possibility is that gender-based stereotypes create barriers to female students 

seeing mathematics as a relevant or desirable part of their future (Eccles & Wang, 2016). 

This could create barriers to self-concept development even when students are successful 

in mathematics classes. Future research is needed to identify factors that create the gender 

gap in self-concept, so families and educators can enact changes that will close it.  
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This dissertation also took a more nuanced approach to investigating differences 

in self-concept development related to race. Previous comparative research has compared 

racially homogeneous samples in different countries to look differences by race 

(Yoshino, 2012). This dissertation focuses instead on a nationally heterogeneous 

population that has some shared culture. The significant interaction between Hispanic 

students and relational instruction is much more meaningful in this context. Hispanic 

students encounter various stereotypes that hinder their educational progress. One such 

stereotype is the misconception that they are intellectually lazy and do not value 

education (Marx, 2008; Valenzuela, 2010). The findings of this dissertation suggest that 

perceived deficiencies may be related to the type of instruction students receive, rather 

than the students themselves. Unfortunately, students who are English language learners 

or from minority groups are often categorized as low-achieving and are statistically less 

likely to be exposed to high-quality teaching (Haberman, 2010; Ladson-Billings, 2006). 

However, these same students exhibit significant academic improvement when enrolled 

in more challenging courses (Edgerton & Desimone, 2018). Additionally, Valenzuela 

noted that Latino(a) students attended classes and engaged in learning when they felt the 

class was relevant to them and they felt the teachers cared. Mathematics instruction that 

focuses on building relational understanding places more emphasis on problem solving 

and making connections, both of which make mathematics more relevant to students. In 

light of the previously described research, the findings from this dissertation point to the 

need to provide high-quality instruction which builds relational understanding to students 

at all levels and suggests that it may be especially important for helping Hispanic students 
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be more engaged and successful in mathematics. In 2023, underrepresented minorities 

held only 16% of the positions in STEM fields that required a bachelor’s degree 

(National Science Foundation & National Center for Science and Engineering Statistics, 

2023). If providing relational instruction will improve Hispanic students’ engagement in 

mathematics and increase their self-concept, it will encourage more Hispanic students to 

study STEM in college and thereby increase diversity in STEM professions. 

Though only significant for Hispanic students in this sample, Dasgupta et al. 

(2022) found similar positive results among Black, Latinx, and Native American 

students. Increased educational engagement has been seen in districts that offered ethnic 

studies programs that teach Hispanic students about their culture and the history of their 

culture in the U.S. (Bonilla et al., 2021). These programs validated the unique beliefs and 

heritage of various cultures and instilled a more positive sense of self in students. The 

findings in this dissertation suggest that a similar effect might be achieved in a 

mathematics classroom where students are taught to reason, problem solve, and 

communicate about mathematics. When students are expected to reason mathematically 

to find answers to real situations, it allows them to gain more confidence and see the 

relevance of mathematics in their lives – two characteristics which increase mathematics 

self-concept.  

Limitations 

Though the findings previously described help clarify how students’ mathematics 

self-concept develops, there are limitations of this research which need to be 
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acknowledged. One limitation of this dissertation project is that it is ultimately 

correlational research and cannot be used to define a causal relationship between the 

predictor variables and self-concept. Another limitation arises in the creation of the two 

composite variables. The HSLS:09 does not contain items that measure all aspects of the 

relational instruction or caring and supportive learning environment constructs. I was 

limited to those items that were available when creating the new variables and inter-item 

correlations indicate there may be additional elements that are necessary to fully describe 

the caring and supportive learning environments construct. Additional components of 

relational instruction may include teachers’ emphasis on presenting multiple solution 

strategies or asking students to analyze various concept definitions. Caring and 

supportive learning environments may include students’ perceptions of teachers being 

willing to provide help and answer questions or encouraging students to respect one 

another. Though additional items may be needed to exhaustively describe the composite 

variables, my goal was not to exhaustively describe relational instruction or caring and 

supportive learning environments. Ultimately, the included items were important 

components of those variables and gave a strong indication of whether a caring learning 

environment and instruction which builds relational understanding had an influence on 

self-concept, despite being only partially described.  

A similar limitation results from the way self-concept is measured. The HSLS:09 

only used two items to measure self-concept, and though these two items describe the 

core of mathematics self-concept, it is a more complex and multifaceted construct. A 

change in this HSLS:09 variable will not indicate whether students’ perceptions of the 
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nature of mathematics have changed or that they have developed more of an incremental 

(growth) mindset. The HSLS:09 contained items which measured mathematical mindset 

but they were only included at the second and third timepoints, so they were 

inappropriate to use in this analysis. However, the results of this study can still provide 

direction for future research which takes a more nuanced approach in investigating the 

specific facets of self-concept that are most affected by providing relational instruction 

and creating caring learning environments.  

Other limitations arise from the way the HSLS:09 study was designed. Teacher 

caring and relational instruction were only measured at the first timepoint. This means the 

data can only be used to estimate the long-term influence of ninth grade teachers over 

time. To more accurately understand how a caring and supportive learning environment 

or relational instruction influences self-concept, the predictor variables must also be 

measured at multiple timepoints. Additionally, while the timespan of the HSLS:09 data is 

considerable, the fact that self-concept is only measured at three timepoints limits the 

possible shape which can be considered for the trajectory and leaves huge time gaps in 

the data. Longitudinal studies that measured the main predictors as well as self-concept, 

at smaller time intervals would be valuable in furthering our understanding of self-

concept. Despite the limitations, the results of this dissertation are significant due to the 

availability of the large, nationally representative, HSLS:09 dataset and are beneficial 

because they provide an operationalized definition of relational instruction, identify 

demographic differences in the self-concept growth trajectory, and highlight the 

importance of positive classroom environments in strengthening students’ self-concept 
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and improving future achievement and engagement in mathematics. 

Implications For Research 

The findings from this dissertation propose several questions that should be 

studied in future research and highlight methodological issues that should be considered 

in future research on self-concept. In addition to the suggested research already 

mentioned, future research should investigate any connection between student emotions 

in mathematics and relational instruction. Does relational instruction lead to productive 

struggle for all students that will ultimately lead to success and increased confidence, or 

does it create situations full of frustration and increased despair for some? How can 

relational instruction be structured to minimize any negative experiences? Additionally, 

research should identify the sort of training prospective teachers need to teach in a way 

that builds relational understanding. Finally, there is little research that shows how 

students form their perceptions of teacher caring, so further research would be beneficial 

to identify behaviors and practices that increase student perceptions of caring and 

supportive learning environments. 

The results in this dissertation also illustrate the need for future longitudinal 

research on self-concept. While the HSLS:09 provided valuable data which covered a 

significant window of time, the intervals between measurements were too long to 

accurately model the self-concept trajectory. Research spanning multiple years but with 

multiple data collection points within each year would allow for more accurate 

identification of change points in the data. Identification of these change points would 
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help researchers to isolate factors which have significant influence on student self-

concept. With those factors identified, professional development programs will be more 

effective at providing the knowledge and tools teachers need to strengthen their student 

mathematical self-concept. 

These design limitations present implications for future NCES sponsored 

research. The HSLS:09 is the fifth longitudinal study sponsored by the NCES. As it is in 

its final stages, perhaps attention to the findings and limitations of this dissertation will 

guide development of future research which would allow for a more thorough 

investigation of how self-concept changes over time and its relationship to relational 

instruction and caring and supportive learning environments. 

Another methodological consideration deals with the use of aggregated data. The 

drastic variation in individual trajectories suggests mean scores may be misleading when 

aggregating data on self-concept in statistical analyses. Most statistical research on self-

concept considers mean scores in the analyses but the results in this dissertation show 

why that can be problematic. In each plot of self-concept trajectory, the aggregated mean 

change over time was minimal, despite the erratic nature of individual growth plots. 

However, when divided into groups by race or gender the average self-concept 

trajectories for each group varied significantly. Aggregating data may contribute to 

studies with null results and lead to erroneous conclusions. It is essential for researchers 

to understand that demographic factors moderate the way self-concept develops and 

examine different subpopulations of their sample independently to reveal these 

moderators and how they function.  
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Implications For Practice 

 This research provides guidance that addresses the recommendation that teachers 

attend to the self-concept of their student (Kaskens et al., 2020) as it demonstrates a link 

between student self-concept and the type of classroom environment teachers create. 

Students need to feel cared for and supported to improve learning and confidence. 

Teachers today face students with a variety of mental and emotional challenges. Whereas 

teachers in the past could focus solely on teaching content, today’s teachers are trying to 

help students deal with anxiety, depression, pressures created through social media, 

troubled home lives and a whole barrage of other issues that create barriers to student 

learning. Unfortunately, many teachers are not trained in how to recognize or respond to 

these issues. Previous research has already demonstrated a link between student 

achievement and feeling cared for and supported at school (See Kashy-Rosenbaum et al., 

2018; Oda et al., 2021; E. M. Skaalvik & Skaalvik, 2013), but the results of this 

dissertation show positive associations with an important self-belief.  

Conclusion 

This dissertation supports the idea that self-concept is more dynamic than 

previously theorized and that teachers have power to make a significant contribution to 

improving their students’ mathematics self-concept. This self-belief is not solely tied to 

achievement and if we put more focus on instruction that improves self-concept then 

achievement will increase along with students’ interest, persistence, and future 

engagement in STEM. The findings in this dissertation suggest that if teachers create a 
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caring and supportive learning environment in their classroom, they will help positively 

strengthen the mathematics self-concept of their students, thereby improving learning. 

Additionally, a focus on instruction that builds relational understanding in mathematics 

may be instrumental in strengthening the mathematics self-concept of Hispanic students 

and ultimately increasing Hispanic representation in STEM occupations. 
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Items from the HSLS:09 Used to Create Composite Variables 

Self-concept: Student survey at three timepoints – 2009 (BY), 2012 (F1), 2016 (F2) 
I see myself as a math person 

 Others see me as a math person 
 
Relational Instruction: Mathematics teacher survey – 2009 (BY) 

Think about the full duration of this [fall 2009 math course]. How much emphasis 
are you placing on each of the following objectives? 

*Teaching math concepts 
Teaching students mathematical algorithms or procedures (R) 
Developing computational skills (R) 
*Developing problem solving skills 
*Reasoning mathematically 
*Connecting math ideas 
*Logical structure of mathematics 
History and nature of math 
*Effectively explaining math ideas 
Speedy/accurate computations (R) 
Preparing students for standardized tests (R) 

 *Items I believe will be included in the final variable following CFA analysis 
 Items marked with (R) were reverse coded for the analyses 
 
Teacher Caring: Student survey – 2009 (BY) 

How much do you agree or disagree with the following statements about [your 
math teacher]? Your math teacher… 

*Values and listens to students’ ideas 
*Treats students with respect 
*Treats every student fairly 
*Thinks every student can be successful 
*Thinks mistakes are okay as long as all students learn 
Treats some kids better than other kids (R) 
Treats males and females differently (R) 
Makes math interesting 

 
All items measured on a 4-point likert scale (1-strongly agree, 4-strongly disagree). 
Relational instruction items (1-no emphasis, 4-heavy emphasis) 
(R) – Item is reverse coded  
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